d8131cd63a
Stubs and builtins are very similar. The main differences are that stubs can be parameterized and may be generated at runtime, whereas builtins are generated at mksnapshot-time and shipped with the snapshot (or embedded into the binary). My main motivation for these conversions is that we can generate faster calls and jumps to (embedded) builtins callees from (embedded) builtin callers. Instead of going through the builtins constants table indirection, we can simply do a pc-relative call/jump. This also unlocks other refactorings, e.g. removal of CallRuntimeDelayed. TBR=mlippautz@chromium.org Bug: v8:6666 Change-Id: I4cd63477f19a330ec70bbf20e2af8a42fb05fabb Reviewed-on: https://chromium-review.googlesource.com/1044245 Reviewed-by: Jakob Gruber <jgruber@chromium.org> Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Commit-Queue: Jakob Gruber <jgruber@chromium.org> Cr-Commit-Position: refs/heads/master@{#53027}
1556 lines
48 KiB
C++
1556 lines
48 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_GLOBALS_H_
|
|
#define V8_GLOBALS_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <limits>
|
|
#include <ostream>
|
|
|
|
#include "include/v8.h"
|
|
#include "src/base/build_config.h"
|
|
#include "src/base/flags.h"
|
|
#include "src/base/logging.h"
|
|
#include "src/base/macros.h"
|
|
|
|
#ifdef V8_OS_WIN
|
|
|
|
// Setup for Windows shared library export.
|
|
#ifdef BUILDING_V8_SHARED
|
|
#define V8_EXPORT_PRIVATE __declspec(dllexport)
|
|
#elif USING_V8_SHARED
|
|
#define V8_EXPORT_PRIVATE __declspec(dllimport)
|
|
#else
|
|
#define V8_EXPORT_PRIVATE
|
|
#endif // BUILDING_V8_SHARED
|
|
|
|
#else // V8_OS_WIN
|
|
|
|
// Setup for Linux shared library export.
|
|
#if V8_HAS_ATTRIBUTE_VISIBILITY
|
|
#ifdef BUILDING_V8_SHARED
|
|
#define V8_EXPORT_PRIVATE __attribute__((visibility("default")))
|
|
#else
|
|
#define V8_EXPORT_PRIVATE
|
|
#endif
|
|
#else
|
|
#define V8_EXPORT_PRIVATE
|
|
#endif
|
|
|
|
#endif // V8_OS_WIN
|
|
|
|
#define V8_INFINITY std::numeric_limits<double>::infinity()
|
|
|
|
namespace v8 {
|
|
|
|
namespace base {
|
|
class Mutex;
|
|
class RecursiveMutex;
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// Determine whether we are running in a simulated environment.
|
|
// Setting USE_SIMULATOR explicitly from the build script will force
|
|
// the use of a simulated environment.
|
|
#if !defined(USE_SIMULATOR)
|
|
#if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
|
|
#define USE_SIMULATOR 1
|
|
#endif
|
|
#endif
|
|
|
|
// Determine whether the architecture uses an embedded constant pool
|
|
// (contiguous constant pool embedded in code object).
|
|
#if V8_TARGET_ARCH_PPC
|
|
#define V8_EMBEDDED_CONSTANT_POOL 1
|
|
#else
|
|
#define V8_EMBEDDED_CONSTANT_POOL 0
|
|
#endif
|
|
|
|
#ifdef V8_TARGET_ARCH_ARM
|
|
// Set stack limit lower for ARM than for other architectures because
|
|
// stack allocating MacroAssembler takes 120K bytes.
|
|
// See issue crbug.com/405338
|
|
#define V8_DEFAULT_STACK_SIZE_KB 864
|
|
#else
|
|
// Slightly less than 1MB, since Windows' default stack size for
|
|
// the main execution thread is 1MB for both 32 and 64-bit.
|
|
#define V8_DEFAULT_STACK_SIZE_KB 984
|
|
#endif
|
|
|
|
// Minimum stack size in KB required by compilers.
|
|
constexpr int kStackSpaceRequiredForCompilation = 40;
|
|
|
|
// Determine whether double field unboxing feature is enabled.
|
|
#if V8_TARGET_ARCH_64_BIT
|
|
#define V8_DOUBLE_FIELDS_UNBOXING 1
|
|
#else
|
|
#define V8_DOUBLE_FIELDS_UNBOXING 0
|
|
#endif
|
|
|
|
// Some types of tracing require the SFI to store a unique ID.
|
|
#if defined(V8_TRACE_MAPS) || defined(V8_TRACE_IGNITION)
|
|
#define V8_SFI_HAS_UNIQUE_ID 1
|
|
#endif
|
|
|
|
// Superclass for classes only using static method functions.
|
|
// The subclass of AllStatic cannot be instantiated at all.
|
|
class AllStatic {
|
|
#ifdef DEBUG
|
|
public:
|
|
AllStatic() = delete;
|
|
#endif
|
|
};
|
|
|
|
// DEPRECATED
|
|
// TODO(leszeks): Delete this during a quiet period
|
|
#define BASE_EMBEDDED
|
|
|
|
typedef uint8_t byte;
|
|
typedef uintptr_t Address;
|
|
static const Address kNullAddress = 0;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Constants
|
|
|
|
constexpr int KB = 1024;
|
|
constexpr int MB = KB * KB;
|
|
constexpr int GB = KB * KB * KB;
|
|
constexpr int kMaxInt = 0x7FFFFFFF;
|
|
constexpr int kMinInt = -kMaxInt - 1;
|
|
constexpr int kMaxInt8 = (1 << 7) - 1;
|
|
constexpr int kMinInt8 = -(1 << 7);
|
|
constexpr int kMaxUInt8 = (1 << 8) - 1;
|
|
constexpr int kMinUInt8 = 0;
|
|
constexpr int kMaxInt16 = (1 << 15) - 1;
|
|
constexpr int kMinInt16 = -(1 << 15);
|
|
constexpr int kMaxUInt16 = (1 << 16) - 1;
|
|
constexpr int kMinUInt16 = 0;
|
|
|
|
constexpr uint32_t kMaxUInt32 = 0xFFFFFFFFu;
|
|
constexpr int kMinUInt32 = 0;
|
|
|
|
constexpr int kUInt8Size = sizeof(uint8_t);
|
|
constexpr int kCharSize = sizeof(char);
|
|
constexpr int kShortSize = sizeof(short); // NOLINT
|
|
constexpr int kUInt16Size = sizeof(uint16_t);
|
|
constexpr int kIntSize = sizeof(int);
|
|
constexpr int kInt32Size = sizeof(int32_t);
|
|
constexpr int kInt64Size = sizeof(int64_t);
|
|
constexpr int kUInt32Size = sizeof(uint32_t);
|
|
constexpr int kSizetSize = sizeof(size_t);
|
|
constexpr int kFloatSize = sizeof(float);
|
|
constexpr int kDoubleSize = sizeof(double);
|
|
constexpr int kIntptrSize = sizeof(intptr_t);
|
|
constexpr int kUIntptrSize = sizeof(uintptr_t);
|
|
constexpr int kPointerSize = sizeof(void*);
|
|
constexpr int kPointerHexDigits = kPointerSize == 4 ? 8 : 12;
|
|
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
|
|
constexpr int kRegisterSize = kPointerSize + kPointerSize;
|
|
#else
|
|
constexpr int kRegisterSize = kPointerSize;
|
|
#endif
|
|
constexpr int kPCOnStackSize = kRegisterSize;
|
|
constexpr int kFPOnStackSize = kRegisterSize;
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
|
|
constexpr int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
|
|
#else
|
|
constexpr int kElidedFrameSlots = 0;
|
|
#endif
|
|
|
|
constexpr int kDoubleSizeLog2 = 3;
|
|
constexpr size_t kMaxWasmCodeMemory = 256 * MB;
|
|
|
|
#if V8_HOST_ARCH_64_BIT
|
|
constexpr int kPointerSizeLog2 = 3;
|
|
constexpr intptr_t kIntptrSignBit =
|
|
static_cast<intptr_t>(uintptr_t{0x8000000000000000});
|
|
constexpr uintptr_t kUintptrAllBitsSet = uintptr_t{0xFFFFFFFFFFFFFFFF};
|
|
constexpr bool kRequiresCodeRange = true;
|
|
#if V8_TARGET_ARCH_MIPS64
|
|
// To use pseudo-relative jumps such as j/jal instructions which have 28-bit
|
|
// encoded immediate, the addresses have to be in range of 256MB aligned
|
|
// region. Used only for large object space.
