v8/src/arm64/code-stubs-arm64.cc
danno@chromium.org 36fc96a4b8 Reland r20974: Unify and simplify the FastCloneShallowArrayStub
- Don't bake in length/capacity into full codegen calls of stubs,
allowing boilerplates to increase their capacity without regenerating
code.
- Unify all variants of the clone stub into a single,
length-independent version.
- Various tweaks to make sure that the clone stub doesn't spill and
therefore need an eager stack frame.
- Handle all lengths of array literals in the fast case.

R=mvstanton@chromium.org

Review URL: https://codereview.chromium.org/272513004

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@21230 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-05-09 15:55:45 +00:00

5513 lines
196 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "v8.h"
#if V8_TARGET_ARCH_ARM64
#include "bootstrapper.h"
#include "code-stubs.h"
#include "regexp-macro-assembler.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
void FastNewClosureStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x2: function info
static Register registers[] = { x2 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
Runtime::FunctionForId(Runtime::kHiddenNewClosureFromStubFailure)->entry;
}
void FastNewContextStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x1: function
static Register registers[] = { x1 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = NULL;
}
void ToNumberStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x0: value
static Register registers[] = { x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = NULL;
}
void NumberToStringStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x0: value
static Register registers[] = { x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
Runtime::FunctionForId(Runtime::kHiddenNumberToString)->entry;
}
void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x3: array literals array
// x2: array literal index
// x1: constant elements
static Register registers[] = { x3, x2, x1 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
static Representation representations[] = {
Representation::Tagged(),
Representation::Smi(),
Representation::Tagged() };
descriptor->register_param_representations_ = representations;
descriptor->deoptimization_handler_ =
Runtime::FunctionForId(
Runtime::kHiddenCreateArrayLiteralStubBailout)->entry;
}
void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x3: object literals array
// x2: object literal index
// x1: constant properties
// x0: object literal flags
static Register registers[] = { x3, x2, x1, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
Runtime::FunctionForId(Runtime::kHiddenCreateObjectLiteral)->entry;
}
void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x2: feedback vector
// x3: call feedback slot
static Register registers[] = { x2, x3 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = NULL;
}
void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x1: receiver
// x0: key
static Register registers[] = { x1, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
}
void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x1: receiver
// x0: key
static Register registers[] = { x1, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
}
void RegExpConstructResultStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x2: length
// x1: index (of last match)
// x0: string
static Register registers[] = { x2, x1, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
Runtime::FunctionForId(Runtime::kHiddenRegExpConstructResult)->entry;
}
void LoadFieldStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x0: receiver
static Register registers[] = { x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = NULL;
}
void KeyedLoadFieldStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x1: receiver
static Register registers[] = { x1 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = NULL;
}
void StringLengthStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
static Register registers[] = { x0, x2 };
descriptor->register_param_count_ = 2;
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = NULL;
}
void KeyedStringLengthStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
static Register registers[] = { x1, x0 };
descriptor->register_param_count_ = 2;
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = NULL;
}
void KeyedStoreFastElementStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x2: receiver
// x1: key
// x0: value
static Register registers[] = { x2, x1, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure);
}
void TransitionElementsKindStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x0: value (js_array)
// x1: to_map
static Register registers[] = { x0, x1 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
Address entry =
Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry);
}
void CompareNilICStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x0: value to compare
static Register registers[] = { x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
FUNCTION_ADDR(CompareNilIC_Miss);
descriptor->SetMissHandler(
ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate()));
}
static void InitializeArrayConstructorDescriptor(
CodeStubInterfaceDescriptor* descriptor,
int constant_stack_parameter_count) {
// x1: function
// x2: allocation site with elements kind
// x0: number of arguments to the constructor function
static Register registers_variable_args[] = { x1, x2, x0 };
static Register registers_no_args[] = { x1, x2 };
if (constant_stack_parameter_count == 0) {
descriptor->register_param_count_ =
sizeof(registers_no_args) / sizeof(registers_no_args[0]);
descriptor->register_params_ = registers_no_args;
} else {
// stack param count needs (constructor pointer, and single argument)
descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
descriptor->stack_parameter_count_ = x0;
descriptor->register_param_count_ =
sizeof(registers_variable_args) / sizeof(registers_variable_args[0]);
descriptor->register_params_ = registers_variable_args;
static Representation representations[] = {
Representation::Tagged(),
Representation::Tagged(),
Representation::Integer32() };
descriptor->register_param_representations_ = representations;
}
descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
descriptor->deoptimization_handler_ =
Runtime::FunctionForId(Runtime::kHiddenArrayConstructor)->entry;
}
void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(descriptor, 0);
}
void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(descriptor, 1);
}
void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(descriptor, -1);
}
static void InitializeInternalArrayConstructorDescriptor(
CodeStubInterfaceDescriptor* descriptor,
int constant_stack_parameter_count) {
// x1: constructor function
// x0: number of arguments to the constructor function
static Register registers_variable_args[] = { x1, x0 };
static Register registers_no_args[] = { x1 };
if (constant_stack_parameter_count == 0) {
descriptor->register_param_count_ =
sizeof(registers_no_args) / sizeof(registers_no_args[0]);
descriptor->register_params_ = registers_no_args;
} else {
// stack param count needs (constructor pointer, and single argument)
descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
descriptor->stack_parameter_count_ = x0;
descriptor->register_param_count_ =
sizeof(registers_variable_args) / sizeof(registers_variable_args[0]);
descriptor->register_params_ = registers_variable_args;
static Representation representations[] = {
Representation::Tagged(),
Representation::Integer32() };
descriptor->register_param_representations_ = representations;
}
descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
descriptor->deoptimization_handler_ =
Runtime::FunctionForId(Runtime::kHiddenInternalArrayConstructor)->entry;
}
void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(descriptor, 0);
}
void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(descriptor, 1);
}
void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(descriptor, -1);
}
void ToBooleanStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x0: value
static Register registers[] = { x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = FUNCTION_ADDR(ToBooleanIC_Miss);
descriptor->SetMissHandler(
ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate()));
}
void StoreGlobalStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x1: receiver
// x2: key (unused)
// x0: value
static Register registers[] = { x1, x2, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
FUNCTION_ADDR(StoreIC_MissFromStubFailure);
}
void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x0: value
// x3: target map
// x1: key
// x2: receiver
static Register registers[] = { x0, x3, x1, x2 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss);
}
void ArrayShiftStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x0: receiver
static Register registers[] = { x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
Builtins::c_function_address(Builtins::c_ArrayShift);
}
void BinaryOpICStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x1: left operand
// x0: right operand
static Register registers[] = { x1, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
descriptor->SetMissHandler(
ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate()));
}
void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x2: allocation site
// x1: left operand
// x0: right operand
static Register registers[] = { x2, x1, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite);
}
void StringAddStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
// x1: left operand
// x0: right operand
static Register registers[] = { x1, x0 };
descriptor->register_param_count_ = sizeof(registers) / sizeof(registers[0]);
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ =
Runtime::FunctionForId(Runtime::kHiddenStringAdd)->entry;
}
void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
static PlatformCallInterfaceDescriptor default_descriptor =
PlatformCallInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS);
static PlatformCallInterfaceDescriptor noInlineDescriptor =
PlatformCallInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS);
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
static Register registers[] = { x1, // JSFunction
cp, // context
x0, // actual number of arguments
x2, // expected number of arguments
};
static Representation representations[] = {
Representation::Tagged(), // JSFunction
Representation::Tagged(), // context
Representation::Integer32(), // actual number of arguments
Representation::Integer32(), // expected number of arguments
};
descriptor->register_param_count_ = 4;
descriptor->register_params_ = registers;
descriptor->param_representations_ = representations;
descriptor->platform_specific_descriptor_ = &default_descriptor;
}
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::KeyedCall);
static Register registers[] = { cp, // context
x2, // key
};
static Representation representations[] = {
Representation::Tagged(), // context
Representation::Tagged(), // key
};
descriptor->register_param_count_ = 2;
descriptor->register_params_ = registers;
descriptor->param_representations_ = representations;
descriptor->platform_specific_descriptor_ = &noInlineDescriptor;
}
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::NamedCall);
static Register registers[] = { cp, // context
x2, // name
};
static Representation representations[] = {
Representation::Tagged(), // context
Representation::Tagged(), // name
};
descriptor->register_param_count_ = 2;
descriptor->register_params_ = registers;
descriptor->param_representations_ = representations;
descriptor->platform_specific_descriptor_ = &noInlineDescriptor;
}
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::CallHandler);
static Register registers[] = { cp, // context
x0, // receiver
};
static Representation representations[] = {
Representation::Tagged(), // context
Representation::Tagged(), // receiver
};
descriptor->register_param_count_ = 2;
descriptor->register_params_ = registers;
descriptor->param_representations_ = representations;
descriptor->platform_specific_descriptor_ = &default_descriptor;
}
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::ApiFunctionCall);
static Register registers[] = { x0, // callee
x4, // call_data
x2, // holder
x1, // api_function_address
cp, // context
};
static Representation representations[] = {
Representation::Tagged(), // callee
Representation::Tagged(), // call_data
Representation::Tagged(), // holder
Representation::External(), // api_function_address
Representation::Tagged(), // context
};
descriptor->register_param_count_ = 5;
descriptor->register_params_ = registers;
descriptor->param_representations_ = representations;
descriptor->platform_specific_descriptor_ = &default_descriptor;
}
}
#define __ ACCESS_MASM(masm)
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor();
int param_count = descriptor->register_param_count_;
{
// Call the runtime system in a fresh internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
ASSERT((descriptor->register_param_count_ == 0) ||
x0.Is(descriptor->register_params_[param_count - 1]));
// Push arguments
MacroAssembler::PushPopQueue queue(masm);
for (int i = 0; i < param_count; ++i) {
queue.Queue(descriptor->register_params_[i]);
}
queue.PushQueued();
ExternalReference miss = descriptor->miss_handler();
__ CallExternalReference(miss, descriptor->register_param_count_);
}
__ Ret();
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label done;
Register input = source();
Register result = destination();
ASSERT(is_truncating());
ASSERT(result.Is64Bits());
ASSERT(jssp.Is(masm->StackPointer()));
int double_offset = offset();
DoubleRegister double_scratch = d0; // only used if !skip_fastpath()
Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
Register scratch2 =
GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
__ Push(scratch1, scratch2);
// Account for saved regs if input is jssp.
if (input.is(jssp)) double_offset += 2 * kPointerSize;
if (!skip_fastpath()) {
__ Push(double_scratch);
if (input.is(jssp)) double_offset += 1 * kDoubleSize;
__ Ldr(double_scratch, MemOperand(input, double_offset));
// Try to convert with a FPU convert instruction. This handles all
// non-saturating cases.
__ TryConvertDoubleToInt64(result, double_scratch, &done);
__ Fmov(result, double_scratch);
} else {
__ Ldr(result, MemOperand(input, double_offset));
}
// If we reach here we need to manually convert the input to an int32.
// Extract the exponent.
Register exponent = scratch1;
__ Ubfx(exponent, result, HeapNumber::kMantissaBits,
HeapNumber::kExponentBits);
// It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
// the mantissa gets shifted completely out of the int32_t result.
__ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
__ CzeroX(result, ge);
__ B(ge, &done);
// The Fcvtzs sequence handles all cases except where the conversion causes
// signed overflow in the int64_t target. Since we've already handled
// exponents >= 84, we can guarantee that 63 <= exponent < 84.
if (masm->emit_debug_code()) {
__ Cmp(exponent, HeapNumber::kExponentBias + 63);
// Exponents less than this should have been handled by the Fcvt case.
__ Check(ge, kUnexpectedValue);
}
// Isolate the mantissa bits, and set the implicit '1'.
Register mantissa = scratch2;
__ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
__ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
// Negate the mantissa if necessary.
__ Tst(result, kXSignMask);
__ Cneg(mantissa, mantissa, ne);
// Shift the mantissa bits in the correct place. We know that we have to shift
// it left here, because exponent >= 63 >= kMantissaBits.
__ Sub(exponent, exponent,
HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
__ Lsl(result, mantissa, exponent);
__ Bind(&done);
if (!skip_fastpath()) {
__ Pop(double_scratch);
}
__ Pop(scratch2, scratch1);
__ Ret();
}
// See call site for description.
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Register left,
Register right,
Register scratch,
FPRegister double_scratch,
Label* slow,
Condition cond) {
ASSERT(!AreAliased(left, right, scratch));
Label not_identical, return_equal, heap_number;
Register result = x0;
__ Cmp(right, left);
__ B(ne, &not_identical);
// Test for NaN. Sadly, we can't just compare to factory::nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
if ((cond == lt) || (cond == gt)) {
__ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow,
ge);
} else {
Register right_type = scratch;
__ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
&heap_number);
// Comparing JS objects with <=, >= is complicated.
if (cond != eq) {
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
__ B(ge, slow);
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if ((cond == le) || (cond == ge)) {
__ Cmp(right_type, ODDBALL_TYPE);
__ B(ne, &return_equal);
__ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
if (cond == le) {
// undefined <= undefined should fail.
__ Mov(result, GREATER);
} else {
// undefined >= undefined should fail.
__ Mov(result, LESS);
}
__ Ret();
}
}
}
__ Bind(&return_equal);
if (cond == lt) {
__ Mov(result, GREATER); // Things aren't less than themselves.
} else if (cond == gt) {
__ Mov(result, LESS); // Things aren't greater than themselves.
} else {
__ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
}
__ Ret();
// Cases lt and gt have been handled earlier, and case ne is never seen, as
// it is handled in the parser (see Parser::ParseBinaryExpression). We are
// only concerned with cases ge, le and eq here.
if ((cond != lt) && (cond != gt)) {
ASSERT((cond == ge) || (cond == le) || (cond == eq));
__ Bind(&heap_number);
// Left and right are identical pointers to a heap number object. Return
// non-equal if the heap number is a NaN, and equal otherwise. Comparing
// the number to itself will set the overflow flag iff the number is NaN.
__ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
__ Fcmp(double_scratch, double_scratch);
__ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
if (cond == le) {
__ Mov(result, GREATER);
} else {
__ Mov(result, LESS);
}
__ Ret();
}
// No fall through here.
if (FLAG_debug_code) {
__ Unreachable();
}
__ Bind(&not_identical);
}
// See call site for description.
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register left,
Register right,
Register left_type,
Register right_type,
Register scratch) {
ASSERT(!AreAliased(left, right, left_type, right_type, scratch));
if (masm->emit_debug_code()) {
// We assume that the arguments are not identical.
__ Cmp(left, right);
__ Assert(ne, kExpectedNonIdenticalObjects);
}
// If either operand is a JS object or an oddball value, then they are not
// equal since their pointers are different.
// There is no test for undetectability in strict equality.
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
Label right_non_object;
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
__ B(lt, &right_non_object);
// Return non-zero - x0 already contains a non-zero pointer.
ASSERT(left.is(x0) || right.is(x0));
Label return_not_equal;
__ Bind(&return_not_equal);
__ Ret();
__ Bind(&right_non_object);
// Check for oddballs: true, false, null, undefined.
__ Cmp(right_type, ODDBALL_TYPE);
// If right is not ODDBALL, test left. Otherwise, set eq condition.
__ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
// If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE.
// Otherwise, right or left is ODDBALL, so set a ge condition.
__ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne);
__ B(ge, &return_not_equal);
// Internalized strings are unique, so they can only be equal if they are the
// same object. We have already tested that case, so if left and right are
// both internalized strings, they cannot be equal.
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
__ Orr(scratch, left_type, right_type);
__ TestAndBranchIfAllClear(
scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
}
// See call site for description.
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register left,
Register right,
FPRegister left_d,
FPRegister right_d,
Register scratch,
Label* slow,
bool strict) {
ASSERT(!AreAliased(left, right, scratch));
ASSERT(!AreAliased(left_d, right_d));
ASSERT((left.is(x0) && right.is(x1)) ||
(right.is(x0) && left.is(x1)));
Register result = x0;
Label right_is_smi, done;
__ JumpIfSmi(right, &right_is_smi);
// Left is the smi. Check whether right is a heap number.
if (strict) {
// If right is not a number and left is a smi, then strict equality cannot
// succeed. Return non-equal.
Label is_heap_number;
__ JumpIfObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE,
&is_heap_number);
// Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
if (!right.is(result)) {
__ Mov(result, NOT_EQUAL);
}
__ Ret();
__ Bind(&is_heap_number);
} else {
// Smi compared non-strictly with a non-smi, non-heap-number. Call the
// runtime.
