v8/src/preparser.h
mstarzinger@chromium.org d71678676f Refactor parser mode configuration for correctness
This patch refactors the parser and preparser interface to be more
readable and type-safe.  It has no behavior changes.

Previously, parsers and preparsers were configured via bitfield called
parser_flags in the Parser constructor, and flags in
PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse.
This was error-prone in practice: six call sites passed incorrectly
typed values to this interface (a boolean FLAG value, a boolean false
and a boolean true value).  None of these errors were caught by the
compiler because it's just an "int".

The parser flags interface was also awkward because it encoded a
language mode, but the language mode was only used to turn on harmony
scoping or not -- it wasn't used to actually set the parser's language
mode.

Fundamentally these errors came in because of the desire for a
procedural parser interface, in ParserApi.  Because we need to be able
to configure the parser in various ways, the flags argument got added;
but no one understood how to use the flags properly.  Also they were
only used by constructors: callers packed bits, and the constructors
unpacked them into booleans on the parser or preparser.

The solution is to allow parser construction, configuration, and
invocation to be separated.  This patch does that.

It passes the existing tests.

BUG=

Review URL: https://codereview.chromium.org/13450007
Patch from Andy Wingo <wingo@igalia.com>.

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00

686 lines
23 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_PREPARSER_H
#define V8_PREPARSER_H
#include "hashmap.h"
#include "token.h"
#include "scanner.h"
namespace v8 {
namespace internal {
class UnicodeCache;
}
namespace preparser {
typedef uint8_t byte;
// Preparsing checks a JavaScript program and emits preparse-data that helps
// a later parsing to be faster.
// See preparse-data-format.h for the data format.
// The PreParser checks that the syntax follows the grammar for JavaScript,
// and collects some information about the program along the way.
// The grammar check is only performed in order to understand the program
// sufficiently to deduce some information about it, that can be used
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
// rather it is to speed up properly written and correct programs.
// That means that contextual checks (like a label being declared where
// it is used) are generally omitted.
namespace i = v8::internal;
class DuplicateFinder {
public:
explicit DuplicateFinder(i::UnicodeCache* constants)
: unicode_constants_(constants),
backing_store_(16),
map_(&Match) { }
int AddAsciiSymbol(i::Vector<const char> key, int value);
int AddUtf16Symbol(i::Vector<const uint16_t> key, int value);
// Add a a number literal by converting it (if necessary)
// to the string that ToString(ToNumber(literal)) would generate.
// and then adding that string with AddAsciiSymbol.
// This string is the actual value used as key in an object literal,
// and the one that must be different from the other keys.
int AddNumber(i::Vector<const char> key, int value);
private:
int AddSymbol(i::Vector<const byte> key, bool is_ascii, int value);
// Backs up the key and its length in the backing store.
// The backup is stored with a base 127 encoding of the
// length (plus a bit saying whether the string is ASCII),
// followed by the bytes of the key.
byte* BackupKey(i::Vector<const byte> key, bool is_ascii);
// Compare two encoded keys (both pointing into the backing store)
// for having the same base-127 encoded lengths and ASCII-ness,
// and then having the same 'length' bytes following.
static bool Match(void* first, void* second);
// Creates a hash from a sequence of bytes.
static uint32_t Hash(i::Vector<const byte> key, bool is_ascii);
// Checks whether a string containing a JS number is its canonical
// form.
static bool IsNumberCanonical(i::Vector<const char> key);
// Size of buffer. Sufficient for using it to call DoubleToCString in
// from conversions.h.
static const int kBufferSize = 100;
