v8/src/register-allocator.h
erik.corry@gmail.com fbefa72f81 Simple register allocation for ARM. Only top of expression
stack for now.  Next step is probably fixing the binary
op stubs so they can take swapped registers and fixing
the deferred code so it doesn't insist that all registers
except the two operands are flushed.  Generates slightly
worse code sometimes because the peephole push-pop
elimination gets confused when we don't use the same
register all the time (the old code used r0 always).
Review URL: http://codereview.chromium.org/1604002

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4368 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-04-08 22:30:30 +00:00

321 lines
10 KiB
C++

// Copyright 2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_REGISTER_ALLOCATOR_H_
#define V8_REGISTER_ALLOCATOR_H_
#include "macro-assembler.h"
#include "type-info.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/register-allocator-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/register-allocator-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/register-allocator-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/register-allocator-mips.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
// -------------------------------------------------------------------------
// Results
//
// Results encapsulate the compile-time values manipulated by the code
// generator. They can represent registers or constants.
class Result BASE_EMBEDDED {
public:
enum Type {
INVALID,
REGISTER,
CONSTANT
};
// Construct an invalid result.
Result() { invalidate(); }
// Construct a register Result.
explicit Result(Register reg, TypeInfo info = TypeInfo::Unknown());
// Construct a Result whose value is a compile-time constant.
explicit Result(Handle<Object> value) {
TypeInfo info = TypeInfo::TypeFromValue(value);
value_ = TypeField::encode(CONSTANT)
| TypeInfoField::encode(info.ToInt())
| IsUntaggedInt32Field::encode(false)
| DataField::encode(ConstantList()->length());
ConstantList()->Add(value);
}
// The copy constructor and assignment operators could each create a new
// register reference.
inline Result(const Result& other);
inline Result& operator=(const Result& other);
inline ~Result();
// Static indirection table for handles to constants. If a Result
// represents a constant, the data contains an index into this table
// of handles to the actual constants.
typedef ZoneList<Handle<Object> > ZoneObjectList;
static ZoneObjectList* ConstantList();
// Clear the constants indirection table.
static void ClearConstantList() {
ConstantList()->Clear();
}
inline void Unuse();
Type type() const { return TypeField::decode(value_); }
void invalidate() { value_ = TypeField::encode(INVALID); }
inline TypeInfo type_info() const;
inline void set_type_info(TypeInfo info);
inline bool is_number() const;
inline bool is_smi() const;
inline bool is_integer32() const;
inline bool is_double() const;
bool is_valid() const { return type() != INVALID; }
bool is_register() const { return type() == REGISTER; }
bool is_constant() const { return type() == CONSTANT; }
// An untagged int32 Result contains a signed int32 in a register
// or as a constant. These are only allowed in a side-effect-free
// int32 calculation, and if a non-int32 input shows up or an overflow
// occurs, we bail out and drop all the int32 values. Constants are
// not converted to int32 until they are loaded into a register.
bool is_untagged_int32() const {
return IsUntaggedInt32Field::decode(value_);
}
void set_untagged_int32(bool value) {
value_ &= ~IsUntaggedInt32Field::mask();
value_ |= IsUntaggedInt32Field::encode(value);
}
Register reg() const {
ASSERT(is_register());
uint32_t reg = DataField::decode(value_);
Register result;
result.code_ = reg;
return result;
}
Handle<Object> handle() const {
ASSERT(type() == CONSTANT);
return ConstantList()->at(DataField::decode(value_));
}
// Move this result to an arbitrary register. The register is not
// necessarily spilled from the frame or even singly-referenced outside
// it.
void ToRegister();
// Move this result to a specified register. The register is spilled from
// the frame, and the register is singly-referenced (by this result)
// outside the frame.
void ToRegister(Register reg);
private:
uint32_t value_;
// Declare BitFields with template parameters <type, start, size>.
class TypeField: public BitField<Type, 0, 2> {};
class TypeInfoField : public BitField<int, 2, 6> {};
class IsUntaggedInt32Field : public BitField<bool, 8, 1> {};
class DataField: public BitField<uint32_t, 9, 32 - 9> {};