__ JumpIfNotObjectType(right, scratch, scratch, HEAP_NUMBER_TYPE, slow);
}
// Left is the smi. Right is a heap number. Load right value into right_d, and
// convert left smi into double in left_d.
__ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
__ SmiUntagToDouble(left_d, left);
__ B(&done);
__ Bind(&right_is_smi);
// Right is a smi. Check whether the non-smi left is a heap number.
if (strict) {
// If left is not a number and right is a smi then strict equality cannot
// succeed. Return non-equal.
Label is_heap_number;
__ JumpIfObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE,
&is_heap_number);
// Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
if (!left.is(result)) {
__ Mov(result, NOT_EQUAL);
}
__ Ret();
__ Bind(&is_heap_number);
} else {
// Smi compared non-strictly with a non-smi, non-heap-number. Call the
// runtime.
__ JumpIfNotObjectType(left, scratch, scratch, HEAP_NUMBER_TYPE, slow);
}
// Right is the smi. Left is a heap number. Load left value into left_d, and
// convert right smi into double in right_d.
__ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
__ SmiUntagToDouble(right_d, right);
// Fall through to both_loaded_as_doubles.
__ Bind(&done);
}
// Fast negative check for internalized-to-internalized equality.
// See call site for description.
static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
Register left,
Register right,
Register left_map,
Register right_map,
Register left_type,
Register right_type,
Label* possible_strings,
Label* not_both_strings) {
ASSERT(!AreAliased(left, right, left_map, right_map, left_type, right_type));
Register result = x0;
Label object_test;
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
// TODO(all): reexamine this branch sequence for optimisation wrt branch
// prediction.
__ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
__ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
__ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings);
__ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
// Both are internalized. We already checked that they weren't the same
// pointer, so they are not equal.
__ Mov(result, NOT_EQUAL);
__ Ret();
__ Bind(&object_test);
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
// If right >= FIRST_SPEC_OBJECT_TYPE, test left.
// Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition.
__ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge);
__ B(lt, not_both_strings);
// If both objects are undetectable, they are equal. Otherwise, they are not
// equal, since they are different objects and an object is not equal to
// undefined.
// Returning here, so we can corrupt right_type and left_type.
Register right_bitfield = right_type;
Register left_bitfield = left_type;
__ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
__ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
__ And(result, right_bitfield, left_bitfield);
__ And(result, result, 1 << Map::kIsUndetectable);
__ Eor(result, result, 1 << Map::kIsUndetectable);
__ Ret();
}
static void ICCompareStub_CheckInputType(MacroAssembler* masm,
Register input,
Register scratch,
CompareIC::State expected,
Label* fail) {
Label ok;
if (expected == CompareIC::SMI) {
__ JumpIfNotSmi(input, fail);
} else if (expected == CompareIC::NUMBER) {
__ JumpIfSmi(input, &ok);
__ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
DONT_DO_SMI_CHECK);
}
// We could be strict about internalized/non-internalized here, but as long as
// hydrogen doesn't care, the stub doesn't have to care either.
__ Bind(&ok);
}
void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
Register lhs = x1;
Register rhs = x0;
Register result = x0;
Condition cond = GetCondition();
Label miss;
ICCompareStub_CheckInputType(masm, lhs, x2, left_, &miss);
ICCompareStub_CheckInputType(masm, rhs, x3, right_, &miss);
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles;
Label not_two_smis, smi_done;
__ JumpIfEitherNotSmi(lhs, rhs, &not_two_smis);
__ SmiUntag(lhs);
__ Sub(result, lhs, Operand::UntagSmi(rhs));
__ Ret();
__ Bind(&not_two_smis);
// NOTICE! This code is only reached after a smi-fast-case check, so it is
// certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond);
// If either is a smi (we know that at least one is not a smi), then they can
// only be strictly equal if the other is a HeapNumber.
__ JumpIfBothNotSmi(lhs, rhs, &not_smis);
// Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
// can:
// 1) Return the answer.
// 2) Branch to the slow case.
// 3) Fall through to both_loaded_as_doubles.
// In case 3, we have found out that we were dealing with a number-number
// comparison. The double values of the numbers have been loaded, right into
// rhs_d, left into lhs_d.
FPRegister rhs_d = d0;
FPRegister lhs_d = d1;
EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, x10, &slow, strict());
__ Bind(&both_loaded_as_doubles);
// The arguments have been converted to doubles and stored in rhs_d and
// lhs_d.
Label nan;
__ Fcmp(lhs_d, rhs_d);
__ B(vs, &nan); // Overflow flag set if either is NaN.
STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
__ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
__ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
__ Ret();
__ Bind(&nan);
// Left and/or right is a NaN. Load the result register with whatever makes
// the comparison fail, since comparisons with NaN always fail (except ne,
// which is filtered out at a higher level.)
ASSERT(cond != ne);
if ((cond == lt) || (cond == le)) {
__ Mov(result, GREATER);
} else {
__ Mov(result, LESS);
}
__ Ret();
__ Bind(&not_smis);
// At this point we know we are dealing with two different objects, and
// neither of them is a smi. The objects are in rhs_ and lhs_.
// Load the maps and types of the objects.
Register rhs_map = x10;
Register rhs_type = x11;
Register lhs_map = x12;
Register lhs_type = x13;
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
if (strict()) {
// This emits a non-equal return sequence for some object types, or falls
// through if it was not lucky.
EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
}
Label check_for_internalized_strings;
Label flat_string_check;
// Check for heap number comparison. Branch to earlier double comparison code
// if they are heap numbers, otherwise, branch to internalized string check.
__ Cmp(rhs_type, HEAP_NUMBER_TYPE);
__ B(ne, &check_for_internalized_strings);
__ Cmp(lhs_map, rhs_map);
// If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
// string check.
__ B(ne, &flat_string_check);
// Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
// comparison code.
__ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
__ B(&both_loaded_as_doubles);
__ Bind(&check_for_internalized_strings);
// In the strict case, the EmitStrictTwoHeapObjectCompare already took care
// of internalized strings.
if ((cond == eq) && !strict()) {
// Returns an answer for two internalized strings or two detectable objects.
// Otherwise branches to the string case or not both strings case.
EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
lhs_type, rhs_type,
&flat_string_check, &slow);
}
// Check for both being sequential ASCII strings, and inline if that is the
// case.
__ Bind(&flat_string_check);
__ JumpIfBothInstanceTypesAreNotSequentialAscii(lhs_type, rhs_type, x14,
x15, &slow);
__ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
x11);
if (cond == eq) {
StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs,
x10, x11, x12);
} else {
StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs,
x10, x11, x12, x13);
}
// Never fall through to here.
if (FLAG_debug_code) {
__ Unreachable();
}
__ Bind(&slow);
__ Push(lhs, rhs);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript native;
if (cond == eq) {
native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
native = Builtins::COMPARE;
int ncr; // NaN compare result
if ((cond == lt) || (cond == le)) {
ncr = GREATER;
} else {
ASSERT((cond == gt) || (cond == ge)); // remaining cases
ncr = LESS;
}
__ Mov(x10, Smi::FromInt(ncr));
__ Push(x10);
}
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(native, JUMP_FUNCTION);
__ Bind(&miss);
GenerateMiss(masm);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
CPURegList saved_regs = kCallerSaved;
CPURegList saved_fp_regs = kCallerSavedFP;
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
// We don't care if MacroAssembler scratch registers are corrupted.
saved_regs.Remove(*(masm->TmpList()));
saved_fp_regs.Remove(*(masm->FPTmpList()));
__ PushCPURegList(saved_regs);
if (save_doubles_ == kSaveFPRegs) {
__ PushCPURegList(saved_fp_regs);
}
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(x0, ExternalReference::isolate_address(isolate()));
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
if (save_doubles_ == kSaveFPRegs) {
__ PopCPURegList(saved_fp_regs);
}
__ PopCPURegList(saved_regs);
__ Ret();
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
UseScratchRegisterScope temps(masm);
Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
Register return_address = temps.AcquireX();
__ Mov(return_address, lr);
// Restore lr with the value it had before the call to this stub (the value
// which must be pushed).
__ Mov(lr, saved_lr);
if (save_doubles_ == kSaveFPRegs) {
__ PushSafepointRegistersAndDoubles();
} else {
__ PushSafepointRegisters();
}
__ Ret(return_address);
}
void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
UseScratchRegisterScope temps(masm);
Register return_address = temps.AcquireX();
// Preserve the return address (lr will be clobbered by the pop).
__ Mov(return_address, lr);
if (save_doubles_ == kSaveFPRegs) {
__ PopSafepointRegistersAndDoubles();
} else {
__ PopSafepointRegisters();
}
__ Ret(return_address);
}
void MathPowStub::Generate(MacroAssembler* masm) {
// Stack on entry:
// jssp[0]: Exponent (as a tagged value).
// jssp[1]: Base (as a tagged value).
//
// The (tagged) result will be returned in x0, as a heap number.
Register result_tagged = x0;
Register base_tagged = x10;
Register exponent_tagged = x11;
Register exponent_integer = x12;
Register scratch1 = x14;
Register scratch0 = x15;
Register saved_lr = x19;
FPRegister result_double = d0;
FPRegister base_double = d0;
FPRegister exponent_double = d1;
FPRegister base_double_copy = d2;
FPRegister scratch1_double = d6;
FPRegister scratch0_double = d7;
// A fast-path for integer exponents.
Label exponent_is_smi, exponent_is_integer;
// Bail out to runtime.
Label call_runtime;
// Allocate a heap number for the result, and return it.
Label done;
// Unpack the inputs.
if (exponent_type_ == ON_STACK) {
Label base_is_smi;
Label unpack_exponent;
__ Pop(exponent_tagged, base_tagged);
__ JumpIfSmi(base_tagged, &base_is_smi);
__ JumpIfNotHeapNumber(base_tagged, &call_runtime);
// base_tagged is a heap number, so load its double value.
__ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
__ B(&unpack_exponent);
__ Bind(&base_is_smi);
// base_tagged is a SMI, so untag it and convert it to a double.
__ SmiUntagToDouble(base_double, base_tagged);
__ Bind(&unpack_exponent);
// x10 base_tagged The tagged base (input).
// x11 exponent_tagged The tagged exponent (input).
// d1 base_double The base as a double.
__ JumpIfSmi(exponent_tagged, &exponent_is_smi);
__ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
// exponent_tagged is a heap number, so load its double value.
__ Ldr(exponent_double,
FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
} else if (exponent_type_ == TAGGED) {
__ JumpIfSmi(exponent_tagged, &exponent_is_smi);
__ Ldr(exponent_double,
FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
}
// Handle double (heap number) exponents.
if (exponent_type_ != INTEGER) {
// Detect integer exponents stored as doubles and handle those in the
// integer fast-path.
__ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
scratch0_double, &exponent_is_integer);
if (exponent_type_ == ON_STACK) {
FPRegister half_double = d3;
FPRegister minus_half_double = d4;
// Detect square root case. Crankshaft detects constant +/-0.5 at compile
// time and uses DoMathPowHalf instead. We then skip this check for
// non-constant cases of +/-0.5 as these hardly occur.
__ Fmov(minus_half_double, -0.5);
__ Fmov(half_double, 0.5);
__ Fcmp(minus_half_double, exponent_double);
__ Fccmp(half_double, exponent_double, NZFlag, ne);
// Condition flags at this point:
// 0.5; nZCv // Identified by eq && pl
// -0.5: NZcv // Identified by eq && mi
// other: ?z?? // Identified by ne
__ B(ne, &call_runtime);
// The exponent is 0.5 or -0.5.
// Given that exponent is known to be either 0.5 or -0.5, the following
// special cases could apply (according to ECMA-262 15.8.2.13):
//
// base.isNaN(): The result is NaN.
// (base == +INFINITY) || (base == -INFINITY)
// exponent == 0.5: The result is +INFINITY.
// exponent == -0.5: The result is +0.
// (base == +0) || (base == -0)
// exponent == 0.5: The result is +0.
// exponent == -0.5: The result is +INFINITY.
// (base < 0) && base.isFinite(): The result is NaN.
//
// Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
// where base is -INFINITY or -0.
// Add +0 to base. This has no effect other than turning -0 into +0.
__ Fadd(base_double, base_double, fp_zero);
// The operation -0+0 results in +0 in all cases except where the
// FPCR rounding mode is 'round towards minus infinity' (RM). The
// ARM64 simulator does not currently simulate FPCR (where the rounding
// mode is set), so test the operation with some debug code.
if (masm->emit_debug_code()) {
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireX();
__ Fneg(scratch0_double, fp_zero);
// Verify that we correctly generated +0.0 and -0.0.
// bits(+0.0) = 0x0000000000000000
// bits(-0.0) = 0x8000000000000000
__ Fmov(temp, fp_zero);
__ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
__ Fmov(temp, scratch0_double);
__ Eor(temp, temp, kDSignMask);
__ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
// Check that -0.0 + 0.0 == +0.0.
__ Fadd(scratch0_double, scratch0_double, fp_zero);
__ Fmov(temp, scratch0_double);
__ CheckRegisterIsClear(temp, kExpectedPositiveZero);
}
// If base is -INFINITY, make it +INFINITY.
// * Calculate base - base: All infinities will become NaNs since both
// -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64.
// * If the result is NaN, calculate abs(base).
__ Fsub(scratch0_double, base_double, base_double);
__ Fcmp(scratch0_double, 0.0);
__ Fabs(scratch1_double, base_double);
__ Fcsel(base_double, scratch1_double, base_double, vs);
// Calculate the square root of base.
__ Fsqrt(result_double, base_double);
__ Fcmp(exponent_double, 0.0);
__ B(ge, &done); // Finish now for exponents of 0.5.
// Find the inverse for exponents of -0.5.
__ Fmov(scratch0_double, 1.0);
__ Fdiv(result_double, scratch0_double, result_double);
__ B(&done);
}
{
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(saved_lr, lr);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()),
0, 2);
__ Mov(lr, saved_lr);
__ B(&done);
}
// Handle SMI exponents.
__ Bind(&exponent_is_smi);
// x10 base_tagged The tagged base (input).
// x11 exponent_tagged The tagged exponent (input).
// d1 base_double The base as a double.
__ SmiUntag(exponent_integer, exponent_tagged);
}
__ Bind(&exponent_is_integer);
// x10 base_tagged The tagged base (input).
// x11 exponent_tagged The tagged exponent (input).
// x12 exponent_integer The exponent as an integer.
// d1 base_double The base as a double.
// Find abs(exponent). For negative exponents, we can find the inverse later.
Register exponent_abs = x13;
__ Cmp(exponent_integer, 0);
__ Cneg(exponent_abs, exponent_integer, mi);
// x13 exponent_abs The value of abs(exponent_integer).
// Repeatedly multiply to calculate the power.
// result = 1.0;
// For each bit n (exponent_integer{n}) {
// if (exponent_integer{n}) {
// result *= base;
// }
// base *= base;
// if (remaining bits in exponent_integer are all zero) {
// break;
// }
// }
Label power_loop, power_loop_entry, power_loop_exit;
__ Fmov(scratch1_double, base_double);
__ Fmov(base_double_copy, base_double);
__ Fmov(result_double, 1.0);
__ B(&power_loop_entry);
__ Bind(&power_loop);
__ Fmul(scratch1_double, scratch1_double, scratch1_double);
__ Lsr(exponent_abs, exponent_abs, 1);
__ Cbz(exponent_abs, &power_loop_exit);
__ Bind(&power_loop_entry);
__ Tbz(exponent_abs, 0, &power_loop);
__ Fmul(result_double, result_double, scratch1_double);
__ B(&power_loop);
__ Bind(&power_loop_exit);
// If the exponent was positive, result_double holds the result.
__ Tbz(exponent_integer, kXSignBit, &done);
// The exponent was negative, so find the inverse.
__ Fmov(scratch0_double, 1.0);
__ Fdiv(result_double, scratch0_double, result_double);
// ECMA-262 only requires Math.pow to return an 'implementation-dependent
// approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
// to calculate the subnormal value 2^-1074. This method of calculating
// negative powers doesn't work because 2^1074 overflows to infinity. To
// catch this corner-case, we bail out if the result was 0. (This can only
// occur if the divisor is infinity or the base is zero.)
__ Fcmp(result_double, 0.0);
__ B(&done, ne);
if (exponent_type_ == ON_STACK) {
// Bail out to runtime code.
__ Bind(&call_runtime);
// Put the arguments back on the stack.
