v8/src/top.cc
sgjesse@chromium.org 39a5ffbd85 Cleanup of http://codereview.chromium.org/8101.
Changed the catcher_ field to a boolean value and renamed it. Modified the
propagation of the external caught exception to also clear the current
TryCatch if there is no exception as it might hold an exception which has
been bypassed by code in a finally block.

Minor formatting changes to a test.
Review URL: http://codereview.chromium.org/8102

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@576 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-24 06:22:47 +00:00

902 lines
28 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "bootstrapper.h"
#include "debug.h"
#include "execution.h"
#include "string-stream.h"
#include "platform.h"
namespace v8 { namespace internal {
ThreadLocalTop Top::thread_local_;
Mutex* Top::break_access_;
StackFrame::Id Top::break_frame_id_;
int Top::break_count_;
int Top::break_id_;
NoAllocationStringAllocator* preallocated_message_space = NULL;
Address top_addresses[] = {
#define C(name) reinterpret_cast<Address>(Top::name()),
TOP_ADDRESS_LIST(C)
#undef C
NULL
};
Address Top::get_address_from_id(Top::AddressId id) {
return top_addresses[id];
}
char* Top::Iterate(ObjectVisitor* v, char* thread_storage) {
ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
Iterate(v, thread);
return thread_storage + sizeof(ThreadLocalTop);
}
#define VISIT(field) v->VisitPointer(reinterpret_cast<Object**>(&(field)));
void Top::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
v->VisitPointer(&(thread->pending_exception_));
v->VisitPointer(bit_cast<Object**, Context**>(&(thread->context_)));
v->VisitPointer(&(thread->scheduled_exception_));
for (v8::TryCatch* block = thread->try_catch_handler_;
block != NULL;
block = block->next_) {
v->VisitPointer(bit_cast<Object**, void**>(&(block->exception_)));
v->VisitPointer(bit_cast<Object**, void**>(&(block->message_)));
}
// Iterate over pointers on native execution stack.
for (StackFrameIterator it(thread); !it.done(); it.Advance()) {
it.frame()->Iterate(v);
}
}
#undef VISIT
void Top::Iterate(ObjectVisitor* v) {
ThreadLocalTop* current_t = &thread_local_;
Iterate(v, current_t);
}
void Top::InitializeThreadLocal() {
thread_local_.c_entry_fp_ = 0;
thread_local_.handler_ = 0;
thread_local_.stack_is_cooked_ = false;
thread_local_.try_catch_handler_ = NULL;
thread_local_.context_ = NULL;
thread_local_.external_caught_exception_ = false;
thread_local_.failed_access_check_callback_ = NULL;
clear_pending_exception();
clear_scheduled_exception();
thread_local_.save_context_ = NULL;
thread_local_.pending_external_caught_exception_ = false;
}
// Create a dummy thread that will wait forever on a semaphore. The only
// purpose for this thread is to have some stack area to save essential data
// into for use by a stacks only core dump (aka minidump).
class PreallocatedMemoryThread: public Thread {
public:
PreallocatedMemoryThread() : keep_running_(true) {
wait_for_ever_semaphore_ = OS::CreateSemaphore(0);
data_ready_semaphore_ = OS::CreateSemaphore(0);
}
// When the thread starts running it will allocate a fixed number of bytes
// on the stack and publish the location of this memory for others to use.
void Run() {
EmbeddedVector<char, 32 * 1024> local_buffer;
// Initialize the buffer with a known good value.
OS::StrNCpy(local_buffer, "Trace data was not generated.\n",
local_buffer.length());
// Publish the local buffer and signal its availability.
data_ = &local_buffer[0];
length_ = sizeof(local_buffer);
data_ready_semaphore_->Signal();
while (keep_running_) {
// This thread will wait here until the end of time.
wait_for_ever_semaphore_->Wait();
}
// Make sure we access the buffer after the wait to remove all possibility
// of it being optimized away.
OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n",
local_buffer.length());
}
static char* data() {
if (data_ready_semaphore_ != NULL) {
// Initial access is guarded until the data has been published.
data_ready_semaphore_->Wait();
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
return data_;
}
static unsigned length() {
if (data_ready_semaphore_ != NULL) {
// Initial access is guarded until the data has been published.
data_ready_semaphore_->Wait();
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
return length_;
}
static void StartThread() {
if (the_thread_ != NULL) return;
the_thread_ = new PreallocatedMemoryThread();
the_thread_->Start();
}
// Stop the PreallocatedMemoryThread and release its resources.
static void StopThread() {
if (the_thread_ == NULL) return;
the_thread_->keep_running_ = false;
wait_for_ever_semaphore_->Signal();
// Wait for the thread to terminate.
the_thread_->Join();
if (data_ready_semaphore_ != NULL) {
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
delete wait_for_ever_semaphore_;
wait_for_ever_semaphore_ = NULL;
// Done with the thread entirely.
delete the_thread_;
the_thread_ = NULL;
}
private:
// Used to make sure that the thread keeps looping even for spurious wakeups.
bool keep_running_;
// The preallocated memory thread singleton.
static PreallocatedMemoryThread* the_thread_;
// This semaphore is used by the PreallocatedMemoryThread to wait for ever.
static Semaphore* wait_for_ever_semaphore_;
// Semaphore to signal that the data has been initialized.
static Semaphore* data_ready_semaphore_;
// Location and size of the preallocated memory block.
static char* data_;
static unsigned length_;
DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread);
};
PreallocatedMemoryThread* PreallocatedMemoryThread::the_thread_ = NULL;
Semaphore* PreallocatedMemoryThread::wait_for_ever_semaphore_ = NULL;
Semaphore* PreallocatedMemoryThread::data_ready_semaphore_ = NULL;
char* PreallocatedMemoryThread::data_ = NULL;
unsigned PreallocatedMemoryThread::length_ = 0;
static bool initialized = false;
void Top::Initialize() {
CHECK(!initialized);
InitializeThreadLocal();
break_access_ = OS::CreateMutex();
break_frame_id_ = StackFrame::NO_ID;
break_count_ = 0;
break_id_ = 0;
// Only preallocate on the first initialization.
if (FLAG_preallocate_message_memory && (preallocated_message_space == NULL)) {
// Start the thread which will set aside some memory.
PreallocatedMemoryThread::StartThread();
preallocated_message_space =
new NoAllocationStringAllocator(PreallocatedMemoryThread::data(),
PreallocatedMemoryThread::length());
PreallocatedStorage::Init(PreallocatedMemoryThread::length() / 4);
}
initialized = true;
}
void Top::TearDown() {
if (initialized) {
// Remove the external reference to the preallocated stack memory.
if (preallocated_message_space != NULL) {
delete preallocated_message_space;
preallocated_message_space = NULL;
}
PreallocatedMemoryThread::StopThread();
initialized = false;
}
}
void Top::RegisterTryCatchHandler(v8::TryCatch* that) {
thread_local_.try_catch_handler_ = that;
}
void Top::UnregisterTryCatchHandler(v8::TryCatch* that) {
ASSERT(thread_local_.try_catch_handler_ == that);
thread_local_.try_catch_handler_ = that->next_;
}
void Top::new_break(StackFrame::Id break_frame_id) {
ExecutionAccess access;
break_frame_id_ = break_frame_id;
break_id_ = ++break_count_;
}
void Top::set_break(StackFrame::Id break_frame_id, int break_id) {
ExecutionAccess access;
break_frame_id_ = break_frame_id;
break_id_ = break_id;
}
bool Top::check_break(int break_id) {
ExecutionAccess access;
return break_id == break_id_;
}
bool Top::is_break() {
ExecutionAccess access;
return break_id_ != 0;
}
StackFrame::Id Top::break_frame_id() {
ExecutionAccess access;
return break_frame_id_;
}
int Top::break_id() {
ExecutionAccess access;
return break_id_;