|
|
constexpr size_t kMaximalCodeRangeSize = 256 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 256 * MB;
|
|
#elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
|
|
constexpr size_t kMaximalCodeRangeSize = 512 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
constexpr size_t kMaximalCodeRangeSize = 128 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
|
|
#else
|
|
constexpr size_t kMaximalCodeRangeSize = 128 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
|
|
#endif
|
|
#if V8_OS_WIN
|
|
constexpr size_t kMinimumCodeRangeSize = 4 * MB;
|
|
constexpr size_t kReservedCodeRangePages = 1;
|
|
#else
|
|
constexpr size_t kMinimumCodeRangeSize = 3 * MB;
|
|
constexpr size_t kReservedCodeRangePages = 0;
|
|
#endif
|
|
#else
|
|
constexpr int kPointerSizeLog2 = 2;
|
|
constexpr intptr_t kIntptrSignBit = 0x80000000;
|
|
constexpr uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
|
|
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
|
|
// x32 port also requires code range.
|
|
constexpr bool kRequiresCodeRange = true;
|
|
constexpr size_t kMaximalCodeRangeSize = 256 * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 3 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
|
|
#elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
|
|
constexpr bool kRequiresCodeRange = false;
|
|
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux
|
|
#else
|
|
constexpr bool kRequiresCodeRange = false;
|
|
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
|
|
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
|
|
constexpr size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
|
|
#endif
|
|
constexpr size_t kReservedCodeRangePages = 0;
|
|
#endif
|
|
|
|
// Trigger an incremental GCs once the external memory reaches this limit.
|
|
constexpr int kExternalAllocationSoftLimit = 64 * MB;
|
|
|
|
// Maximum object size that gets allocated into regular pages. Objects larger
|
|
// than that size are allocated in large object space and are never moved in
|
|
// memory. This also applies to new space allocation, since objects are never
|
|
// migrated from new space to large object space. Takes double alignment into
|
|
// account.
|
|
//
|
|
// Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack).
|
|
constexpr int kMaxRegularHeapObjectSize = 507136;
|
|
|
|
STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
|
|
|
|
constexpr int kBitsPerByte = 8;
|
|
constexpr int kBitsPerByteLog2 = 3;
|
|
constexpr int kBitsPerPointer = kPointerSize * kBitsPerByte;
|
|
constexpr int kBitsPerInt = kIntSize * kBitsPerByte;
|
|
|
|
// IEEE 754 single precision floating point number bit layout.
|
|
constexpr uint32_t kBinary32SignMask = 0x80000000u;
|
|
constexpr uint32_t kBinary32ExponentMask = 0x7f800000u;
|
|
constexpr uint32_t kBinary32MantissaMask = 0x007fffffu;
|
|
constexpr int kBinary32ExponentBias = 127;
|
|
constexpr int kBinary32MaxExponent = 0xFE;
|
|
constexpr int kBinary32MinExponent = 0x01;
|
|
constexpr int kBinary32MantissaBits = 23;
|
|
constexpr int kBinary32ExponentShift = 23;
|
|
|
|
// Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
|
|
// other bits set.
|
|
constexpr uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
|
|
|
|
// Latin1/UTF-16 constants
|
|
// Code-point values in Unicode 4.0 are 21 bits wide.
|
|
// Code units in UTF-16 are 16 bits wide.
|
|
typedef uint16_t uc16;
|
|
typedef int32_t uc32;
|
|
constexpr int kOneByteSize = kCharSize;
|
|
constexpr int kUC16Size = sizeof(uc16); // NOLINT
|
|
|
|
// 128 bit SIMD value size.
|
|
constexpr int kSimd128Size = 16;
|
|
|
|
// FUNCTION_ADDR(f) gets the address of a C function f.
|
|
#define FUNCTION_ADDR(f) (reinterpret_cast<v8::internal::Address>(f))
|
|
|
|
// FUNCTION_CAST<F>(addr) casts an address into a function
|
|
// of type F. Used to invoke generated code from within C.
|
|
template <typename F>
|
|
F FUNCTION_CAST(byte* addr) {
|
|
return reinterpret_cast<F>(reinterpret_cast<Address>(addr));
|
|
}
|
|
|
|
template <typename F>
|
|
F FUNCTION_CAST(Address addr) {
|
|
return reinterpret_cast<F>(addr);
|
|
}
|
|
|
|
|
|
// Determine whether the architecture uses function descriptors
|
|
// which provide a level of indirection between the function pointer
|
|
// and the function entrypoint.
|
|
#if V8_HOST_ARCH_PPC && \
|
|
(V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
|
|
#define USES_FUNCTION_DESCRIPTORS 1
|
|
#define FUNCTION_ENTRYPOINT_ADDRESS(f) \
|
|
(reinterpret_cast<v8::internal::Address*>( \
|
|
&(reinterpret_cast<intptr_t*>(f)[0])))
|
|
#else
|
|
#define USES_FUNCTION_DESCRIPTORS 0
|
|
#endif
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Declarations for use in both the preparser and the rest of V8.
|
|
|
|
// The Strict Mode (ECMA-262 5th edition, 4.2.2).
|
|
|
|
enum class LanguageMode : bool { kSloppy, kStrict };
|
|
static const size_t LanguageModeSize = 2;
|
|
|
|
inline size_t hash_value(LanguageMode mode) {
|
|
return static_cast<size_t>(mode);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
|
|
switch (mode) {
|
|
case LanguageMode::kSloppy:
|
|
return os << "sloppy";
|
|
case LanguageMode::kStrict:
|
|
return os << "strict";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
inline bool is_sloppy(LanguageMode language_mode) {
|
|
return language_mode == LanguageMode::kSloppy;
|
|
}
|
|
|
|
inline bool is_strict(LanguageMode language_mode) {
|
|
return language_mode != LanguageMode::kSloppy;
|
|
}
|
|
|
|
inline bool is_valid_language_mode(int language_mode) {
|
|
return language_mode == static_cast<int>(LanguageMode::kSloppy) ||
|
|
language_mode == static_cast<int>(LanguageMode::kStrict);
|
|
}
|
|
|
|
inline LanguageMode construct_language_mode(bool strict_bit) {
|
|
return static_cast<LanguageMode>(strict_bit);
|
|
}
|
|
|
|
// Return kStrict if either of the language modes is kStrict, or kSloppy
|
|
// otherwise.
|
|
inline LanguageMode stricter_language_mode(LanguageMode mode1,
|
|
LanguageMode mode2) {
|
|
STATIC_ASSERT(LanguageModeSize == 2);
|
|
return static_cast<LanguageMode>(static_cast<int>(mode1) |
|
|
static_cast<int>(mode2));
|
|
}
|
|
|
|
enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
|
|
|
|
// Enums used by CEntry.
|
|
enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
|
|
enum ArgvMode { kArgvOnStack, kArgvInRegister };
|
|
|
|
// This constant is used as an undefined value when passing source positions.
|
|
constexpr int kNoSourcePosition = -1;
|
|
|
|
// This constant is used to indicate missing deoptimization information.
|
|
constexpr int kNoDeoptimizationId = -1;
|
|
|
|
// Deoptimize bailout kind.
|
|
enum class DeoptimizeKind : uint8_t { kEager, kSoft, kLazy };
|
|
inline size_t hash_value(DeoptimizeKind kind) {
|
|
return static_cast<size_t>(kind);
|
|
}
|
|
inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) {
|
|
switch (kind) {
|
|
case DeoptimizeKind::kEager:
|
|
return os << "Eager";
|
|
case DeoptimizeKind::kSoft:
|
|
return os << "Soft";
|
|
case DeoptimizeKind::kLazy:
|
|
return os << "Lazy";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Indicates whether the lookup is related to sloppy-mode block-scoped
|
|
// function hoisting, and is a synthetic assignment for that.
|
|
enum class LookupHoistingMode { kNormal, kLegacySloppy };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const LookupHoistingMode& mode) {
|
|
switch (mode) {
|
|
case LookupHoistingMode::kNormal:
|
|
return os << "normal hoisting";
|
|
case LookupHoistingMode::kLegacySloppy:
|
|
return os << "legacy sloppy hoisting";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Mask for the sign bit in a smi.
|
|
constexpr intptr_t kSmiSignMask = kIntptrSignBit;
|
|
|
|
constexpr int kObjectAlignmentBits = kPointerSizeLog2;
|
|
constexpr intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
|
|
constexpr intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
|
|
|
|
// Desired alignment for pointers.
|
|
constexpr intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
|
|
constexpr intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
|
|
|
|
// Desired alignment for double values.
|
|
constexpr intptr_t kDoubleAlignment = 8;
|
|
constexpr intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
|
|
|
|
// Desired alignment for generated code is 32 bytes (to improve cache line
|
|
// utilization).
|
|
constexpr int kCodeAlignmentBits = 5;
|
|
constexpr intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
|
|
constexpr intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
|
|
|
|
const intptr_t kWeakHeapObjectMask = 1 << 1;
|
|
const intptr_t kClearedWeakHeapObject = 3;
|
|
|
|
// Zap-value: The value used for zapping dead objects.
|
|
// Should be a recognizable hex value tagged as a failure.
|
|
#ifdef V8_HOST_ARCH_64_BIT
|
|
constexpr uint64_t kClearedFreeMemoryValue = 0;
|
|
constexpr uint64_t kZapValue = uint64_t{0xdeadbeedbeadbeef};
|
|
constexpr uint64_t kHandleZapValue = uint64_t{0x1baddead0baddeaf};
|
|
constexpr uint64_t kGlobalHandleZapValue = uint64_t{0x1baffed00baffedf};
|
|
constexpr uint64_t kFromSpaceZapValue = uint64_t{0x1beefdad0beefdaf};
|
|
constexpr uint64_t kDebugZapValue = uint64_t{0xbadbaddbbadbaddb};
|
|
constexpr uint64_t kSlotsZapValue = uint64_t{0xbeefdeadbeefdeef};
|
|
constexpr uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
|
|
#else
|
|
constexpr uint32_t kClearedFreeMemoryValue = 0;
|
|
constexpr uint32_t kZapValue = 0xdeadbeef;
|
|
constexpr uint32_t kHandleZapValue = 0xbaddeaf;
|
|
constexpr uint32_t kGlobalHandleZapValue = 0xbaffedf;
|
|
constexpr uint32_t kFromSpaceZapValue = 0xbeefdaf;
|
|
constexpr uint32_t kSlotsZapValue = 0xbeefdeef;
|
|
constexpr uint32_t kDebugZapValue = 0xbadbaddb;
|
|
constexpr uint32_t kFreeListZapValue = 0xfeed1eaf;
|
|
#endif
|
|
|
|
constexpr int kCodeZapValue = 0xbadc0de;
|
|
constexpr uint32_t kPhantomReferenceZap = 0xca11bac;
|
|
|
|
// On Intel architecture, cache line size is 64 bytes.
|
|
// On ARM it may be less (32 bytes), but as far this constant is
|
|
// used for aligning data, it doesn't hurt to align on a greater value.
|
|
#define PROCESSOR_CACHE_LINE_SIZE 64
|
|
|
|
// Constants relevant to double precision floating point numbers.
|
|
// If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
|
|
constexpr uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Forward declarations for frequently used classes
|
|
|
|
class AccessorInfo;
|
|
class Arguments;
|
|
class Assembler;
|
|
class Code;
|
|
class CodeSpace;
|
|
class CodeStub;
|
|
class Context;
|
|
class Debug;
|
|
class DebugInfo;
|
|
class Descriptor;
|
|
class DescriptorArray;
|
|
class TransitionArray;
|
|
class ExternalReference;
|
|
class FixedArray;
|
|
class FreeStoreAllocationPolicy;
|
|
class FunctionTemplateInfo;
|
|
class MemoryChunk;
|
|
class NumberDictionary;
|
|
class SimpleNumberDictionary;
|
|
class NameDictionary;
|
|
class GlobalDictionary;
|
|
template <typename T> class MaybeHandle;
|
|
template <typename T> class Handle;
|
|
class Heap;
|
|
class HeapObject;
|
|
class HeapObjectReference;
|
|
class IC;
|
|
class InterceptorInfo;
|
|
class Isolate;
|
|
class JSReceiver;
|
|
class JSArray;
|
|
class JSFunction;
|
|
class JSObject;
|
|
class LargeObjectSpace;
|
|
class MacroAssembler;
|
|
class Map;
|
|
class MapSpace;
|
|
class MarkCompactCollector;
|
|
class MaybeObject;
|
|
class NewSpace;
|
|
class Object;
|
|
class OldSpace;
|
|
class ParameterCount;
|
|
class ReadOnlySpace;
|
|
class Foreign;
|
|
class Scope;
|
|
class DeclarationScope;
|
|
class ModuleScope;
|
|
class ScopeInfo;
|
|
class Script;
|
|
class Smi;
|
|
template <typename Config, class Allocator = FreeStoreAllocationPolicy>
|
|
class SplayTree;
|
|
class String;
|
|
class Symbol;
|
|
class Name;
|
|
class Struct;
|
|
class FeedbackVector;
|
|
class Variable;
|
|
class RelocInfo;
|
|
class MessageLocation;
|
|
|
|
typedef bool (*WeakSlotCallback)(Object** pointer);
|
|
|
|
typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Miscellaneous
|
|
|
|
// NOTE: SpaceIterator depends on AllocationSpace enumeration values being
|
|
// consecutive.
|
|
enum AllocationSpace {
|
|
// TODO(v8:7464): Actually map this space's memory as read-only.
|
|
RO_SPACE, // Immortal, immovable and immutable objects,
|
|
NEW_SPACE, // Semispaces collected with copying collector.
|
|
OLD_SPACE, // May contain pointers to new space.
|
|
CODE_SPACE, // No pointers to new space, marked executable.
|
|
MAP_SPACE, // Only and all map objects.
|
|
LO_SPACE, // Promoted large objects.
|
|
|
|
FIRST_SPACE = RO_SPACE,
|
|
LAST_SPACE = LO_SPACE,
|
|
FIRST_GROWABLE_PAGED_SPACE = OLD_SPACE,
|
|
LAST_GROWABLE_PAGED_SPACE = MAP_SPACE
|
|
};
|
|
constexpr int kSpaceTagSize = 4;
|
|
STATIC_ASSERT(FIRST_SPACE == 0);
|
|
|
|
enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
|
|
|
|
enum class AccessMode { ATOMIC, NON_ATOMIC };
|
|
|
|
// Supported write barrier modes.
|
|
enum WriteBarrierKind : uint8_t {
|
|
kNoWriteBarrier,
|
|
kMapWriteBarrier,
|
|
kPointerWriteBarrier,
|
|
kFullWriteBarrier
|
|
};
|
|
|
|
inline size_t hash_value(WriteBarrierKind kind) {
|
|
return static_cast<uint8_t>(kind);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
|
|
switch (kind) {
|
|
case kNoWriteBarrier:
|
|
return os << "NoWriteBarrier";
|
|
case kMapWriteBarrier:
|
|
return os << "MapWriteBarrier";
|
|
case kPointerWriteBarrier:
|
|
return os << "PointerWriteBarrier";
|
|
case kFullWriteBarrier:
|
|
return os << "FullWriteBarrier";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// A flag that indicates whether objects should be pretenured when
|
|
// allocated (allocated directly into either the old generation or read-only
|
|
// space), or not (allocated in the young generation if the object size and type
|
|
// allows).
|
|
enum PretenureFlag { NOT_TENURED, TENURED, TENURED_READ_ONLY };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
|
|
switch (flag) {
|
|
case NOT_TENURED:
|
|
return os << "NotTenured";
|
|
case TENURED:
|
|
return os << "Tenured";
|
|
case TENURED_READ_ONLY:
|
|
return os << "TenuredReadOnly";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum MinimumCapacity {
|
|
USE_DEFAULT_MINIMUM_CAPACITY,
|
|
USE_CUSTOM_MINIMUM_CAPACITY
|
|
};
|
|
|
|
enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR };
|
|
|
|
enum Executability { NOT_EXECUTABLE, EXECUTABLE };
|
|
|
|
enum Movability { kMovable, kImmovable };
|
|
|
|
enum VisitMode {
|
|
VISIT_ALL,
|
|
VISIT_ALL_IN_MINOR_MC_MARK,
|
|
VISIT_ALL_IN_MINOR_MC_UPDATE,
|
|
VISIT_ALL_IN_SCAVENGE,
|
|
VISIT_ALL_IN_SWEEP_NEWSPACE,
|
|
VISIT_ONLY_STRONG,
|
|
VISIT_FOR_SERIALIZATION,
|
|
};
|
|
|
|
// Flag indicating whether code is built into the VM (one of the natives files).
|
|
enum NativesFlag {
|
|
NOT_NATIVES_CODE,
|
|
EXTENSION_CODE,
|
|
NATIVES_CODE,
|
|
INSPECTOR_CODE
|
|
};
|
|
|
|
// ParseRestriction is used to restrict the set of valid statements in a
|
|
// unit of compilation. Restriction violations cause a syntax error.
|
|
enum ParseRestriction {
|
|
NO_PARSE_RESTRICTION, // All expressions are allowed.
|
|
ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
|
|
};
|
|
|
|
// A CodeDesc describes a buffer holding instructions and relocation
|
|
// information. The instructions start at the beginning of the buffer
|
|
// and grow forward, the relocation information starts at the end of
|
|
// the buffer and grows backward. A constant pool may exist at the
|
|
// end of the instructions.
|
|
//
|
|
// |<--------------- buffer_size ----------------------------------->|
|
|
// |<------------- instr_size ---------->| |<-- reloc_size -->|
|
|
// | |<- const_pool_size ->| |
|
|
// +=====================================+========+==================+
|
|
// | instructions | data | free | reloc info |
|
|
// +=====================================+========+==================+
|
|
// ^
|
|
// |
|
|
// buffer
|
|
|
|
struct CodeDesc {
|
|
byte* buffer;
|
|
int buffer_size;
|
|
int instr_size;
|
|
int reloc_size;
|
|
int constant_pool_size;
|
|
byte* unwinding_info;
|
|
int unwinding_info_size;
|
|
Assembler* origin;
|
|
};
|
|
|
|
|
|
// Callback function used for checking constraints when copying/relocating
|
|
// objects. Returns true if an object can be copied/relocated from its
|
|
// old_addr to a new_addr.
|
|
typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
|
|
|
|
|
|
// Callback function on inline caches, used for iterating over inline caches
|
|
// in compiled code.
|
|
typedef void (*InlineCacheCallback)(Code* code, Address ic);
|
|
|
|
|
|
// State for inline cache call sites. Aliased as IC::State.
|
|
enum InlineCacheState {
|
|
// Has never been executed.
|
|
UNINITIALIZED,
|
|
// Has been executed but monomorhic state has been delayed.
|
|
PREMONOMORPHIC,
|
|
// Has been executed and only one receiver type has been seen.
|
|
MONOMORPHIC,
|
|
// Check failed due to prototype (or map deprecation).
|
|
RECOMPUTE_HANDLER,
|
|
// Multiple receiver types have been seen.
|
|
POLYMORPHIC,
|
|
// Many receiver types have been seen.
|
|
MEGAMORPHIC,
|
|
// A generic handler is installed and no extra typefeedback is recorded.
|
|
GENERIC,
|
|
};
|
|
|
|
enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
|
|
|
|
enum ResultSentinel { kNotFound = -1, kUnsupported = -2 };
|
|
|
|
enum ShouldThrow { kThrowOnError, kDontThrow };
|
|
|
|
// The Store Buffer (GC).
|
|
typedef enum {
|
|
kStoreBufferFullEvent,
|
|
kStoreBufferStartScanningPagesEvent,
|
|
kStoreBufferScanningPageEvent
|
|
} StoreBufferEvent;
|
|
|
|
|
|
typedef void (*StoreBufferCallback)(Heap* heap,
|
|
MemoryChunk* page,
|
|
StoreBufferEvent event);
|
|
|
|
// Union used for customized checking of the IEEE double types
|
|
// inlined within v8 runtime, rather than going to the underlying
|
|
// platform headers and libraries
|
|
union IeeeDoubleLittleEndianArchType {
|
|
double d;
|
|
struct {
|
|
unsigned int man_low :32;
|
|
unsigned int man_high :20;
|
|
unsigned int exp :11;
|
|
unsigned int sign :1;
|
|
} bits;
|
|
};
|
|
|
|
|
|
union IeeeDoubleBigEndianArchType {
|
|
double d;
|
|
struct {
|
|
unsigned int sign :1;
|
|
unsigned int exp :11;
|
|
unsigned int man_high :20;
|
|
unsigned int man_low :32;
|
|
} bits;
|
|
};
|
|
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
|
|
constexpr int kIeeeDoubleMantissaWordOffset = 0;
|
|
constexpr int kIeeeDoubleExponentWordOffset = 4;
|
|
#else
|
|
typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
|
|
constexpr int kIeeeDoubleMantissaWordOffset = 4;
|
|
constexpr int kIeeeDoubleExponentWordOffset = 0;
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Macros
|
|
|
|
// Testers for test.
|
|
|
|
#define HAS_SMI_TAG(value) \
|
|
((reinterpret_cast<intptr_t>(value) & ::i::kSmiTagMask) == ::i::kSmiTag)
|
|
|
|
#define HAS_HEAP_OBJECT_TAG(value) \
|
|
(((reinterpret_cast<intptr_t>(value) & ::i::kHeapObjectTagMask) == \
|
|
::i::kHeapObjectTag))
|
|
|
|
// OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
|
|
#define OBJECT_POINTER_ALIGN(value) \
|
|
(((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
|
|
|
|
// POINTER_SIZE_ALIGN returns the value aligned as a pointer.