__ Push(base_tagged, exponent_tagged);
__ TailCallRuntime(Runtime::kHiddenMathPow, 2, 1);
// Return.
__ Bind(&done);
__ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1,
result_double);
ASSERT(result_tagged.is(x0));
__ IncrementCounter(
isolate()->counters()->math_pow(), 1, scratch0, scratch1);
__ Ret();
} else {
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(saved_lr, lr);
__ Fmov(base_double, base_double_copy);
__ Scvtf(exponent_double, exponent_integer);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()),
0, 2);
__ Mov(lr, saved_lr);
__ Bind(&done);
__ IncrementCounter(
isolate()->counters()->math_pow(), 1, scratch0, scratch1);
__ Ret();
}
}
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
// It is important that the following stubs are generated in this order
// because pregenerated stubs can only call other pregenerated stubs.
// RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
// CEntryStub.
CEntryStub::GenerateAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
BinaryOpICStub::GenerateAheadOfTime(isolate);
StoreRegistersStateStub::GenerateAheadOfTime(isolate);
RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
}
void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
StoreRegistersStateStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
StoreRegistersStateStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
RestoreRegistersStateStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
RestoreRegistersStateStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Floating-point code doesn't get special handling in ARM64, so there's
// nothing to do here.
USE(isolate);
}
bool CEntryStub::NeedsImmovableCode() {
// CEntryStub stores the return address on the stack before calling into
// C++ code. In some cases, the VM accesses this address, but it is not used
// when the C++ code returns to the stub because LR holds the return address
// in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
// returning to dead code.
// TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
// find any comment to confirm this, and I don't hit any crashes whatever
// this function returns. The anaylsis should be properly confirmed.
return true;
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
stub_fp.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// The Abort mechanism relies on CallRuntime, which in turn relies on
// CEntryStub, so until this stub has been generated, we have to use a
// fall-back Abort mechanism.
//
// Note that this stub must be generated before any use of Abort.
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
ASM_LOCATION("CEntryStub::Generate entry");
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Register parameters:
// x0: argc (including receiver, untagged)
// x1: target
//
// The stack on entry holds the arguments and the receiver, with the receiver
// at the highest address:
//
// jssp]argc-1]: receiver
// jssp[argc-2]: arg[argc-2]
// ... ...
// jssp[1]: arg[1]
// jssp[0]: arg[0]
//
// The arguments are in reverse order, so that arg[argc-2] is actually the
// first argument to the target function and arg[0] is the last.
ASSERT(jssp.Is(__ StackPointer()));
const Register& argc_input = x0;
const Register& target_input = x1;
// Calculate argv, argc and the target address, and store them in
// callee-saved registers so we can retry the call without having to reload
// these arguments.
// TODO(jbramley): If the first call attempt succeeds in the common case (as
// it should), then we might be better off putting these parameters directly
// into their argument registers, rather than using callee-saved registers and
// preserving them on the stack.
const Register& argv = x21;
const Register& argc = x22;
const Register& target = x23;
// Derive argv from the stack pointer so that it points to the first argument
// (arg[argc-2]), or just below the receiver in case there are no arguments.
// - Adjust for the arg[] array.
Register temp_argv = x11;
__ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
// - Adjust for the receiver.
__ Sub(temp_argv, temp_argv, 1 * kPointerSize);
// Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved
// registers.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(save_doubles_, x10, 3);
ASSERT(csp.Is(__ StackPointer()));
// Poke callee-saved registers into reserved space.
__ Poke(argv, 1 * kPointerSize);
__ Poke(argc, 2 * kPointerSize);
__ Poke(target, 3 * kPointerSize);
// We normally only keep tagged values in callee-saved registers, as they
// could be pushed onto the stack by called stubs and functions, and on the
// stack they can confuse the GC. However, we're only calling C functions
// which can push arbitrary data onto the stack anyway, and so the GC won't
// examine that part of the stack.
__ Mov(argc, argc_input);
__ Mov(target, target_input);
__ Mov(argv, temp_argv);
// x21 : argv
// x22 : argc
// x23 : call target
//
// The stack (on entry) holds the arguments and the receiver, with the
// receiver at the highest address:
//
// argv[8]: receiver
// argv -> argv[0]: arg[argc-2]
// ... ...
// argv[...]: arg[1]
// argv[...]: arg[0]
//
// Immediately below (after) this is the exit frame, as constructed by
// EnterExitFrame:
// fp[8]: CallerPC (lr)
// fp -> fp[0]: CallerFP (old fp)
// fp[-8]: Space reserved for SPOffset.
// fp[-16]: CodeObject()
// csp[...]: Saved doubles, if saved_doubles is true.
// csp[32]: Alignment padding, if necessary.
// csp[24]: Preserved x23 (used for target).
// csp[16]: Preserved x22 (used for argc).
// csp[8]: Preserved x21 (used for argv).
// csp -> csp[0]: Space reserved for the return address.
//
// After a successful call, the exit frame, preserved registers (x21-x23) and
// the arguments (including the receiver) are dropped or popped as
// appropriate. The stub then returns.
//
// After an unsuccessful call, the exit frame and suchlike are left
// untouched, and the stub either throws an exception by jumping to one of
// the exception_returned label.
ASSERT(csp.Is(__ StackPointer()));
// Prepare AAPCS64 arguments to pass to the builtin.
__ Mov(x0, argc);
__ Mov(x1, argv);
__ Mov(x2, ExternalReference::isolate_address(isolate()));
Label return_location;
__ Adr(x12, &return_location);
__ Poke(x12, 0);
if (__ emit_debug_code()) {
// Verify that the slot below fp[kSPOffset]-8 points to the return location
// (currently in x12).
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireX();
__ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
__ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
__ Cmp(temp, x12);
__ Check(eq, kReturnAddressNotFoundInFrame);
}
// Call the builtin.
__ Blr(target);
__ Bind(&return_location);
// x0 result The return code from the call.
// x21 argv
// x22 argc
// x23 target
const Register& result = x0;
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(result, Heap::kExceptionRootIndex);
__ B(eq, &exception_returned);
// The call succeeded, so unwind the stack and return.
// Restore callee-saved registers x21-x23.
__ Mov(x11, argc);
__ Peek(argv, 1 * kPointerSize);
__ Peek(argc, 2 * kPointerSize);
__ Peek(target, 3 * kPointerSize);
__ LeaveExitFrame(save_doubles_, x10, true);
ASSERT(jssp.Is(__ StackPointer()));
// Pop or drop the remaining stack slots and return from the stub.
// jssp[24]: Arguments array (of size argc), including receiver.
// jssp[16]: Preserved x23 (used for target).
// jssp[8]: Preserved x22 (used for argc).
// jssp[0]: Preserved x21 (used for argv).
__ Drop(x11);
__ AssertFPCRState();
__ Ret();
// The stack pointer is still csp if we aren't returning, and the frame
// hasn't changed (except for the return address).
__ SetStackPointer(csp);
// Handling of exception.
__ Bind(&exception_returned);
// Retrieve the pending exception.
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate());
const Register& exception = result;
const Register& exception_address = x11;
__ Mov(exception_address, Operand(pending_exception_address));
__ Ldr(exception, MemOperand(exception_address));
// Clear the pending exception.
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
__ Str(x10, MemOperand(exception_address));
// x0 exception The exception descriptor.
// x21 argv
// x22 argc
// x23 target
// Special handling of termination exceptions, which are uncatchable by
// JavaScript code.
Label throw_termination_exception;
__ Cmp(exception, Operand(isolate()->factory()->termination_exception()));
__ B(eq, &throw_termination_exception);
// We didn't execute a return case, so the stack frame hasn't been updated
// (except for the return address slot). However, we don't need to initialize
// jssp because the throw method will immediately overwrite it when it
// unwinds the stack.
__ SetStackPointer(jssp);
ASM_LOCATION("Throw normal");
__ Mov(argv, 0);
__ Mov(argc, 0);
__ Mov(target, 0);
__ Throw(x0, x10, x11, x12, x13);
__ Bind(&throw_termination_exception);
ASM_LOCATION("Throw termination");
__ Mov(argv, 0);
__ Mov(argc, 0);
__ Mov(target, 0);
__ ThrowUncatchable(x0, x10, x11, x12, x13);
}
// This is the entry point from C++. 5 arguments are provided in x0-x4.
// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
// Input:
// x0: code entry.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
// Output:
// x0: result.
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
ASSERT(jssp.Is(__ StackPointer()));
Register code_entry = x0;
// Enable instruction instrumentation. This only works on the simulator, and
// will have no effect on the model or real hardware.
__ EnableInstrumentation();
Label invoke, handler_entry, exit;
// Push callee-saved registers and synchronize the system stack pointer (csp)
// and the JavaScript stack pointer (jssp).
//
// We must not write to jssp until after the PushCalleeSavedRegisters()
// call, since jssp is itself a callee-saved register.
__ SetStackPointer(csp);
__ PushCalleeSavedRegisters();
__ Mov(jssp, csp);
__ SetStackPointer(jssp);
// Configure the FPCR. We don't restore it, so this is technically not allowed
// according to AAPCS64. However, we only set default-NaN mode and this will
// be harmless for most C code. Also, it works for ARM.
__ ConfigureFPCR();
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Set up the reserved register for 0.0.
__ Fmov(fp_zero, 0.0);
// Build an entry frame (see layout below).
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
__ Mov(x13, bad_frame_pointer);
__ Mov(x12, Smi::FromInt(marker));
__ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
__ Ldr(x10, MemOperand(x11));
__ Push(x13, xzr, x12, x10);
// Set up fp.
__ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
// Push the JS entry frame marker. Also set js_entry_sp if this is the
// outermost JS call.
Label non_outermost_js, done;
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
__ Mov(x10, ExternalReference(js_entry_sp));
__ Ldr(x11, MemOperand(x10));
__ Cbnz(x11, &non_outermost_js);
__ Str(fp, MemOperand(x10));
__ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ Push(x12);
__ B(&done);
__ Bind(&non_outermost_js);
// We spare one instruction by pushing xzr since the marker is 0.
ASSERT(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
__ Push(xzr);
__ Bind(&done);
// The frame set up looks like this:
// jssp[0] : JS entry frame marker.
// jssp[1] : C entry FP.
// jssp[2] : stack frame marker.
// jssp[3] : stack frmae marker.
// jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ B(&invoke);
// Prevent the constant pool from being emitted between the record of the
// handler_entry position and the first instruction of the sequence here.
// There is no risk because Assembler::Emit() emits the instruction before
// checking for constant pool emission, but we do not want to depend on
// that.
{
Assembler::BlockPoolsScope block_pools(masm);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushTryHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
}
__ Str(code_entry, MemOperand(x10));
__ LoadRoot(x0, Heap::kExceptionRootIndex);
__ B(&exit);
// Invoke: Link this frame into the handler chain. There's only one
// handler block in this code object, so its index is 0.
__ Bind(&invoke);
__ PushTryHandler(StackHandler::JS_ENTRY, 0);
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the B(&invoke) above, which
// restores all callee-saved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Clear any pending exceptions.
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
__ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ Str(x10, MemOperand(x11));
// Invoke the function by calling through the JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// x0: code entry.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
ExternalReference entry(is_construct ? Builtins::kJSConstructEntryTrampoline
: Builtins::kJSEntryTrampoline,
isolate());
__ Mov(x10, entry);
// Call the JSEntryTrampoline.
__ Ldr(x11, MemOperand(x10)); // Dereference the address.
__ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
__ Blr(x12);
// Unlink this frame from the handler chain.
__ PopTryHandler();
__ Bind(&exit);
// x0 holds the result.
// The stack pointer points to the top of the entry frame pushed on entry from
// C++ (at the beginning of this stub):
// jssp[0] : JS entry frame marker.
// jssp[1] : C entry FP.
// jssp[2] : stack frame marker.
// jssp[3] : stack frmae marker.
// jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ Pop(x10);
__ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ B(ne, &non_outermost_js_2);
__ Mov(x11, ExternalReference(js_entry_sp));
__ Str(xzr, MemOperand(x11));
__ Bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ Pop(x10);
__ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
__ Str(x10, MemOperand(x11));
// Reset the stack to the callee saved registers.
__ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
// Restore the callee-saved registers and return.
ASSERT(jssp.Is(__ StackPointer()));
__ Mov(csp, jssp);
__ SetStackPointer(csp);
__ PopCalleeSavedRegisters();
// After this point, we must not modify jssp because it is a callee-saved
// register which we have just restored.
__ Ret();
}
void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
Label miss;
Register receiver;
if (kind() == Code::KEYED_LOAD_IC) {
// ----------- S t a t e -------------
// -- lr : return address
// -- x1 : receiver
// -- x0 : key
// -----------------------------------
Register key = x0;
receiver = x1;
__ Cmp(key, Operand(isolate()->factory()->prototype_string()));
__ B(ne, &miss);
} else {
ASSERT(kind() == Code::LOAD_IC);
// ----------- S t a t e -------------
// -- lr : return address
// -- x2 : name
// -- x0 : receiver
// -- sp[0] : receiver
// -----------------------------------
receiver = x0;
}
StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10, x11, &miss);
__ Bind(&miss);
StubCompiler::TailCallBuiltin(masm,
BaseLoadStoreStubCompiler::MissBuiltin(kind()));
}
void InstanceofStub::Generate(MacroAssembler* masm) {
// Stack on entry:
// jssp[0]: function.
// jssp[8]: object.
//
// Returns result in x0. Zero indicates instanceof, smi 1 indicates not
// instanceof.
Register result = x0;
Register function = right();
Register object = left();
Register scratch1 = x6;
Register scratch2 = x7;
Register res_true = x8;
Register res_false = x9;
// Only used if there was an inline map check site. (See
// LCodeGen::DoInstanceOfKnownGlobal().)
Register map_check_site = x4;
// Delta for the instructions generated between the inline map check and the
// instruction setting the result.
const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize;
Label not_js_object, slow;
if (!HasArgsInRegisters()) {
__ Pop(function, object);
}
if (ReturnTrueFalseObject()) {
__ LoadTrueFalseRoots(res_true, res_false);
} else {
// This is counter-intuitive, but correct.
__ Mov(res_true, Smi::FromInt(0));
__ Mov(res_false, Smi::FromInt(1));
}
// Check that the left hand side is a JS object and load its map as a side
// effect.
Register map = x12;
__ JumpIfSmi(object, &not_js_object);
__ IsObjectJSObjectType(object, map, scratch2, &not_js_object);
// If there is a call site cache, don't look in the global cache, but do the
// real lookup and update the call site cache.
if (!HasCallSiteInlineCheck()) {
Label miss;
__ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss);
__ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss);
__ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
__ Ret();
__ Bind(&miss);
}
// Get the prototype of the function.
Register prototype = x13;
__ TryGetFunctionPrototype(function, prototype, scratch2, &slow,
MacroAssembler::kMissOnBoundFunction);
// Check that the function prototype is a JS object.
__ JumpIfSmi(prototype, &slow);
__ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow);
// Update the global instanceof or call site inlined cache with the current
// map and function. The cached answer will be set when it is known below.
if (HasCallSiteInlineCheck()) {
// Patch the (relocated) inlined map check.
__ GetRelocatedValueLocation(map_check_site, scratch1);
// We have a cell, so need another level of dereferencing.
__ Ldr(scratch1, MemOperand(scratch1));
__ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset));
} else {
__ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
}
Label return_true, return_result;
{
// Loop through the prototype chain looking for the function prototype.
Register chain_map = x1;
Register chain_prototype = x14;
Register null_value = x15;
Label loop;
__ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset));
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
// Speculatively set a result.
__ Mov(result, res_false);
__ Bind(&loop);
// If the chain prototype is the object prototype, return true.
__ Cmp(chain_prototype, prototype);
__ B(eq, &return_true);
// If the chain prototype is null, we've reached the end of the chain, so
// return false.
__ Cmp(chain_prototype, null_value);
__ B(eq, &return_result);
// Otherwise, load the next prototype in the chain, and loop.
__ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset));
__ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset));
__ B(&loop);
}
// Return sequence when no arguments are on the stack.
// We cannot fall through to here.
__ Bind(&return_true);
__ Mov(result, res_true);
__ Bind(&return_result);
if (HasCallSiteInlineCheck()) {
ASSERT(ReturnTrueFalseObject());
__ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult);
__ GetRelocatedValueLocation(map_check_site, scratch2);
__ Str(result, MemOperand(scratch2));
} else {
__ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
}
__ Ret();
Label object_not_null, object_not_null_or_smi;
__ Bind(&not_js_object);
Register object_type = x14;
// x0 result result return register (uninit)
// x10 function pointer to function
// x11 object pointer to object
// x14 object_type type of object (uninit)
// Before null, smi and string checks, check that the rhs is a function.
