v8/test/cctest/test-debug-helper.cc
Dan Elphick 0b8d4bda0c [heap] Factor out read-only-spaces.h from spaces.h
Moves ReadOnlyPage, ReadOnlyArtifacts, ReadOnlySpace and
SharedReadOnlySpace out of spaces.h and into read-only-spaces.h, as well
as creating a corresponding .cc file.

Bug: v8:10473
Change-Id: I9d8b49d61ed643fd6e16919d571a909ab6fce407
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2171197
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Commit-Queue: Dan Elphick <delphick@chromium.org>
Cr-Commit-Position: refs/heads/master@{#67531}
2020-05-04 11:16:40 +00:00

415 lines
18 KiB
C++

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api/api-inl.h"
#include "src/flags/flags.h"
#include "src/heap/read-only-spaces.h"
#include "src/heap/spaces.h"
#include "test/cctest/cctest.h"
#include "tools/debug_helper/debug-helper.h"
namespace v8 {
namespace internal {
namespace {
namespace d = v8::debug_helper;
uintptr_t memory_fail_start = 0;
uintptr_t memory_fail_end = 0;
class MemoryFailureRegion {
public:
MemoryFailureRegion(uintptr_t start, uintptr_t end) {
memory_fail_start = start;
memory_fail_end = end;
}
~MemoryFailureRegion() {
memory_fail_start = 0;
memory_fail_end = 0;
}
};
// Implement the memory-reading callback. This one just fetches memory from the
// current process, but a real implementation for a debugging extension would
// fetch memory from the debuggee process or crash dump.
d::MemoryAccessResult ReadMemory(uintptr_t address, uint8_t* destination,
size_t byte_count) {
if (address >= memory_fail_start && address <= memory_fail_end) {
// Simulate failure to read debuggee memory.
return d::MemoryAccessResult::kAddressValidButInaccessible;
}
memcpy(destination, reinterpret_cast<void*>(address), byte_count);
return d::MemoryAccessResult::kOk;
}
void CheckPropBase(const d::PropertyBase& property, const char* expected_type,
const char* expected_name) {
CHECK(property.type == std::string("v8::internal::TaggedValue") ||
property.type == std::string(expected_type));
CHECK(property.decompressed_type == std::string(expected_type));
CHECK(property.name == std::string(expected_name));
}
void CheckProp(const d::ObjectProperty& property, const char* expected_type,
const char* expected_name,
d::PropertyKind expected_kind = d::PropertyKind::kSingle,
size_t expected_num_values = 1) {
CheckPropBase(property, expected_type, expected_name);
CHECK_EQ(property.num_values, expected_num_values);
CHECK(property.kind == expected_kind);
}
template <typename TValue>
void CheckProp(const d::ObjectProperty& property, const char* expected_type,
const char* expected_name, TValue expected_value) {
CheckProp(property, expected_type, expected_name);
CHECK(*reinterpret_cast<TValue*>(property.address) == expected_value);
}
bool StartsWith(const std::string& full_string, const std::string& prefix) {
return full_string.substr(0, prefix.size()) == prefix;
}
bool Contains(const std::string& full_string, const std::string& substr) {
return full_string.find(substr) != std::string::npos;
}
void CheckStructProp(const d::StructProperty& property,
const char* expected_type, const char* expected_name,
size_t expected_offset, uint8_t expected_num_bits = 0,
uint8_t expected_shift_bits = 0) {
CheckPropBase(property, expected_type, expected_name);
CHECK_EQ(property.offset, expected_offset);
CHECK_EQ(property.num_bits, expected_num_bits);
CHECK_EQ(property.shift_bits, expected_shift_bits);
}
const d::ObjectProperty& FindProp(const d::ObjectPropertiesResult& props,
std::string name) {
for (size_t i = 0; i < props.num_properties; ++i) {
if (name == props.properties[i]->name) {
return *props.properties[i];
}
}
CHECK_WITH_MSG(false, ("property '" + name + "' not found").c_str());
UNREACHABLE();
}
template <typename TValue>
TValue ReadProp(const d::ObjectPropertiesResult& props, std::string name) {
const d::ObjectProperty& prop = FindProp(props, name);
return *reinterpret_cast<TValue*>(prop.address);
}
// A simple implementation of ExternalStringResource that lets us control the
// result of IsCacheable().
class StringResource : public v8::String::ExternalStringResource {
public:
explicit StringResource(bool cacheable) : cacheable_(cacheable) {}
const uint16_t* data() const override {
return reinterpret_cast<const uint16_t*>(u"abcde");
}
size_t length() const override { return 5; }
bool IsCacheable() const override { return cacheable_; }
private:
bool cacheable_;
};
} // namespace
TEST(GetObjectProperties) {
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
v8::HandleScope scope(isolate);
LocalContext context;
// Claim we don't know anything about the heap layout.
