v8/src/rewriter.cc
ager@chromium.org 47d1298236 Change the handling of catch blocks to use context extension objects
instead of normal JSObjects.

This ensures that __proto__ and accessors on the Object prototype do
not interfere with catch scopes.  Also, it fixes the bug that catch
variables were not DontDelete (issue 74).

Next step is to create special lookup routines for context extension
objects and remove the special handling of context extension objects
from the general javascript object lookup routines.
Review URL: http://codereview.chromium.org/18143

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1091 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-01-16 09:42:08 +00:00

806 lines
19 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "ast.h"
#include "scopes.h"
#include "rewriter.h"
namespace v8 { namespace internal {
class AstOptimizer: public AstVisitor {
public:
explicit AstOptimizer() {
}
void Optimize(ZoneList<Statement*>* statements);
private:
// Helpers
void OptimizeArguments(ZoneList<Expression*>* arguments);
// Node visitors.
#define DEF_VISIT(type) \
virtual void Visit##type(type* node);
NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
DISALLOW_COPY_AND_ASSIGN(AstOptimizer);
};
void AstOptimizer::Optimize(ZoneList<Statement*>* statements) {
int len = statements->length();
for (int i = 0; i < len; i++) {
Visit(statements->at(i));
}
}
void AstOptimizer::OptimizeArguments(ZoneList<Expression*>* arguments) {
for (int i = 0; i < arguments->length(); i++) {
Visit(arguments->at(i));
}
}
void AstOptimizer::VisitBlock(Block* node) {
Optimize(node->statements());
}
void AstOptimizer::VisitExpressionStatement(ExpressionStatement* node) {
Visit(node->expression());
}
void AstOptimizer::VisitIfStatement(IfStatement* node) {
Visit(node->condition());
Visit(node->then_statement());
if (node->HasElseStatement()) {
Visit(node->else_statement());
}
}
void AstOptimizer::VisitLoopStatement(LoopStatement* node) {
if (node->init() != NULL) {
Visit(node->init());
}
if (node->cond() != NULL) {
Visit(node->cond());
}
if (node->body() != NULL) {
Visit(node->body());
}
if (node->next() != NULL) {
Visit(node->next());
}
}
void AstOptimizer::VisitForInStatement(ForInStatement* node) {
Visit(node->each());
Visit(node->enumerable());
Visit(node->body());
}
void AstOptimizer::VisitTryCatch(TryCatch* node) {
Visit(node->try_block());
Visit(node->catch_var());
Visit(node->catch_block());
}
void AstOptimizer::VisitTryFinally(TryFinally* node) {
Visit(node->try_block());
Visit(node->finally_block());
}
void AstOptimizer::VisitSwitchStatement(SwitchStatement* node) {
Visit(node->tag());
for (int i = 0; i < node->cases()->length(); i++) {
CaseClause* clause = node->cases()->at(i);
if (!clause->is_default()) {
Visit(clause->label());
}
Optimize(clause->statements());
}
}
void AstOptimizer::VisitContinueStatement(ContinueStatement* node) {
USE(node);
}
void AstOptimizer::VisitBreakStatement(BreakStatement* node) {
USE(node);
}
void AstOptimizer::VisitDeclaration(Declaration* node) {
// Will not be reached by the current optimizations.
USE(node);
}
void AstOptimizer::VisitEmptyStatement(EmptyStatement* node) {
USE(node);
}
void AstOptimizer::VisitReturnStatement(ReturnStatement* node) {
Visit(node->expression());
}
void AstOptimizer::VisitWithEnterStatement(WithEnterStatement* node) {
Visit(node->expression());
}
void AstOptimizer::VisitWithExitStatement(WithExitStatement* node) {
USE(node);
}
void AstOptimizer::VisitDebuggerStatement(DebuggerStatement* node) {
USE(node);
}
void AstOptimizer::VisitFunctionLiteral(FunctionLiteral* node) {
USE(node);
}
void AstOptimizer::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* node) {
USE(node);
}
void AstOptimizer::VisitConditional(Conditional* node) {
Visit(node->condition());
Visit(node->then_expression());
Visit(node->else_expression());
}
void AstOptimizer::VisitSlot(Slot* node) {
USE(node);
}
void AstOptimizer::VisitVariableProxy(VariableProxy* node) {
Variable* var = node->AsVariable();
if (var != NULL) {
if (var->type()->IsKnown()) {
node->type()->CopyFrom(var->type());
} else if (node->type()->IsLikelySmi()) {
var->type()->SetAsLikelySmi();
}
}
}
void AstOptimizer::VisitLiteral(Literal* node) {
Handle<Object> literal = node->handle();
if (literal->IsSmi()) {
node->type()->SetAsLikelySmi();
}
}
void AstOptimizer::VisitRegExpLiteral(RegExpLiteral* node) {
USE(node);
}
void AstOptimizer::VisitArrayLiteral(ArrayLiteral* node) {
for (int i = 0; i < node->values()->length(); i++) {
Visit(node->values()->at(i));
}
}
void AstOptimizer::VisitObjectLiteral(ObjectLiteral* node) {
for (int i = 0; i < node->properties()->length(); i++) {
Visit(node->properties()->at(i)->key());
Visit(node->properties()->at(i)->value());
}
}
void AstOptimizer::VisitCatchExtensionObject(CatchExtensionObject* node) {
Visit(node->key());
Visit(node->value());
}
void AstOptimizer::VisitAssignment(Assignment* node) {
switch (node->op()) {
case Token::INIT_VAR:
case Token::INIT_CONST:
case Token::ASSIGN:
// No type can be infered from the general assignment.
