v8/src/safepoint-table.cc
Mircea Trofin 92e3975de3 Add primitives-based constructor for SafepointTable
This allows SafepointTables to be reused by the upcoming WasmCode
(wasm out of the GC heap), and integrate with the stack iterator.

Bug: v8:6876
Change-Id: I24ff78a073fa99aeabe12a0c5a12709f5b1461a2
Reviewed-on: https://chromium-review.googlesource.com/764370
Reviewed-by: Brad Nelson <bradnelson@chromium.org>
Commit-Queue: Mircea Trofin <mtrofin@chromium.org>
Cr-Commit-Position: refs/heads/master@{#49307}
2017-11-10 20:50:32 +00:00

320 lines
11 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/safepoint-table.h"
#include "src/assembler-inl.h"
#include "src/deoptimizer.h"
#include "src/disasm.h"
#include "src/frames-inl.h"
#include "src/macro-assembler.h"
#include "src/ostreams.h"
namespace v8 {
namespace internal {
bool SafepointEntry::HasRegisters() const {
DCHECK(is_valid());
DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte));
const int num_reg_bytes = kNumSafepointRegisters >> kBitsPerByteLog2;
for (int i = 0; i < num_reg_bytes; i++) {
if (bits_[i] != SafepointTable::kNoRegisters) return true;
}
return false;
}
bool SafepointEntry::HasRegisterAt(int reg_index) const {
DCHECK(is_valid());
DCHECK(reg_index >= 0 && reg_index < kNumSafepointRegisters);
int byte_index = reg_index >> kBitsPerByteLog2;
int bit_index = reg_index & (kBitsPerByte - 1);
return (bits_[byte_index] & (1 << bit_index)) != 0;
}
SafepointTable::SafepointTable(Address instruction_start,
size_t safepoint_table_offset,
uint32_t stack_slots, bool has_deopt)
: instruction_start_(instruction_start),
stack_slots_(stack_slots),
has_deopt_(has_deopt) {
Address header = instruction_start_ + safepoint_table_offset;
length_ = Memory::uint32_at(header + kLengthOffset);
entry_size_ = Memory::uint32_at(header + kEntrySizeOffset);
pc_and_deoptimization_indexes_ = header + kHeaderSize;
entries_ = pc_and_deoptimization_indexes_ + (length_ * kFixedEntrySize);
DCHECK_GT(entry_size_, 0);
STATIC_ASSERT(SafepointEntry::DeoptimizationIndexField::kMax ==
Safepoint::kNoDeoptimizationIndex);
}
SafepointTable::SafepointTable(Code* code)
: SafepointTable(code->instruction_start(), code->safepoint_table_offset(),
code->stack_slots(), true) {
DCHECK(code->is_turbofanned());
}
unsigned SafepointTable::find_return_pc(unsigned pc_offset) {
for (unsigned i = 0; i < length(); i++) {
if (GetTrampolinePcOffset(i) == static_cast<int>(pc_offset)) {
return GetPcOffset(i);
} else if (GetPcOffset(i) == pc_offset) {
return pc_offset;
}
}
UNREACHABLE();
return 0;
}
SafepointEntry SafepointTable::FindEntry(Address pc) const {
unsigned pc_offset = static_cast<unsigned>(pc - instruction_start_);
// We use kMaxUInt32 as sentinel value, so check that we don't hit that.
DCHECK_NE(kMaxUInt32, pc_offset);
unsigned len = length();
// If pc == kMaxUInt32, then this entry covers all call sites in the function.
if (len == 1 && GetPcOffset(0) == kMaxUInt32) return GetEntry(0);
for (unsigned i = 0; i < len; i++) {
// TODO(kasperl): Replace the linear search with binary search.
if (GetPcOffset(i) == pc_offset ||
(has_deopt_ &&
GetTrampolinePcOffset(i) == static_cast<int>(pc_offset))) {
return GetEntry(i);
}
}
UNREACHABLE();
return SafepointEntry();
}
void SafepointTable::PrintEntry(unsigned index,
std::ostream& os) const { // NOLINT
disasm::NameConverter converter;
SafepointEntry entry = GetEntry(index);
uint8_t* bits = entry.bits();
// Print the stack slot bits.