// For a non-function rhs, an exception must be thrown.
__ JumpIfSmi(function, &slow);
__ JumpIfNotObjectType(
function, scratch1, object_type, JS_FUNCTION_TYPE, &slow);
__ Mov(result, res_false);
// Null is not instance of anything.
__ Cmp(object_type, Operand(isolate()->factory()->null_value()));
__ B(ne, &object_not_null);
__ Ret();
__ Bind(&object_not_null);
// Smi values are not instances of anything.
__ JumpIfNotSmi(object, &object_not_null_or_smi);
__ Ret();
__ Bind(&object_not_null_or_smi);
// String values are not instances of anything.
__ IsObjectJSStringType(object, scratch2, &slow);
__ Ret();
// Slow-case. Tail call builtin.
__ Bind(&slow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Arguments have either been passed into registers or have been previously
// popped. We need to push them before calling builtin.
__ Push(object, function);
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
}
if (ReturnTrueFalseObject()) {
// Reload true/false because they were clobbered in the builtin call.
__ LoadTrueFalseRoots(res_true, res_false);
__ Cmp(result, 0);
__ Csel(result, res_true, res_false, eq);
}
__ Ret();
}
Register InstanceofStub::left() {
// Object to check (instanceof lhs).
return x11;
}
Register InstanceofStub::right() {
// Constructor function (instanceof rhs).
return x10;
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
Register arg_count = x0;
Register key = x1;
// The displacement is the offset of the last parameter (if any) relative
// to the frame pointer.
static const int kDisplacement =
StandardFrameConstants::kCallerSPOffset - kPointerSize;
// Check that the key is a smi.
Label slow;
__ JumpIfNotSmi(key, &slow);
// Check if the calling frame is an arguments adaptor frame.
Register local_fp = x11;
Register caller_fp = x11;
Register caller_ctx = x12;
Label skip_adaptor;
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(caller_ctx, MemOperand(caller_fp,
StandardFrameConstants::kContextOffset));
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ Csel(local_fp, fp, caller_fp, ne);
__ B(ne, &skip_adaptor);
// Load the actual arguments limit found in the arguments adaptor frame.
__ Ldr(arg_count, MemOperand(caller_fp,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Bind(&skip_adaptor);
// Check index against formal parameters count limit. Use unsigned comparison
// to get negative check for free: branch if key < 0 or key >= arg_count.
__ Cmp(key, arg_count);
__ B(hs, &slow);
// Read the argument from the stack and return it.
__ Sub(x10, arg_count, key);
__ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2));
__ Ldr(x0, MemOperand(x10, kDisplacement));
__ Ret();
// Slow case: handle non-smi or out-of-bounds access to arguments by calling
// the runtime system.
__ Bind(&slow);
__ Push(key);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
// Stack layout on entry.
// jssp[0]: number of parameters (tagged)
// jssp[8]: address of receiver argument
// jssp[16]: function
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
Register caller_fp = x10;
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Load and untag the context.
STATIC_ASSERT((kSmiShift / kBitsPerByte) == 4);
__ Ldr(w11, MemOperand(caller_fp, StandardFrameConstants::kContextOffset +
(kSmiShift / kBitsPerByte)));
__ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
__ B(ne, &runtime);
// Patch the arguments.length and parameters pointer in the current frame.
__ Ldr(x11, MemOperand(caller_fp,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Poke(x11, 0 * kXRegSize);
__ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2));
__ Add(x10, x10, StandardFrameConstants::kCallerSPOffset);
__ Poke(x10, 1 * kXRegSize);
__ Bind(&runtime);
__ TailCallRuntime(Runtime::kHiddenNewArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
// Stack layout on entry.
// jssp[0]: number of parameters (tagged)
// jssp[8]: address of receiver argument
// jssp[16]: function
//
// Returns pointer to result object in x0.
// Note: arg_count_smi is an alias of param_count_smi.
Register arg_count_smi = x3;
Register param_count_smi = x3;
Register param_count = x7;
Register recv_arg = x14;
Register function = x4;
__ Pop(param_count_smi, recv_arg, function);
__ SmiUntag(param_count, param_count_smi);
// Check if the calling frame is an arguments adaptor frame.
Register caller_fp = x11;
Register caller_ctx = x12;
Label runtime;
Label adaptor_frame, try_allocate;
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(caller_ctx, MemOperand(caller_fp,
StandardFrameConstants::kContextOffset));
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ B(eq, &adaptor_frame);
// No adaptor, parameter count = argument count.
// x1 mapped_params number of mapped params, min(params, args) (uninit)
// x2 arg_count number of function arguments (uninit)
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x7 param_count number of function parameters
// x11 caller_fp caller's frame pointer
// x14 recv_arg pointer to receiver arguments
Register arg_count = x2;
__ Mov(arg_count, param_count);
__ B(&try_allocate);
// We have an adaptor frame. Patch the parameters pointer.
__ Bind(&adaptor_frame);
__ Ldr(arg_count_smi,
MemOperand(caller_fp,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(arg_count, arg_count_smi);
__ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
__ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
// Compute the mapped parameter count = min(param_count, arg_count)
Register mapped_params = x1;
__ Cmp(param_count, arg_count);
__ Csel(mapped_params, param_count, arg_count, lt);
__ Bind(&try_allocate);
// x0 alloc_obj pointer to allocated objects: param map, backing
// store, arguments (uninit)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x7 param_count number of function parameters
// x10 size size of objects to allocate (uninit)
// x14 recv_arg pointer to receiver arguments
// Compute the size of backing store, parameter map, and arguments object.
// 1. Parameter map, has two extra words containing context and backing
// store.
const int kParameterMapHeaderSize =
FixedArray::kHeaderSize + 2 * kPointerSize;
// Calculate the parameter map size, assuming it exists.
Register size = x10;
__ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
__ Add(size, size, kParameterMapHeaderSize);
// If there are no mapped parameters, set the running size total to zero.
// Otherwise, use the parameter map size calculated earlier.
__ Cmp(mapped_params, 0);
__ CzeroX(size, eq);
// 2. Add the size of the backing store and arguments object.
__ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
__ Add(size, size,
FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize);
// Do the allocation of all three objects in one go. Assign this to x0, as it
// will be returned to the caller.
Register alloc_obj = x0;
__ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
// Get the arguments boilerplate from the current (global) context.
// x0 alloc_obj pointer to allocated objects (param map, backing
// store, arguments)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x7 param_count number of function parameters
// x11 args_offset offset to args (or aliased args) boilerplate (uninit)
// x14 recv_arg pointer to receiver arguments
Register global_object = x10;
Register global_ctx = x10;
Register args_offset = x11;
Register aliased_args_offset = x10;
__ Ldr(global_object, GlobalObjectMemOperand());
__ Ldr(global_ctx, FieldMemOperand(global_object,
GlobalObject::kNativeContextOffset));
__ Ldr(args_offset,
ContextMemOperand(global_ctx,
Context::SLOPPY_ARGUMENTS_BOILERPLATE_INDEX));
__ Ldr(aliased_args_offset,
ContextMemOperand(global_ctx,
Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX));
__ Cmp(mapped_params, 0);
__ CmovX(args_offset, aliased_args_offset, ne);
// Copy the JS object part.
__ CopyFields(alloc_obj, args_offset, CPURegList(x10, x12, x13),
JSObject::kHeaderSize / kPointerSize);
// Set up the callee in-object property.
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
const int kCalleeOffset = JSObject::kHeaderSize +
Heap::kArgumentsCalleeIndex * kPointerSize;
__ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset));
// Use the length and set that as an in-object property.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
const int kLengthOffset = JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize;
__ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
// Set up the elements pointer in the allocated arguments object.
// If we allocated a parameter map, "elements" will point there, otherwise
// it will point to the backing store.
// x0 alloc_obj pointer to allocated objects (param map, backing
// store, arguments)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x5 elements pointer to parameter map or backing store (uninit)
// x6 backing_store pointer to backing store (uninit)
// x7 param_count number of function parameters
// x14 recv_arg pointer to receiver arguments
Register elements = x5;
__ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize);
__ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
// Initialize parameter map. If there are no mapped arguments, we're done.
Label skip_parameter_map;
__ Cmp(mapped_params, 0);
// Set up backing store address, because it is needed later for filling in
// the unmapped arguments.
Register backing_store = x6;
__ CmovX(backing_store, elements, eq);
__ B(eq, &skip_parameter_map);
__ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
__ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
__ Add(x10, mapped_params, 2);
__ SmiTag(x10);
__ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Str(cp, FieldMemOperand(elements,
FixedArray::kHeaderSize + 0 * kPointerSize));
__ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
__ Add(x10, x10, kParameterMapHeaderSize);
__ Str(x10, FieldMemOperand(elements,
FixedArray::kHeaderSize + 1 * kPointerSize));
// Copy the parameter slots and the holes in the arguments.
// We need to fill in mapped_parameter_count slots. Then index the context,
// where parameters are stored in reverse order, at:
//
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
//
// The mapped parameter thus needs to get indices:
//
// MIN_CONTEXT_SLOTS + parameter_count - 1 ..
// MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
//
// We loop from right to left.
// x0 alloc_obj pointer to allocated objects (param map, backing
// store, arguments)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x5 elements pointer to parameter map or backing store (uninit)
// x6 backing_store pointer to backing store (uninit)
// x7 param_count number of function parameters
// x11 loop_count parameter loop counter (uninit)
// x12 index parameter index (smi, uninit)
// x13 the_hole hole value (uninit)
// x14 recv_arg pointer to receiver arguments
Register loop_count = x11;
Register index = x12;
Register the_hole = x13;
Label parameters_loop, parameters_test;
__ Mov(loop_count, mapped_params);
__ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
__ Sub(index, index, mapped_params);
__ SmiTag(index);
__ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
__ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
__ Add(backing_store, backing_store, kParameterMapHeaderSize);
__ B(&parameters_test);
__ Bind(&parameters_loop);
__ Sub(loop_count, loop_count, 1);
__ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
__ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
__ Str(index, MemOperand(elements, x10));
__ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
__ Str(the_hole, MemOperand(backing_store, x10));
__ Add(index, index, Smi::FromInt(1));
__ Bind(&parameters_test);
__ Cbnz(loop_count, &parameters_loop);
__ Bind(&skip_parameter_map);
// Copy arguments header and remaining slots (if there are any.)
__ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
__ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
__ Str(arg_count_smi, FieldMemOperand(backing_store,
FixedArray::kLengthOffset));
// x0 alloc_obj pointer to allocated objects (param map, backing
// store, arguments)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x4 function function pointer
// x3 arg_count_smi number of function arguments (smi)
// x6 backing_store pointer to backing store (uninit)
// x14 recv_arg pointer to receiver arguments
Label arguments_loop, arguments_test;
__ Mov(x10, mapped_params);
__ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
__ B(&arguments_test);
__ Bind(&arguments_loop);
__ Sub(recv_arg, recv_arg, kPointerSize);
__ Ldr(x11, MemOperand(recv_arg));
__ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
__ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
__ Add(x10, x10, 1);
__ Bind(&arguments_test);
__ Cmp(x10, arg_count);
__ B(lt, &arguments_loop);
__ Ret();
// Do the runtime call to allocate the arguments object.
__ Bind(&runtime);
__ Push(function, recv_arg, arg_count_smi);
__ TailCallRuntime(Runtime::kHiddenNewArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
// Stack layout on entry.
// jssp[0]: number of parameters (tagged)
// jssp[8]: address of receiver argument
// jssp[16]: function
//
// Returns pointer to result object in x0.
// Get the stub arguments from the frame, and make an untagged copy of the
// parameter count.
Register param_count_smi = x1;
Register params = x2;
Register function = x3;
Register param_count = x13;
__ Pop(param_count_smi, params, function);
__ SmiUntag(param_count, param_count_smi);
// Test if arguments adaptor needed.
Register caller_fp = x11;
Register caller_ctx = x12;
Label try_allocate, runtime;
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(caller_ctx, MemOperand(caller_fp,
StandardFrameConstants::kContextOffset));
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ B(ne, &try_allocate);
// x1 param_count_smi number of parameters passed to function (smi)
// x2 params pointer to parameters
// x3 function function pointer
// x11 caller_fp caller's frame pointer
// x13 param_count number of parameters passed to function
// Patch the argument length and parameters pointer.
__ Ldr(param_count_smi,
MemOperand(caller_fp,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(param_count, param_count_smi);
__ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
__ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
// Try the new space allocation. Start out with computing the size of the
// arguments object and the elements array in words.
Register size = x10;
__ Bind(&try_allocate);
__ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize);
__ Cmp(param_count, 0);
__ CzeroX(size, eq);
__ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize);
// Do the allocation of both objects in one go. Assign this to x0, as it will
// be returned to the caller.
Register alloc_obj = x0;
__ Allocate(size, alloc_obj, x11, x12, &runtime,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// Get the arguments boilerplate from the current (native) context.
Register global_object = x10;
Register global_ctx = x10;
Register args_offset = x4;
__ Ldr(global_object, GlobalObjectMemOperand());
__ Ldr(global_ctx, FieldMemOperand(global_object,
GlobalObject::kNativeContextOffset));
__ Ldr(args_offset,
ContextMemOperand(global_ctx,
Context::STRICT_ARGUMENTS_BOILERPLATE_INDEX));
// x0 alloc_obj pointer to allocated objects: parameter array and
// arguments object
// x1 param_count_smi number of parameters passed to function (smi)
// x2 params pointer to parameters
// x3 function function pointer
// x4 args_offset offset to arguments boilerplate
// x13 param_count number of parameters passed to function
// Copy the JS object part.
__ CopyFields(alloc_obj, args_offset, CPURegList(x5, x6, x7),
JSObject::kHeaderSize / kPointerSize);
// Set the smi-tagged length as an in-object property.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
const int kLengthOffset = JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize;
__ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
// If there are no actual arguments, we're done.
Label done;
__ Cbz(param_count, &done);
// Set up the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
Register elements = x5;
__ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize);
__ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
__ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
__ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
__ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset));
// x0 alloc_obj pointer to allocated objects: parameter array and
// arguments object
// x1 param_count_smi number of parameters passed to function (smi)
// x2 params pointer to parameters
// x3 function function pointer
// x4 array pointer to array slot (uninit)
// x5 elements pointer to elements array of alloc_obj
// x13 param_count number of parameters passed to function
// Copy the fixed array slots.
Label loop;
Register array = x4;
// Set up pointer to first array slot.
__ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ Bind(&loop);
// Pre-decrement the parameters pointer by kPointerSize on each iteration.
// Pre-decrement in order to skip receiver.
__ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex));
// Post-increment elements by kPointerSize on each iteration.
__ Str(x10, MemOperand(array, kPointerSize, PostIndex));
__ Sub(param_count, param_count, 1);
__ Cbnz(param_count, &loop);
// Return from stub.
__ Bind(&done);
__ Ret();
// Do the runtime call to allocate the arguments object.
__ Bind(&runtime);
__ Push(function, params, param_count_smi);
__ TailCallRuntime(Runtime::kHiddenNewStrictArgumentsFast, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// jssp[0]: last_match_info (expected JSArray)
// jssp[8]: previous index
// jssp[16]: subject string
// jssp[24]: JSRegExp object
Label runtime;
// Use of registers for this function.
// Variable registers:
// x10-x13 used as scratch registers
// w0 string_type type of subject string
// x2 jsstring_length subject string length
// x3 jsregexp_object JSRegExp object
// w4 string_encoding ASCII or UC16
// w5 sliced_string_offset if the string is a SlicedString
// offset to the underlying string
// w6 string_representation groups attributes of the string:
// - is a string
// - type of the string
// - is a short external string
Register string_type = w0;
Register jsstring_length = x2;
Register jsregexp_object = x3;
Register string_encoding = w4;
Register sliced_string_offset = w5;
Register string_representation = w6;
// These are in callee save registers and will be preserved by the call
// to the native RegExp code, as this code is called using the normal
// C calling convention. When calling directly from generated code the
// native RegExp code will not do a GC and therefore the content of
// these registers are safe to use after the call.
// x19 subject subject string
// x20 regexp_data RegExp data (FixedArray)
// x21 last_match_info_elements info relative to the last match
// (FixedArray)
// x22 code_object generated regexp code
Register subject = x19;
Register regexp_data = x20;
Register last_match_info_elements = x21;
Register code_object = x22;
// TODO(jbramley): Is it necessary to preserve these? I don't think ARM does.