break;
case Token::ASSIGN_BIT_OR:
case Token::ASSIGN_BIT_XOR:
case Token::ASSIGN_BIT_AND:
case Token::ASSIGN_SHL:
case Token::ASSIGN_SAR:
case Token::ASSIGN_SHR:
node->type()->SetAsLikelySmiIfUnknown();
node->target()->type()->SetAsLikelySmiIfUnknown();
node->value()->type()->SetAsLikelySmiIfUnknown();
break;
case Token::ASSIGN_ADD:
case Token::ASSIGN_SUB:
case Token::ASSIGN_MUL:
case Token::ASSIGN_DIV:
case Token::ASSIGN_MOD:
if (node->type()->IsLikelySmi()) {
node->target()->type()->SetAsLikelySmiIfUnknown();
node->value()->type()->SetAsLikelySmiIfUnknown();
}
break;
default:
UNREACHABLE();
break;
}
Visit(node->target());
Visit(node->value());
switch (node->op()) {
case Token::INIT_VAR:
case Token::INIT_CONST:
case Token::ASSIGN:
// Pure assignment copies the type from the value.
node->type()->CopyFrom(node->value()->type());
break;
case Token::ASSIGN_BIT_OR:
case Token::ASSIGN_BIT_XOR:
case Token::ASSIGN_BIT_AND:
case Token::ASSIGN_SHL:
case Token::ASSIGN_SAR:
case Token::ASSIGN_SHR:
// Should have been setup above already.
break;
case Token::ASSIGN_ADD:
case Token::ASSIGN_SUB:
case Token::ASSIGN_MUL:
case Token::ASSIGN_DIV:
case Token::ASSIGN_MOD:
if (node->type()->IsUnknown()) {
if (node->target()->type()->IsLikelySmi() ||
node->value()->type()->IsLikelySmi()) {
node->type()->SetAsLikelySmi();
}
}
break;
default:
UNREACHABLE();
break;
}
// Since this is an assignment. We have to propagate this node's type to the
// variable.
VariableProxy* proxy = node->target()->AsVariableProxy();
if (proxy != NULL) {
Variable* var = proxy->AsVariable();
if (var != NULL) {
StaticType* var_type = var->type();
if (var_type->IsUnknown()) {
var_type->CopyFrom(node->type());
} else if (var_type->IsLikelySmi()) {
// We do not reset likely types to Unknown.
}
}
}
}
void AstOptimizer::VisitThrow(Throw* node) {
Visit(node->exception());
}
void AstOptimizer::VisitProperty(Property* node) {
Visit(node->obj());
Visit(node->key());
}
void AstOptimizer::VisitCall(Call* node) {
Visit(node->expression());
OptimizeArguments(node->arguments());
}
void AstOptimizer::VisitCallEval(CallEval* node) {
Visit(node->expression());
OptimizeArguments(node->arguments());
}
void AstOptimizer::VisitCallNew(CallNew* node) {
Visit(node->expression());
OptimizeArguments(node->arguments());
}
void AstOptimizer::VisitCallRuntime(CallRuntime* node) {
OptimizeArguments(node->arguments());
}
void AstOptimizer::VisitUnaryOperation(UnaryOperation* node) {
Visit(node->expression());
}
void AstOptimizer::VisitCountOperation(CountOperation* node) {
// Count operations assume that they work on Smis.