d::HeapAddresses heap_addresses{0, 0, 0, 0};
v8::Local<v8::Value> v = CompileRun("42");
Handle<Object> o = v8::Utils::OpenHandle(*v);
d::ObjectPropertiesResultPtr props =
d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(props->type_check_result == d::TypeCheckResult::kSmi);
CHECK(props->brief == std::string("42 (0x2a)"));
CHECK(props->type == std::string("v8::internal::Smi"));
CHECK_EQ(props->num_properties, 0);
v = CompileRun("[\"a\", \"bc\"]");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(props->type_check_result == d::TypeCheckResult::kUsedMap);
CHECK(props->type == std::string("v8::internal::JSArray"));
CHECK_EQ(props->num_properties, 4);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CheckProp(*props->properties[1], "v8::internal::Object",
"properties_or_hash");
CheckProp(*props->properties[2], "v8::internal::FixedArrayBase", "elements");
CheckProp(*props->properties[3], "v8::internal::Object", "length",
static_cast<i::Tagged_t>(IntToSmi(2)));
// We need to supply some valid address for decompression before reading the
// elements from the JSArray.
heap_addresses.any_heap_pointer = o->ptr();
i::Tagged_t properties_or_hash =
*reinterpret_cast<i::Tagged_t*>(props->properties[1]->address);
i::Tagged_t elements =
*reinterpret_cast<i::Tagged_t*>(props->properties[2]->address);
// The properties_or_hash_code field should be an empty fixed array. Since
// that is at a known offset, we should be able to detect it even without
// any ability to read memory.
{
MemoryFailureRegion failure(0, UINTPTR_MAX);
props =
d::GetObjectProperties(properties_or_hash, &ReadMemory, heap_addresses);
CHECK(props->type_check_result ==
d::TypeCheckResult::kObjectPointerValidButInaccessible);
CHECK(props->type == std::string("v8::internal::HeapObject"));
CHECK_EQ(props->num_properties, 1);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
// "maybe" prefix indicates that GetObjectProperties recognized the offset
// within the page as matching a known object, but didn't know whether the
// object is on the right page. This response can only happen in builds
// without pointer compression, because otherwise heap addresses would be at
// deterministic locations within the heap reservation.
CHECK(COMPRESS_POINTERS_BOOL
? StartsWith(props->brief, "EmptyFixedArray")
: Contains(props->brief, "maybe EmptyFixedArray"));
// Provide a heap first page so the API can be more sure.
heap_addresses.read_only_space_first_page = reinterpret_cast<uintptr_t>(
i_isolate->heap()->read_only_space()->first_page());
props =
d::GetObjectProperties(properties_or_hash, &ReadMemory, heap_addresses);
CHECK(props->type_check_result ==
d::TypeCheckResult::kObjectPointerValidButInaccessible);
CHECK(props->type == std::string("v8::internal::HeapObject"));
CHECK_EQ(props->num_properties, 1);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CHECK(StartsWith(props->brief, "EmptyFixedArray"));
}
props = d::GetObjectProperties(elements, &ReadMemory, heap_addresses);
CHECK(props->type_check_result == d::TypeCheckResult::kUsedMap);
CHECK(props->type == std::string("v8::internal::FixedArray"));
CHECK_EQ(props->num_properties, 3);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CheckProp(*props->properties[1], "v8::internal::Object", "length",
static_cast<i::Tagged_t>(IntToSmi(2)));
CheckProp(*props->properties[2], "v8::internal::Object", "objects",
d::PropertyKind::kArrayOfKnownSize, 2);
// Get the second string value from the FixedArray.
i::Tagged_t second_string_address =
reinterpret_cast<i::Tagged_t*>(props->properties[2]->address)[1];
props = d::GetObjectProperties(second_string_address, &ReadMemory,
heap_addresses);
CHECK(props->type_check_result == d::TypeCheckResult::kUsedMap);
CHECK(props->type == std::string("v8::internal::SeqOneByteString"));
CHECK_EQ(props->num_properties, 4);
CheckProp(*props->properties[0], "v8::internal::Map", "map");
CheckProp(*props->properties[1], "uint32_t", "hash_field");
CheckProp(*props->properties[2], "int32_t", "length", 2);
CheckProp(*props->properties[3], "char", "chars",
d::PropertyKind::kArrayOfKnownSize, 2);
CHECK_EQ(
strncmp("bc",
reinterpret_cast<const char*>(props->properties[3]->address), 2),
0);
// Read the second string again, using a type hint instead of the map. All of
// its properties should match what we read last time.
d::ObjectPropertiesResultPtr props2;
{
heap_addresses.read_only_space_first_page = 0;
uintptr_t map_address =
d::GetObjectProperties(
*reinterpret_cast<i::Tagged_t*>(props->properties[0]->address),
&ReadMemory, heap_addresses)
->properties[0]
->address;
MemoryFailureRegion failure(map_address, map_address + i::Map::kSize);
props2 = d::GetObjectProperties(second_string_address, &ReadMemory,
heap_addresses, "v8::internal::String");
if (COMPRESS_POINTERS_BOOL) {
// The first page of each heap space can be automatically detected when
// pointer compression is active, so we expect to use known maps instead
// of the type hint.
CHECK_EQ(props2->type_check_result, d::TypeCheckResult::kKnownMapPointer);
CHECK(props2->type == std::string("v8::internal::SeqOneByteString"));
CHECK_EQ(props2->num_properties, 4);
CheckProp(*props2->properties[3], "char", "chars",
d::PropertyKind::kArrayOfKnownSize, 2);
CHECK_EQ(props2->num_guessed_types, 0);
} else {
CHECK_EQ(props2->type_check_result, d::TypeCheckResult::kUsedTypeHint);
CHECK(props2->type == std::string("v8::internal::String"));
CHECK_EQ(props2->num_properties, 3);
// The type hint we provided was the abstract class String, but
// GetObjectProperties should have recognized that the Map pointer looked
// like the right value for a SeqOneByteString.
CHECK_EQ(props2->num_guessed_types, 1);
CHECK(std::string(props2->guessed_types[0]) ==
std::string("v8::internal::SeqOneByteString"));
}
CheckProp(*props2->properties[0], "v8::internal::Map", "map",
*reinterpret_cast<i::Tagged_t*>(props->properties[0]->address));
CheckProp(*props2->properties[1], "uint32_t", "hash_field",
*reinterpret_cast<int32_t*>(props->properties[1]->address));
CheckProp(*props2->properties[2], "int32_t", "length", 2);
}
// Try a weak reference.
props2 = d::GetObjectProperties(second_string_address | kWeakHeapObjectMask,
&ReadMemory, heap_addresses);
std::string weak_ref_prefix = "weak ref to ";
CHECK(weak_ref_prefix + props->brief == props2->brief);
CHECK(props2->type_check_result == d::TypeCheckResult::kUsedMap);
CHECK(props2->type == std::string("v8::internal::SeqOneByteString"));
CHECK_EQ(props2->num_properties, 4);
CheckProp(*props2->properties[0], "v8::internal::Map", "map",
*reinterpret_cast<i::Tagged_t*>(props->properties[0]->address));
CheckProp(*props2->properties[1], "uint32_t", "hash_field",
*reinterpret_cast<i::Tagged_t*>(props->properties[1]->address));
CheckProp(*props2->properties[2], "int32_t", "length", 2);
// Build a complicated string (multi-level cons with slices inside) to test
// string printing.
v = CompileRun(R"(
const alphabet = "abcdefghijklmnopqrstuvwxyz";
alphabet.substr(3,20) + alphabet.toUpperCase().substr(5,15) + "7")");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(Contains(props->brief, "\"defghijklmnopqrstuvwFGHIJKLMNOPQRST7\""));
// Cause a failure when reading the "second" pointer within the top-level
// ConsString.
{
CheckProp(*props->properties[4], "v8::internal::String", "second");
uintptr_t second_address = props->properties[4]->address;
MemoryFailureRegion failure(second_address, second_address + 4);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(Contains(props->brief, "\"defghijklmnopqrstuvwFGHIJKLMNOPQRST...\""));
}
// Build a very long string.
v = CompileRun("'a'.repeat(1000)");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(Contains(props->brief, "\"" + std::string(80, 'a') + "...\""));
// GetObjectProperties can read cacheable external strings.
auto external_string =
v8::String::NewExternalTwoByte(isolate, new StringResource(true));
o = v8::Utils::OpenHandle(*external_string.ToLocalChecked());
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK(Contains(props->brief, "\"abcde\""));
// GetObjectProperties cannot read uncacheable external strings.
external_string =
v8::String::NewExternalTwoByte(isolate, new StringResource(false));
o = v8::Utils::OpenHandle(*external_string.ToLocalChecked());
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
CHECK_EQ(std::string(props->brief).find("\""), std::string::npos);
// Build a basic JS object and get its properties.
v = CompileRun("({a: 1, b: 2})");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
// Objects constructed from literals get their properties placed inline, so
// the GetObjectProperties response should include an array.
const d::ObjectProperty& prop = FindProp(*props, "in-object properties");
CheckProp(prop, "v8::internal::Object", "in-object properties",
d::PropertyKind::kArrayOfKnownSize, 2);
// The second item in that array is the SMI value 2 from the object literal.
props2 =
d::GetObjectProperties(reinterpret_cast<i::Tagged_t*>(prop.address)[1],
&ReadMemory, heap_addresses);
CHECK(props2->brief == std::string("2 (0x2)"));
// Verify the result for a heap object field which is itself a struct: the
// "descriptors" field on a DescriptorArray.