inline void CopyTo(Result* destination) const;
friend class CodeGeneratorScope;
};
// -------------------------------------------------------------------------
// Register file
//
// The register file tracks reference counts for the processor registers.
// It is used by both the register allocator and the virtual frame.
class RegisterFile BASE_EMBEDDED {
public:
RegisterFile() { Reset(); }
void Reset() {
for (int i = 0; i < kNumRegisters; i++) {
ref_counts_[i] = 0;
}
}
// Predicates and accessors for the reference counts.
bool is_used(int num) {
ASSERT(0 <= num && num < kNumRegisters);
return ref_counts_[num] > 0;
}
int count(int num) {
ASSERT(0 <= num && num < kNumRegisters);
return ref_counts_[num];
}
// Record a use of a register by incrementing its reference count.
void Use(int num) {
ASSERT(0 <= num && num < kNumRegisters);
ref_counts_[num]++;
}
// Record that a register will no longer be used by decrementing its
// reference count.
void Unuse(int num) {
ASSERT(is_used(num));
ref_counts_[num]--;
}
// Copy the reference counts from this register file to the other.
void CopyTo(RegisterFile* other) {
for (int i = 0; i < kNumRegisters; i++) {
other->ref_counts_[i] = ref_counts_[i];
}
}
private:
// C++ doesn't like zero length arrays, so we make the array length 1 even if
// we don't need it.
static const int kNumRegisters =
(RegisterAllocatorConstants::kNumRegisters == 0) ?
1 : RegisterAllocatorConstants::kNumRegisters;
int ref_counts_[kNumRegisters];
// Very fast inlined loop to find a free register. Used in
// RegisterAllocator::AllocateWithoutSpilling. Returns
// kInvalidRegister if no free register found.
int ScanForFreeRegister() {
for (int i = 0; i < RegisterAllocatorConstants::kNumRegisters; i++) {
if (!is_used(i)) return i;
}
return RegisterAllocatorConstants::kInvalidRegister;
}
friend class RegisterAllocator;
};
// -------------------------------------------------------------------------
// Register allocator
//
class RegisterAllocator BASE_EMBEDDED {
public:
static const int kNumRegisters =
RegisterAllocatorConstants::kNumRegisters;
static const int kInvalidRegister =
RegisterAllocatorConstants::kInvalidRegister;
explicit RegisterAllocator(CodeGenerator* cgen) : cgen_(cgen) {}
// True if the register is reserved by the code generator, false if it
// can be freely used by the allocator Defined in the
// platform-specific XXX-inl.h files..
static inline bool IsReserved(Register reg);
// Convert between (unreserved) assembler registers and allocator
// numbers. Defined in the platform-specific XXX-inl.h files.
static inline int ToNumber(Register reg);
static inline Register ToRegister(int num);
// Predicates and accessors for the registers' reference counts.
bool is_used(int num) { return registers_.is_used(num); }
inline bool is_used(Register reg);
int count(int num) { return registers_.count(num); }
inline int count(Register reg);
// Explicitly record a reference to a register.
void Use(int num) { registers_.Use(num); }
inline void Use(Register reg);
// Explicitly record that a register will no longer be used.
void Unuse(int num) { registers_.Unuse(num); }
inline void Unuse(Register reg);
// Reset the register reference counts to free all non-reserved registers.
void Reset() { registers_.Reset(); }
// Initialize the register allocator for entry to a JS function. On
// entry, the (non-reserved) registers used by the JS calling
// convention are referenced and the other (non-reserved) registers
// are free.
inline void Initialize();
// Allocate a free register and return a register result if possible or
// fail and return an invalid result.
Result Allocate();
// Allocate a specific register if possible, spilling it from the
// current frame if necessary, or else fail and return an invalid
// result.
Result Allocate(Register target);
// Allocate a free register without spilling any from the current
// frame or fail and return an invalid result.
Result AllocateWithoutSpilling();
// Allocate a free byte register without spilling any from the current
// frame or fail and return an invalid result.
Result AllocateByteRegisterWithoutSpilling();
// Copy the internal state to a register file, to be restored later by
// RestoreFrom.
void SaveTo(RegisterFile* register_file) {
registers_.CopyTo(register_file);
}
// Restore the internal state.
void RestoreFrom(RegisterFile* register_file) {
register_file->CopyTo(&registers_);
}
private:
CodeGenerator* cgen_;
RegisterFile registers_;
};
} } // namespace v8::internal
#endif // V8_REGISTER_ALLOCATOR_H_