node->type()->SetAsLikelySmiIfUnknown();
node->expression()->type()->SetAsLikelySmiIfUnknown();
Visit(node->expression());
}
void AstOptimizer::VisitBinaryOperation(BinaryOperation* node) {
// Depending on the operation we can propagate this node's type down the
// AST nodes.
switch (node->op()) {
case Token::COMMA:
case Token::OR:
case Token::AND:
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
node->type()->SetAsLikelySmiIfUnknown();
node->left()->type()->SetAsLikelySmiIfUnknown();
node->right()->type()->SetAsLikelySmiIfUnknown();
break;
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
if (node->type()->IsLikelySmi()) {
node->left()->type()->SetAsLikelySmiIfUnknown();
node->right()->type()->SetAsLikelySmiIfUnknown();
}
break;
default:
UNREACHABLE();
break;
}
Visit(node->left());
Visit(node->right());
// After visiting the operand nodes we have to check if this node's type
// can be updated. If it does, then we can push that information down
// towards the leafs again if the new information is an upgrade over the
// previous type of the operand nodes.
if (node->type()->IsUnknown()) {
if (node->left()->type()->IsLikelySmi() ||
node->right()->type()->IsLikelySmi()) {
node->type()->SetAsLikelySmi();
}
if (node->type()->IsLikelySmi()) {
// The type of this node changed to LIKELY_SMI. Propagate this knowledge
// down through the nodes.
if (node->left()->type()->IsUnknown()) {
node->left()->type()->SetAsLikelySmi();
Visit(node->left());
}
if (node->right()->type()->IsUnknown()) {
node->right()->type()->SetAsLikelySmi();
Visit(node->right());
}
}
}
}
void AstOptimizer::VisitCompareOperation(CompareOperation* node) {
if (node->type()->IsKnown()) {
// Propagate useful information down towards the leafs.
node->left()->type()->SetAsLikelySmiIfUnknown();
node->right()->type()->SetAsLikelySmiIfUnknown();
}
Visit(node->left());
Visit(node->right());
// After visiting the operand nodes we have to check if this node's type
// can be updated. If it does, then we can push that information down
// towards the leafs again if the new information is an upgrade over the
// previous type of the operand nodes.
if (node->type()->IsUnknown()) {
if (node->left()->type()->IsLikelySmi() ||
node->right()->type()->IsLikelySmi()) {
node->type()->SetAsLikelySmi();
}
if (node->type()->IsLikelySmi()) {
// The type of this node changed to LIKELY_SMI. Propagate this knowledge
// down through the nodes.
if (node->left()->type()->IsUnknown()) {
node->left()->type()->SetAsLikelySmi();
Visit(node->left());
}
if (node->right()->type()->IsUnknown()) {
node->right()->type()->SetAsLikelySmi();
Visit(node->right());
}
}
}
}
void AstOptimizer::VisitThisFunction(ThisFunction* node) {
USE(node);
}
class Processor: public AstVisitor {
public:
explicit Processor(VariableProxy* result)
: result_(result),
result_assigned_(false),
is_set_(false),
in_try_(false) {
}
void Process(ZoneList<Statement*>* statements);
bool result_assigned() const { return result_assigned_; }
private:
VariableProxy* result_;
// We are not tracking result usage via the result_'s use
// counts (we leave the accurate computation to the
// usage analyzer). Instead we simple remember if
// there was ever an assignment to result_.
bool result_assigned_;
// To avoid storing to .result all the time, we eliminate some of
// the stores by keeping track of whether or not we're sure .result
// will be overwritten anyway. This is a bit more tricky than what I
// was hoping for
bool is_set_;
bool in_try_;
Expression* SetResult(Expression* value) {
result_assigned_ = true;
return new Assignment(Token::ASSIGN, result_, value,
RelocInfo::kNoPosition);
}
// Node visitors.
#define DEF_VISIT(type) \
virtual void Visit##type(type* node);
NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
};
void Processor::Process(ZoneList<Statement*>* statements) {
for (int i = statements->length() - 1; i >= 0; --i) {
Visit(statements->at(i));
}
}
void Processor::VisitBlock(Block* node) {
// An initializer block is the rewritten form of a variable declaration
// with initialization expressions. The initializer block contains the
// list of assignments corresponding to the initialization expressions.