CPURegList used_callee_saved_registers(subject,
regexp_data,
last_match_info_elements,
code_object);
__ PushCPURegList(used_callee_saved_registers);
// Stack frame.
// jssp[0] : x19
// jssp[8] : x20
// jssp[16]: x21
// jssp[24]: x22
// jssp[32]: last_match_info (JSArray)
// jssp[40]: previous index
// jssp[48]: subject string
// jssp[56]: JSRegExp object
const int kLastMatchInfoOffset = 4 * kPointerSize;
const int kPreviousIndexOffset = 5 * kPointerSize;
const int kSubjectOffset = 6 * kPointerSize;
const int kJSRegExpOffset = 7 * kPointerSize;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
__ Mov(x10, address_of_regexp_stack_memory_size);
__ Ldr(x10, MemOperand(x10));
__ Cbz(x10, &runtime);
// Check that the first argument is a JSRegExp object.
ASSERT(jssp.Is(__ StackPointer()));
__ Peek(jsregexp_object, kJSRegExpOffset);
__ JumpIfSmi(jsregexp_object, &runtime);
__ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
STATIC_ASSERT(kSmiTag == 0);
__ Tst(regexp_data, kSmiTagMask);
__ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
__ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
__ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
}
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
__ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
__ B(ne, &runtime);
// Check that the number of captures fit in the static offsets vector buffer.
// We have always at least one capture for the whole match, plus additional
// ones due to capturing parentheses. A capture takes 2 registers.
// The number of capture registers then is (number_of_captures + 1) * 2.
__ Ldrsw(x10,
UntagSmiFieldMemOperand(regexp_data,
JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// number_of_captures * 2 <= offsets vector size - 2
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
__ Add(x10, x10, x10);
__ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
__ B(hi, &runtime);
// Initialize offset for possibly sliced string.
__ Mov(sliced_string_offset, 0);
ASSERT(jssp.Is(__ StackPointer()));
__ Peek(subject, kSubjectOffset);
__ JumpIfSmi(subject, &runtime);
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
__ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
// Handle subject string according to its encoding and representation:
// (1) Sequential string? If yes, go to (5).
// (2) Anything but sequential or cons? If yes, go to (6).
// (3) Cons string. If the string is flat, replace subject with first string.
// Otherwise bailout.
// (4) Is subject external? If yes, go to (7).
// (5) Sequential string. Load regexp code according to encoding.
// (E) Carry on.
/// [...]
// Deferred code at the end of the stub:
// (6) Not a long external string? If yes, go to (8).
// (7) External string. Make it, offset-wise, look like a sequential string.
// Go to (5).
// (8) Short external string or not a string? If yes, bail out to runtime.
// (9) Sliced string. Replace subject with parent. Go to (4).
Label check_underlying; // (4)
Label seq_string; // (5)
Label not_seq_nor_cons; // (6)
Label external_string; // (7)
Label not_long_external; // (8)
// (1) Sequential string? If yes, go to (5).
__ And(string_representation,
string_type,
kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask);
// We depend on the fact that Strings of type
// SeqString and not ShortExternalString are defined
// by the following pattern:
// string_type: 0XX0 XX00
// ^ ^ ^^
// | | ||
// | | is a SeqString
// | is not a short external String
// is a String
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
STATIC_ASSERT(kShortExternalStringTag != 0);
__ Cbz(string_representation, &seq_string); // Go to (5).
// (2) Anything but sequential or cons? If yes, go to (6).
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
__ Cmp(string_representation, kExternalStringTag);
__ B(ge, &not_seq_nor_cons); // Go to (6).
// (3) Cons string. Check that it's flat.
__ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
__ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
// Replace subject with first string.
__ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
// (4) Is subject external? If yes, go to (7).
__ Bind(&check_underlying);
// Reload the string type.
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
__ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSeqStringTag == 0);
// The underlying external string is never a short external string.
STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength);
STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength);
__ TestAndBranchIfAnySet(string_type.X(),
kStringRepresentationMask,
&external_string); // Go to (7).
// (5) Sequential string. Load regexp code according to encoding.
__ Bind(&seq_string);
// Check that the third argument is a positive smi less than the subject
// string length. A negative value will be greater (unsigned comparison).
ASSERT(jssp.Is(__ StackPointer()));
__ Peek(x10, kPreviousIndexOffset);
__ JumpIfNotSmi(x10, &runtime);
__ Cmp(jsstring_length, x10);
__ B(ls, &runtime);
// Argument 2 (x1): We need to load argument 2 (the previous index) into x1
// before entering the exit frame.
__ SmiUntag(x1, x10);
// The third bit determines the string encoding in string_type.
STATIC_ASSERT(kOneByteStringTag == 0x04);
STATIC_ASSERT(kTwoByteStringTag == 0x00);
STATIC_ASSERT(kStringEncodingMask == 0x04);
// Find the code object based on the assumptions above.
// kDataAsciiCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
// of kPointerSize to reach the latter.
ASSERT_EQ(JSRegExp::kDataAsciiCodeOffset + kPointerSize,
JSRegExp::kDataUC16CodeOffset);
__ Mov(x10, kPointerSize);
// We will need the encoding later: ASCII = 0x04
// UC16 = 0x00
__ Ands(string_encoding, string_type, kStringEncodingMask);
__ CzeroX(x10, ne);
__ Add(x10, regexp_data, x10);
__ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataAsciiCodeOffset));
// (E) Carry on. String handling is done.
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(code_object, &runtime);
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
x10,
x11);
// Isolates: note we add an additional parameter here (isolate pointer).
__ EnterExitFrame(false, x10, 1);
ASSERT(csp.Is(__ StackPointer()));
// We have 9 arguments to pass to the regexp code, therefore we have to pass
// one on the stack and the rest as registers.
// Note that the placement of the argument on the stack isn't standard
// AAPCS64:
// csp[0]: Space for the return address placed by DirectCEntryStub.
// csp[8]: Argument 9, the current isolate address.
__ Mov(x10, ExternalReference::isolate_address(isolate()));
__ Poke(x10, kPointerSize);
Register length = w11;
Register previous_index_in_bytes = w12;
Register start = x13;
// Load start of the subject string.
__ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
// Load the length from the original subject string from the previous stack
// frame. Therefore we have to use fp, which points exactly to two pointer
// sizes below the previous sp. (Because creating a new stack frame pushes
// the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
__ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
__ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
// Handle UC16 encoding, two bytes make one character.
// string_encoding: if ASCII: 0x04
// if UC16: 0x00
STATIC_ASSERT(kStringEncodingMask == 0x04);
__ Ubfx(string_encoding, string_encoding, 2, 1);
__ Eor(string_encoding, string_encoding, 1);
// string_encoding: if ASCII: 0
// if UC16: 1
// Convert string positions from characters to bytes.
// Previous index is in x1.
__ Lsl(previous_index_in_bytes, w1, string_encoding);
__ Lsl(length, length, string_encoding);
__ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
// Argument 1 (x0): Subject string.
__ Mov(x0, subject);
// Argument 2 (x1): Previous index, already there.
// Argument 3 (x2): Get the start of input.
// Start of input = start of string + previous index + substring offset
// (0 if the string
// is not sliced).
__ Add(w10, previous_index_in_bytes, sliced_string_offset);
__ Add(x2, start, Operand(w10, UXTW));
// Argument 4 (x3):
// End of input = start of input + (length of input - previous index)
__ Sub(w10, length, previous_index_in_bytes);
__ Add(x3, x2, Operand(w10, UXTW));
// Argument 5 (x4): static offsets vector buffer.
__ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
// Argument 6 (x5): Set the number of capture registers to zero to force
// global regexps to behave as non-global. This stub is not used for global
// regexps.
__ Mov(x5, 0);
// Argument 7 (x6): Start (high end) of backtracking stack memory area.
__ Mov(x10, address_of_regexp_stack_memory_address);
__ Ldr(x10, MemOperand(x10));
__ Mov(x11, address_of_regexp_stack_memory_size);
__ Ldr(x11, MemOperand(x11));
__ Add(x6, x10, x11);
// Argument 8 (x7): Indicate that this is a direct call from JavaScript.
__ Mov(x7, 1);
// Locate the code entry and call it.
__ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
DirectCEntryStub stub(isolate());
stub.GenerateCall(masm, code_object);
__ LeaveExitFrame(false, x10, true);
// The generated regexp code returns an int32 in w0.
Label failure, exception;
__ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
__ CompareAndBranch(w0,
NativeRegExpMacroAssembler::EXCEPTION,
eq,
&exception);
__ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
// Success: process the result from the native regexp code.
Register number_of_capture_registers = x12;
// Calculate number of capture registers (number_of_captures + 1) * 2
// and store it in the last match info.
__ Ldrsw(x10,
UntagSmiFieldMemOperand(regexp_data,
JSRegExp::kIrregexpCaptureCountOffset));
__ Add(x10, x10, x10);
__ Add(number_of_capture_registers, x10, 2);
// Check that the fourth object is a JSArray object.
ASSERT(jssp.Is(__ StackPointer()));
__ Peek(x10, kLastMatchInfoOffset);
__ JumpIfSmi(x10, &runtime);
__ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
// Check that the JSArray is the fast case.
__ Ldr(last_match_info_elements,
FieldMemOperand(x10, JSArray::kElementsOffset));
__ Ldr(x10,
FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
__ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information (overhead).
// (number_of_captures + 1) * 2 + overhead <= last match info size
// (number_of_captures * 2) + 2 + overhead <= last match info size
// number_of_capture_registers + overhead <= last match info size
__ Ldrsw(x10,
UntagSmiFieldMemOperand(last_match_info_elements,
FixedArray::kLengthOffset));
__ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
__ Cmp(x11, x10);
__ B(gt, &runtime);
// Store the capture count.
__ SmiTag(x10, number_of_capture_registers);
__ Str(x10,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastCaptureCountOffset));
// Store last subject and last input.
__ Str(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastSubjectOffset));
// Use x10 as the subject string in order to only need
// one RecordWriteStub.
__ Mov(x10, subject);
__ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastSubjectOffset,
x10,
x11,
kLRHasNotBeenSaved,
kDontSaveFPRegs);
__ Str(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastInputOffset));
__ Mov(x10, subject);
__ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastInputOffset,
x10,
x11,
kLRHasNotBeenSaved,
kDontSaveFPRegs);
Register last_match_offsets = x13;
Register offsets_vector_index = x14;
Register current_offset = x15;
// Get the static offsets vector filled by the native regexp code
// and fill the last match info.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(isolate());
__ Mov(offsets_vector_index, address_of_static_offsets_vector);
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// iterates down to zero (inclusive).
__ Add(last_match_offsets,
last_match_info_elements,
RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
__ Bind(&next_capture);
__ Subs(number_of_capture_registers, number_of_capture_registers, 2);
__ B(mi, &done);
// Read two 32 bit values from the static offsets vector buffer into
// an X register
__ Ldr(current_offset,
MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
// Store the smi values in the last match info.
__ SmiTag(x10, current_offset);
// Clearing the 32 bottom bits gives us a Smi.
STATIC_ASSERT(kSmiShift == 32);
__ And(x11, current_offset, ~kWRegMask);
__ Stp(x10,
x11,
MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
__ B(&next_capture);
__ Bind(&done);
// Return last match info.
__ Peek(x0, kLastMatchInfoOffset);
__ PopCPURegList(used_callee_saved_registers);
// Drop the 4 arguments of the stub from the stack.
__ Drop(4);
__ Ret();
__ Bind(&exception);
Register exception_value = x0;
// A stack overflow (on the backtrack stack) may have occured
// in the RegExp code but no exception has been created yet.
// If there is no pending exception, handle that in the runtime system.
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
__ Mov(x11,
Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ Ldr(exception_value, MemOperand(x11));
__ Cmp(x10, exception_value);
__ B(eq, &runtime);
__ Str(x10, MemOperand(x11)); // Clear pending exception.
// Check if the exception is a termination. If so, throw as uncatchable.
Label termination_exception;
__ JumpIfRoot(exception_value,
Heap::kTerminationExceptionRootIndex,
&termination_exception);
__ Throw(exception_value, x10, x11, x12, x13);
__ Bind(&termination_exception);
__ ThrowUncatchable(exception_value, x10, x11, x12, x13);
__ Bind(&failure);
__ Mov(x0, Operand(isolate()->factory()->null_value()));
__ PopCPURegList(used_callee_saved_registers);
// Drop the 4 arguments of the stub from the stack.
__ Drop(4);
__ Ret();
__ Bind(&runtime);
__ PopCPURegList(used_callee_saved_registers);
__ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
// Deferred code for string handling.
// (6) Not a long external string? If yes, go to (8).
__ Bind(&not_seq_nor_cons);
// Compare flags are still set.
__ B(ne, &not_long_external); // Go to (8).
// (7) External string. Make it, offset-wise, look like a sequential string.
__ Bind(&external_string);
if (masm->emit_debug_code()) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
__ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Tst(x10, kIsIndirectStringMask);
__ Check(eq, kExternalStringExpectedButNotFound);
__ And(x10, x10, kStringRepresentationMask);
__ Cmp(x10, 0);
__ Check(ne, kExternalStringExpectedButNotFound);
}
__ Ldr(subject,
FieldMemOperand(subject, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
__ B(&seq_string); // Go to (5).
// (8) If this is a short external string or not a string, bail out to
// runtime.
__ Bind(&not_long_external);
STATIC_ASSERT(kShortExternalStringTag != 0);
__ TestAndBranchIfAnySet(string_representation,
kShortExternalStringMask | kIsNotStringMask,
&runtime);
// (9) Sliced string. Replace subject with parent.
__ Ldr(sliced_string_offset,
UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
__ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
__ B(&check_underlying); // Go to (4).
#endif
}
static void GenerateRecordCallTarget(MacroAssembler* masm,
Register argc,
Register function,
Register feedback_vector,
Register index,
Register scratch1,
Register scratch2) {
ASM_LOCATION("GenerateRecordCallTarget");
ASSERT(!AreAliased(scratch1, scratch2,
argc, function, feedback_vector, index));
// Cache the called function in a feedback vector slot. Cache states are
// uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
// argc : number of arguments to the construct function
// function : the function to call
// feedback_vector : the feedback vector
// index : slot in feedback vector (smi)
Label initialize, done, miss, megamorphic, not_array_function;
ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()),
masm->isolate()->heap()->megamorphic_symbol());
ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()),
masm->isolate()->heap()->uninitialized_symbol());
// Load the cache state.
__ Add(scratch1, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ Ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
__ Cmp(scratch1, function);
__ B(eq, &done);
if (!FLAG_pretenuring_call_new) {
// If we came here, we need to see if we are the array function.
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite. Do a map check on the object in scratch1 register.
__ Ldr(scratch2, FieldMemOperand(scratch1, AllocationSite::kMapOffset));
__ JumpIfNotRoot(scratch2, Heap::kAllocationSiteMapRootIndex, &miss);
// Make sure the function is the Array() function
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
__ Cmp(function, scratch1);
__ B(ne, &megamorphic);
__ B(&done);
}
__ Bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ JumpIfRoot(scratch1, Heap::kUninitializedSymbolRootIndex, &initialize);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ Bind(&megamorphic);
__ Add(scratch1, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ LoadRoot(scratch2, Heap::kMegamorphicSymbolRootIndex);
__ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
__ B(&done);
// An uninitialized cache is patched with the function or sentinel to
// indicate the ElementsKind if function is the Array constructor.
__ Bind(&initialize);
if (!FLAG_pretenuring_call_new) {
// Make sure the function is the Array() function
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
__ Cmp(function, scratch1);
__ B(ne, &not_array_function);
// The target function is the Array constructor,
// Create an AllocationSite if we don't already have it, store it in the
// slot.
{
FrameScope scope(masm, StackFrame::INTERNAL);
CreateAllocationSiteStub create_stub(masm->isolate());
// Arguments register must be smi-tagged to call out.
__ SmiTag(argc);
__ Push(argc, function, feedback_vector, index);
// CreateAllocationSiteStub expect the feedback vector in x2 and the slot
// index in x3.
ASSERT(feedback_vector.Is(x2) && index.Is(x3));
__ CallStub(&create_stub);
__ Pop(index, feedback_vector, function, argc);
__ SmiUntag(argc);
}
__ B(&done);
__ Bind(&not_array_function);
}
// An uninitialized cache is patched with the function.
__ Add(scratch1, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
__ Str(function, MemOperand(scratch1, 0));
__ Push(function);
__ RecordWrite(feedback_vector, scratch1, function, kLRHasNotBeenSaved,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Pop(function);
__ Bind(&done);
}
static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
// Do not transform the receiver for strict mode functions.
__ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset));
__ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, cont);
// Do not transform the receiver for native (Compilerhints already in x3).
__ Tbnz(w4, SharedFunctionInfo::kNative, cont);
}
static void EmitSlowCase(MacroAssembler* masm,
int argc,
Register function,
Register type,
Label* non_function) {
// Check for function proxy.
// x10 : function type.
__ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, non_function);
__ Push(function); // put proxy as additional argument
__ Mov(x0, argc + 1);
__ Mov(x2, 0);
__ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY);
{
Handle<Code> adaptor =
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
__ Jump(adaptor, RelocInfo::CODE_TARGET);
}
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ Bind(non_function);
__ Poke(function, argc * kXRegSize);
__ Mov(x0, argc); // Set up the number of arguments.
__ Mov(x2, 0);
__ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
// Wrap the receiver and patch it back onto the stack.
{ FrameScope frame_scope(masm, StackFrame::INTERNAL);
__ Push(x1, x3);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ Pop(x1);
}
__ Poke(x0, argc * kPointerSize);
__ B(cont);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("CallFunctionStub::Generate");
// x1 function the function to call
Register function = x1;
Register type = x4;
Label slow, non_function, wrap, cont;
// TODO(jbramley): This function has a lot of unnamed registers. Name them,
// and tidy things up a bit.
if (NeedsChecks()) {
// Check that the function is really a JavaScript function.
__ JumpIfSmi(function, &non_function);
// Goto slow case if we do not have a function.
__ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
}
// Fast-case: Invoke the function now.
// x1 function pushed function
int argc = argc_;
ParameterCount actual(argc);
if (CallAsMethod()) {
if (NeedsChecks()) {
EmitContinueIfStrictOrNative(masm, &cont);
}
// Compute the receiver in sloppy mode.
__ Peek(x3, argc * kPointerSize);
if (NeedsChecks()) {
__ JumpIfSmi(x3, &wrap);
__ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
} else {
__ B(&wrap);
}
__ Bind(&cont);
}
__ InvokeFunction(function,
actual,
JUMP_FUNCTION,
NullCallWrapper());
if (NeedsChecks()) {
// Slow-case: Non-function called.
__ Bind(&slow);
EmitSlowCase(masm, argc, function, type, &non_function);
}
if (CallAsMethod()) {
__ Bind(&wrap);
EmitWrapCase(masm, argc, &cont);
}
}
void CallConstructStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("CallConstructStub::Generate");
// x0 : number of arguments
// x1 : the function to call
// x2 : feedback vector
// x3 : slot in feedback vector (smi) (if r2 is not the megamorphic symbol)
Register function = x1;
Label slow, non_function_call;
// Check that the function is not a smi.
__ JumpIfSmi(function, &non_function_call);
// Check that the function is a JSFunction.
Register object_type = x10;
__ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
&slow);
if (RecordCallTarget()) {
GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5);
__ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
if (FLAG_pretenuring_call_new) {
// Put the AllocationSite from the feedback vector into x2.
// By adding kPointerSize we encode that we know the AllocationSite
// entry is at the feedback vector slot given by x3 + 1.
__ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize + kPointerSize));
} else {
Label feedback_register_initialized;
// Put the AllocationSite from the feedback vector into x2, or undefined.
__ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
__ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
__ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
&feedback_register_initialized);
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
__ bind(&feedback_register_initialized);
}
__ AssertUndefinedOrAllocationSite(x2, x5);
}
// Jump to the function-specific construct stub.
Register jump_reg = x4;
Register shared_func_info = jump_reg;
Register cons_stub = jump_reg;
Register cons_stub_code = jump_reg;
__ Ldr(shared_func_info,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(cons_stub,
FieldMemOperand(shared_func_info,
SharedFunctionInfo::kConstructStubOffset));
__ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag);
__ Br(cons_stub_code);
Label do_call;
__ Bind(&slow);
__ Cmp(object_type, JS_FUNCTION_PROXY_TYPE);
__ B(ne, &non_function_call);
__ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
__ B(&do_call);
__ Bind(&non_function_call);
__ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ Bind(&do_call);
// Set expected number of arguments to zero (not changing x0).
__ Mov(x2, 0);
__ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
__ Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ldr(vector, FieldMemOperand(vector,
JSFunction::kSharedFunctionInfoOffset));
__ Ldr(vector, FieldMemOperand(vector,
SharedFunctionInfo::kFeedbackVectorOffset));
}
void CallICStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("CallICStub");
// x1 - function
// x3 - slot id (Smi)
Label extra_checks_or_miss, slow_start;
Label slow, non_function, wrap, cont;
Label have_js_function;
int argc = state_.arg_count();
ParameterCount actual(argc);
Register function = x1;
Register feedback_vector = x2;
Register index = x3;
Register type = x4;
EmitLoadTypeFeedbackVector(masm, feedback_vector);
// The checks. First, does x1 match the recorded monomorphic target?
__ Add(x4, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize));
__ Cmp(x4, function);
__ B(ne, &extra_checks_or_miss);
__ bind(&have_js_function);
if (state_.CallAsMethod()) {
EmitContinueIfStrictOrNative(masm, &cont);
// Compute the receiver in sloppy mode.
__ Peek(x3, argc * kPointerSize);
__ JumpIfSmi(x3, &wrap);
__ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
__ Bind(&cont);
}
__ InvokeFunction(function,
actual,
JUMP_FUNCTION,
NullCallWrapper());
__ bind(&slow);
EmitSlowCase(masm, argc, function, type, &non_function);
if (state_.CallAsMethod()) {
__ bind(&wrap);
EmitWrapCase(masm, argc, &cont);
}
__ bind(&extra_checks_or_miss);
Label miss;
__ JumpIfRoot(x4, Heap::kMegamorphicSymbolRootIndex, &slow_start);
__ JumpIfRoot(x4, Heap::kUninitializedSymbolRootIndex, &miss);
if (!FLAG_trace_ic) {
// We are going megamorphic, and we don't want to visit the runtime.
__ Add(x4, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ LoadRoot(x5, Heap::kMegamorphicSymbolRootIndex);
__ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize));
__ B(&slow_start);
}
// We are here because tracing is on or we are going monomorphic.
__ bind(&miss);
GenerateMiss(masm);
// the slow case
__ bind(&slow_start);
// Check that the function is really a JavaScript function.
__ JumpIfSmi(function, &non_function);
// Goto slow case if we do not have a function.
__ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
__ B(&have_js_function);
}
void CallICStub::GenerateMiss(MacroAssembler* masm) {
ASM_LOCATION("CallICStub[Miss]");
// Get the receiver of the function from the stack; 1 ~ return address.
__ Peek(x4, (state_.arg_count() + 1) * kPointerSize);
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the receiver and the function and feedback info.
__ Push(x4, x1, x2, x3);
// Call the entry.
ExternalReference miss = ExternalReference(IC_Utility(IC::kCallIC_Miss),
masm->isolate());
__ CallExternalReference(miss, 4);
// Move result to edi and exit the internal frame.
__ Mov(x1, x0);
}
}
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
// If the receiver is a smi trigger the non-string case.
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
__ Bind(&got_smi_index_);
// Check for index out of range.
__ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
__ Cmp(result_, Operand::UntagSmi(index_));
__ B(ls, index_out_of_range_);
__ SmiUntag(index_);
StringCharLoadGenerator::Generate(masm,
object_,
index_.W(),
result_,
&call_runtime_);
__ SmiTag(result_);
__ Bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
__ Bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
result_,
Heap::kHeapNumberMapRootIndex,
index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
// Save object_ on the stack and pass index_ as argument for runtime call.
__ Push(object_, index_);
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
} else {
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
// NumberToSmi discards numbers that are not exact integers.
__ CallRuntime(Runtime::kHiddenNumberToSmi, 1);
}
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ Mov(index_, x0);
__ Pop(object_);
// Reload the instance type.
__ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ B(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ Bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ SmiTag(index_);
__ Push(object_, index_);
__ CallRuntime(Runtime::kHiddenStringCharCodeAt, 2);
__ Mov(result_, x0);
call_helper.AfterCall(masm);
__ B(&exit_);
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
__ JumpIfNotSmi(code_, &slow_case_);
__ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode));
__ B(hi, &slow_case_);
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
// At this point code register contains smi tagged ASCII char code.
STATIC_ASSERT(kSmiShift > kPointerSizeLog2);
__ Add(result_, result_, Operand(code_, LSR, kSmiShift - kPointerSizeLog2));
__ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
__ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_);
__ Bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
__ Bind(&slow_case_);
call_helper.BeforeCall(masm);
__ Push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
__ Mov(result_, x0);
call_helper.AfterCall(masm);
__ B(&exit_);
__ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
}
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
// Inputs are in x0 (lhs) and x1 (rhs).
ASSERT(state_ == CompareIC::SMI);
ASM_LOCATION("ICCompareStub[Smis]");
Label miss;
// Bail out (to 'miss') unless both x0 and x1 are smis.
__ JumpIfEitherNotSmi(x0, x1, &miss);
if (GetCondition() == eq) {
// For equality we do not care about the sign of the result.
__ Sub(x0, x0, x1);
} else {
// Untag before subtracting to avoid handling overflow.
__ SmiUntag(x1);
__ Sub(x0, x1, Operand::UntagSmi(x0));
}
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::NUMBER);
ASM_LOCATION("ICCompareStub[HeapNumbers]");
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss, handle_lhs, values_in_d_regs;
Label untag_rhs, untag_lhs;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
FPRegister rhs_d = d0;
FPRegister lhs_d = d1;
if (left_ == CompareIC::SMI) {
__ JumpIfNotSmi(lhs, &miss);
}
if (right_ == CompareIC::SMI) {
__ JumpIfNotSmi(rhs, &miss);
}
__ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
__ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
// Load rhs if it's a heap number.
__ JumpIfSmi(rhs, &handle_lhs);
__ CheckMap(rhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
DONT_DO_SMI_CHECK);
__ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
// Load lhs if it's a heap number.
__ Bind(&handle_lhs);
__ JumpIfSmi(lhs, &values_in_d_regs);
__ CheckMap(lhs, x10, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
DONT_DO_SMI_CHECK);
__ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ Bind(&values_in_d_regs);
__ Fcmp(lhs_d, rhs_d);
__ B(vs, &unordered); // Overflow flag set if either is NaN.
STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
__ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
__ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
__ Ret();
__ Bind(&unordered);
ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC,
CompareIC::GENERIC);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
__ Bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op_)) {
__ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
__ JumpIfSmi(lhs, &unordered);
__ JumpIfNotObjectType(lhs, x10, x10, HEAP_NUMBER_TYPE, &maybe_undefined2);
__ B(&unordered);
}
__ Bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op_)) {
__ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
}
__ Bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
ASM_LOCATION("ICCompareStub[InternalizedStrings]");
Label miss;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(lhs, rhs, &miss);
// Check that both operands are internalized strings.
Register rhs_map = x10;
Register lhs_map = x11;
Register rhs_type = x10;
Register lhs_type = x11;
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
__ Orr(x12, lhs_type, rhs_type);
__ TestAndBranchIfAnySet(
x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
// Internalized strings are compared by identity.
STATIC_ASSERT(EQUAL == 0);
__ Cmp(lhs, rhs);
__ Cset(result, ne);
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::UNIQUE_NAME);
ASM_LOCATION("ICCompareStub[UniqueNames]");
ASSERT(GetCondition() == eq);
Label miss;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
Register lhs_instance_type = w2;
Register rhs_instance_type = w3;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(lhs, rhs, &miss);
// Check that both operands are unique names. This leaves the instance
// types loaded in tmp1 and tmp2.
__ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
// To avoid a miss, each instance type should be either SYMBOL_TYPE or it
// should have kInternalizedTag set.
__ JumpIfNotUniqueName(lhs_instance_type, &miss);
__ JumpIfNotUniqueName(rhs_instance_type, &miss);
// Unique names are compared by identity.
STATIC_ASSERT(EQUAL == 0);
__ Cmp(lhs, rhs);
__ Cset(result, ne);
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::STRING);
ASM_LOCATION("ICCompareStub[Strings]");
Label miss;
bool equality = Token::IsEqualityOp(op_);
Register result = x0;
Register rhs = x0;
Register lhs = x1;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(rhs, lhs, &miss);
// Check that both operands are strings.
Register rhs_map = x10;
Register lhs_map = x11;
Register rhs_type = x10;
Register lhs_type = x11;
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ Orr(x12, lhs_type, rhs_type);
__ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
// Fast check for identical strings.
Label not_equal;
__ Cmp(lhs, rhs);
__ B(ne, &not_equal);
__ Mov(result, EQUAL);
__ Ret();
__ Bind(&not_equal);
// Handle not identical strings
// Check that both strings are internalized strings. If they are, we're done
// because we already know they are not identical. We know they are both
// strings.
if (equality) {
ASSERT(GetCondition() == eq);
STATIC_ASSERT(kInternalizedTag == 0);
Label not_internalized_strings;
__ Orr(x12, lhs_type, rhs_type);
__ TestAndBranchIfAnySet(
x12, kIsNotInternalizedMask, &not_internalized_strings);
// Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
__ Ret();
__ Bind(&not_internalized_strings);
}
// Check that both strings are sequential ASCII.
Label runtime;
__ JumpIfBothInstanceTypesAreNotSequentialAscii(
lhs_type, rhs_type, x12, x13, &runtime);
// Compare flat ASCII strings. Returns when done.
if (equality) {
StringCompareStub::GenerateFlatAsciiStringEquals(
masm, lhs, rhs, x10, x11, x12);
} else {
StringCompareStub::GenerateCompareFlatAsciiStrings(
masm, lhs, rhs, x10, x11, x12, x13);
}
// Handle more complex cases in runtime.
__ Bind(&runtime);
__ Push(lhs, rhs);
if (equality) {
__ TailCallRuntime(Runtime::kStringEquals, 2, 1);
} else {
__ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
}
__ Bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::OBJECT);
ASM_LOCATION("ICCompareStub[Objects]");
Label miss;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
__ JumpIfEitherSmi(rhs, lhs, &miss);
__ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss);
__ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss);
ASSERT(GetCondition() == eq);
__ Sub(result, rhs, lhs);
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
ASM_LOCATION("ICCompareStub[KnownObjects]");
Label miss;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
__ JumpIfEitherSmi(rhs, lhs, &miss);
Register rhs_map = x10;
Register lhs_map = x11;
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Cmp(rhs_map, Operand(known_map_));
__ B(ne, &miss);
__ Cmp(lhs_map, Operand(known_map_));
__ B(ne, &miss);
__ Sub(result, rhs, lhs);
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
// This method handles the case where a compare stub had the wrong
// implementation. It calls a miss handler, which re-writes the stub. All other
// ICCompareStub::Generate* methods should fall back into this one if their
// operands were not the expected types.
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
ASM_LOCATION("ICCompareStub[Miss]");
Register stub_entry = x11;
{
ExternalReference miss =
ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
FrameScope scope(masm, StackFrame::INTERNAL);
Register op = x10;
Register left = x1;
Register right = x0;
// Preserve some caller-saved registers.
__ Push(x1, x0, lr);
// Push the arguments.
__ Mov(op, Smi::FromInt(op_));
__ Push(left, right, op);
// Call the miss handler. This also pops the arguments.
__ CallExternalReference(miss, 3);
// Compute the entry point of the rewritten stub.
__ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
// Restore caller-saved registers.
__ Pop(lr, x0, x1);
}
// Tail-call to the new stub.
__ Jump(stub_entry);
}
void StringHelper::GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character) {
ASSERT(!AreAliased(hash, character));
// hash = character + (character << 10);
__ LoadRoot(hash, Heap::kHashSeedRootIndex);
// Untag smi seed and add the character.
__ Add(hash, character, Operand(hash, LSR, kSmiShift));
// Compute hashes modulo 2^32 using a 32-bit W register.
Register hash_w = hash.W();
// hash += hash << 10;
__ Add(hash_w, hash_w, Operand(hash_w, LSL, 10));
// hash ^= hash >> 6;
__ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6));
}
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character) {
ASSERT(!AreAliased(hash, character));
// hash += character;
__ Add(hash, hash, character);
// Compute hashes modulo 2^32 using a 32-bit W register.
Register hash_w = hash.W();
// hash += hash << 10;
__ Add(hash_w, hash_w, Operand(hash_w, LSL, 10));
// hash ^= hash >> 6;
__ Eor(hash_w, hash_w, Operand(hash_w, LSR, 6));
}
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch) {
// Compute hashes modulo 2^32 using a 32-bit W register.