if (entry_size_ > 0) {
DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte));
const int first = kNumSafepointRegisters >> kBitsPerByteLog2;
int last = entry_size_ - 1;
for (int i = first; i < last; i++) PrintBits(os, bits[i], kBitsPerByte);
int last_bits = stack_slots_ - ((last - first) * kBitsPerByte);
PrintBits(os, bits[last], last_bits);
// Print the registers (if any).
if (!entry.HasRegisters()) return;
for (int j = 0; j < kNumSafepointRegisters; j++) {
if (entry.HasRegisterAt(j)) {
os << " | " << converter.NameOfCPURegister(j);
}
}
}
}
void SafepointTable::PrintBits(std::ostream& os, // NOLINT
uint8_t byte, int digits) {
DCHECK(digits >= 0 && digits <= kBitsPerByte);
for (int i = 0; i < digits; i++) {
os << (((byte & (1 << i)) == 0) ? "0" : "1");
}
}
void Safepoint::DefinePointerRegister(Register reg, Zone* zone) {
registers_->Add(reg.code(), zone);
}
Safepoint SafepointTableBuilder::DefineSafepoint(
Assembler* assembler,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
DCHECK_GE(arguments, 0);
DeoptimizationInfo info;
info.pc = assembler->pc_offset();
info.arguments = arguments;
info.has_doubles = (kind & Safepoint::kWithDoubles);
info.trampoline = -1;
deoptimization_info_.Add(info, zone_);
deopt_index_list_.Add(Safepoint::kNoDeoptimizationIndex, zone_);
if (deopt_mode == Safepoint::kNoLazyDeopt) {
last_lazy_safepoint_ = deopt_index_list_.length();
}
indexes_.Add(new(zone_) ZoneList<int>(8, zone_), zone_);
registers_.Add((kind & Safepoint::kWithRegisters)
? new (zone_) ZoneList<int>(4, zone_)
: nullptr,
zone_);
return Safepoint(indexes_.last(), registers_.last());
}
void SafepointTableBuilder::RecordLazyDeoptimizationIndex(int index) {
while (last_lazy_safepoint_ < deopt_index_list_.length()) {
deopt_index_list_[last_lazy_safepoint_++] = index;
}
}
unsigned SafepointTableBuilder::GetCodeOffset() const {
DCHECK(emitted_);
return offset_;
}
int SafepointTableBuilder::UpdateDeoptimizationInfo(int pc, int trampoline,
int start) {
int index = -1;
for (int i = start; i < deoptimization_info_.length(); i++) {
if (static_cast<int>(deoptimization_info_[i].pc) == pc) {
index = i;
break;
}
}
CHECK_GE(index, 0);
DCHECK(index < deoptimization_info_.length());
deoptimization_info_[index].trampoline = trampoline;
return index;
}
void SafepointTableBuilder::Emit(Assembler* assembler, int bits_per_entry) {
RemoveDuplicates();
// Make sure the safepoint table is properly aligned. Pad with nops.
assembler->Align(kIntSize);
assembler->RecordComment(";;; Safepoint table.");
offset_ = assembler->pc_offset();
// Take the register bits into account.
bits_per_entry += kNumSafepointRegisters;
// Compute the number of bytes per safepoint entry.
int bytes_per_entry =
RoundUp(bits_per_entry, kBitsPerByte) >> kBitsPerByteLog2;
// Emit the table header.
int length = deoptimization_info_.length();
assembler->dd(length);
assembler->dd(bytes_per_entry);
// Emit sorted table of pc offsets together with deoptimization indexes.
for (int i = 0; i < length; i++) {
assembler->dd(deoptimization_info_[i].pc);
assembler->dd(EncodeExceptPC(deoptimization_info_[i],
deopt_index_list_[i]));
assembler->dd(deoptimization_info_[i].trampoline);
}
// Emit table of bitmaps.
ZoneList<uint8_t> bits(bytes_per_entry, zone_);
for (int i = 0; i < length; i++) {
ZoneList<int>* indexes = indexes_[i];
ZoneList<int>* registers = registers_[i];
bits.Clear();
bits.AddBlock(0, bytes_per_entry, zone_);
// Run through the registers (if any).
DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte));
if (registers == nullptr) {
const int num_reg_bytes = kNumSafepointRegisters >> kBitsPerByteLog2;
for (int j = 0; j < num_reg_bytes; j++) {
bits[j] = SafepointTable::kNoRegisters;
}
} else {
for (int j = 0; j < registers->length(); j++) {
int index = registers->at(j);
DCHECK(index >= 0 && index < kNumSafepointRegisters);
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
bits[byte_index] |= (1 << bit_index);
}
}
// Run through the indexes and build a bitmap.
for (int j = 0; j < indexes->length(); j++) {
int index = bits_per_entry - 1 - indexes->at(j);
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
bits[byte_index] |= (1U << bit_index);
}
// Emit the bitmap for the current entry.
for (int k = 0; k < bytes_per_entry; k++) {
assembler->db(bits[k]);
}
}
emitted_ = true;
}
uint32_t SafepointTableBuilder::EncodeExceptPC(const DeoptimizationInfo& info,
unsigned index) {
uint32_t encoding = SafepointEntry::DeoptimizationIndexField::encode(index);
encoding |= SafepointEntry::ArgumentsField::encode(info.arguments);
encoding |= SafepointEntry::SaveDoublesField::encode(info.has_doubles);
return encoding;
}
void SafepointTableBuilder::RemoveDuplicates() {
// If the table contains more than one entry, and all entries are identical
// (except for the pc), replace the whole table by a single entry with pc =
// kMaxUInt32. This especially compacts the table for wasm code without tagged
// pointers and without deoptimization info.
int length = deoptimization_info_.length();
DCHECK_EQ(length, deopt_index_list_.length());
DCHECK_EQ(length, indexes_.length());
DCHECK_EQ(length, registers_.length());
if (length < 2) return;
// Check that all entries (1, length] are identical to entry 0.
for (int i = 1; i < length; ++i) {
if (!IsIdenticalExceptForPc(0, i)) return;
}
// If we get here, all entries were identical. Rewind all lists to just one
// entry, and set the pc to kMaxUInt32.
deoptimization_info_.Rewind(1);
deopt_index_list_.Rewind(1);
indexes_.Rewind(1);
registers_.Rewind(1);
deoptimization_info_[0].pc = kMaxUInt32;
}
bool SafepointTableBuilder::IsIdenticalExceptForPc(int index1,
int index2) const {
DeoptimizationInfo& deopt_info_1 = deoptimization_info_[index1];
DeoptimizationInfo& deopt_info_2 = deoptimization_info_[index2];
if (deopt_info_1.arguments != deopt_info_2.arguments) return false;
if (deopt_info_1.has_doubles != deopt_info_2.has_doubles) return false;
if (deopt_index_list_[index1] != deopt_index_list_[index2]) return false;
ZoneList<int>* indexes1 = indexes_[index1];
ZoneList<int>* indexes2 = indexes_[index2];
if (indexes1->length() != indexes2->length()) return false;
for (int i = 0; i < indexes1->length(); ++i) {
if (indexes1->at(i) != indexes2->at(i)) return false;
}
ZoneList<int>* registers1 = registers_[index1];
ZoneList<int>* registers2 = registers_[index2];
if (registers1) {
if (!registers2) return false;
if (registers1->length() != registers2->length()) return false;
for (int i = 0; i < registers1->length(); ++i) {
if (registers1->at(i) != registers2->at(i)) return false;
}
} else if (registers2) {
return false;
}
return true;
}
} // namespace internal
} // namespace v8