// While unclear from the spec (ECMA-262, 3rd., 12.2), the value of
// a variable declaration with initialization expression is 'undefined'
// with some JS VMs: For instance, using smjs, print(eval('var x = 7'))
// returns 'undefined'. To obtain the same behavior with v8, we need
// to prevent rewriting in that case.
if (!node->is_initializer_block()) Process(node->statements());
}
void Processor::VisitExpressionStatement(ExpressionStatement* node) {
// Rewrite : <x>; -> .result = <x>;
if (!is_set_) {
node->set_expression(SetResult(node->expression()));
if (!in_try_) is_set_ = true;
}
}
void Processor::VisitIfStatement(IfStatement* node) {
// Rewrite both then and else parts (reversed).
bool save = is_set_;
Visit(node->else_statement());
bool set_after_then = is_set_;
is_set_ = save;
Visit(node->then_statement());
is_set_ = is_set_ && set_after_then;
}
void Processor::VisitLoopStatement(LoopStatement* node) {
// Rewrite loop body statement.
bool set_after_loop = is_set_;
Visit(node->body());
is_set_ = is_set_ && set_after_loop;
}
void Processor::VisitForInStatement(ForInStatement* node) {
// Rewrite for-in body statement.
bool set_after_for = is_set_;
Visit(node->body());
is_set_ = is_set_ && set_after_for;
}
void Processor::VisitTryCatch(TryCatch* node) {
// Rewrite both try and catch blocks (reversed order).
bool set_after_catch = is_set_;
Visit(node->catch_block());
is_set_ = is_set_ && set_after_catch;
bool save = in_try_;
in_try_ = true;
Visit(node->try_block());
in_try_ = save;
}
void Processor::VisitTryFinally(TryFinally* node) {
// Rewrite both try and finally block (reversed order).
Visit(node->finally_block());
bool save = in_try_;
in_try_ = true;
Visit(node->try_block());
in_try_ = save;
}
void Processor::VisitSwitchStatement(SwitchStatement* node) {
// Rewrite statements in all case clauses in reversed order.
ZoneList<CaseClause*>* clauses = node->cases();
bool set_after_switch = is_set_;
for (int i = clauses->length() - 1; i >= 0; --i) {
CaseClause* clause = clauses->at(i);
Process(clause->statements());
}
is_set_ = is_set_ && set_after_switch;
}
void Processor::VisitContinueStatement(ContinueStatement* node) {
is_set_ = false;
}
void Processor::VisitBreakStatement(BreakStatement* node) {
is_set_ = false;
}
// Do nothing:
void Processor::VisitDeclaration(Declaration* node) {}
void Processor::VisitEmptyStatement(EmptyStatement* node) {}
void Processor::VisitReturnStatement(ReturnStatement* node) {}
void Processor::VisitWithEnterStatement(WithEnterStatement* node) {}
void Processor::VisitWithExitStatement(WithExitStatement* node) {}
void Processor::VisitDebuggerStatement(DebuggerStatement* node) {}
// Expressions are never visited yet.
void Processor::VisitFunctionLiteral(FunctionLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitConditional(Conditional* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitSlot(Slot* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitVariableProxy(VariableProxy* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitLiteral(Literal* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitRegExpLiteral(RegExpLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitArrayLiteral(ArrayLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitObjectLiteral(ObjectLiteral* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCatchExtensionObject(CatchExtensionObject* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitAssignment(Assignment* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitThrow(Throw* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitProperty(Property* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCall(Call* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCallEval(CallEval* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCallNew(CallNew* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCallRuntime(CallRuntime* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitUnaryOperation(UnaryOperation* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCountOperation(CountOperation* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitBinaryOperation(BinaryOperation* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitCompareOperation(CompareOperation* node) {
USE(node);
UNREACHABLE();
}
void Processor::VisitThisFunction(ThisFunction* node) {
USE(node);
UNREACHABLE();
}
bool Rewriter::Process(FunctionLiteral* function) {
Scope* scope = function->scope();
if (scope->is_function_scope()) return true;
ZoneList<Statement*>* body = function->body();
if (body->is_empty()) return true;
VariableProxy* result = scope->NewTemporary(Factory::result_symbol());
Processor processor(result);
processor.Process(body);
if (processor.HasStackOverflow()) return false;
if (processor.result_assigned()) body->Add(new ReturnStatement(result));
return true;
}
bool Rewriter::Optimize(FunctionLiteral* function) {
ZoneList<Statement*>* body = function->body();
if (FLAG_optimize_ast && !body->is_empty()) {
Scope* scope = function->scope();
if (!scope->is_global_scope()) {
AstOptimizer optimizer;
optimizer.Optimize(body);
if (optimizer.HasStackOverflow()) {
return false;
}
}
}
return true;
}
} } // namespace v8::internal