Register hash_w = hash.W();
Register scratch_w = scratch.W();
ASSERT(!AreAliased(hash_w, scratch_w));
// hash += hash << 3;
__ Add(hash_w, hash_w, Operand(hash_w, LSL, 3));
// hash ^= hash >> 11;
__ Eor(hash_w, hash_w, Operand(hash_w, LSR, 11));
// hash += hash << 15;
__ Add(hash_w, hash_w, Operand(hash_w, LSL, 15));
__ Ands(hash_w, hash_w, String::kHashBitMask);
// if (hash == 0) hash = 27;
__ Mov(scratch_w, StringHasher::kZeroHash);
__ Csel(hash_w, scratch_w, hash_w, eq);
}
void SubStringStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("SubStringStub::Generate");
Label runtime;
// Stack frame on entry.
// lr: return address
// jssp[0]: substring "to" offset
// jssp[8]: substring "from" offset
// jssp[16]: pointer to string object
// This stub is called from the native-call %_SubString(...), so
// nothing can be assumed about the arguments. It is tested that:
// "string" is a sequential string,
// both "from" and "to" are smis, and
// 0 <= from <= to <= string.length (in debug mode.)
// If any of these assumptions fail, we call the runtime system.
static const int kToOffset = 0 * kPointerSize;
static const int kFromOffset = 1 * kPointerSize;
static const int kStringOffset = 2 * kPointerSize;
Register to = x0;
Register from = x15;
Register input_string = x10;
Register input_length = x11;
Register input_type = x12;
Register result_string = x0;
Register result_length = x1;
Register temp = x3;
__ Peek(to, kToOffset);
__ Peek(from, kFromOffset);
// Check that both from and to are smis. If not, jump to runtime.
__ JumpIfEitherNotSmi(from, to, &runtime);
__ SmiUntag(from);
__ SmiUntag(to);
// Calculate difference between from and to. If to < from, branch to runtime.
__ Subs(result_length, to, from);
__ B(mi, &runtime);
// Check from is positive.
__ Tbnz(from, kWSignBit, &runtime);
// Make sure first argument is a string.
__ Peek(input_string, kStringOffset);
__ JumpIfSmi(input_string, &runtime);
__ IsObjectJSStringType(input_string, input_type, &runtime);
Label single_char;
__ Cmp(result_length, 1);
__ B(eq, &single_char);
// Short-cut for the case of trivial substring.
Label return_x0;
__ Ldrsw(input_length,
UntagSmiFieldMemOperand(input_string, String::kLengthOffset));
__ Cmp(result_length, input_length);
__ CmovX(x0, input_string, eq);
// Return original string.
__ B(eq, &return_x0);
// Longer than original string's length or negative: unsafe arguments.
__ B(hi, &runtime);
// Shorter than original string's length: an actual substring.
// x0 to substring end character offset
// x1 result_length length of substring result
// x10 input_string pointer to input string object
// x10 unpacked_string pointer to unpacked string object
// x11 input_length length of input string
// x12 input_type instance type of input string
// x15 from substring start character offset
// Deal with different string types: update the index if necessary and put
// the underlying string into register unpacked_string.
Label underlying_unpacked, sliced_string, seq_or_external_string;
Label update_instance_type;
// If the string is not indirect, it can only be sequential or external.
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
STATIC_ASSERT(kIsIndirectStringMask != 0);
// Test for string types, and branch/fall through to appropriate unpacking
// code.
__ Tst(input_type, kIsIndirectStringMask);
__ B(eq, &seq_or_external_string);
__ Tst(input_type, kSlicedNotConsMask);
__ B(ne, &sliced_string);
Register unpacked_string = input_string;
// Cons string. Check whether it is flat, then fetch first part.
__ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset));
__ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime);
__ Ldr(unpacked_string,
FieldMemOperand(input_string, ConsString::kFirstOffset));
__ B(&update_instance_type);
__ Bind(&sliced_string);
// Sliced string. Fetch parent and correct start index by offset.
__ Ldrsw(temp,
UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset));
__ Add(from, from, temp);
__ Ldr(unpacked_string,
FieldMemOperand(input_string, SlicedString::kParentOffset));
__ Bind(&update_instance_type);
__ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset));
__ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset));
// Now control must go to &underlying_unpacked. Since the no code is generated
// before then we fall through instead of generating a useless branch.
__ Bind(&seq_or_external_string);
// Sequential or external string. Registers unpacked_string and input_string
// alias, so there's nothing to do here.
// Note that if code is added here, the above code must be updated.
// x0 result_string pointer to result string object (uninit)
// x1 result_length length of substring result
// x10 unpacked_string pointer to unpacked string object
// x11 input_length length of input string
// x12 input_type instance type of input string
// x15 from substring start character offset
__ Bind(&underlying_unpacked);
if (FLAG_string_slices) {
Label copy_routine;
__ Cmp(result_length, SlicedString::kMinLength);
// Short slice. Copy instead of slicing.
__ B(lt, &copy_routine);
// Allocate new sliced string. At this point we do not reload the instance
// type including the string encoding because we simply rely on the info
// provided by the original string. It does not matter if the original
// string's encoding is wrong because we always have to recheck encoding of
// the newly created string's parent anyway due to externalized strings.
Label two_byte_slice, set_slice_header;
STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
__ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice);
__ AllocateAsciiSlicedString(result_string, result_length, x3, x4,
&runtime);
__ B(&set_slice_header);
__ Bind(&two_byte_slice);
__ AllocateTwoByteSlicedString(result_string, result_length, x3, x4,
&runtime);
__ Bind(&set_slice_header);
__ SmiTag(from);
__ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset));
__ Str(unpacked_string,
FieldMemOperand(result_string, SlicedString::kParentOffset));
__ B(&return_x0);
__ Bind(&copy_routine);
}
// x0 result_string pointer to result string object (uninit)
// x1 result_length length of substring result
// x10 unpacked_string pointer to unpacked string object
// x11 input_length length of input string
// x12 input_type instance type of input string
// x13 unpacked_char0 pointer to first char of unpacked string (uninit)
// x13 substring_char0 pointer to first char of substring (uninit)
// x14 result_char0 pointer to first char of result (uninit)
// x15 from substring start character offset
Register unpacked_char0 = x13;
Register substring_char0 = x13;
Register result_char0 = x14;
Label two_byte_sequential, sequential_string, allocate_result;
STATIC_ASSERT(kExternalStringTag != 0);
STATIC_ASSERT(kSeqStringTag == 0);
__ Tst(input_type, kExternalStringTag);
__ B(eq, &sequential_string);
__ Tst(input_type, kShortExternalStringTag);
__ B(ne, &runtime);
__ Ldr(unpacked_char0,
FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset));
// unpacked_char0 points to the first character of the underlying string.
__ B(&allocate_result);
__ Bind(&sequential_string);
// Locate first character of underlying subject string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Add(unpacked_char0, unpacked_string,
SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ Bind(&allocate_result);
// Sequential ASCII string. Allocate the result.
STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
__ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential);
// Allocate and copy the resulting ASCII string.
__ AllocateAsciiString(result_string, result_length, x3, x4, x5, &runtime);
// Locate first character of substring to copy.
__ Add(substring_char0, unpacked_char0, from);
// Locate first character of result.
__ Add(result_char0, result_string,
SeqOneByteString::kHeaderSize - kHeapObjectTag);
STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
__ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
__ B(&return_x0);
// Allocate and copy the resulting two-byte string.
__ Bind(&two_byte_sequential);
__ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime);
// Locate first character of substring to copy.
__ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1));
// Locate first character of result.
__ Add(result_char0, result_string,
SeqTwoByteString::kHeaderSize - kHeapObjectTag);
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
__ Add(result_length, result_length, result_length);
__ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
__ Bind(&return_x0);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->sub_string_native(), 1, x3, x4);
__ Drop(3);
__ Ret();
__ Bind(&runtime);
__ TailCallRuntime(Runtime::kHiddenSubString, 3, 1);
__ bind(&single_char);
// x1: result_length
// x10: input_string
// x12: input_type
// x15: from (untagged)
__ SmiTag(from);
StringCharAtGenerator generator(
input_string, from, result_length, x0,
&runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm);
__ Drop(3);
__ Ret();
generator.SkipSlow(masm, &runtime);
}
void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3) {
ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3));
Register result = x0;
Register left_length = scratch1;
Register right_length = scratch2;
// Compare lengths. If lengths differ, strings can't be equal. Lengths are
// smis, and don't need to be untagged.
Label strings_not_equal, check_zero_length;
__ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
__ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
__ Cmp(left_length, right_length);
__ B(eq, &check_zero_length);
__ Bind(&strings_not_equal);
__ Mov(result, Smi::FromInt(NOT_EQUAL));
__ Ret();
// Check if the length is zero. If so, the strings must be equal (and empty.)
Label compare_chars;
__ Bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ Cbnz(left_length, &compare_chars);
__ Mov(result, Smi::FromInt(EQUAL));
__ Ret();
// Compare characters. Falls through if all characters are equal.
__ Bind(&compare_chars);
GenerateAsciiCharsCompareLoop(masm, left, right, left_length, scratch2,
scratch3, &strings_not_equal);
// Characters in strings are equal.
__ Mov(result, Smi::FromInt(EQUAL));
__ Ret();
}
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
Label result_not_equal, compare_lengths;
// Find minimum length and length difference.
Register length_delta = scratch3;
__ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
__ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ Subs(length_delta, scratch1, scratch2);
Register min_length = scratch1;
__ Csel(min_length, scratch2, scratch1, gt);
__ Cbz(min_length, &compare_lengths);
// Compare loop.
GenerateAsciiCharsCompareLoop(masm,
left, right, min_length, scratch2, scratch4,
&result_not_equal);
// Compare lengths - strings up to min-length are equal.
__ Bind(&compare_lengths);
ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use length_delta as result if it's zero.
Register result = x0;
__ Subs(result, length_delta, 0);
__ Bind(&result_not_equal);
Register greater = x10;
Register less = x11;
__ Mov(greater, Smi::FromInt(GREATER));
__ Mov(less, Smi::FromInt(LESS));
__ CmovX(result, greater, gt);
__ CmovX(result, less, lt);
__ Ret();
}
void StringCompareStub::GenerateAsciiCharsCompareLoop(
MacroAssembler* masm,
Register left,
Register right,
Register length,
Register scratch1,
Register scratch2,
Label* chars_not_equal) {
ASSERT(!AreAliased(left, right, length, scratch1, scratch2));
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
__ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ Add(left, left, scratch1);
__ Add(right, right, scratch1);
Register index = length;
__ Neg(index, length); // index = -length;
// Compare loop
Label loop;
__ Bind(&loop);
__ Ldrb(scratch1, MemOperand(left, index));
__ Ldrb(scratch2, MemOperand(right, index));
__ Cmp(scratch1, scratch2);
__ B(ne, chars_not_equal);
__ Add(index, index, 1);
__ Cbnz(index, &loop);
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
Counters* counters = isolate()->counters();
// Stack frame on entry.
// sp[0]: right string
// sp[8]: left string
Register right = x10;
Register left = x11;
Register result = x0;
__ Pop(right, left);
Label not_same;
__ Subs(result, right, left);
__ B(ne, &not_same);
STATIC_ASSERT(EQUAL == 0);
__ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
__ Ret();
__ Bind(&not_same);
// Check that both objects are sequential ASCII strings.
__ JumpIfEitherIsNotSequentialAsciiStrings(left, right, x12, x13, &runtime);
// Compare flat ASCII strings natively. Remove arguments from stack first,
// as this function will generate a return.
__ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
GenerateCompareFlatAsciiStrings(masm, left, right, x12, x13, x14, x15);
__ Bind(&runtime);
// Push arguments back on to the stack.
// sp[0] = right string
// sp[8] = left string.
__ Push(left, right);
// Call the runtime.
// Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer.
__ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
}
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x1 : left
// -- x0 : right
// -- lr : return address
// -----------------------------------
// Load x2 with the allocation site. We stick an undefined dummy value here
// and replace it with the real allocation site later when we instantiate this
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
__ LoadObject(x2, handle(isolate()->heap()->undefined_value()));
// Make sure that we actually patched the allocation site.
if (FLAG_debug_code) {
__ AssertNotSmi(x2, kExpectedAllocationSite);
__ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
__ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
kExpectedAllocationSite);
}
// Tail call into the stub that handles binary operations with allocation
// sites.
BinaryOpWithAllocationSiteStub stub(isolate(), state_);
__ TailCallStub(&stub);
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
// We need some extra registers for this stub, they have been allocated
// but we need to save them before using them.
regs_.Save(masm);
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
Register value = regs_.scratch0();
__ Ldr(value, MemOperand(regs_.address()));
__ JumpIfNotInNewSpace(value, &dont_need_remembered_set);
__ CheckPageFlagSet(regs_.object(),
value,
1 << MemoryChunk::SCAN_ON_SCAVENGE,
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm); // Restore the extra scratch registers we used.
__ RememberedSetHelper(object_,
address_,
value_, // scratch1
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
__ Bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm); // Restore the extra scratch registers we used.
__ Ret();
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
Register address =
x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
ASSERT(!address.Is(regs_.object()));
ASSERT(!address.Is(x0));
__ Mov(address, regs_.address());
__ Mov(x0, regs_.object());
__ Mov(x1, address);
__ Mov(x2, ExternalReference::isolate_address(isolate()));
AllowExternalCallThatCantCauseGC scope(masm);
ExternalReference function =
ExternalReference::incremental_marking_record_write_function(
isolate());
__ CallCFunction(function, 3, 0);
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label on_black;
Label need_incremental;
Label need_incremental_pop_scratch;
Register mem_chunk = regs_.scratch0();
Register counter = regs_.scratch1();
__ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask);
__ Ldr(counter,
MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
__ Subs(counter, counter, 1);
__ Str(counter,
MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
__ B(mi, &need_incremental);
// If the object is not black we don't have to inform the incremental marker.
__ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
regs_.Restore(masm); // Restore the extra scratch registers we used.
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object_,
address_,
value_, // scratch1
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ Bind(&on_black);
// Get the value from the slot.
Register value = regs_.scratch0();
__ Ldr(value, MemOperand(regs_.address()));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlagClear(value,
regs_.scratch1(),
MemoryChunk::kEvacuationCandidateMask,
&ensure_not_white);
__ CheckPageFlagClear(regs_.object(),
regs_.scratch1(),
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
&need_incremental);
__ Bind(&ensure_not_white);
}
// We need extra registers for this, so we push the object and the address
// register temporarily.
__ Push(regs_.address(), regs_.object());
__ EnsureNotWhite(value,
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
regs_.address(), // Scratch.
regs_.scratch2(), // Scratch.
&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
regs_.Restore(masm); // Restore the extra scratch registers we used.
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object_,
address_,
value_, // scratch1
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ Bind(&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
__ Bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// We patch these two first instructions back and forth between a nop and
// real branch when we start and stop incremental heap marking.
// Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
// are generated.
// See RecordWriteStub::Patch for details.
{
InstructionAccurateScope scope(masm, 2);
__ adr(xzr, &skip_to_incremental_noncompacting);
__ adr(xzr, &skip_to_incremental_compacting);
}
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object_,
address_,
value_, // scratch1
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
}
__ Ret();
__ Bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ Bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
}
void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
// x0 value element value to store
// x3 index_smi element index as smi
// sp[0] array_index_smi array literal index in function as smi
// sp[1] array array literal
Register value = x0;
Register index_smi = x3;
Register array = x1;
Register array_map = x2;
Register array_index_smi = x4;
__ PeekPair(array_index_smi, array, 0);
__ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset));
Label double_elements, smi_element, fast_elements, slow_elements;
Register bitfield2 = x10;
__ Ldrb(bitfield2, FieldMemOperand(array_map, Map::kBitField2Offset));
// Jump if array's ElementsKind is not FAST*_SMI_ELEMENTS, FAST_ELEMENTS or
// FAST_HOLEY_ELEMENTS.
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
__ Cmp(bitfield2, Map::kMaximumBitField2FastHoleyElementValue);
__ B(hi, &double_elements);
__ JumpIfSmi(value, &smi_element);
// Jump if array's ElementsKind is not FAST_ELEMENTS or FAST_HOLEY_ELEMENTS.
__ Tbnz(bitfield2, MaskToBit(FAST_ELEMENTS << Map::kElementsKindShift),
&fast_elements);
// Store into the array literal requires an elements transition. Call into
// the runtime.