// Start by getting the object's map and the map's descriptor array.
props = d::GetObjectProperties(ReadProp<i::Tagged_t>(*props, "map"),
&ReadMemory, heap_addresses);
props = d::GetObjectProperties(
ReadProp<i::Tagged_t>(*props, "instance_descriptors"), &ReadMemory,
heap_addresses);
// It should have at least two descriptors (possibly plus slack).
CheckProp(*props->properties[1], "uint16_t", "number_of_all_descriptors");
uint16_t number_of_all_descriptors =
*reinterpret_cast<uint16_t*>(props->properties[1]->address);
CHECK_GE(number_of_all_descriptors, 2);
// The "descriptors" property should describe the struct layout for each
// element in the array.
const d::ObjectProperty& descriptors = *props->properties[6];
// No C++ type is reported directly because there may not be an actual C++
// struct with this layout, hence the empty string in this check.
CheckProp(descriptors, /*type=*/"", "descriptors",
d::PropertyKind::kArrayOfKnownSize, number_of_all_descriptors);
CHECK_EQ(descriptors.size, 3 * i::kTaggedSize);
CHECK_EQ(descriptors.num_struct_fields, 3);
CheckStructProp(*descriptors.struct_fields[0],
"v8::internal::PrimitiveHeapObject", "key",
0 * i::kTaggedSize);
CheckStructProp(*descriptors.struct_fields[1], "v8::internal::Object",
"details", 1 * i::kTaggedSize);
CheckStructProp(*descriptors.struct_fields[2], "v8::internal::Object",
"value", 2 * i::kTaggedSize);
// Build a basic JS function and get its properties. This will allow us to
// exercise bitfield functionality.
v = CompileRun("(function () {})");
o = v8::Utils::OpenHandle(*v);
props = d::GetObjectProperties(o->ptr(), &ReadMemory, heap_addresses);
props = d::GetObjectProperties(
ReadProp<i::Tagged_t>(*props, "shared_function_info"), &ReadMemory,
heap_addresses);
const d::ObjectProperty& flags = FindProp(*props, "flags");
CHECK_GE(flags.num_struct_fields, 3);
CheckStructProp(*flags.struct_fields[0], "FunctionKind", "function_kind", 0,
5, 0);
CheckStructProp(*flags.struct_fields[1], "bool", "is_native", 0, 1, 5);
CheckStructProp(*flags.struct_fields[2], "bool", "is_strict", 0, 1, 6);
// Get data about a different bitfield struct which is contained within a smi.
Handle<i::JSFunction> function = Handle<i::JSFunction>::cast(o);
Handle<i::SharedFunctionInfo> shared(function->shared(), i_isolate);
Handle<i::DebugInfo> debug_info =
i_isolate->debug()->GetOrCreateDebugInfo(shared);
props =
d::GetObjectProperties(debug_info->ptr(), &ReadMemory, heap_addresses);
const d::ObjectProperty& debug_flags = FindProp(*props, "flags");
CHECK_GE(debug_flags.num_struct_fields, 5);
CheckStructProp(*debug_flags.struct_fields[0], "bool", "has_break_info", 0, 1,
i::kSmiTagSize + i::kSmiShiftSize);
CheckStructProp(*debug_flags.struct_fields[4], "bool", "can_break_at_entry",
0, 1, i::kSmiTagSize + i::kSmiShiftSize + 4);
}
TEST(ListObjectClasses) {
CcTest::InitializeVM();
// The ListObjectClasses result will change as classes are added, removed, or
// renamed. Just check that a few expected classes are included in the list,
// and that there are no duplicates.
const d::ClassList* class_list = d::ListObjectClasses();
std::unordered_set<std::string> class_set;
for (size_t i = 0; i < class_list->num_class_names; ++i) {
CHECK_WITH_MSG(class_set.insert(class_list->class_names[i]).second,
"there should be no duplicate entries");
}
CHECK_NE(class_set.find("v8::internal::HeapObject"), class_set.end());
CHECK_NE(class_set.find("v8::internal::String"), class_set.end());
CHECK_NE(class_set.find("v8::internal::JSRegExp"), class_set.end());
}
} // namespace internal
} // namespace v8