}
void Top::MarkCompactPrologue() {
MarkCompactPrologue(&thread_local_);
}
void Top::MarkCompactPrologue(char* data) {
MarkCompactPrologue(reinterpret_cast<ThreadLocalTop*>(data));
}
void Top::MarkCompactPrologue(ThreadLocalTop* thread) {
StackFrame::CookFramesForThread(thread);
}
void Top::MarkCompactEpilogue(char* data) {
MarkCompactEpilogue(reinterpret_cast<ThreadLocalTop*>(data));
}
void Top::MarkCompactEpilogue() {
MarkCompactEpilogue(&thread_local_);
}
void Top::MarkCompactEpilogue(ThreadLocalTop* thread) {
StackFrame::UncookFramesForThread(thread);
}
static int stack_trace_nesting_level = 0;
static StringStream* incomplete_message = NULL;
Handle<String> Top::StackTrace() {
if (stack_trace_nesting_level == 0) {
stack_trace_nesting_level++;
HeapStringAllocator allocator;
StringStream::ClearMentionedObjectCache();
StringStream accumulator(&allocator);
incomplete_message = &accumulator;
PrintStack(&accumulator);
Handle<String> stack_trace = accumulator.ToString();
incomplete_message = NULL;
stack_trace_nesting_level = 0;
return stack_trace;
} else if (stack_trace_nesting_level == 1) {
stack_trace_nesting_level++;
OS::PrintError(
"\n\nAttempt to print stack while printing stack (double fault)\n");
OS::PrintError(
"If you are lucky you may find a partial stack dump on stdout.\n\n");
incomplete_message->OutputToStdOut();
return Factory::empty_symbol();
} else {
OS::Abort();
// Unreachable
return Factory::empty_symbol();
}
}
void Top::PrintStack() {
if (stack_trace_nesting_level == 0) {
stack_trace_nesting_level++;
StringAllocator* allocator;
if (preallocated_message_space == NULL) {
allocator = new HeapStringAllocator();
} else {
allocator = preallocated_message_space;
}
NativeAllocationChecker allocation_checker(
!FLAG_preallocate_message_memory ?
NativeAllocationChecker::ALLOW :
NativeAllocationChecker::DISALLOW);
StringStream::ClearMentionedObjectCache();
StringStream accumulator(allocator);
incomplete_message = &accumulator;
PrintStack(&accumulator);
accumulator.OutputToStdOut();
accumulator.Log();
incomplete_message = NULL;
stack_trace_nesting_level = 0;
if (preallocated_message_space == NULL) {
// Remove the HeapStringAllocator created above.
delete allocator;
}
} else if (stack_trace_nesting_level == 1) {
stack_trace_nesting_level++;
OS::PrintError(
"\n\nAttempt to print stack while printing stack (double fault)\n");
OS::PrintError(
"If you are lucky you may find a partial stack dump on stdout.\n\n");
incomplete_message->OutputToStdOut();
}
}
static void PrintFrames(StringStream* accumulator,
StackFrame::PrintMode mode) {
StackFrameIterator it;
for (int i = 0; !it.done(); it.Advance()) {
it.frame()->Print(accumulator, mode, i++);
}
}
void Top::PrintStack(StringStream* accumulator) {
// The MentionedObjectCache is not GC-proof at the moment.
AssertNoAllocation nogc;
ASSERT(StringStream::IsMentionedObjectCacheClear());
// Avoid printing anything if there are no frames.
if (c_entry_fp(GetCurrentThread()) == 0) return;
accumulator->Add(
"\n==== Stack trace ============================================\n\n");
PrintFrames(accumulator, StackFrame::OVERVIEW);
accumulator->Add(
"\n==== Details ================================================\n\n");
PrintFrames(accumulator, StackFrame::DETAILS);
accumulator->PrintMentionedObjectCache();
accumulator->Add("=====================\n\n");
}
void Top::SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback) {
ASSERT(thread_local_.failed_access_check_callback_ == NULL);
thread_local_.failed_access_check_callback_ = callback;
}
void Top::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) {
if (!thread_local_.failed_access_check_callback_) return;
ASSERT(receiver->IsAccessCheckNeeded());
ASSERT(Top::context());
// The callers of this method are not expecting a GC.
AssertNoAllocation no_gc;
// Get the data object from access check info.