__ Bind(&slow_elements);
__ Push(array, index_smi, value);
__ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
__ Push(x11, array_index_smi);
__ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
// Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
__ Bind(&fast_elements);
__ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
__ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
__ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag);
__ Str(value, MemOperand(x11));
// Update the write barrier for the array store.
__ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Ret();
// Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
// and value is Smi.
__ Bind(&smi_element);
__ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
__ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
__ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize));
__ Ret();
__ Bind(&double_elements);
__ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
__ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0,
&slow_elements);
__ Ret();
}
void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
CEntryStub ces(isolate(), 1, kSaveFPRegs);
__ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
int parameter_count_offset =
StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
__ Ldr(x1, MemOperand(fp, parameter_count_offset));
if (function_mode_ == JS_FUNCTION_STUB_MODE) {
__ Add(x1, x1, 1);
}
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
__ Drop(x1);
// Return to IC Miss stub, continuation still on stack.
__ Ret();
}
static unsigned int GetProfileEntryHookCallSize(MacroAssembler* masm) {
// The entry hook is a "BumpSystemStackPointer" instruction (sub),
// followed by a "Push lr" instruction, followed by a call.
unsigned int size =
Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
if (CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
// If ALWAYS_ALIGN_CSP then there will be an extra bic instruction in
// "BumpSystemStackPointer".
size += kInstructionSize;
}
return size;
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != NULL) {
ProfileEntryHookStub stub(masm->isolate());
Assembler::BlockConstPoolScope no_const_pools(masm);
DontEmitDebugCodeScope no_debug_code(masm);
Label entry_hook_call_start;
__ Bind(&entry_hook_call_start);
__ Push(lr);
__ CallStub(&stub);
ASSERT(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) ==
GetProfileEntryHookCallSize(masm));
__ Pop(lr);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
// Save all kCallerSaved registers (including lr), since this can be called
// from anywhere.
// TODO(jbramley): What about FP registers?
__ PushCPURegList(kCallerSaved);
ASSERT(kCallerSaved.IncludesAliasOf(lr));
const int kNumSavedRegs = kCallerSaved.Count();
// Compute the function's address as the first argument.
__ Sub(x0, lr, GetProfileEntryHookCallSize(masm));
#if V8_HOST_ARCH_ARM64
uintptr_t entry_hook =
reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
__ Mov(x10, entry_hook);
#else
// Under the simulator we need to indirect the entry hook through a trampoline
// function at a known address.
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
__ Mov(x10, Operand(ExternalReference(&dispatcher,
ExternalReference::BUILTIN_CALL,
isolate())));
// It additionally takes an isolate as a third parameter
__ Mov(x2, ExternalReference::isolate_address(isolate()));
#endif
// The caller's return address is above the saved temporaries.
// Grab its location for the second argument to the hook.
__ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
{
// Create a dummy frame, as CallCFunction requires this.
FrameScope frame(masm, StackFrame::MANUAL);
__ CallCFunction(x10, 2, 0);
}
__ PopCPURegList(kCallerSaved);
__ Ret();
}
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// When calling into C++ code the stack pointer must be csp.
// Therefore this code must use csp for peek/poke operations when the
// stub is generated. When the stub is called
// (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
// and configure the stack pointer *before* doing the call.
const Register old_stack_pointer = __ StackPointer();
__ SetStackPointer(csp);
// Put return address on the stack (accessible to GC through exit frame pc).
__ Poke(lr, 0);
// Call the C++ function.
__ Blr(x10);
// Return to calling code.
__ Peek(lr, 0);
__ AssertFPCRState();
__ Ret();
__ SetStackPointer(old_stack_pointer);
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Register target) {
// Make sure the caller configured the stack pointer (see comment in
// DirectCEntryStub::Generate).
ASSERT(csp.Is(__ StackPointer()));
intptr_t code =
reinterpret_cast<intptr_t>(GetCode().location());
__ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
__ Mov(x10, target);
// Branch to the stub.
__ Blr(lr);
}
// Probe the name dictionary in the 'elements' register.
// Jump to the 'done' label if a property with the given name is found.
// Jump to the 'miss' label otherwise.
//
// If lookup was successful 'scratch2' will be equal to elements + 4 * index.
// 'elements' and 'name' registers are preserved on miss.
void NameDictionaryLookupStub::GeneratePositiveLookup(
MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register scratch1,
Register scratch2) {
ASSERT(!AreAliased(elements, name, scratch1, scratch2));
// Assert that name contains a string.
__ AssertName(name);
// Compute the capacity mask.
__ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset));
__ Sub(scratch1, scratch1, 1);
// Generate an unrolled loop that performs a few probes before giving up.
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
ASSERT(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
__ Add(scratch2, scratch2, Operand(
NameDictionary::GetProbeOffset(i) << Name::kHashShift));
}
__ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
// Scale the index by multiplying by the element size.
ASSERT(NameDictionary::kEntrySize == 3);
__ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
// Check if the key is identical to the name.
UseScratchRegisterScope temps(masm);
Register scratch3 = temps.AcquireX();
__ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
__ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset));
__ Cmp(name, scratch3);
__ B(eq, done);
}
// The inlined probes didn't find the entry.
// Call the complete stub to scan the whole dictionary.
CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
spill_list.Combine(lr);
spill_list.Remove(scratch1);
spill_list.Remove(scratch2);
__ PushCPURegList(spill_list);
if (name.is(x0)) {
ASSERT(!elements.is(x1));
__ Mov(x1, name);
__ Mov(x0, elements);
} else {
__ Mov(x0, elements);
__ Mov(x1, name);
}
Label not_found;
NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
__ CallStub(&stub);
__ Cbz(x0, &not_found);
__ Mov(scratch2, x2); // Move entry index into scratch2.
__ PopCPURegList(spill_list);
__ B(done);
__ Bind(&not_found);
__ PopCPURegList(spill_list);
__ B(miss);
}
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register receiver,
Register properties,
Handle<Name> name,
Register scratch0) {
ASSERT(!AreAliased(receiver, properties, scratch0));
ASSERT(name->IsUniqueName());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// scratch0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = scratch0;
// Capacity is smi 2^n.
__ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
__ Sub(index, index, 1);
__ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
// Scale the index by multiplying by the entry size.
ASSERT(NameDictionary::kEntrySize == 3);
__ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
Register entity_name = scratch0;
// Having undefined at this place means the name is not contained.
Register tmp = index;
__ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
__ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
__ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
// Stop if found the property.
__ Cmp(entity_name, Operand(name));
__ B(eq, miss);
Label good;
__ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
// Check if the entry name is not a unique name.
__ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
__ Ldrb(entity_name,
FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueName(entity_name, miss);
__ Bind(&good);
}
CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
spill_list.Combine(lr);
spill_list.Remove(scratch0); // Scratch registers don't need to be preserved.
__ PushCPURegList(spill_list);
__ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ Mov(x1, Operand(name));
NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
__ CallStub(&stub);
// Move stub return value to scratch0. Note that scratch0 is not included in
// spill_list and won't be clobbered by PopCPURegList.
__ Mov(scratch0, x0);
__ PopCPURegList(spill_list);
__ Cbz(scratch0, done);
__ B(miss);
}
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
//
// Arguments are in x0 and x1:
// x0: property dictionary.
// x1: the name of the property we are looking for.
//
// Return value is in x0 and is zero if lookup failed, non zero otherwise.
// If the lookup is successful, x2 will contains the index of the entry.
Register result = x0;
Register dictionary = x0;
Register key = x1;
Register index = x2;
Register mask = x3;
Register hash = x4;
Register undefined = x5;
Register entry_key = x6;
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
__ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
__ Sub(mask, mask, 1);
__ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
// Capacity is smi 2^n.
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
ASSERT(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
__ Add(index, hash,
NameDictionary::GetProbeOffset(i) << Name::kHashShift);
} else {
__ Mov(index, hash);
}
__ And(index, mask, Operand(index, LSR, Name::kHashShift));
// Scale the index by multiplying by the entry size.
ASSERT(NameDictionary::kEntrySize == 3);
__ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
__ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
__ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
// Having undefined at this place means the name is not contained.
__ Cmp(entry_key, undefined);
__ B(eq, &not_in_dictionary);
// Stop if found the property.
__ Cmp(entry_key, key);
__ B(eq, &in_dictionary);
if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
// Check if the entry name is not a unique name.
__ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
__ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary);
}
}
__ Bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup, probing failure
// should be treated as lookup failure.
if (mode_ == POSITIVE_LOOKUP) {
__ Mov(result, 0);
__ Ret();
}
__ Bind(&in_dictionary);
__ Mov(result, 1);
__ Ret();
__ Bind(&not_in_dictionary);
__ Mov(result, 0);
__ Ret();
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
ASM_LOCATION("CreateArrayDispatch");
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
Register kind = x3;
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
// TODO(jbramley): Is this the best way to handle this? Can we make the
// tail calls conditional, rather than hopping over each one?
__ CompareAndBranch(kind, candidate_kind, ne, &next);
T stub(masm->isolate(), candidate_kind);
__ TailCallStub(&stub);
__ Bind(&next);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
// TODO(jbramley): If this needs to be a special case, make it a proper template
// specialization, and not a separate function.
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
ASM_LOCATION("CreateArrayDispatchOneArgument");
// x0 - argc
// x1 - constructor?
// x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
// sp[0] - last argument
Register allocation_site = x2;
Register kind = x3;
Label normal_sequence;
if (mode == DONT_OVERRIDE) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
// Is the low bit set? If so, the array is holey.
__ Tbnz(kind, 0, &normal_sequence);
}
// Look at the last argument.
// TODO(jbramley): What does a 0 argument represent?
__ Peek(x10, 0);
__ Cbz(x10, &normal_sequence);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
__ Bind(&normal_sequence);
ArraySingleArgumentConstructorStub stub(masm->isolate(),
initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ Orr(kind, kind, 1);
if (FLAG_debug_code) {
__ Ldr(x10, FieldMemOperand(allocation_site, 0));
__ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
&normal_sequence);
__ Assert(eq, kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store 'kind'
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field; upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ Ldr(x11, FieldMemOperand(allocation_site,
AllocationSite::kTransitionInfoOffset));
__ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley));
__ Str(x11, FieldMemOperand(allocation_site,
AllocationSite::kTransitionInfoOffset));
__ Bind(&normal_sequence);
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
__ CompareAndBranch(kind, candidate_kind, ne, &next);
ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind);
__ TailCallStub(&stub);
__ Bind(&next);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
isolate);
}
void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
Isolate* isolate) {
ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
stubh3.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
Register argc = x0;
if (argument_count_ == ANY) {
Label zero_case, n_case;
__ Cbz(argc, &zero_case);
__ Cmp(argc, 1);
__ B(ne, &n_case);
// One argument.
CreateArrayDispatchOneArgument(masm, mode);
__ Bind(&zero_case);
// No arguments.
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ Bind(&n_case);
// N arguments.
CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
} else if (argument_count_ == NONE) {
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
} else if (argument_count_ == ONE) {
CreateArrayDispatchOneArgument(masm, mode);
} else if (argument_count_ == MORE_THAN_ONE) {
CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
} else {
UNREACHABLE();
}
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("ArrayConstructorStub::Generate");
// ----------- S t a t e -------------
// -- x0 : argc (only if argument_count_ == ANY)
// -- x1 : constructor
// -- x2 : AllocationSite or undefined
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
Register constructor = x1;
Register allocation_site = x2;
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
Label unexpected_map, map_ok;
// Initial map for the builtin Array function should be a map.
__ Ldr(x10, FieldMemOperand(constructor,
JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ JumpIfSmi(x10, &unexpected_map);
__ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
__ Bind(&unexpected_map);
__ Abort(kUnexpectedInitialMapForArrayFunction);
__ Bind(&map_ok);
// We should either have undefined in the allocation_site register or a
// valid AllocationSite.
__ AssertUndefinedOrAllocationSite(allocation_site, x10);
}
Register kind = x3;
Label no_info;
// Get the elements kind and case on that.
__ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info);
__ Ldrsw(kind,
UntagSmiFieldMemOperand(allocation_site,
AllocationSite::kTransitionInfoOffset));
__ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ Bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
Label zero_case, n_case;
Register argc = x0;
__ Cbz(argc, &zero_case);
__ CompareAndBranch(argc, 1, ne, &n_case);
// One argument.
if (IsFastPackedElementsKind(kind)) {
Label packed_case;
// We might need to create a holey array; look at the first argument.
__ Peek(x10, 0);
__ Cbz(x10, &packed_case);
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey);
__ Bind(&packed_case);
}
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
__ Bind(&zero_case);
// No arguments.
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0);
__ Bind(&n_case);
// N arguments.
InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
__ TailCallStub(&stubN);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- x1 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
Register constructor = x1;
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
Label unexpected_map, map_ok;
// Initial map for the builtin Array function should be a map.
__ Ldr(x10, FieldMemOperand(constructor,
JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ JumpIfSmi(x10, &unexpected_map);
__ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
__ Bind(&unexpected_map);
__ Abort(kUnexpectedInitialMapForArrayFunction);
__ Bind(&map_ok);
}
Register kind = w3;
// Figure out the right elements kind
__ Ldr(x10, FieldMemOperand(constructor,
JSFunction::kPrototypeOrInitialMapOffset));
// Retrieve elements_kind from map.
__ LoadElementsKindFromMap(kind, x10);
if (FLAG_debug_code) {
Label done;
__ Cmp(x3, FAST_ELEMENTS);
__ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
__ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
}
Label fast_elements_case;
__ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
__ Bind(&fast_elements_case);
GenerateCase(masm, FAST_ELEMENTS);
}
void CallApiFunctionStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : callee
// -- x4 : call_data
// -- x2 : holder
// -- x1 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1) * 8] : first argument
// -- sp[argc * 8] : receiver
// -----------------------------------
Register callee = x0;
Register call_data = x4;
Register holder = x2;
Register api_function_address = x1;
Register context = cp;
int argc = ArgumentBits::decode(bit_field_);
bool is_store = IsStoreBits::decode(bit_field_);
bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_);
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
STATIC_ASSERT(FCA::kCalleeIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
STATIC_ASSERT(FCA::kArgsLength == 7);
// FunctionCallbackArguments: context, callee and call data.
__ Push(context, callee, call_data);
// Load context from callee
__ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
if (!call_data_undefined) {
__ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
}
Register isolate_reg = x5;
__ Mov(isolate_reg, ExternalReference::isolate_address(isolate()));
// FunctionCallbackArguments:
// return value, return value default, isolate, holder.
__ Push(call_data, call_data, isolate_reg, holder);
// Prepare arguments.
Register args = x6;
__ Mov(args, masm->StackPointer());
// Allocate the v8::Arguments structure in the arguments' space, since it's
// not controlled by GC.
const int kApiStackSpace = 4;
// Allocate space for CallApiFunctionAndReturn can store some scratch
// registeres on the stack.
const int kCallApiFunctionSpillSpace = 4;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
ASSERT(!AreAliased(x0, api_function_address));
// x0 = FunctionCallbackInfo&
// Arguments is after the return address.
__ Add(x0, masm->StackPointer(), 1 * kPointerSize);
// FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
__ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
__ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
// FunctionCallbackInfo::length_ = argc and
// FunctionCallbackInfo::is_construct_call = 0
__ Mov(x10, argc);
__ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize));
const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(isolate());
AllowExternalCallThatCantCauseGC scope(masm);
MemOperand context_restore_operand(
fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
// Stores return the first js argument
int return_value_offset = 0;
if (is_store) {
return_value_offset = 2 + FCA::kArgsLength;
} else {
return_value_offset = 2 + FCA::kReturnValueOffset;
}
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
const int spill_offset = 1 + kApiStackSpace;
__ CallApiFunctionAndReturn(api_function_address,
thunk_ref,
kStackUnwindSpace,
spill_offset,
return_value_operand,
&context_restore_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- sp[0] : name
// -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object
// -- ...
// -- x2 : api_function_address
// -----------------------------------
Register api_function_address = x2;
__ Mov(x0, masm->StackPointer()); // x0 = Handle<Name>
__ Add(x1, x0, 1 * kPointerSize); // x1 = PCA
const int kApiStackSpace = 1;
// Allocate space for CallApiFunctionAndReturn can store some scratch
// registeres on the stack.
const int kCallApiFunctionSpillSpace = 4;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
// Create PropertyAccessorInfo instance on the stack above the exit frame with
// x1 (internal::Object** args_) as the data.
__ Poke(x1, 1 * kPointerSize);
__ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo&
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
const int spill_offset = 1 + kApiStackSpace;
__ CallApiFunctionAndReturn(api_function_address,
thunk_ref,
kStackUnwindSpace,
spill_offset,
MemOperand(fp, 6 * kPointerSize),
NULL);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM64