v8/test/cctest/compiler/value-helper.h
ahaas b571026f26 [test] Change or replace unrepresentable number in the lists of float test values.
I removed or replaced some values in the list of float and double values
in value-helper.h which cannot be represented precisely as floats or
doubles, respectively.

R=titzer@chromium.org

Review-Url: https://codereview.chromium.org/2135243004
Cr-Commit-Position: refs/heads/master@{#37671}
2016-07-12 10:09:06 +00:00

363 lines
13 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CCTEST_COMPILER_VALUE_HELPER_H_
#define V8_CCTEST_COMPILER_VALUE_HELPER_H_
#include <stdint.h>
#include "src/compiler/common-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/node-matchers.h"
#include "src/isolate.h"
#include "src/objects.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
// A collection of utilities related to numerical and heap values, including
// example input values of various types, including int32_t, uint32_t, double,
// etc.
class ValueHelper {
public:
Isolate* isolate_;
ValueHelper() : isolate_(CcTest::InitIsolateOnce()) {}
void CheckFloat64Constant(double expected, Node* node) {
CHECK_EQ(IrOpcode::kFloat64Constant, node->opcode());
CHECK_EQ(expected, OpParameter<double>(node));
}
void CheckNumberConstant(double expected, Node* node) {
CHECK_EQ(IrOpcode::kNumberConstant, node->opcode());
CHECK_EQ(expected, OpParameter<double>(node));
}
void CheckInt32Constant(int32_t expected, Node* node) {
CHECK_EQ(IrOpcode::kInt32Constant, node->opcode());
CHECK_EQ(expected, OpParameter<int32_t>(node));
}
void CheckUint32Constant(int32_t expected, Node* node) {
CHECK_EQ(IrOpcode::kInt32Constant, node->opcode());
CHECK_EQ(expected, OpParameter<int32_t>(node));
}
void CheckHeapConstant(HeapObject* expected, Node* node) {
CHECK_EQ(IrOpcode::kHeapConstant, node->opcode());
CHECK_EQ(expected, *OpParameter<Handle<HeapObject>>(node));
}
void CheckTrue(Node* node) {
CheckHeapConstant(isolate_->heap()->true_value(), node);
}
void CheckFalse(Node* node) {
CheckHeapConstant(isolate_->heap()->false_value(), node);
}
static std::vector<float> float32_vector() {
static const float nan = std::numeric_limits<float>::quiet_NaN();
static const float kValues[] = {
-std::numeric_limits<float>::infinity(),
-2.70497e+38f,
-1.4698e+37f,
-1.22813e+35f,
-1.20555e+35f,
-1.34584e+34f,
-1.0079e+32f,
-6.49364e+26f,
-3.06077e+25f,
-1.46821e+25f,
-1.17658e+23f,
-1.9617e+22f,
-2.7357e+20f,
-9223372036854775808.0f, // INT64_MIN
-1.48708e+13f,
-1.89633e+12f,
-4.66622e+11f,
-2.22581e+11f,
-1.45381e+10f,
-2147483904.0f, // First float32 after INT32_MIN
-2147483648.0f, // INT32_MIN
-2147483520.0f, // Last float32 before INT32_MIN
-1.3956e+09f,
-1.32951e+09f,
-1.30721e+09f,
-1.19756e+09f,
-9.26822e+08f,
-6.35647e+08f,
-4.00037e+08f,
-1.81227e+08f,
-5.09256e+07f,
-964300.0f,
-192446.0f,
-28455.0f,
-27194.0f,
-26401.0f,
-20575.0f,
-17069.0f,
-9167.0f,
-960.178f,
-113.0f,
-62.0f,
-15.0f,
-7.0f,
-1.0f,
-0.0256635f,
-4.60374e-07f,
-3.63759e-10f,
-4.30175e-14f,
-5.27385e-15f,
-1.5707963267948966f,
-1.48084e-15f,
-2.220446049250313e-16f,
-1.05755e-19f,
-3.2995e-21f,
-1.67354e-23f,
-1.11885e-23f,
-1.78506e-30f,
-5.07594e-31f,
-3.65799e-31f,
-1.43718e-34f,
-1.27126e-38f,
-0.0f,
0.0f,
1.17549e-38f,
1.56657e-37f,
4.08512e-29f,
3.31357e-28f,
6.25073e-22f,
4.1723e-13f,
1.44343e-09f,
1.5707963267948966f,
5.27004e-08f,
9.48298e-08f,
5.57888e-07f,
4.89988e-05f,
0.244326f,
1.0f,
12.4895f,
19.0f,
47.0f,
106.0f,
538.324f,
564.536f,
819.124f,
7048.0f,
12611.0f,
19878.0f,
20309.0f,
797056.0f,
1.77219e+09f,
2147483648.0f, // INT32_MAX + 1
4294967296.0f, // UINT32_MAX + 1
1.51116e+11f,
4.18193e+13f,
3.59167e+16f,
9223372036854775808.0f, // INT64_MAX + 1
18446744073709551616.0f, // UINT64_MAX + 1
3.38211e+19f,
2.67488e+20f,
1.78831e+21f,
9.20914e+21f,
8.35654e+23f,
1.4495e+24f,
5.94015e+25f,
4.43608e+30f,
2.44502e+33f,
2.61152e+33f,
1.38178e+37f,
1.71306e+37f,
3.31899e+38f,
3.40282e+38f,
std::numeric_limits<float>::infinity(),
nan,
-nan,
};
return std::vector<float>(&kValues[0], &kValues[arraysize(kValues)]);
}
static std::vector<double> float64_vector() {
static const double nan = std::numeric_limits<double>::quiet_NaN();
static const double values[] = {-2e66,
-2.220446049250313e-16,
-9223373136366403584.0,
-9223372036854775808.0, // INT64_MIN
-2147483649.5,
-2147483648.25,
-2147483648.0,
-2147483647.875,
-2147483647.125,
-2147483647.0,
-999.75,
-2e66,
-1.75,
-1.5707963267948966,
-1.0,
-0.5,
-0.0,
0.0,
3e-88,
0.125,
0.25,
0.375,
0.5,
1.0,
1.17549e-38,
1.56657e-37,
1.0000001,
1.25,
1.5707963267948966,
2,
3.1e7,
5.125,
6.25,
888,
982983.25,
2147483647.0,
2147483647.375,
2147483647.75,
2147483648.0,
2147483648.25,
2147483649.25,
9223372036854775808.0, // INT64_MAX + 1
9223373136366403584.0,
18446744073709551616.0, // UINT64_MAX + 1
2e66,
V8_INFINITY,
-V8_INFINITY,
-nan,
nan};
return std::vector<double>(&values[0], &values[arraysize(values)]);
}
static const std::vector<int32_t> int32_vector() {
std::vector<uint32_t> values = uint32_vector();
return std::vector<int32_t>(values.begin(), values.end());
}
static const std::vector<uint32_t> uint32_vector() {
static const uint32_t kValues[] = {
0x00000000, 0x00000001, 0xffffffff, 0x1b09788b, 0x04c5fce8, 0xcc0de5bf,
// This row is useful for testing lea optimizations on intel.
0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009,
0x273a798e, 0x187937a3, 0xece3af83, 0x5495a16b, 0x0b668ecc, 0x11223344,
0x0000009e, 0x00000043, 0x0000af73, 0x0000116b, 0x00658ecc, 0x002b3b4c,
0x88776655, 0x70000000, 0x07200000, 0x7fffffff, 0x56123761, 0x7fffff00,
0x761c4761, 0x80000000, 0x88888888, 0xa0000000, 0xdddddddd, 0xe0000000,
0xeeeeeeee, 0xfffffffd, 0xf0000000, 0x007fffff, 0x003fffff, 0x001fffff,
0x000fffff, 0x0007ffff, 0x0003ffff, 0x0001ffff, 0x0000ffff, 0x00007fff,
0x00003fff, 0x00001fff, 0x00000fff, 0x000007ff, 0x000003ff, 0x000001ff};
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int64_t> int64_vector() {
std::vector<uint64_t> values = uint64_vector();
return std::vector<int64_t>(values.begin(), values.end());
}
static const std::vector<uint64_t> uint64_vector() {
static const uint64_t kValues[] = {
0x00000000, 0x00000001, 0xffffffff,
0x1b09788b, 0x04c5fce8, 0xcc0de5bf,
0x00000002, 0x00000003, 0x00000004,
0x00000005, 0x00000008, 0x00000009,
0xffffffffffffffff, 0xfffffffffffffffe, 0xfffffffffffffffd,
0x0000000000000000, 0x0000000100000000, 0xffffffff00000000,
0x1b09788b00000000, 0x04c5fce800000000, 0xcc0de5bf00000000,
0x0000000200000000, 0x0000000300000000, 0x0000000400000000,
0x0000000500000000, 0x0000000800000000, 0x0000000900000000,
0x273a798e187937a3, 0xece3af835495a16b, 0x0b668ecc11223344,
0x0000009e, 0x00000043, 0x0000af73,
0x0000116b, 0x00658ecc, 0x002b3b4c,
0x88776655, 0x70000000, 0x07200000,
0x7fffffff, 0x56123761, 0x7fffff00,
0x761c4761eeeeeeee, 0x80000000eeeeeeee, 0x88888888dddddddd,
0xa0000000dddddddd, 0xddddddddaaaaaaaa, 0xe0000000aaaaaaaa,
0xeeeeeeeeeeeeeeee, 0xfffffffdeeeeeeee, 0xf0000000dddddddd,
0x007fffffdddddddd, 0x003fffffaaaaaaaa, 0x001fffffaaaaaaaa,
0x000fffff, 0x0007ffff, 0x0003ffff,
0x0001ffff, 0x0000ffff, 0x00007fff,
0x00003fff, 0x00001fff, 0x00000fff,
0x000007ff, 0x000003ff, 0x000001ff,
0x00003fffffffffff, 0x00001fffffffffff, 0x00000fffffffffff,
0x000007ffffffffff, 0x000003ffffffffff, 0x000001ffffffffff,
0x8000008000000000, 0x8000008000000001, 0x8000000000000400,
0x8000000000000401, 0x0000000000000020};
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<double> nan_vector(size_t limit = 0) {
static const double nan = std::numeric_limits<double>::quiet_NaN();
static const double values[] = {-nan, -V8_INFINITY * -0.0,
-V8_INFINITY * 0.0, V8_INFINITY * -0.0,
V8_INFINITY * 0.0, nan};
return std::vector<double>(&values[0], &values[arraysize(values)]);
}
static const std::vector<uint32_t> ror_vector() {
static const uint32_t kValues[31] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
};
// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
// Watch out, these macros aren't hygenic; they pollute your scope. Thanks STL.
#define FOR_INPUTS(ctype, itype, var) \
std::vector<ctype> var##_vec = ValueHelper::itype##_vector(); \
for (std::vector<ctype>::iterator var = var##_vec.begin(); \
var != var##_vec.end(); ++var)
#define FOR_INT32_INPUTS(var) FOR_INPUTS(int32_t, int32, var)
#define FOR_UINT32_INPUTS(var) FOR_INPUTS(uint32_t, uint32, var)
#define FOR_INT64_INPUTS(var) FOR_INPUTS(int64_t, int64, var)
#define FOR_UINT64_INPUTS(var) FOR_INPUTS(uint64_t, uint64, var)
#define FOR_FLOAT32_INPUTS(var) FOR_INPUTS(float, float32, var)
#define FOR_FLOAT64_INPUTS(var) FOR_INPUTS(double, float64, var)
#define FOR_INT32_SHIFTS(var) for (int32_t var = 0; var < 32; var++)
#define FOR_UINT32_SHIFTS(var) for (uint32_t var = 0; var < 32; var++)
// TODO(bmeurer): Drop this crap once we switch to GTest/Gmock.
static inline void CheckFloatEq(volatile float x, volatile float y) {
if (std::isnan(x)) {
CHECK(std::isnan(y));
} else {
CHECK_EQ(x, y);
}
}
#define CHECK_FLOAT_EQ(lhs, rhs) \
do { \
volatile float tmp = lhs; \
CheckFloatEq(tmp, rhs); \
} while (0)
static inline void CheckDoubleEq(volatile double x, volatile double y) {
if (std::isnan(x)) {
CHECK(std::isnan(y));
} else {
CHECK_EQ(x, y);
}
}
#define CHECK_DOUBLE_EQ(lhs, rhs) \
do { \
volatile double tmp = lhs; \
CheckDoubleEq(tmp, rhs); \
} while (0)
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_CCTEST_COMPILER_VALUE_HELPER_H_