i::UnicodeCache* unicode_constants_;
// Backing store used to store strings used as hashmap keys.
i::SequenceCollector<unsigned char> backing_store_;
i::HashMap map_;
// Buffer used for string->number->canonical string conversions.
char number_buffer_[kBufferSize];
};
#ifdef WIN32
#undef Yield
#endif
class PreParser {
public:
enum PreParseResult {
kPreParseStackOverflow,
kPreParseSuccess
};
PreParser(i::Scanner* scanner,
i::ParserRecorder* log,
uintptr_t stack_limit)
: scanner_(scanner),
log_(log),
scope_(NULL),
stack_limit_(stack_limit),
strict_mode_violation_location_(i::Scanner::Location::invalid()),
strict_mode_violation_type_(NULL),
stack_overflow_(false),
allow_lazy_(false),
allow_natives_syntax_(false),
allow_generators_(false),
parenthesized_function_(false) { }
~PreParser() {}
bool allow_natives_syntax() const { return allow_natives_syntax_; }
bool allow_lazy() const { return allow_lazy_; }
bool allow_modules() const { return scanner_->HarmonyModules(); }
bool allow_harmony_scoping() const { return scanner_->HarmonyScoping(); }
bool allow_generators() const { return allow_generators_; }
void set_allow_natives_syntax(bool allow) { allow_natives_syntax_ = allow; }
void set_allow_lazy(bool allow) { allow_lazy_ = allow; }
void set_allow_modules(bool allow) { scanner_->SetHarmonyModules(allow); }
void set_allow_harmony_scoping(bool allow) {
scanner_->SetHarmonyScoping(allow);
}
void set_allow_generators(bool allow) { allow_generators_ = allow; }
// Pre-parse the program from the character stream; returns true on
// success (even if parsing failed, the pre-parse data successfully
// captured the syntax error), and false if a stack-overflow happened
// during parsing.
PreParseResult PreParseProgram() {
Scope top_scope(&scope_, kTopLevelScope);
bool ok = true;
int start_position = scanner_->peek_location().beg_pos;
ParseSourceElements(i::Token::EOS, &ok);
if (stack_overflow_) return kPreParseStackOverflow;
if (!ok) {
ReportUnexpectedToken(scanner_->current_token());
} else if (!scope_->is_classic_mode()) {
CheckOctalLiteral(start_position, scanner_->location().end_pos, &ok);
}
return kPreParseSuccess;
}
// Parses a single function literal, from the opening parentheses before
// parameters to the closing brace after the body.
// Returns a FunctionEntry describing the body of the function in enough
// detail that it can be lazily compiled.
// The scanner is expected to have matched the "function" or "function*"
// keyword and parameters, and have consumed the initial '{'.
// At return, unless an error occurred, the scanner is positioned before the
// the final '}'.
PreParseResult PreParseLazyFunction(i::LanguageMode mode,
bool is_generator,
i::ParserRecorder* log);
private:
// Used to detect duplicates in object literals. Each of the values
// kGetterProperty, kSetterProperty and kValueProperty represents
// a type of object literal property. When parsing a property, its
// type value is stored in the DuplicateFinder for the property name.
// Values are chosen so that having intersection bits means the there is
// an incompatibility.
// I.e., you can add a getter to a property that already has a setter, since
// kGetterProperty and kSetterProperty doesn't intersect, but not if it
// already has a getter or a value. Adding the getter to an existing
// setter will store the value (kGetterProperty | kSetterProperty), which
// is incompatible with adding any further properties.
enum PropertyType {
kNone = 0,
// Bit patterns representing different object literal property types.
kGetterProperty = 1,
kSetterProperty = 2,
kValueProperty = 7,
// Helper constants.
kValueFlag = 4
};
// Checks the type of conflict based on values coming from PropertyType.
bool HasConflict(int type1, int type2) { return (type1 & type2) != 0; }
bool IsDataDataConflict(int type1, int type2) {
return ((type1 & type2) & kValueFlag) != 0;
}
bool IsDataAccessorConflict(int type1, int type2) {
return ((type1 ^ type2) & kValueFlag) != 0;
}
bool IsAccessorAccessorConflict(int type1, int type2) {
return ((type1 | type2) & kValueFlag) == 0;
}
void CheckDuplicate(DuplicateFinder* finder,
i::Token::Value property,
int type,
bool* ok);
// These types form an algebra over syntactic categories that is just
// rich enough to let us recognize and propagate the constructs that
// are either being counted in the preparser data, or is important
// to throw the correct syntax error exceptions.
enum ScopeType {
kTopLevelScope,
kFunctionScope
};
enum VariableDeclarationContext {
kSourceElement,
kStatement,
kForStatement
};
// If a list of variable declarations includes any initializers.
enum VariableDeclarationProperties {
kHasInitializers,
kHasNoInitializers
};
class Expression;
class Identifier {
public:
static Identifier Default() {
return Identifier(kUnknownIdentifier);
}
static Identifier Eval() {
return Identifier(kEvalIdentifier);
}
static Identifier Arguments() {
return Identifier(kArgumentsIdentifier);
}
static Identifier FutureReserved() {
return Identifier(kFutureReservedIdentifier);
}
static Identifier FutureStrictReserved() {
return Identifier(kFutureStrictReservedIdentifier);
}
static Identifier Yield() {
return Identifier(kYieldIdentifier);
}
bool IsEval() { return type_ == kEvalIdentifier; }
bool IsArguments() { return type_ == kArgumentsIdentifier; }
bool IsEvalOrArguments() { return type_ >= kEvalIdentifier; }
bool IsYield() { return type_ == kYieldIdentifier; }
bool IsFutureReserved() { return type_ == kFutureReservedIdentifier; }
bool IsFutureStrictReserved() {
return type_ == kFutureStrictReservedIdentifier;
}
bool IsValidStrictVariable() { return type_ == kUnknownIdentifier; }
private:
enum Type {
kUnknownIdentifier,
kFutureReservedIdentifier,
kFutureStrictReservedIdentifier,
kYieldIdentifier,
kEvalIdentifier,
kArgumentsIdentifier
};
explicit Identifier(Type type) : type_(type) { }
Type type_;
friend class Expression;
};
// Bits 0 and 1 are used to identify the type of expression:
// If bit 0 is set, it's an identifier.
// if bit 1 is set, it's a string literal.
// If neither is set, it's no particular type, and both set isn't
// use yet.
// Bit 2 is used to mark the expression as being parenthesized,
// so "(foo)" isn't recognized as a pure identifier (and possible label).
class Expression {
public:
static Expression Default() {
return Expression(kUnknownExpression);
}
static Expression FromIdentifier(Identifier id) {
return Expression(kIdentifierFlag | (id.type_ << kIdentifierShift));
}
static Expression StringLiteral() {
return Expression(kUnknownStringLiteral);
}
static Expression UseStrictStringLiteral() {
return Expression(kUseStrictString);
}
static Expression This() {
return Expression(kThisExpression);
}
static Expression ThisProperty() {
return Expression(kThisPropertyExpression);
}
static Expression StrictFunction() {
return Expression(kStrictFunctionExpression);
}
bool IsIdentifier() {
return (code_ & kIdentifierFlag) != 0;
}
// Only works corretly if it is actually an identifier expression.
PreParser::Identifier AsIdentifier() {
return PreParser::Identifier(
static_cast<PreParser::Identifier::Type>(code_ >> kIdentifierShift));
}
bool IsParenthesized() {
// If bit 0 or 1 is set, we interpret bit 2 as meaning parenthesized.
return (code_ & 7) > 4;
}
bool IsRawIdentifier() {
return !IsParenthesized() && IsIdentifier();
}
bool IsStringLiteral() { return (code_ & kStringLiteralFlag) != 0; }
bool IsRawStringLiteral() {
return !IsParenthesized() && IsStringLiteral();
}
bool IsUseStrictLiteral() {
return (code_ & kStringLiteralMask) == kUseStrictString;
}
bool IsThis() {
return code_ == kThisExpression;
}
bool IsThisProperty() {
return code_ == kThisPropertyExpression;
}
bool IsStrictFunction() {
return code_ == kStrictFunctionExpression;
}
Expression Parenthesize() {
int type = code_ & 3;
if (type != 0) {
// Identifiers and string literals can be parenthesized.
// They no longer work as labels or directive prologues,
// but are still recognized in other contexts.
return Expression(code_ | kParenthesizedExpressionFlag);
}
// For other types of expressions, it's not important to remember
// the parentheses.
return *this;
}
private:
// First two/three bits are used as flags.
// Bit 0 and 1 represent identifiers or strings literals, and are
// mutually exclusive, but can both be absent.
// If bit 0 or 1 are set, bit 2 marks that the expression has
// been wrapped in parentheses (a string literal can no longer
// be a directive prologue, and an identifier can no longer be
// a label.
enum {
kUnknownExpression = 0,
// Identifiers
kIdentifierFlag = 1, // Used to detect labels.
kIdentifierShift = 3,
kStringLiteralFlag = 2, // Used to detect directive prologue.
kUnknownStringLiteral = kStringLiteralFlag,
kUseStrictString = kStringLiteralFlag | 8,
kStringLiteralMask = kUseStrictString,
// Only if identifier or string literal.
kParenthesizedExpressionFlag = 4,
// Below here applies if neither identifier nor string literal.
kThisExpression = 4,
kThisPropertyExpression = 8,
kStrictFunctionExpression = 12
};
explicit Expression(int expression_code) : code_(expression_code) { }
int code_;
};
class Statement {
public:
static Statement Default() {
return Statement(kUnknownStatement);
}
static Statement FunctionDeclaration() {
return Statement(kFunctionDeclaration);
}
// Creates expression statement from expression.
// Preserves being an unparenthesized string literal, possibly
// "use strict".
static Statement ExpressionStatement(Expression expression) {
if (!expression.IsParenthesized()) {
if (expression.IsUseStrictLiteral()) {
return Statement(kUseStrictExpressionStatement);
}
if (expression.IsStringLiteral()) {
return Statement(kStringLiteralExpressionStatement);
}
}
return Default();
}
bool IsStringLiteral() {
return code_ != kUnknownStatement;
}
bool IsUseStrictLiteral() {
return code_ == kUseStrictExpressionStatement;
}
bool IsFunctionDeclaration() {
return code_ == kFunctionDeclaration;
}
private:
enum Type {
kUnknownStatement,
kStringLiteralExpressionStatement,
kUseStrictExpressionStatement,
kFunctionDeclaration
};
explicit Statement(Type code) : code_(code) {}
Type code_;
};
enum SourceElements {
kUnknownSourceElements
};
typedef int Arguments;
class Scope {
public:
Scope(Scope** variable, ScopeType type)
: variable_(variable),
prev_(*variable),
type_(type),
materialized_literal_count_(0),
expected_properties_(0),
with_nesting_count_(0),
language_mode_(
(prev_ != NULL) ? prev_->language_mode() : i::CLASSIC_MODE),
is_generator_(false) {
*variable = this;
}
~Scope() { *variable_ = prev_; }
void NextMaterializedLiteralIndex() { materialized_literal_count_++; }
void AddProperty() { expected_properties_++; }
ScopeType type() { return type_; }
int expected_properties() { return expected_properties_; }
int materialized_literal_count() { return materialized_literal_count_; }
bool IsInsideWith() { return with_nesting_count_ != 0; }
bool is_generator() { return is_generator_; }
void set_is_generator(bool is_generator) { is_generator_ = is_generator; }
bool is_classic_mode() {
return language_mode_ == i::CLASSIC_MODE;
}
i::LanguageMode language_mode() {
return language_mode_;
}
void set_language_mode(i::LanguageMode language_mode) {
language_mode_ = language_mode;
}
class InsideWith {
public:
explicit InsideWith(Scope* scope) : scope_(scope) {
scope->with_nesting_count_++;
}
~InsideWith() { scope_->with_nesting_count_--; }
private:
Scope* scope_;
DISALLOW_COPY_AND_ASSIGN(InsideWith);
};
private:
Scope** const variable_;
Scope* const prev_;
const ScopeType type_;
int materialized_literal_count_;
int expected_properties_;
int with_nesting_count_;
i::LanguageMode language_mode_;
bool is_generator_;
};
// Report syntax error
void ReportUnexpectedToken(i::Token::Value token);
void ReportMessageAt(i::Scanner::Location location,
const char* type,
const char* name_opt) {
log_->LogMessage(location.beg_pos, location.end_pos, type, name_opt);
}
void ReportMessageAt(int start_pos,
int end_pos,
const char* type,
const char* name_opt) {
log_->LogMessage(start_pos, end_pos, type, name_opt);
}
void CheckOctalLiteral(int beg_pos, int end_pos, bool* ok);
// All ParseXXX functions take as the last argument an *ok parameter
// which is set to false if parsing failed; it is unchanged otherwise.
// By making the 'exception handling' explicit, we are forced to check
// for failure at the call sites.
Statement ParseSourceElement(bool* ok);
SourceElements ParseSourceElements(int end_token, bool* ok);
Statement ParseStatement(bool* ok);
Statement ParseFunctionDeclaration(bool* ok);
Statement ParseBlock(bool* ok);
Statement ParseVariableStatement(VariableDeclarationContext var_context,
bool* ok);
Statement ParseVariableDeclarations(VariableDeclarationContext var_context,
VariableDeclarationProperties* decl_props,
int* num_decl,
bool* ok);
Statement ParseExpressionOrLabelledStatement(bool* ok);
Statement ParseIfStatement(bool* ok);
Statement ParseContinueStatement(bool* ok);
Statement ParseBreakStatement(bool* ok);
Statement ParseReturnStatement(bool* ok);
Statement ParseWithStatement(bool* ok);
Statement ParseSwitchStatement(bool* ok);
Statement ParseDoWhileStatement(bool* ok);
Statement ParseWhileStatement(bool* ok);
Statement ParseForStatement(bool* ok);
Statement ParseThrowStatement(bool* ok);
Statement ParseTryStatement(bool* ok);
Statement ParseDebuggerStatement(bool* ok);
Expression ParseExpression(bool accept_IN, bool* ok);
Expression ParseAssignmentExpression(bool accept_IN, bool* ok);
Expression ParseYieldExpression(bool* ok);
Expression ParseConditionalExpression(bool accept_IN, bool* ok);
Expression ParseBinaryExpression(int prec, bool accept_IN, bool* ok);
Expression ParseUnaryExpression(bool* ok);
Expression ParsePostfixExpression(bool* ok);
Expression ParseLeftHandSideExpression(bool* ok);
Expression ParseNewExpression(bool* ok);
Expression ParseMemberExpression(bool* ok);
Expression ParseMemberWithNewPrefixesExpression(unsigned new_count, bool* ok);
Expression ParsePrimaryExpression(bool* ok);
Expression ParseArrayLiteral(bool* ok);
Expression ParseObjectLiteral(bool* ok);
Expression ParseRegExpLiteral(bool seen_equal, bool* ok);
Expression ParseV8Intrinsic(bool* ok);
Arguments ParseArguments(bool* ok);
Expression ParseFunctionLiteral(bool is_generator, bool* ok);
void ParseLazyFunctionLiteralBody(bool* ok);
Identifier ParseIdentifier(bool* ok);
Identifier ParseIdentifierName(bool* ok);
Identifier ParseIdentifierNameOrGetOrSet(bool* is_get,
bool* is_set,
bool* ok);
// Logs the currently parsed literal as a symbol in the preparser data.
void LogSymbol();
// Log the currently parsed identifier.
Identifier GetIdentifierSymbol();
// Log the currently parsed string literal.
Expression GetStringSymbol();
i::Token::Value peek() {
if (stack_overflow_) return i::Token::ILLEGAL;
return scanner_->peek();
}
i::Token::Value Next() {
if (stack_overflow_) return i::Token::ILLEGAL;
{
int marker;
if (reinterpret_cast<uintptr_t>(&marker) < stack_limit_) {
// Further calls to peek/Next will return illegal token.
// The current one will still be returned. It might already
// have been seen using peek.
stack_overflow_ = true;
}
}
return scanner_->Next();
}
bool peek_any_identifier();
void set_language_mode(i::LanguageMode language_mode) {
scope_->set_language_mode(language_mode);
}
bool is_classic_mode() {
return scope_->language_mode() == i::CLASSIC_MODE;
}
bool is_extended_mode() {
return scope_->language_mode() == i::EXTENDED_MODE;
}
i::LanguageMode language_mode() { return scope_->language_mode(); }
void Consume(i::Token::Value token) { Next(); }
void Expect(i::Token::Value token, bool* ok) {
if (Next() != token) {
*ok = false;
}
}
bool Check(i::Token::Value token) {
i::Token::Value next = peek();
if (next == token) {
Consume(next);
return true;
}
return false;
}
void ExpectSemicolon(bool* ok);
static int Precedence(i::Token::Value tok, bool accept_IN);
void SetStrictModeViolation(i::Scanner::Location,
const char* type,
bool* ok);
void CheckDelayedStrictModeViolation(int beg_pos, int end_pos, bool* ok);
void StrictModeIdentifierViolation(i::Scanner::Location,
const char* eval_args_type,
Identifier identifier,
bool* ok);
i::Scanner* scanner_;
i::ParserRecorder* log_;
Scope* scope_;
uintptr_t stack_limit_;
i::Scanner::Location strict_mode_violation_location_;
const char* strict_mode_violation_type_;
bool stack_overflow_;
bool allow_lazy_;
bool allow_natives_syntax_;
bool allow_generators_;
bool parenthesized_function_;
};
} } // v8::preparser
#endif // V8_PREPARSER_H