|
|
#define POINTER_SIZE_ALIGN(value) \
|
|
(((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
|
|
|
|
// CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
|
|
#define CODE_POINTER_ALIGN(value) \
|
|
(((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
|
|
|
|
// DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
|
|
#define DOUBLE_POINTER_ALIGN(value) \
|
|
(((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
|
|
|
|
|
|
// CPU feature flags.
|
|
enum CpuFeature {
|
|
// x86
|
|
SSE4_1,
|
|
SSSE3,
|
|
SSE3,
|
|
SAHF,
|
|
AVX,
|
|
FMA3,
|
|
BMI1,
|
|
BMI2,
|
|
LZCNT,
|
|
POPCNT,
|
|
ATOM,
|
|
// ARM
|
|
// - Standard configurations. The baseline is ARMv6+VFPv2.
|
|
ARMv7, // ARMv7-A + VFPv3-D32 + NEON
|
|
ARMv7_SUDIV, // ARMv7-A + VFPv4-D32 + NEON + SUDIV
|
|
ARMv8, // ARMv8-A (+ all of the above)
|
|
// MIPS, MIPS64
|
|
FPU,
|
|
FP64FPU,
|
|
MIPSr1,
|
|
MIPSr2,
|
|
MIPSr6,
|
|
MIPS_SIMD, // MSA instructions
|
|
// PPC
|
|
FPR_GPR_MOV,
|
|
LWSYNC,
|
|
ISELECT,
|
|
VSX,
|
|
MODULO,
|
|
// S390
|
|
DISTINCT_OPS,
|
|
GENERAL_INSTR_EXT,
|
|
FLOATING_POINT_EXT,
|
|
VECTOR_FACILITY,
|
|
MISC_INSTR_EXT2,
|
|
|
|
NUMBER_OF_CPU_FEATURES,
|
|
|
|
// ARM feature aliases (based on the standard configurations above).
|
|
VFPv3 = ARMv7,
|
|
NEON = ARMv7,
|
|
VFP32DREGS = ARMv7,
|
|
SUDIV = ARMv7_SUDIV
|
|
};
|
|
|
|
// Defines hints about receiver values based on structural knowledge.
|
|
enum class ConvertReceiverMode : unsigned {
|
|
kNullOrUndefined, // Guaranteed to be null or undefined.
|
|
kNotNullOrUndefined, // Guaranteed to never be null or undefined.
|
|
kAny // No specific knowledge about receiver.
|
|
};
|
|
|
|
inline size_t hash_value(ConvertReceiverMode mode) {
|
|
return bit_cast<unsigned>(mode);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
|
|
switch (mode) {
|
|
case ConvertReceiverMode::kNullOrUndefined:
|
|
return os << "NULL_OR_UNDEFINED";
|
|
case ConvertReceiverMode::kNotNullOrUndefined:
|
|
return os << "NOT_NULL_OR_UNDEFINED";
|
|
case ConvertReceiverMode::kAny:
|
|
return os << "ANY";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Valid hints for the abstract operation OrdinaryToPrimitive,
|
|
// implemented according to ES6, section 7.1.1.
|
|
enum class OrdinaryToPrimitiveHint { kNumber, kString };
|
|
|
|
// Valid hints for the abstract operation ToPrimitive,
|
|
// implemented according to ES6, section 7.1.1.
|
|
enum class ToPrimitiveHint { kDefault, kNumber, kString };
|
|
|
|
// Defines specifics about arguments object or rest parameter creation.
|
|
enum class CreateArgumentsType : uint8_t {
|
|
kMappedArguments,
|
|
kUnmappedArguments,
|
|
kRestParameter
|
|
};
|
|
|
|
inline size_t hash_value(CreateArgumentsType type) {
|
|
return bit_cast<uint8_t>(type);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
|
|
switch (type) {
|
|
case CreateArgumentsType::kMappedArguments:
|
|
return os << "MAPPED_ARGUMENTS";
|
|
case CreateArgumentsType::kUnmappedArguments:
|
|
return os << "UNMAPPED_ARGUMENTS";
|
|
case CreateArgumentsType::kRestParameter:
|
|
return os << "REST_PARAMETER";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum ScopeType : uint8_t {
|
|
EVAL_SCOPE, // The top-level scope for an eval source.
|
|
FUNCTION_SCOPE, // The top-level scope for a function.
|
|
MODULE_SCOPE, // The scope introduced by a module literal
|
|
SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval.
|
|
CATCH_SCOPE, // The scope introduced by catch.
|
|
BLOCK_SCOPE, // The scope introduced by a new block.
|
|
WITH_SCOPE // The scope introduced by with.
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, ScopeType type) {
|
|
switch (type) {
|
|
case ScopeType::EVAL_SCOPE:
|
|
return os << "EVAL_SCOPE";
|
|
case ScopeType::FUNCTION_SCOPE:
|
|
return os << "FUNCTION_SCOPE";
|
|
case ScopeType::MODULE_SCOPE:
|
|
return os << "MODULE_SCOPE";
|
|
case ScopeType::SCRIPT_SCOPE:
|
|
return os << "SCRIPT_SCOPE";
|
|
case ScopeType::CATCH_SCOPE:
|
|
return os << "CATCH_SCOPE";
|
|
case ScopeType::BLOCK_SCOPE:
|
|
return os << "BLOCK_SCOPE";
|
|
case ScopeType::WITH_SCOPE:
|
|
return os << "WITH_SCOPE";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// AllocationSiteMode controls whether allocations are tracked by an allocation
|
|
// site.
|
|
enum AllocationSiteMode {
|
|
DONT_TRACK_ALLOCATION_SITE,
|
|
TRACK_ALLOCATION_SITE,
|
|
LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
|
|
};
|
|
|
|
// The mips architecture prior to revision 5 has inverted encoding for sNaN.
|
|
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \
|
|
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
|
|
(V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \
|
|
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR)))
|
|
constexpr uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
|
|
constexpr uint32_t kHoleNanLower32 = 0xFFFF7FFF;
|
|
#else
|
|
constexpr uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
|
|
constexpr uint32_t kHoleNanLower32 = 0xFFF7FFFF;
|
|
#endif
|
|
|
|
constexpr uint64_t kHoleNanInt64 =
|
|
(static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
|
|
|
|
// ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
|
|
constexpr double kMaxSafeInteger = 9007199254740991.0; // 2^53-1
|
|
|
|
// The order of this enum has to be kept in sync with the predicates below.
|
|
enum VariableMode : uint8_t {
|
|
// User declared variables:
|
|
LET, // declared via 'let' declarations (first lexical)
|
|
|
|
CONST, // declared via 'const' declarations (last lexical)
|
|
|
|
VAR, // declared via 'var', and 'function' declarations
|
|
|
|
// Variables introduced by the compiler:
|
|
TEMPORARY, // temporary variables (not user-visible), stack-allocated
|
|
// unless the scope as a whole has forced context allocation
|
|
|
|
DYNAMIC, // always require dynamic lookup (we don't know
|
|
// the declaration)
|
|
|
|
DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the
|
|
// variable is global unless it has been shadowed
|
|
// by an eval-introduced variable
|
|
|
|
DYNAMIC_LOCAL // requires dynamic lookup, but we know that the
|
|
// variable is local and where it is unless it
|
|
// has been shadowed by an eval-introduced
|
|
// variable
|
|
};
|
|
|
|
// Printing support
|
|
#ifdef DEBUG
|
|
inline const char* VariableMode2String(VariableMode mode) {
|
|
switch (mode) {
|
|
case VAR:
|
|
return "VAR";
|
|
case LET:
|
|
return "LET";
|
|
case CONST:
|
|
return "CONST";
|
|
case DYNAMIC:
|
|
return "DYNAMIC";
|
|
case DYNAMIC_GLOBAL:
|
|
return "DYNAMIC_GLOBAL";
|
|
case DYNAMIC_LOCAL:
|
|
return "DYNAMIC_LOCAL";
|
|
case TEMPORARY:
|
|
return "TEMPORARY";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
#endif
|
|
|
|
enum VariableKind : uint8_t {
|
|
NORMAL_VARIABLE,
|
|
FUNCTION_VARIABLE,
|
|
THIS_VARIABLE,
|
|
SLOPPY_FUNCTION_NAME_VARIABLE
|
|
};
|
|
|
|
inline bool IsDynamicVariableMode(VariableMode mode) {
|
|
return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
|
|
}
|
|
|
|
|
|
inline bool IsDeclaredVariableMode(VariableMode mode) {
|
|
STATIC_ASSERT(LET == 0); // Implies that mode >= LET.
|
|
return mode <= VAR;
|
|
}
|
|
|
|
|
|
inline bool IsLexicalVariableMode(VariableMode mode) {
|
|
STATIC_ASSERT(LET == 0); // Implies that mode >= LET.
|
|
return mode <= CONST;
|
|
}
|
|
|
|
enum VariableLocation : uint8_t {
|
|
// Before and during variable allocation, a variable whose location is
|
|
// not yet determined. After allocation, a variable looked up as a
|
|
// property on the global object (and possibly absent). name() is the
|
|
// variable name, index() is invalid.
|
|
UNALLOCATED,
|
|
|
|
// A slot in the parameter section on the stack. index() is the
|
|
// parameter index, counting left-to-right. The receiver is index -1;
|
|
// the first parameter is index 0.
|
|
PARAMETER,
|
|
|
|
// A slot in the local section on the stack. index() is the variable
|
|
// index in the stack frame, starting at 0.
|
|
LOCAL,
|
|
|
|
// An indexed slot in a heap context. index() is the variable index in
|
|
// the context object on the heap, starting at 0. scope() is the
|
|
// corresponding scope.
|
|
CONTEXT,
|
|
|
|
// A named slot in a heap context. name() is the variable name in the
|
|
// context object on the heap, with lookup starting at the current
|
|
// context. index() is invalid.
|
|
LOOKUP,
|
|
|
|
// A named slot in a module's export table.
|
|
MODULE,
|
|
|
|
kLastVariableLocation = MODULE
|
|
};
|
|
|
|
// ES6 specifies declarative environment records with mutable and immutable
|
|
// bindings that can be in two states: initialized and uninitialized.
|
|
// When accessing a binding, it needs to be checked for initialization.
|
|
// However in the following cases the binding is initialized immediately
|
|
// after creation so the initialization check can always be skipped:
|
|
//
|
|
// 1. Var declared local variables.
|
|
// var foo;
|
|
// 2. A local variable introduced by a function declaration.
|
|
// function foo() {}
|
|
// 3. Parameters
|
|
// function x(foo) {}
|
|
// 4. Catch bound variables.
|
|
// try {} catch (foo) {}
|
|
// 6. Function name variables of named function expressions.
|
|
// var x = function foo() {}
|
|
// 7. Implicit binding of 'this'.
|
|
// 8. Implicit binding of 'arguments' in functions.
|
|
//
|
|
// The following enum specifies a flag that indicates if the binding needs a
|
|
// distinct initialization step (kNeedsInitialization) or if the binding is
|
|
// immediately initialized upon creation (kCreatedInitialized).
|
|
enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized };
|
|
|
|
enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned };
|
|
|
|
// Serialized in PreparseData, so numeric values should not be changed.
|
|
enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
|
|
|
|
enum FunctionKind : uint8_t {
|
|
kNormalFunction,
|
|
kArrowFunction,
|
|
kGeneratorFunction,
|
|
kConciseMethod,
|
|
kDerivedConstructor,
|
|
kBaseConstructor,
|
|
kGetterFunction,
|
|
kSetterFunction,
|
|
kAsyncFunction,
|
|
kModule,
|
|
kClassFieldsInitializerFunction,
|
|
|
|
kDefaultBaseConstructor,
|
|
kDefaultDerivedConstructor,
|
|
kAsyncArrowFunction,
|
|
kAsyncConciseMethod,
|
|
|
|
kConciseGeneratorMethod,
|
|
kAsyncConciseGeneratorMethod,
|
|
kAsyncGeneratorFunction,
|
|
kLastFunctionKind = kAsyncGeneratorFunction,
|
|
};
|
|
|
|
inline bool IsArrowFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kArrowFunction ||
|
|
kind == FunctionKind::kAsyncArrowFunction;
|
|
}
|
|
|
|
inline bool IsModule(FunctionKind kind) {
|
|
return kind == FunctionKind::kModule;
|
|
}
|
|
|
|
inline bool IsAsyncGeneratorFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kAsyncGeneratorFunction ||
|
|
kind == FunctionKind::kAsyncConciseGeneratorMethod;
|
|
}
|
|
|
|
inline bool IsGeneratorFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kGeneratorFunction ||
|
|
kind == FunctionKind::kConciseGeneratorMethod ||
|
|
IsAsyncGeneratorFunction(kind);
|
|
}
|
|
|
|
inline bool IsAsyncFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kAsyncFunction ||
|
|
kind == FunctionKind::kAsyncArrowFunction ||
|
|
kind == FunctionKind::kAsyncConciseMethod ||
|
|
IsAsyncGeneratorFunction(kind);
|
|
}
|
|
|
|
inline bool IsResumableFunction(FunctionKind kind) {
|
|
return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind);
|
|
}
|
|
|
|
inline bool IsConciseMethod(FunctionKind kind) {
|
|
return kind == FunctionKind::kConciseMethod ||
|
|
kind == FunctionKind::kConciseGeneratorMethod ||
|
|
kind == FunctionKind::kAsyncConciseMethod ||
|
|
kind == FunctionKind::kAsyncConciseGeneratorMethod ||
|
|
kind == FunctionKind::kClassFieldsInitializerFunction;
|
|
}
|
|
|
|
inline bool IsGetterFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kGetterFunction;
|
|
}
|
|
|
|
inline bool IsSetterFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kSetterFunction;
|
|
}
|
|
|
|
inline bool IsAccessorFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kGetterFunction ||
|
|
kind == FunctionKind::kSetterFunction;
|
|
}
|
|
|
|
inline bool IsDefaultConstructor(FunctionKind kind) {
|
|
return kind == FunctionKind::kDefaultBaseConstructor ||
|
|
kind == FunctionKind::kDefaultDerivedConstructor;
|
|
}
|
|
|
|
inline bool IsBaseConstructor(FunctionKind kind) {
|
|
return kind == FunctionKind::kBaseConstructor ||
|
|
kind == FunctionKind::kDefaultBaseConstructor;
|
|
}
|
|
|
|
inline bool IsDerivedConstructor(FunctionKind kind) {
|
|
return kind == FunctionKind::kDerivedConstructor ||
|
|
kind == FunctionKind::kDefaultDerivedConstructor;
|
|
}
|
|
|
|
|
|
inline bool IsClassConstructor(FunctionKind kind) {
|
|
return IsBaseConstructor(kind) || IsDerivedConstructor(kind);
|
|
}
|
|
|
|
inline bool IsClassFieldsInitializerFunction(FunctionKind kind) {
|
|
return kind == FunctionKind::kClassFieldsInitializerFunction;
|
|
}
|
|
|
|
inline bool IsConstructable(FunctionKind kind) {
|
|
if (IsAccessorFunction(kind)) return false;
|
|
if (IsConciseMethod(kind)) return false;
|
|
if (IsArrowFunction(kind)) return false;
|
|
if (IsGeneratorFunction(kind)) return false;
|
|
if (IsAsyncFunction(kind)) return false;
|
|
return true;
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, FunctionKind kind) {
|
|
switch (kind) {
|
|
case FunctionKind::kNormalFunction:
|
|
return os << "NormalFunction";
|
|
case FunctionKind::kArrowFunction:
|
|
return os << "ArrowFunction";
|
|
case FunctionKind::kGeneratorFunction:
|
|
return os << "GeneratorFunction";
|
|
case FunctionKind::kConciseMethod:
|
|
return os << "ConciseMethod";
|
|
case FunctionKind::kDerivedConstructor:
|
|
return os << "DerivedConstructor";
|
|
case FunctionKind::kBaseConstructor:
|
|
return os << "BaseConstructor";
|
|
case FunctionKind::kGetterFunction:
|
|
return os << "GetterFunction";
|
|
case FunctionKind::kSetterFunction:
|
|
return os << "SetterFunction";
|
|
case FunctionKind::kAsyncFunction:
|
|
return os << "AsyncFunction";
|
|
case FunctionKind::kModule:
|
|
return os << "Module";
|
|
case FunctionKind::kClassFieldsInitializerFunction:
|
|
return os << "ClassFieldsInitializerFunction";
|
|
case FunctionKind::kDefaultBaseConstructor:
|
|
return os << "DefaultBaseConstructor";
|
|
case FunctionKind::kDefaultDerivedConstructor:
|
|
return os << "DefaultDerivedConstructor";
|
|
case FunctionKind::kAsyncArrowFunction:
|
|
return os << "AsyncArrowFunction";
|
|
case FunctionKind::kAsyncConciseMethod:
|
|
return os << "AsyncConciseMethod";
|
|
case FunctionKind::kConciseGeneratorMethod:
|
|
return os << "ConciseGeneratorMethod";
|
|
case FunctionKind::kAsyncConciseGeneratorMethod:
|
|
return os << "AsyncConciseGeneratorMethod";
|
|
case FunctionKind::kAsyncGeneratorFunction:
|
|
return os << "AsyncGeneratorFunction";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class InterpreterPushArgsMode : unsigned {
|
|
kArrayFunction,
|
|
kWithFinalSpread,
|
|
kOther
|
|
};
|
|
|
|
inline size_t hash_value(InterpreterPushArgsMode mode) {
|
|
return bit_cast<unsigned>(mode);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
InterpreterPushArgsMode mode) {
|
|
switch (mode) {
|
|
case InterpreterPushArgsMode::kArrayFunction:
|
|
return os << "ArrayFunction";
|
|
case InterpreterPushArgsMode::kWithFinalSpread:
|
|
return os << "WithFinalSpread";
|
|
case InterpreterPushArgsMode::kOther:
|
|
return os << "Other";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
inline uint32_t ObjectHash(Address address) {
|
|
// All objects are at least pointer aligned, so we can remove the trailing
|
|
// zeros.
|
|
return static_cast<uint32_t>(address >> kPointerSizeLog2);
|
|
}
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
//
|
|
// kSignedSmall -> kSignedSmallInputs -> kNumber -> kNumberOrOddball -> kAny
|
|
// kString -> kAny
|
|
// kBigInt -> kAny
|
|
//
|
|
// Technically we wouldn't need the separation between the kNumber and the
|
|
// kNumberOrOddball values here, since for binary operations, we always
|
|
// truncate oddballs to numbers. In practice though it causes TurboFan to
|
|
// generate quite a lot of unused code though if we always handle numbers
|
|
// and oddballs everywhere, although in 99% of the use sites they are only
|
|
// used with numbers.
|
|
class BinaryOperationFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x0,
|
|
kSignedSmall = 0x1,
|
|
kSignedSmallInputs = 0x3,
|
|
kNumber = 0x7,
|
|
kNumberOrOddball = 0xF,
|
|
kString = 0x10,
|
|
kBigInt = 0x20,
|
|
kAny = 0x7F
|
|
};
|
|
};
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
//
|
|
// kSignedSmall -> kNumber -> kNumberOrOddball -> kAny
|
|
// kInternalizedString -> kString -> kAny
|
|
// kSymbol -> kAny
|
|
// kBigInt -> kAny
|
|
// kReceiver -> kAny
|
|
//
|
|
// This is distinct from BinaryOperationFeedback on purpose, because the
|
|
// feedback that matters differs greatly as well as the way it is consumed.
|
|
class CompareOperationFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x00,
|
|
kSignedSmall = 0x01,
|
|
kNumber = 0x3,
|
|
kNumberOrOddball = 0x7,
|
|
kInternalizedString = 0x8,
|
|
kString = 0x18,
|
|
kSymbol = 0x20,
|
|
kBigInt = 0x30,
|
|
kReceiver = 0x40,
|
|
kAny = 0xff
|
|
};
|
|
};
|
|
|
|
enum class Operation {
|
|
// Binary operations.
|
|
kAdd,
|
|
kSubtract,
|
|
kMultiply,
|
|
kDivide,
|
|
kModulus,
|
|
kExponentiate,
|
|
kBitwiseAnd,
|
|
kBitwiseOr,
|
|
kBitwiseXor,
|
|
kShiftLeft,
|
|
kShiftRight,
|
|
kShiftRightLogical,
|
|
// Unary operations.
|
|
kBitwiseNot,
|
|
kNegate,
|
|
kIncrement,
|
|
kDecrement,
|
|
// Compare operations.
|
|
kEqual,
|
|
kStrictEqual,
|
|
kLessThan,
|
|
kLessThanOrEqual,
|
|
kGreaterThan,
|
|
kGreaterThanOrEqual,
|
|
};
|
|
|
|
// Type feedback is encoded in such a way that, we can combine the feedback
|
|
// at different points by performing an 'OR' operation. Type feedback moves
|
|
// to a more generic type when we combine feedback.
|
|
// kNone -> kEnumCacheKeysAndIndices -> kEnumCacheKeys -> kAny
|
|
class ForInFeedback {
|
|
public:
|
|
enum {
|
|
kNone = 0x0,
|
|
kEnumCacheKeysAndIndices = 0x1,
|
|
kEnumCacheKeys = 0x3,
|
|
kAny = 0x7
|
|
};
|
|
};
|
|
STATIC_ASSERT((ForInFeedback::kNone |
|
|
ForInFeedback::kEnumCacheKeysAndIndices) ==
|
|
ForInFeedback::kEnumCacheKeysAndIndices);
|
|
STATIC_ASSERT((ForInFeedback::kEnumCacheKeysAndIndices |
|
|
ForInFeedback::kEnumCacheKeys) == ForInFeedback::kEnumCacheKeys);
|
|
STATIC_ASSERT((ForInFeedback::kEnumCacheKeys | ForInFeedback::kAny) ==
|
|
ForInFeedback::kAny);
|
|
|
|
enum class UnicodeEncoding : uint8_t {
|
|
// Different unicode encodings in a |word32|:
|
|
UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate
|
|
UTF32, // full UTF32 code unit / Unicode codepoint
|
|
};
|
|
|
|
inline size_t hash_value(UnicodeEncoding encoding) {
|
|
return static_cast<uint8_t>(encoding);
|
|
}
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) {
|
|
switch (encoding) {
|
|
case UnicodeEncoding::UTF16:
|
|
return os << "UTF16";
|
|
case UnicodeEncoding::UTF32:
|
|
return os << "UTF32";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class IterationKind { kKeys, kValues, kEntries };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, IterationKind kind) {
|
|
switch (kind) {
|
|
case IterationKind::kKeys:
|
|
return os << "IterationKind::kKeys";
|
|
case IterationKind::kValues:
|
|
return os << "IterationKind::kValues";
|
|
case IterationKind::kEntries:
|
|
return os << "IterationKind::kEntries";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
enum class CollectionKind { kMap, kSet };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os, CollectionKind kind) {
|
|
switch (kind) {
|
|
case CollectionKind::kMap:
|
|
return os << "CollectionKind::kMap";
|
|
case CollectionKind::kSet:
|
|
return os << "CollectionKind::kSet";
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Flags for the runtime function kDefineDataPropertyInLiteral. A property can
|
|
// be enumerable or not, and, in case of functions, the function name
|
|
// can be set or not.
|
|
enum class DataPropertyInLiteralFlag {
|
|
kNoFlags = 0,
|
|
kDontEnum = 1 << 0,
|
|
kSetFunctionName = 1 << 1
|
|
};
|
|
typedef base::Flags<DataPropertyInLiteralFlag> DataPropertyInLiteralFlags;
|
|
DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags)
|
|
|
|
enum ExternalArrayType {
|
|
kExternalInt8Array = 1,
|
|
kExternalUint8Array,
|
|
kExternalInt16Array,
|
|
kExternalUint16Array,
|
|
kExternalInt32Array,
|
|
kExternalUint32Array,
|
|
kExternalFloat32Array,
|
|
kExternalFloat64Array,
|
|
kExternalUint8ClampedArray,
|
|
kExternalBigInt64Array,
|
|
kExternalBigUint64Array,
|
|
};
|
|
|
|
struct AssemblerDebugInfo {
|
|
AssemblerDebugInfo(const char* name, const char* file, int line)
|
|
: name(name), file(file), line(line) {}
|
|
const char* name;
|
|
const char* file;
|
|
int line;
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const AssemblerDebugInfo& info) {
|
|
os << "(" << info.name << ":" << info.file << ":" << info.line << ")";
|
|
return os;
|
|
}
|
|
|
|
enum class OptimizationMarker {
|
|
kLogFirstExecution,
|
|
kNone,
|
|
kCompileOptimized,
|
|
kCompileOptimizedConcurrent,
|
|
kInOptimizationQueue
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
const OptimizationMarker& marker) {
|
|
switch (marker) {
|
|
case OptimizationMarker::kLogFirstExecution:
|
|
return os << "OptimizationMarker::kLogFirstExecution";
|
|
case OptimizationMarker::kNone:
|
|
return os << "OptimizationMarker::kNone";
|
|
case OptimizationMarker::kCompileOptimized:
|
|
return os << "OptimizationMarker::kCompileOptimized";
|
|
case OptimizationMarker::kCompileOptimizedConcurrent:
|
|
return os << "OptimizationMarker::kCompileOptimizedConcurrent";
|
|
case OptimizationMarker::kInOptimizationQueue:
|
|
return os << "OptimizationMarker::kInOptimizationQueue";
|
|
}
|
|
UNREACHABLE();
|
|
return os;
|
|
}
|
|
|
|
enum class SpeculationMode { kAllowSpeculation, kDisallowSpeculation };
|
|
|
|
inline std::ostream& operator<<(std::ostream& os,
|
|
SpeculationMode speculation_mode) {
|
|
switch (speculation_mode) {
|
|
case SpeculationMode::kAllowSpeculation:
|
|
return os << "SpeculationMode::kAllowSpeculation";
|
|
case SpeculationMode::kDisallowSpeculation:
|
|
return os << "SpeculationMode::kDisallowSpeculation";
|
|
}
|
|
UNREACHABLE();
|
|
return os;
|
|
}
|
|
|
|
enum class BlockingBehavior { kBlock, kDontBlock };
|
|
|
|
enum class ConcurrencyMode { kNotConcurrent, kConcurrent };
|
|
|
|
#define FOR_EACH_ISOLATE_ADDRESS_NAME(C) \
|
|
C(Handler, handler) \
|
|
C(CEntryFP, c_entry_fp) \
|
|
C(CFunction, c_function) \
|
|
C(Context, context) \
|
|
C(PendingException, pending_exception) \
|
|
C(PendingHandlerContext, pending_handler_context) \
|
|
C(PendingHandlerEntrypoint, pending_handler_entrypoint) \
|
|
C(PendingHandlerConstantPool, pending_handler_constant_pool) \
|
|
C(PendingHandlerFP, pending_handler_fp) \
|
|
C(PendingHandlerSP, pending_handler_sp) \
|
|
C(ExternalCaughtException, external_caught_exception) \
|
|
C(JSEntrySP, js_entry_sp)
|
|
|
|
enum IsolateAddressId {
|
|
#define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address,
|
|
FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM)
|
|
#undef DECLARE_ENUM
|
|
kIsolateAddressCount
|
|
};
|
|
|
|
V8_INLINE static bool HasWeakHeapObjectTag(const internal::MaybeObject* value) {
|
|
return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
|
|
kWeakHeapObjectTag);
|
|
}
|
|
|
|
// Object* should never have the weak tag; this variant is for overzealous
|
|
// checking.
|
|
V8_INLINE static bool HasWeakHeapObjectTag(const Object* value) {
|
|
return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
|
|
kWeakHeapObjectTag);
|
|
}
|
|
|
|
V8_INLINE static bool IsClearedWeakHeapObject(MaybeObject* value) {
|
|
return reinterpret_cast<intptr_t>(value) == kClearedWeakHeapObject;
|
|
}
|
|
|
|
V8_INLINE static HeapObject* RemoveWeakHeapObjectMask(
|
|
HeapObjectReference* value) {
|
|
return reinterpret_cast<HeapObject*>(reinterpret_cast<intptr_t>(value) &
|
|
~kWeakHeapObjectMask);
|
|
}
|
|
|
|
V8_INLINE static HeapObjectReference* AddWeakHeapObjectMask(HeapObject* value) {
|
|
return reinterpret_cast<HeapObjectReference*>(
|
|
reinterpret_cast<intptr_t>(value) | kWeakHeapObjectMask);
|
|
}
|
|
|
|
V8_INLINE static MaybeObject* AddWeakHeapObjectMask(MaybeObject* value) {
|
|
return reinterpret_cast<MaybeObject*>(reinterpret_cast<intptr_t>(value) |
|
|
kWeakHeapObjectMask);
|
|
}
|
|
|
|
enum class HeapObjectReferenceType {
|
|
WEAK,
|
|
STRONG,
|
|
};
|
|
|
|
enum class PoisoningMitigationLevel {
|
|
kPoisonAll,
|
|
kDontPoison,
|
|
kPoisonCriticalOnly
|
|
};
|
|
enum class LoadSensitivity {
|
|
kCritical, // Critical loads are poisoned whenever we can run untrusted
|
|
// code (i.e., when --untrusted-code-mitigations is on).
|
|
kUnsafe, // Unsafe loads are poisoned when full poisoning is on
|
|
// (--branch-load-poisoning).
|
|
kSafe // Safe loads are never poisoned.
|
|
};
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
namespace i = v8::internal;
|
|
|
|
#endif // V8_GLOBALS_H_
|