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
Object* info = constructor->shared()->function_data();
if (info == Heap::undefined_value()) return;
Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
if (data_obj == Heap::undefined_value()) return;
HandleScope scope;
Handle<JSObject> receiver_handle(receiver);
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
thread_local_.failed_access_check_callback_(
v8::Utils::ToLocal(receiver_handle),
type,
v8::Utils::ToLocal(data));
}
enum MayAccessDecision {
YES, NO, UNKNOWN
};
static MayAccessDecision MayAccessPreCheck(JSObject* receiver,
v8::AccessType type) {
// During bootstrapping, callback functions are not enabled yet.
if (Bootstrapper::IsActive()) return YES;
if (receiver->IsJSGlobalProxy()) {
Object* receiver_context = JSGlobalProxy::cast(receiver)->context();
if (!receiver_context->IsContext()) return NO;
// Get the global context of current top context.
// avoid using Top::global_context() because it uses Handle.
Context* global_context = Top::context()->global()->global_context();
if (receiver_context == global_context) return YES;
if (Context::cast(receiver_context)->security_token() ==
global_context->security_token())
return YES;
}
return UNKNOWN;
}
bool Top::MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type) {
ASSERT(receiver->IsAccessCheckNeeded());
// Check for compatibility between the security tokens in the
// current lexical context and the accessed object.
ASSERT(Top::context());
// The callers of this method are not expecting a GC.
AssertNoAllocation no_gc;
MayAccessDecision decision = MayAccessPreCheck(receiver, type);
if (decision != UNKNOWN) return decision == YES;
// Get named access check callback
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
Object* info = constructor->shared()->function_data();
if (info == Heap::undefined_value()) return false;
Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
if (data_obj == Heap::undefined_value()) return false;
Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback();
v8::NamedSecurityCallback callback =
v8::ToCData<v8::NamedSecurityCallback>(fun_obj);
if (!callback) return false;
HandleScope scope;
Handle<JSObject> receiver_handle(receiver);
Handle<Object> key_handle(key);
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
LOG(ApiNamedSecurityCheck(key));
bool result = false;
{
// Leaving JavaScript.
VMState state(OTHER);
result = callback(v8::Utils::ToLocal(receiver_handle),
v8::Utils::ToLocal(key_handle),
type,
v8::Utils::ToLocal(data));
}
return result;
}
bool Top::MayIndexedAccess(JSObject* receiver,
uint32_t index,
v8::AccessType type) {
ASSERT(receiver->IsAccessCheckNeeded());
// Check for compatibility between the security tokens in the
// current lexical context and the accessed object.
ASSERT(Top::context());
// The callers of this method are not expecting a GC.
AssertNoAllocation no_gc;
MayAccessDecision decision = MayAccessPreCheck(receiver, type);
if (decision != UNKNOWN) return decision == YES;
// Get indexed access check callback
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
Object* info = constructor->shared()->function_data();
if (info == Heap::undefined_value()) return false;
Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
if (data_obj == Heap::undefined_value()) return false;
Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback();
v8::IndexedSecurityCallback callback =
v8::ToCData<v8::IndexedSecurityCallback>(fun_obj);
if (!callback) return false;
HandleScope scope;
Handle<JSObject> receiver_handle(receiver);
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data());
LOG(ApiIndexedSecurityCheck(index));
bool result = false;
{
// Leaving JavaScript.
VMState state(OTHER);
result = callback(v8::Utils::ToLocal(receiver_handle),
index,
type,
v8::Utils::ToLocal(data));
}
return result;
}
Failure* Top::StackOverflow() {
HandleScope scope;
Handle<String> key = Factory::stack_overflow_symbol();
Handle<JSObject> boilerplate =
Handle<JSObject>::cast(GetProperty(Top::builtins(), key));
Handle<Object> exception = Copy(boilerplate);
// TODO(1240995): To avoid having to call JavaScript code to compute
// the message for stack overflow exceptions which is very likely to
// double fault with another stack overflow exception, we use a
// precomputed message. This is somewhat problematic in that it
// doesn't use ReportUncaughtException to determine the location
// from where the exception occurred. It should probably be
// reworked.
static const char* kMessage =
"Uncaught RangeError: Maximum call stack size exceeded";
DoThrow(*exception, NULL, kMessage);
return Failure::Exception();
}
Failure* Top::Throw(Object* exception, MessageLocation* location) {
DoThrow(exception, location, NULL);
return Failure::Exception();
}
Failure* Top::ReThrow(Object* exception, MessageLocation* location) {
// Set the exception being re-thrown.
set_pending_exception(exception);
return Failure::Exception();
}
void Top::ScheduleThrow(Object* exception) {
// When scheduling a throw we first throw the exception to get the
// error reporting if it is uncaught before rescheduling it.
Throw(exception);
thread_local_.scheduled_exception_ = pending_exception();
thread_local_.external_caught_exception_ = false;
clear_pending_exception();
}
Object* Top::PromoteScheduledException() {
Object* thrown = scheduled_exception();
clear_scheduled_exception();
// Re-throw the exception to avoid getting repeated error reporting.
return ReThrow(thrown);
}
// NOTE: The stack trace frame iterator is an iterator that only
// traverse proper JavaScript frames; that is JavaScript frames that
// have proper JavaScript functions. This excludes the problematic
// functions in runtime.js.
class StackTraceFrameIterator: public JavaScriptFrameIterator {
public:
StackTraceFrameIterator() {
if (!done() && !frame()->function()->IsJSFunction()) Advance();
}
void Advance() {
while (true) {
JavaScriptFrameIterator::Advance();
if (done()) return;
if (frame()->function()->IsJSFunction()) return;
}
}
};
void Top::PrintCurrentStackTrace(FILE* out) {
StackTraceFrameIterator it;
while (!it.done()) {
HandleScope scope;
// Find code position if recorded in relocation info.
JavaScriptFrame* frame = it.frame();
int pos = frame->FindCode()->SourcePosition(frame->pc());
Handle<Object> pos_obj(Smi::FromInt(pos));
// Fetch function and receiver.
Handle<JSFunction> fun(JSFunction::cast(frame->function()));
Handle<Object> recv(frame->receiver());
// Advance to the next JavaScript frame and determine if the
// current frame is the top-level frame.
it.Advance();
Handle<Object> is_top_level = it.done()
? Factory::true_value()
: Factory::false_value();
// Generate and print strack trace line.
Handle<String> line =
Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
if (line->length() > 0) {
line->PrintOn(out);
fprintf(out, "\n");
}
}
}
void Top::ComputeLocation(MessageLocation* target) {
*target = MessageLocation(empty_script(), -1, -1);
StackTraceFrameIterator it;
if (!it.done()) {
JavaScriptFrame* frame = it.frame();
JSFunction* fun = JSFunction::cast(frame->function());
Object* script = fun->shared()->script();
if (script->IsScript() &&
!(Script::cast(script)->source()->IsUndefined())) {
int pos = frame->FindCode()->SourcePosition(frame->pc());
// Compute the location from the function and the reloc info.
Handle<Script> casted_script(Script::cast(script));
*target = MessageLocation(casted_script, pos, pos + 1);
}
}
}
void Top::ReportUncaughtException(Handle<Object> exception,
MessageLocation* location,
Handle<String> stack_trace) {
Handle<Object> message =
MessageHandler::MakeMessageObject("uncaught_exception",
location,
HandleVector<Object>(&exception, 1),
stack_trace);
// Report the uncaught exception.
MessageHandler::ReportMessage(location, message);
}
bool Top::ShouldReportException(bool* is_caught_externally) {
StackHandler* handler =
StackHandler::FromAddress(Top::handler(Top::GetCurrentThread()));
// Determine if we have an external exception handler and get the
// address of the external handler so we can compare the address to
// determine which one is closer to the top of the stack.
bool has_external_handler = (thread_local_.try_catch_handler_ != NULL);
Address external_handler_address =
reinterpret_cast<Address>(thread_local_.try_catch_handler_);
// NOTE: The stack is assumed to grown towards lower addresses. If
// the handler is at a higher address than the external address it
// means that it is below it on the stack.
// Find the top-most try-catch handler.
while (handler != NULL && !handler->is_try_catch()) {
handler = handler->next();
}
// The exception has been externally caught if and only if there is
// an external handler which is above any JavaScript try-catch but NOT
// try-finally handlers.
*is_caught_externally = has_external_handler &&
(handler == NULL || handler->address() > external_handler_address);
// If we have a try-catch handler then the exception is caught in
// JavaScript code.
bool is_uncaught_by_js = (handler == NULL);
// If there is no external try-catch handler, we report the
// exception if it isn't caught by JavaScript code.
if (!has_external_handler) return is_uncaught_by_js;
if (is_uncaught_by_js || handler->address() > external_handler_address) {
// Only report the exception if the external handler is verbose.
return thread_local_.try_catch_handler_->is_verbose_;
} else {
// Report the exception if it isn't caught by JavaScript code.
return is_uncaught_by_js;
}
}
void Top::DoThrow(Object* exception,
MessageLocation* location,
const char* message) {
ASSERT(!has_pending_exception());
HandleScope scope;
Handle<Object> exception_handle(exception);
// Determine reporting and whether the exception is caught externally.
bool is_caught_externally = false;
bool report_exception = (exception != Failure::OutOfMemoryException()) &&
ShouldReportException(&is_caught_externally);
// Generate the message.
Handle<Object> message_obj;
MessageLocation potential_computed_location;
bool try_catch_needs_message =
is_caught_externally &&
thread_local_.try_catch_handler_->capture_message_;
if (report_exception || try_catch_needs_message) {
if (location == NULL) {
// If no location was specified we use a computed one instead
ComputeLocation(&potential_computed_location);
location = &potential_computed_location;
}
Handle<String> stack_trace;
if (FLAG_trace_exception) stack_trace = StackTrace();
message_obj = MessageHandler::MakeMessageObject("uncaught_exception",
location, HandleVector<Object>(&exception_handle, 1), stack_trace);
}
// If the exception is caught externally, we store it in the
// try/catch handler. The C code can find it later and process it if
// necessary.
thread_local_.pending_external_caught_exception_ = is_caught_externally;
if (is_caught_externally) {
thread_local_.try_catch_handler_->exception_ =
reinterpret_cast<void*>(*exception_handle);
if (!message_obj.is_null()) {
thread_local_.try_catch_handler_->message_ =
reinterpret_cast<void*>(*message_obj);
}
}
// Notify debugger of exception.
Debugger::OnException(exception_handle, report_exception);
if (report_exception) {
if (message != NULL) {
MessageHandler::ReportMessage(message);
} else {
MessageHandler::ReportMessage(location, message_obj);
}
}
// NOTE: Notifying the debugger or reporting the exception may have caused
// new exceptions. For now, we just ignore that and set the pending exception
// to the original one.
set_pending_exception(*exception_handle);
}
void Top::TraceException(bool flag) {
FLAG_trace_exception = flag;
}
bool Top::optional_reschedule_exception(bool is_bottom_call) {
if (!is_out_of_memory() &&
(thread_local_.external_caught_exception_ || is_bottom_call)) {
thread_local_.external_caught_exception_ = false;
clear_pending_exception();
return false;
} else {
thread_local_.scheduled_exception_ = pending_exception();
clear_pending_exception();
return true;
}
}
bool Top::is_out_of_memory() {
if (has_pending_exception()) {
Object* e = pending_exception();
if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
return true;
}
}
if (has_scheduled_exception()) {
Object* e = scheduled_exception();
if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
return true;
}
}
return false;
}
Handle<Context> Top::global_context() {
GlobalObject* global = thread_local_.context_->global();
return Handle<Context>(global->global_context());
}
Object* Top::LookupSpecialFunction(JSObject* receiver,
JSObject* prototype,
JSFunction* function) {
if (receiver->IsJSArray()) {
FixedArray* table = context()->global_context()->special_function_table();
for (int index = 0; index < table->length(); index +=3) {
if ((prototype == table->get(index)) &&
(function == table->get(index+1))) {
return table->get(index+2);
}
}
}
return Heap::undefined_value();
}
char* Top::ArchiveThread(char* to) {
memcpy(to, reinterpret_cast<char*>(&thread_local_), sizeof(thread_local_));
InitializeThreadLocal();
return to + sizeof(thread_local_);
}
char* Top::RestoreThread(char* from) {
memcpy(reinterpret_cast<char*>(&thread_local_), from, sizeof(thread_local_));
return from + sizeof(thread_local_);
}
ExecutionAccess::ExecutionAccess() {
Top::break_access_->Lock();
}
ExecutionAccess::~ExecutionAccess() {
Top::break_access_->Unlock();
}
} } // namespace v8::internal