v8/test/cctest/test-code-stub-assembler.cc
Frank Emrich 3bf2935f6a [csa] Make CTZ, CLZ, and POPCOUNT available in CSA
This CL makes CTZ (count trailing zeros) and POPCOUNT (count set bits),
which are optional ops in the raw machine assembler, available in CSA.
A fallback exists for the case that they are not available.

This CL also adds the 64 bit version of the mandatory CLZ (count
leading zeros) op available.

Change-Id: I53cd6738b8ede8bd5842a83bb1161299824d39c9
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2742207
Reviewed-by: Nico Hartmann <nicohartmann@chromium.org>
Reviewed-by: Igor Sheludko <ishell@chromium.org>
Commit-Queue: Frank Emrich <emrich@google.com>
Cr-Commit-Position: refs/heads/master@{#73541}
2021-03-19 13:41:04 +00:00

4307 lines
158 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include "src/api/api-inl.h"
#include "src/base/utils/random-number-generator.h"
#include "src/builtins/builtins-promise-gen.h"
#include "src/builtins/builtins-promise.h"
#include "src/builtins/builtins-string-gen.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/code-stub-assembler.h"
#include "src/compiler/node.h"
#include "src/debug/debug.h"
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/ordered-hash-table-inl.h"
#include "src/objects/promise-inl.h"
#include "src/objects/smi.h"
#include "src/objects/struct-inl.h"
#include "src/objects/transitions-inl.h"
#include "src/strings/char-predicates.h"
#include "test/cctest/cctest-utils.h"
#include "test/cctest/compiler/code-assembler-tester.h"
#include "test/cctest/compiler/function-tester.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
using Label = CodeAssemblerLabel;
template <class T>
using TVariable = TypedCodeAssemblerVariable<T>;
using PromiseResolvingFunctions = TorqueStructPromiseResolvingFunctions;
intptr_t sum10(intptr_t a0, intptr_t a1, intptr_t a2, intptr_t a3, intptr_t a4,
intptr_t a5, intptr_t a6, intptr_t a7, intptr_t a8,
intptr_t a9) {
return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9;
}
static int sum3(int a0, int a1, int a2) { return a0 + a1 + a2; }
} // namespace
TEST(CallCFunction) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
const TNode<ExternalReference> fun_constant = m.ExternalConstant(
ExternalReference::Create(reinterpret_cast<Address>(sum10)));
MachineType type_intptr = MachineType::IntPtr();
TNode<IntPtrT> const result = m.UncheckedCast<IntPtrT>(
m.CallCFunction(fun_constant, type_intptr,
std::make_pair(type_intptr, m.IntPtrConstant(0)),
std::make_pair(type_intptr, m.IntPtrConstant(1)),
std::make_pair(type_intptr, m.IntPtrConstant(2)),
std::make_pair(type_intptr, m.IntPtrConstant(3)),
std::make_pair(type_intptr, m.IntPtrConstant(4)),
std::make_pair(type_intptr, m.IntPtrConstant(5)),
std::make_pair(type_intptr, m.IntPtrConstant(6)),
std::make_pair(type_intptr, m.IntPtrConstant(7)),
std::make_pair(type_intptr, m.IntPtrConstant(8)),
std::make_pair(type_intptr, m.IntPtrConstant(9))));
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK_EQ(45, Handle<Smi>::cast(result)->value());
}
TEST(CallCFunctionWithCallerSavedRegisters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
const TNode<ExternalReference> fun_constant = m.ExternalConstant(
ExternalReference::Create(reinterpret_cast<Address>(sum3)));
MachineType type_intptr = MachineType::IntPtr();
TNode<IntPtrT> const result =
m.UncheckedCast<IntPtrT>(m.CallCFunctionWithCallerSavedRegisters(
fun_constant, type_intptr, kSaveFPRegs,
std::make_pair(type_intptr, m.IntPtrConstant(0)),
std::make_pair(type_intptr, m.IntPtrConstant(1)),
std::make_pair(type_intptr, m.IntPtrConstant(2))));
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK_EQ(3, Handle<Smi>::cast(result)->value());
}
TEST(NumberToString) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
auto input = m.Parameter<Number>(1);
Label bailout(&m);
m.Return(m.NumberToString(input, &bailout));
m.BIND(&bailout);
m.Return(m.UndefinedConstant());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// clang-format off
double inputs[] = {
1, 2, 42, 153, -1, -100, 0, 51095154, -1241950,
std::nan("-1"), std::nan("1"), std::nan("2"),
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(),
-0.0, -0.001, -0.5, -0.999, -1.0,
0.0, 0.001, 0.5, 0.999, 1.0,
-2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin.
2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax.
-4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32.
4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32.
};
// clang-format on
const int kFullCacheSize = isolate->heap()->MaxNumberToStringCacheSize();
const int test_count = arraysize(inputs);
for (int i = 0; i < test_count; i++) {
int cache_length_before_addition = factory->number_string_cache()->length();
Handle<Object> input = factory->NewNumber(inputs[i]);
Handle<String> expected = factory->NumberToString(input);
Handle<Object> result = ft.Call(input).ToHandleChecked();
if (result->IsUndefined(isolate)) {
// Query may fail if cache was resized, in which case the entry is not
// added to the cache.
CHECK_LT(cache_length_before_addition, kFullCacheSize);
CHECK_EQ(factory->number_string_cache()->length(), kFullCacheSize);
expected = factory->NumberToString(input);
result = ft.Call(input).ToHandleChecked();
}
CHECK(!result->IsUndefined(isolate));
CHECK_EQ(*expected, *result);
}
}
namespace {
void CheckToUint32Result(uint32_t expected, Handle<Object> result) {
const int64_t result_int64 = NumberToInt64(*result);
const uint32_t result_uint32 = NumberToUint32(*result);
CHECK_EQ(static_cast<int64_t>(result_uint32), result_int64);
CHECK_EQ(expected, result_uint32);
// Ensure that the result is normalized to a Smi, i.e. a HeapNumber is only
// returned if the result is not within Smi range.
const bool expected_fits_into_intptr =
static_cast<int64_t>(expected) <=
static_cast<int64_t>(std::numeric_limits<intptr_t>::max());
if (expected_fits_into_intptr &&
Smi::IsValid(static_cast<intptr_t>(expected))) {
CHECK(result->IsSmi());
} else {
CHECK(result->IsHeapNumber());
}
}
} // namespace
TEST(ToUint32) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 3;
auto context = m.Parameter<Context>(kNumParams + kContextOffset);
auto input = m.Parameter<Object>(1);
m.Return(m.ToUint32(context, input));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// clang-format off
double inputs[] = {
std::nan("-1"), std::nan("1"), std::nan("2"),
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(),
-0.0, -0.001, -0.5, -0.999, -1.0,
0.0, 0.001, 0.5, 0.999, 1.0,
-2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin.
2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax.
-4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32.
4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32.
};
uint32_t expectations[] = {
0, 0, 0,
0,
0,
0, 0, 0, 0, 4294967295,
0, 0, 0, 0, 1,
2147483649, 2147483648, 2147483648, 2147483648,
2147483646, 2147483647, 2147483647, 2147483647,
1, 0, 0, 4294967295,
4294967295, 0, 0, 1,
};
// clang-format on
STATIC_ASSERT(arraysize(inputs) == arraysize(expectations));
const int test_count = arraysize(inputs);
for (int i = 0; i < test_count; i++) {
Handle<Object> input_obj = factory->NewNumber(inputs[i]);
Handle<HeapNumber> input_num;
// Check with Smi input.
if (input_obj->IsSmi()) {
Handle<Smi> input_smi = Handle<Smi>::cast(input_obj);
Handle<Object> result = ft.Call(input_smi).ToHandleChecked();
CheckToUint32Result(expectations[i], result);
input_num = factory->NewHeapNumber(inputs[i]);
} else {
input_num = Handle<HeapNumber>::cast(input_obj);
}
// Check with HeapNumber input.
{
CHECK(input_num->IsHeapNumber());
Handle<Object> result = ft.Call(input_num).ToHandleChecked();
CheckToUint32Result(expectations[i], result);
}
}
// A couple of final cases for ToNumber conversions.
CheckToUint32Result(0, ft.Call(factory->undefined_value()).ToHandleChecked());
CheckToUint32Result(0, ft.Call(factory->null_value()).ToHandleChecked());
CheckToUint32Result(0, ft.Call(factory->false_value()).ToHandleChecked());
CheckToUint32Result(1, ft.Call(factory->true_value()).ToHandleChecked());
CheckToUint32Result(
42,
ft.Call(factory->NewStringFromAsciiChecked("0x2A")).ToHandleChecked());
ft.CheckThrows(factory->match_symbol());
}
namespace {
void IsValidPositiveSmiCase(Isolate* isolate, intptr_t value) {
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(
m.SelectBooleanConstant(m.IsValidPositiveSmi(m.IntPtrConstant(value))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
MaybeHandle<Object> maybe_handle = ft.Call();
bool expected = i::PlatformSmiTagging::IsValidSmi(value) && (value >= 0);
if (expected) {
CHECK(maybe_handle.ToHandleChecked()->IsTrue(isolate));
} else {
CHECK(maybe_handle.ToHandleChecked()->IsFalse(isolate));
}
}
} // namespace
TEST(IsValidPositiveSmi) {
Isolate* isolate(CcTest::InitIsolateOnce());
IsValidPositiveSmiCase(isolate, -1);
IsValidPositiveSmiCase(isolate, 0);
IsValidPositiveSmiCase(isolate, 1);
IsValidPositiveSmiCase(isolate, 0x3FFFFFFFU);
IsValidPositiveSmiCase(isolate, 0xC0000000U);
IsValidPositiveSmiCase(isolate, 0x40000000U);
IsValidPositiveSmiCase(isolate, 0xBFFFFFFFU);
using int32_limits = std::numeric_limits<int32_t>;
IsValidPositiveSmiCase(isolate, int32_limits::max());
IsValidPositiveSmiCase(isolate, int32_limits::min());
#if V8_TARGET_ARCH_64_BIT
IsValidPositiveSmiCase(isolate,
static_cast<intptr_t>(int32_limits::max()) + 1);
IsValidPositiveSmiCase(isolate,
static_cast<intptr_t>(int32_limits::min()) - 1);
#endif
}
TEST(ConvertToRelativeIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
auto index = m.Parameter<Number>(1);
auto length_number = m.Parameter<Number>(2);
auto expected_relative_index = m.Parameter<Number>(3);
TNode<UintPtrT> length = m.ChangeUintPtrNumberToUintPtr(length_number);
TNode<UintPtrT> expected =
m.ChangeUintPtrNumberToUintPtr(expected_relative_index);
TNode<UintPtrT> result = m.ConvertToRelativeIndex(index, length);
m.Return(m.SelectBooleanConstant(m.WordEqual(result, expected)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
const double kMaxSmi = static_cast<double>(kSmiMaxValue);
const double kMaxInt32 =
static_cast<double>(std::numeric_limits<int32_t>::max());
const double kMaxUInt32 =
static_cast<double>(std::numeric_limits<uint32_t>::max());
const double kMaxUIntPtr =
static_cast<double>(std::numeric_limits<uintptr_t>::max());
struct {
double index;
double length;
double expected_result;
} test_cases[] = {
// Simple Smi-range cases.
{0, 0, 0},
{0, 42, 0},
{5, 42, 5},
{100, 42, 42},
{-10, 153, 153 - 10},
{-200, 153, 0},
// Beyond Smi-range index cases.
{0, kMaxSmi, 0},
{-153, kMaxSmi, kMaxSmi - 153},
{kMaxSmi + 153, kMaxSmi, kMaxSmi},
{kMaxSmi * 33, kMaxSmi, kMaxSmi},
{-kMaxSmi, kMaxSmi, 0},
{-kMaxSmi - 1, kMaxSmi, 0},
{-kMaxSmi - 153, kMaxSmi, 0},
{-kMaxSmi * 33, kMaxSmi, 0},
{-std::numeric_limits<double>::infinity(), 153, 0},
{std::numeric_limits<double>::infinity(), 424242, 424242},
// Beyond Smi-range length cases.
{kMaxSmi + 2, kMaxSmi + 1, kMaxSmi + 1},
{-kMaxSmi + 2, kMaxSmi + 1, 3},
{kMaxInt32 + 1, kMaxInt32, kMaxInt32},
{-kMaxInt32 + 1, kMaxInt32, 1},
{kMaxUInt32 + 1, kMaxUInt32, kMaxUInt32},
{-42, kMaxUInt32, kMaxUInt32 - 42},
{-kMaxUInt32 - 1, kMaxUInt32, 0},
{-kMaxUInt32, kMaxUInt32, 0},
{-kMaxUInt32 + 1, kMaxUInt32, 1},
{-kMaxUInt32 + 5, kMaxUInt32, 5},
{-kMaxUInt32 + 5, kMaxUInt32 + 1, 6},
{-kMaxSmi * 33, kMaxSmi * 153, kMaxSmi * (153 - 33)},
{0, kMaxSafeInteger, 0},
{kMaxSmi, kMaxSafeInteger, kMaxSmi},
{kMaxSmi * 153, kMaxSafeInteger, kMaxSmi * 153},
{-10, kMaxSafeInteger, kMaxSafeInteger - 10},
{-kMaxSafeInteger, kMaxSafeInteger, 0},
{-kMaxSafeInteger + 1, kMaxSafeInteger, 1},
{-kMaxSafeInteger + 42, kMaxSafeInteger, 42},
{kMaxSafeInteger - 153, kMaxSafeInteger, kMaxSafeInteger - 153},
{kMaxSafeInteger - 1, kMaxSafeInteger, kMaxSafeInteger - 1},
{kMaxSafeInteger, kMaxSafeInteger, kMaxSafeInteger},
{kMaxSafeInteger + 1, kMaxSafeInteger, kMaxSafeInteger},
{kMaxSafeInteger + 42, kMaxSafeInteger, kMaxSafeInteger},
{kMaxSafeInteger * 11, kMaxSafeInteger, kMaxSafeInteger},
};
Factory* factory = isolate->factory();
for (size_t i = 0; i < arraysize(test_cases); i++) {
if (test_cases[i].length > kMaxUIntPtr) {
// Test cases where length does not fit into uintptr are not valid, so
// skip them instead of ifdef'ing the test cases above.
continue;
}
Handle<Object> index = factory->NewNumber(test_cases[i].index);
Handle<Object> length = factory->NewNumber(test_cases[i].length);
Handle<Object> expected = factory->NewNumber(test_cases[i].expected_result);
ft.CheckTrue(index, length, expected);
}
}
TEST(FixedArrayAccessSmiIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<FixedArray> array = isolate->factory()->NewFixedArray(5);
array->set(4, Smi::FromInt(733));
m.Return(m.LoadFixedArrayElement(m.HeapConstant(array),
m.SmiTag(m.IntPtrConstant(4)), 0));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(733, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadHeapNumberValue) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<HeapNumber> number = isolate->factory()->NewHeapNumber(1234);
m.Return(m.SmiFromInt32(m.Signed(
m.ChangeFloat64ToUint32(m.LoadHeapNumberValue(m.HeapConstant(number))))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(1234, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadInstanceType) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
Handle<HeapObject> undefined = isolate->factory()->undefined_value();
m.Return(m.SmiFromInt32(m.LoadInstanceType(m.HeapConstant(undefined))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(InstanceType::ODDBALL_TYPE,
Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(DecodeWordFromWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
using TestBitField = base::BitField<unsigned, 3, 3>;
m.Return(m.SmiTag(
m.Signed(m.DecodeWordFromWord32<TestBitField>(m.Int32Constant(0x2F)))));
FunctionTester ft(asm_tester.GenerateCode());
MaybeHandle<Object> result = ft.Call();
// value = 00101111
// mask = 00111000
// result = 101
CHECK_EQ(5, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(JSFunction) {
const int kNumParams = 2; // left, right.
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(m.Int32Add(m.SmiToInt32(m.Parameter<Smi>(1)),
m.SmiToInt32(m.Parameter<Smi>(2)))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
MaybeHandle<Object> result = ft.Call(handle(Smi::FromInt(23), isolate),
handle(Smi::FromInt(34), isolate));
CHECK_EQ(57, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(ComputeIntegerHash) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiFromInt32(m.UncheckedCast<Int32T>(
m.ComputeSeededHash(m.SmiUntag(m.Parameter<Smi>(1))))));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < 1024; i++) {
int k = rand_gen.NextInt(Smi::kMaxValue);
Handle<Smi> key(Smi::FromInt(k), isolate);
Handle<Object> result = ft.Call(key).ToHandleChecked();
uint32_t hash = ComputeSeededHash(k, HashSeed(isolate));
Smi expected = Smi::FromInt(hash);
CHECK_EQ(expected, Smi::cast(*result));
}
}
TEST(ToString) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
m.Return(m.ToStringImpl(m.Parameter<Context>(kNumParams + 3),
m.Parameter<Object>(1)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> test_cases = isolate->factory()->NewFixedArray(5);
Handle<FixedArray> smi_test = isolate->factory()->NewFixedArray(2);
smi_test->set(0, Smi::FromInt(42));
Handle<String> str(isolate->factory()->InternalizeUtf8String("42"));
smi_test->set(1, *str);
test_cases->set(0, *smi_test);
Handle<FixedArray> number_test = isolate->factory()->NewFixedArray(2);
Handle<HeapNumber> num(isolate->factory()->NewHeapNumber(3.14));
number_test->set(0, *num);
str = isolate->factory()->InternalizeUtf8String("3.14");
number_test->set(1, *str);
test_cases->set(1, *number_test);
Handle<FixedArray> string_test = isolate->factory()->NewFixedArray(2);
str = isolate->factory()->InternalizeUtf8String("test");
string_test->set(0, *str);
string_test->set(1, *str);
test_cases->set(2, *string_test);
Handle<FixedArray> oddball_test = isolate->factory()->NewFixedArray(2);
oddball_test->set(0, ReadOnlyRoots(isolate).undefined_value());
str = isolate->factory()->InternalizeUtf8String("undefined");
oddball_test->set(1, *str);
test_cases->set(3, *oddball_test);
Handle<FixedArray> tostring_test = isolate->factory()->NewFixedArray(2);
Handle<FixedArray> js_array_storage = isolate->factory()->NewFixedArray(2);
js_array_storage->set(0, Smi::FromInt(1));
js_array_storage->set(1, Smi::FromInt(2));
Handle<JSArray> js_array = isolate->factory()->NewJSArray(2);
JSArray::SetContent(js_array, js_array_storage);
tostring_test->set(0, *js_array);
str = isolate->factory()->InternalizeUtf8String("1,2");
tostring_test->set(1, *str);
test_cases->set(4, *tostring_test);
for (int i = 0; i < 5; ++i) {
Handle<FixedArray> test =
handle(FixedArray::cast(test_cases->get(i)), isolate);
Handle<Object> obj = handle(test->get(0), isolate);
Handle<String> expected = handle(String::cast(test->get(1)), isolate);
Handle<Object> result = ft.Call(obj).ToHandleChecked();
CHECK(result->IsString());
CHECK(String::Equals(isolate, Handle<String>::cast(result), expected));
}
}
TEST(TryToName) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kKeyIsIndex, kKeyIsUnique, kBailout };
{
auto key = m.Parameter<Object>(1);
auto expected_result = m.UncheckedParameter<MaybeObject>(2);
auto expected_arg = m.Parameter<Object>(3);
Label passed(&m), failed(&m);
Label if_keyisindex(&m), if_keyisunique(&m), if_bailout(&m);
{
TYPED_VARIABLE_DEF(IntPtrT, var_index, &m);
TYPED_VARIABLE_DEF(Name, var_unique, &m);
TYPED_VARIABLE_DEF(IntPtrT, var_expected, &m);
m.TryToName(key, &if_keyisindex, &var_index, &if_keyisunique, &var_unique,
&if_bailout);
m.BIND(&if_keyisindex);
m.GotoIfNot(m.TaggedEqual(expected_result,
m.SmiConstant(Smi::FromInt(kKeyIsIndex))),
&failed);
Label if_expectedissmi(&m), if_expectedisheapnumber(&m), check_result(&m);
m.Branch(m.TaggedIsSmi(expected_arg), &if_expectedissmi,
&if_expectedisheapnumber);
m.BIND(&if_expectedissmi);
var_expected = m.SmiUntag(m.CAST(expected_arg));
m.Goto(&check_result);
m.BIND(&if_expectedisheapnumber);
CSA_ASSERT(&m, m.IsHeapNumber(m.CAST(expected_arg)));
TNode<Float64T> value = m.LoadHeapNumberValue(m.CAST(expected_arg));
// We know this to be safe as all expected values are in intptr
// range.
var_expected = m.UncheckedCast<IntPtrT>(m.ChangeFloat64ToUintPtr(value));
m.Goto(&check_result);
m.BIND(&check_result);
m.Branch(m.IntPtrEqual(var_expected.value(), var_index.value()), &passed,
&failed);
m.BIND(&if_keyisunique);
m.GotoIfNot(m.TaggedEqual(expected_result,
m.SmiConstant(Smi::FromInt(kKeyIsUnique))),
&failed);
m.Branch(m.TaggedEqual(expected_arg, var_unique.value()), &passed,
&failed);
}
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_index(Smi::FromInt(kKeyIsIndex), isolate);
Handle<Object> expect_unique(Smi::FromInt(kKeyIsUnique), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
{
// TryToName(<zero smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::zero(), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<positive smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<negative smi>) => if_keyisindex: smi value.
// A subsequent bounds check needs to take care of this case.
Handle<Object> key(Smi::FromInt(-1), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<heap number with int value>) => if_keyisindex: number.
Handle<Object> key(isolate->factory()->NewHeapNumber(153));
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<true>) => if_keyisunique: "true".
Handle<Object> key = isolate->factory()->true_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("true");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<false>) => if_keyisunique: "false".
Handle<Object> key = isolate->factory()->false_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("false");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<null>) => if_keyisunique: "null".
Handle<Object> key = isolate->factory()->null_value();
Handle<Object> unique = isolate->factory()->InternalizeUtf8String("null");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<undefined>) => if_keyisunique: "undefined".
Handle<Object> key = isolate->factory()->undefined_value();
Handle<Object> unique =
isolate->factory()->InternalizeUtf8String("undefined");
ft.CheckTrue(key, expect_unique, unique);
}
{
// TryToName(<symbol>) => if_keyisunique: <symbol>.
Handle<Object> key = isolate->factory()->NewSymbol();
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized string>) => if_keyisunique: <internalized string>
Handle<Object> key = isolate->factory()->InternalizeUtf8String("test");
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized number string>) => if_keyisindex: number.
Handle<Object> key = isolate->factory()->InternalizeUtf8String("153");
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<internalized uncacheable number string greater than
// array index but less than MAX_SAFE_INTEGER>) => 32-bit platforms
// take the if_keyisunique path, 64-bit platforms bail out because they
// let the runtime handle the string-to-size_t parsing.
Handle<Object> key =
isolate->factory()->InternalizeUtf8String("4294967296");
#if V8_TARGET_ARCH_64_BIT
ft.CheckTrue(key, expect_bailout);
#else
ft.CheckTrue(key, expect_unique, key);
#endif
}
{
// TryToName(<internalized uncacheable number string greater than
// INT_MAX but less than array index>) => bailout.
Handle<Object> key =
isolate->factory()->InternalizeUtf8String("4294967294");
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<internalized uncacheable number string less than
// INT_MAX>) => bailout
Handle<Object> key =
isolate->factory()->InternalizeUtf8String("2147483647");
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<non-internalized number string>) => if_keyisindex: number.
Handle<String> key = isolate->factory()->NewStringFromAsciiChecked("153");
uint32_t dummy;
CHECK(key->AsArrayIndex(&dummy));
CHECK(key->HasHashCode());
CHECK(!key->IsInternalizedString());
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<number string without cached index>) => is_keyisindex: number.
Handle<String> key = isolate->factory()->NewStringFromAsciiChecked("153");
CHECK(!key->HasHashCode());
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<non-internalized string>) => bailout.
Handle<Object> key = isolate->factory()->NewStringFromAsciiChecked("test");
ft.CheckTrue(key, expect_bailout);
}
if (FLAG_thin_strings) {
// TryToName(<thin string>) => internalized version.
Handle<String> s = isolate->factory()->NewStringFromAsciiChecked("foo");
Handle<String> internalized = isolate->factory()->InternalizeString(s);
ft.CheckTrue(s, expect_unique, internalized);
}
if (FLAG_thin_strings) {
// TryToName(<thin two-byte string>) => internalized version.
uc16 array1[] = {2001, 2002, 2003};
Handle<String> s = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array1))
.ToHandleChecked();
Handle<String> internalized = isolate->factory()->InternalizeString(s);
ft.CheckTrue(s, expect_unique, internalized);
}
}
namespace {
template <typename Dictionary>
void TestEntryToIndex() {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
TNode<IntPtrT> entry = m.SmiUntag(m.Parameter<Smi>(1));
TNode<IntPtrT> result = m.EntryToIndex<Dictionary>(entry);
m.Return(m.SmiTag(result));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// Test a wide range of entries but staying linear in the first 100 entries.
for (int entry = 0; entry < Dictionary::kMaxCapacity;
entry = entry * 1.01 + 1) {
Handle<Object> result =
ft.Call(handle(Smi::FromInt(entry), isolate)).ToHandleChecked();
CHECK_EQ(Dictionary::EntryToIndex(InternalIndex(entry)),
Smi::ToInt(*result));
}
}
TEST(NameDictionaryEntryToIndex) { TestEntryToIndex<NameDictionary>(); }
TEST(GlobalDictionaryEntryToIndex) { TestEntryToIndex<GlobalDictionary>(); }
} // namespace
namespace {
template <typename Dictionary>
void TestNameDictionaryLookup() {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
auto dictionary = m.Parameter<Dictionary>(1);
auto unique_name = m.Parameter<Name>(2);
auto expected_result = m.Parameter<Smi>(3);
auto expected_arg = m.Parameter<Object>(4);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
TVariable<IntPtrT> var_name_index(&m);
m.NameDictionaryLookup<Dictionary>(dictionary, unique_name, &if_found,
&var_name_index, &if_not_found);
m.BIND(&if_found);
m.GotoIfNot(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(
m.WordEqual(m.SmiUntag(m.CAST(expected_arg)), var_name_index.value()),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Dictionary> dictionary = Dictionary::New(isolate, 40);
PropertyDetails fake_details = PropertyDetails::Empty();
Factory* factory = isolate->factory();
Handle<Name> keys[] = {
factory->InternalizeUtf8String("0"),
factory->InternalizeUtf8String("42"),
factory->InternalizeUtf8String("-153"),
factory->InternalizeUtf8String("0.0"),
factory->InternalizeUtf8String("4.2"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(keys); i++) {
Handle<Object> value =
factory->NewPropertyCell(keys[i], fake_details, keys[i]);
dictionary =
Dictionary::Add(isolate, dictionary, keys[i], value, fake_details);
}
for (size_t i = 0; i < arraysize(keys); i++) {
InternalIndex entry = dictionary->FindEntry(isolate, keys[i]);
int name_index =
Dictionary::EntryToIndex(entry) + Dictionary::kEntryKeyIndex;
CHECK(entry.is_found());
Handle<Object> expected_name_index(Smi::FromInt(name_index), isolate);
ft.CheckTrue(dictionary, keys[i], expect_found, expected_name_index);
}
Handle<Name> non_existing_keys[] = {
factory->InternalizeUtf8String("1"),
factory->InternalizeUtf8String("-42"),
factory->InternalizeUtf8String("153"),
factory->InternalizeUtf8String("-1.0"),
factory->InternalizeUtf8String("1.3"),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("boom"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(non_existing_keys); i++) {
InternalIndex entry = dictionary->FindEntry(isolate, non_existing_keys[i]);
CHECK(entry.is_not_found());
ft.CheckTrue(dictionary, non_existing_keys[i], expect_not_found);
}
}
} // namespace
TEST(NameDictionaryLookup) { TestNameDictionaryLookup<NameDictionary>(); }
TEST(GlobalDictionaryLookup) { TestNameDictionaryLookup<GlobalDictionary>(); }
TEST(NumberDictionaryLookup) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound };
{
auto dictionary = m.Parameter<NumberDictionary>(1);
TNode<IntPtrT> key = m.SmiUntag(m.Parameter<Smi>(2));
auto expected_result = m.Parameter<Smi>(3);
auto expected_arg = m.Parameter<Object>(4);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
TVariable<IntPtrT> var_entry(&m);
m.NumberDictionaryLookup(dictionary, key, &if_found, &var_entry,
&if_not_found);
m.BIND(&if_found);
m.GotoIfNot(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(m.WordEqual(m.SmiUntag(m.CAST(expected_arg)), var_entry.value()),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int kKeysCount = 1000;
Handle<NumberDictionary> dictionary =
NumberDictionary::New(isolate, kKeysCount);
uint32_t keys[kKeysCount];
Handle<Object> fake_value(Smi::FromInt(42), isolate);
PropertyDetails fake_details = PropertyDetails::Empty();
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < kKeysCount; i++) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
keys[i] = static_cast<uint32_t>(random_key);
if (dictionary->FindEntry(isolate, keys[i]).is_found()) continue;
dictionary = NumberDictionary::Add(isolate, dictionary, keys[i], fake_value,
fake_details);
}
// Now try querying existing keys.
for (int i = 0; i < kKeysCount; i++) {
InternalIndex entry = dictionary->FindEntry(isolate, keys[i]);
CHECK(entry.is_found());
Handle<Object> key(Smi::FromInt(keys[i]), isolate);
Handle<Object> expected_entry(Smi::FromInt(entry.as_int()), isolate);
ft.CheckTrue(dictionary, key, expect_found, expected_entry);
}
// Now try querying random keys which do not exist in the dictionary.
for (int i = 0; i < kKeysCount;) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
InternalIndex entry = dictionary->FindEntry(isolate, random_key);
if (entry.is_found()) continue;
i++;
Handle<Object> key(Smi::FromInt(random_key), isolate);
ft.CheckTrue(dictionary, key, expect_not_found);
}
}
TEST(TransitionLookup) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
enum Result { kFound, kNotFound };
class TempAssembler : public CodeStubAssembler {
public:
explicit TempAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
void Generate() {
auto transitions = Parameter<TransitionArray>(1);
auto name = Parameter<Name>(2);
auto expected_result = Parameter<Smi>(3);
auto expected_arg = Parameter<Object>(4);
Label passed(this), failed(this);
Label if_found(this), if_not_found(this);
TVARIABLE(IntPtrT, var_transition_index);
TransitionLookup(name, transitions, &if_found, &var_transition_index,
&if_not_found);
BIND(&if_found);
GotoIfNot(TaggedEqual(expected_result, SmiConstant(kFound)), &failed);
Branch(TaggedEqual(expected_arg, SmiTag(var_transition_index.value())),
&passed, &failed);
BIND(&if_not_found);
Branch(TaggedEqual(expected_result, SmiConstant(kNotFound)), &passed,
&failed);
BIND(&passed);
Return(BooleanConstant(true));
BIND(&failed);
Return(BooleanConstant(false));
}
};
TempAssembler(asm_tester.state()).Generate();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int ATTRS_COUNT = (READ_ONLY | DONT_ENUM | DONT_DELETE) + 1;
STATIC_ASSERT(ATTRS_COUNT == 8);
const int kKeysCount = 300;
Handle<Map> root_map = Map::Create(isolate, 0);
Handle<Name> keys[kKeysCount];
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
Factory* factory = isolate->factory();
Handle<FieldType> any = FieldType::Any(isolate);
for (int i = 0; i < kKeysCount; i++) {
Handle<Name> name;
if (i % 30 == 0) {
name = factory->NewPrivateSymbol();
} else if (i % 10 == 0) {
name = factory->NewSymbol();
} else {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
name = CcTest::MakeName("p", random_key);
}
keys[i] = name;
bool is_private = name->IsPrivate();
PropertyAttributes base_attributes = is_private ? DONT_ENUM : NONE;
// Ensure that all the combinations of cases are covered:
// 1) there is a "base" attributes transition
// 2) there are other non-base attributes transitions
if ((i & 1) == 0) {
CHECK(!Map::CopyWithField(isolate, root_map, name, any, base_attributes,
PropertyConstness::kMutable,
Representation::Tagged(), INSERT_TRANSITION)
.is_null());
}
if ((i & 2) == 0) {
for (int j = 0; j < ATTRS_COUNT; j++) {
PropertyAttributes attributes = static_cast<PropertyAttributes>(j);
if (attributes == base_attributes) continue;
// Don't add private symbols with enumerable attributes.
if (is_private && ((attributes & DONT_ENUM) == 0)) continue;
CHECK(!Map::CopyWithField(isolate, root_map, name, any, attributes,
PropertyConstness::kMutable,
Representation::Tagged(), INSERT_TRANSITION)
.is_null());
}
}
}
CHECK(root_map->raw_transitions()
->GetHeapObjectAssumeStrong()
.IsTransitionArray());
Handle<TransitionArray> transitions(
TransitionArray::cast(
root_map->raw_transitions()->GetHeapObjectAssumeStrong()),
isolate);
DCHECK(transitions->IsSortedNoDuplicates());
// Ensure we didn't overflow transition array and therefore all the
// combinations of cases are covered.
CHECK(TransitionsAccessor(isolate, root_map).CanHaveMoreTransitions());
// Now try querying keys.
bool positive_lookup_tested = false;
bool negative_lookup_tested = false;
for (int i = 0; i < kKeysCount; i++) {
Handle<Name> name = keys[i];
int transition_number = transitions->SearchNameForTesting(*name);
if (transition_number != TransitionArray::kNotFound) {
Handle<Smi> expected_value(
Smi::FromInt(TransitionArray::ToKeyIndex(transition_number)),
isolate);
ft.CheckTrue(transitions, name, expect_found, expected_value);
positive_lookup_tested = true;
} else {
ft.CheckTrue(transitions, name, expect_not_found);
negative_lookup_tested = true;
}
}
CHECK(positive_lookup_tested);
CHECK(negative_lookup_tested);
}
namespace {
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t count) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < count; i++) {
Handle<Object> value(Smi::FromInt(static_cast<int>(42 + i)), isolate);
JSObject::AddProperty(isolate, object, names[i], value, NONE);
}
}
Handle<AccessorPair> CreateAccessorPair(FunctionTester* ft,
const char* getter_body,
const char* setter_body) {
Handle<AccessorPair> pair = ft->isolate->factory()->NewAccessorPair();
if (getter_body) {
pair->set_getter(*ft->NewFunction(getter_body));
}
if (setter_body) {
pair->set_setter(*ft->NewFunction(setter_body));
}
return pair;
}
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t names_count, Handle<Object> values[],
size_t values_count, int seed = 0) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < names_count; i++) {
Handle<Object> value = values[(seed + i) % values_count];
if (value->IsAccessorPair()) {
Handle<AccessorPair> pair = Handle<AccessorPair>::cast(value);
Handle<Object> getter(pair->getter(), isolate);
Handle<Object> setter(pair->setter(), isolate);
JSObject::DefineAccessor(object, names[i], getter, setter, NONE).Check();
} else {
JSObject::AddProperty(isolate, object, names[i], value, NONE);
}
}
}
} // namespace
TEST(TryHasOwnProperty) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kNotFound, kBailout };
{
auto object = m.Parameter<HeapObject>(1);
auto unique_name = m.Parameter<Name>(2);
TNode<MaybeObject> expected_result = m.UncheckedParameter<MaybeObject>(3);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryHasOwnProperty(object, map, instance_type, unique_name, &if_found,
&if_not_found, &if_bailout);
m.BIND(&if_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
Factory* factory = isolate->factory();
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("bb"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("dddd"),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names));
JSObject::NormalizeProperties(isolate, object, CLEAR_INOBJECT_PROPERTIES, 0,
"test");
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
JSFunction::EnsureHasInitialMap(function);
function->initial_map().set_instance_type(JS_GLOBAL_OBJECT_TYPE);
function->initial_map().set_is_prototype_map(true);
function->initial_map().set_is_dictionary_map(true);
function->initial_map().set_may_have_interesting_symbols(true);
Handle<JSObject> object = factory->NewJSGlobalObject(function);
AddProperties(object, names, arraysize(names));
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
CHECK(JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_found);
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
CHECK(!JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_not_found);
}
}
}
{
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
}
TEST(TryGetOwnProperty) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
Handle<Symbol> not_found_symbol = factory->NewSymbol();
Handle<Symbol> bailout_symbol = factory->NewSymbol();
{
auto object = m.Parameter<JSReceiver>(1);
auto unique_name = m.Parameter<Name>(2);
auto context = m.Parameter<Context>(kNumParams + 3);
TVariable<Object> var_value(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryGetOwnProperty(context, object, object, map, instance_type,
unique_name, &if_found, &var_value, &if_not_found,
&if_bailout);
m.BIND(&if_found);
m.Return(m.UncheckedCast<Object>(var_value.value()));
m.BIND(&if_not_found);
m.Return(m.HeapConstant(not_found_symbol));
m.BIND(&if_bailout);
m.Return(m.HeapConstant(bailout_symbol));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("bb"),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("esajefe"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String("p1"),
factory->InternalizeUtf8String("acshw23e"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("dddd"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("name"),
factory->InternalizeUtf8String("p2"),
factory->InternalizeUtf8String("p3"),
factory->InternalizeUtf8String("p4"),
factory->NewPrivateSymbol(),
};
Handle<Object> values[] = {
factory->NewFunctionForTesting(factory->empty_string()),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
CreateAccessorPair(&ft, "() => 188;", "() => 199;"),
factory->NewFunctionForTesting(factory->InternalizeUtf8String("bb")),
factory->InternalizeUtf8String("ccc"),
CreateAccessorPair(&ft, "() => 88;", nullptr),
handle(Smi::FromInt(1), isolate),
factory->InternalizeUtf8String(""),
CreateAccessorPair(&ft, nullptr, "() => 99;"),
factory->NewHeapNumber(4.2),
handle(Smi::FromInt(153), isolate),
factory->NewJSObject(
factory->NewFunctionForTesting(factory->empty_string())),
factory->NewPrivateSymbol(),
};
STATIC_ASSERT(arraysize(values) < arraysize(names));
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK_EQ(inobject_properties, object->map().GetInObjectProperties());
CHECK(!object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::NormalizeProperties(isolate, object, CLEAR_INOBJECT_PROPERTIES, 0,
"test");
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSGlobalObject> object = isolate->global_object();
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name,
LanguageMode::kSloppy)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
CHECK(object->map().is_dictionary_map());
objects.push_back(object);
}
// TODO(ishell): test proxy and interceptors when they are supported.
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(isolate, object, name).ToHandleChecked();
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK(expected_value->SameValue(*value));
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(isolate, object, name).ToHandleChecked();
CHECK(expected_value->IsUndefined(isolate));
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*not_found_symbol, *value);
}
}
}
{
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
// Proxies are not supported yet.
CHECK_EQ(*bailout_symbol, *value);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
// Global proxies are not supported yet.
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
CHECK_EQ(*bailout_symbol, *value);
}
}
namespace {
void AddElement(Handle<JSObject> object, uint32_t index, Handle<Object> value,
PropertyAttributes attributes = NONE) {
JSObject::AddDataElement(object, index, value, attributes);
}
} // namespace
TEST(TryLookupElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
enum Result { kFound, kAbsent, kNotFound, kBailout };
{
auto object = m.Parameter<HeapObject>(1);
TNode<IntPtrT> index = m.SmiUntag(m.Parameter<Smi>(2));
TNode<MaybeObject> expected_result = m.UncheckedParameter<MaybeObject>(3);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m), if_absent(&m);
TNode<Map> map = m.LoadMap(object);
TNode<Uint16T> instance_type = m.LoadMapInstanceType(map);
m.TryLookupElement(object, map, instance_type, index, &if_found, &if_absent,
&if_not_found, &if_bailout);
m.BIND(&if_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.BIND(&if_absent);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kAbsent))),
&passed, &failed);
m.BIND(&if_not_found);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.BIND(&if_bailout);
m.Branch(
m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.BIND(&passed);
m.Return(m.BooleanConstant(true));
m.BIND(&failed);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
Handle<Object> smi0(Smi::zero(), isolate);
Handle<Object> smi1(Smi::FromInt(1), isolate);
Handle<Object> smi7(Smi::FromInt(7), isolate);
Handle<Object> smi13(Smi::FromInt(13), isolate);
Handle<Object> smi42(Smi::FromInt(42), isolate);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_absent(Smi::FromInt(kAbsent), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
#define CHECK_FOUND(object, index) \
CHECK(JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_found);
#define CHECK_NOT_FOUND(object, index) \
CHECK(!JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_not_found);
#define CHECK_ABSENT(object, index) \
{ \
Handle<Smi> smi(Smi::FromInt(index), isolate); \
LookupIterator::Key key(isolate, smi); \
LookupIterator it(isolate, object, key); \
CHECK(!JSReceiver::HasProperty(&it).FromJust()); \
ft.CheckTrue(object, smi, expect_absent); \
}
{
Handle<JSArray> object = factory->NewJSArray(0, PACKED_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(PACKED_SMI_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, HOLEY_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(HOLEY_SMI_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, PACKED_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(PACKED_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, HOLEY_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(HOLEY_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
v8::Local<v8::ArrayBuffer> buffer =
v8::ArrayBuffer::New(reinterpret_cast<v8::Isolate*>(isolate), 8);
Handle<JSTypedArray> object = factory->NewJSTypedArray(
kExternalInt32Array, v8::Utils::OpenHandle(*buffer), 0, 2);
CHECK_EQ(INT32_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_ABSENT(object, -10);
CHECK_ABSENT(object, 13);
CHECK_ABSENT(object, 42);
{
std::shared_ptr<v8::BackingStore> backing_store =
buffer->GetBackingStore();
buffer->Detach();
}
CHECK_ABSENT(object, 0);
CHECK_ABSENT(object, 1);
CHECK_ABSENT(object, -10);
CHECK_ABSENT(object, 13);
CHECK_ABSENT(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSPrimitiveWrapper>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
CHECK_EQ(FAST_STRING_WRAPPER_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSPrimitiveWrapper>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
JSObject::NormalizeElements(object);
CHECK_EQ(SLOW_STRING_WRAPPER_ELEMENTS, object->map().elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
// TODO(ishell): uncomment once NO_ELEMENTS kind is supported.
// {
// Handle<Map> map = Map::Create(isolate, 0);
// map->set_elements_kind(NO_ELEMENTS);
// Handle<JSObject> object = factory->NewJSObjectFromMap(map);
// CHECK_EQ(NO_ELEMENTS, object->map()->elements_kind());
//
// CHECK_NOT_FOUND(object, 0);
// CHECK_NOT_FOUND(object, 1);
// CHECK_NOT_FOUND(object, 7);
// CHECK_NOT_FOUND(object, 13);
// CHECK_NOT_FOUND(object, 42);
// }
#undef CHECK_FOUND
#undef CHECK_NOT_FOUND
#undef CHECK_ABSENT
{
Handle<JSArray> handler = factory->NewJSArray(0);
Handle<JSFunction> function =
factory->NewFunctionForTesting(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, handler);
CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_object();
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
}
TEST(AllocateJSObjectFromMap) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
auto map = m.Parameter<Map>(1);
auto properties = m.Parameter<HeapObject>(2);
auto elements = m.Parameter<FixedArray>(3);
TNode<JSObject> result =
m.AllocateJSObjectFromMap(map, properties, elements);
CodeStubAssembler::Label done(&m);
m.GotoIfNot(m.IsJSArrayMap(map), &done);
// JS array verification requires the length field to be set.
m.StoreObjectFieldNoWriteBarrier(result, JSArray::kLengthOffset,
m.SmiConstant(0));
m.Goto(&done);
m.Bind(&done);
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Map> maps[] = {
handle(isolate->object_function()->initial_map(), isolate),
handle(isolate->array_function()->initial_map(), isolate),
};
{
Handle<FixedArray> empty_fixed_array = factory->empty_fixed_array();
Handle<PropertyArray> empty_property_array =
factory->empty_property_array();
for (size_t i = 0; i < arraysize(maps); i++) {
Handle<Map> map = maps[i];
Handle<JSObject> result = Handle<JSObject>::cast(
ft.Call(map, empty_fixed_array, empty_fixed_array).ToHandleChecked());
CHECK_EQ(result->map(), *map);
CHECK_EQ(result->property_array(), *empty_property_array);
CHECK_EQ(result->elements(), *empty_fixed_array);
CHECK(result->HasFastProperties());
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
}
{
// TODO(cbruni): handle in-object properties
Handle<JSObject> object = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*CompileRun("var object = {a:1,b:2, 1:1, 2:2}; "
"object")));
JSObject::NormalizeProperties(isolate, object, KEEP_INOBJECT_PROPERTIES, 0,
"Normalize");
Handle<HeapObject> properties =
V8_DICT_MODE_PROTOTYPES_BOOL
? Handle<HeapObject>(object->property_dictionary_swiss(), isolate)
: handle(object->property_dictionary(), isolate);
Handle<JSObject> result = Handle<JSObject>::cast(
ft.Call(handle(object->map(), isolate), properties,
handle(object->elements(), isolate))
.ToHandleChecked());
CHECK_EQ(result->map(), object->map());
if (V8_DICT_MODE_PROTOTYPES_BOOL) {
CHECK_EQ(result->property_dictionary_swiss(),
object->property_dictionary_swiss());
} else {
CHECK_EQ(result->property_dictionary(), object->property_dictionary());
}
CHECK(!result->HasFastProperties());
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
}
namespace {
template <typename Dictionary>
using CSAAllocator =
std::function<TNode<Dictionary>(CodeStubAssembler&, TNode<IntPtrT>)> const&;
template <typename Dictionary>
using Allocator = std::function<Handle<Dictionary>(Isolate*, int)> const&;
// Tests that allocation code emitted by {csa_alloc} yields ordered hash tables
// identical to those produced by {alloc}.
template <typename Dictionary>
void TestDictionaryAllocation(CSAAllocator<Dictionary> csa_alloc,
Allocator<Dictionary> alloc, int max_capacity) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
auto capacity = m.Parameter<Smi>(1);
TNode<Dictionary> result = csa_alloc(m, m.SmiUntag(capacity));
m.Return(result);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
{
for (int i = 0; i < max_capacity; i = i * 1.1 + 1) {
Handle<HeapObject> result = Handle<HeapObject>::cast(
ft.Call(handle(Smi::FromInt(i), isolate)).ToHandleChecked());
Handle<Dictionary> dict = alloc(isolate, i);
// Both dictionaries should be memory equal.
int size = dict->Size();
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(dict->address()),
reinterpret_cast<void*>(result->address()), size));
}
}
}
} // namespace
TEST(AllocateNameDictionary) {
auto csa_alloc = [](CodeStubAssembler& m, TNode<IntPtrT> cap) {
return m.AllocateNameDictionary(cap);
};
auto alloc = [](Isolate* isolate, int capacity) {
return NameDictionary::New(isolate, capacity);
};
TestDictionaryAllocation<NameDictionary>(csa_alloc, alloc, 256);
}
TEST(AllocateOrderedNameDictionary) {
auto csa_alloc = [](CodeStubAssembler& m, TNode<IntPtrT> cap) {
return m.AllocateOrderedNameDictionary(cap);
};
auto alloc = [](Isolate* isolate, int capacity) {
return OrderedNameDictionary::Allocate(isolate, capacity).ToHandleChecked();
};
TestDictionaryAllocation<OrderedNameDictionary>(csa_alloc, alloc, 256);
}
TEST(AllocateOrderedHashSet) {
// ignoring capacitites, as the API cannot take them
auto csa_alloc = [](CodeStubAssembler& m, TNode<IntPtrT> cap) {
return m.AllocateOrderedHashSet();
};
auto alloc = [](Isolate* isolate, int capacity) {
return OrderedHashSet::Allocate(isolate, OrderedHashSet::kInitialCapacity)
.ToHandleChecked();
};
TestDictionaryAllocation<OrderedHashSet>(csa_alloc, alloc, 1);
}
TEST(AllocateOrderedHashMap) {
// ignoring capacities, as the API cannot take them
auto csa_alloc = [](CodeStubAssembler& m, TNode<IntPtrT> cap) {
return m.AllocateOrderedHashMap();
};
auto alloc = [](Isolate* isolate, int capacity) {
return OrderedHashMap::Allocate(isolate, OrderedHashMap::kInitialCapacity)
.ToHandleChecked();
};
TestDictionaryAllocation<OrderedHashMap>(csa_alloc, alloc, 1);
}
TEST(PopAndReturnFromJSBuiltinWithStackParameters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumStackParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumStackParams);
{
CodeStubAssembler m(asm_tester.state());
m.PopAndReturn(m.SmiUntag(m.Parameter<Smi>(0)),
m.SmiConstant(Smi::FromInt(1234)));
}
// Attempt to generate code must trigger CHECK failure in RawMachineAssebler.
// PopAndReturn is not allowed in builtins with JS linkage and declared stack
// parameters.
asm_tester.GenerateCode();
}
TEST(PopAndReturnFromTFCBuiltinWithStackParameters) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFC-style builtin with stack arguments.
// For the testing purposes we need any interface descriptor that has at
// least one argument passed on stack.
using Descriptor = FlatMapIntoArrayDescriptor;
Descriptor descriptor;
CHECK_LT(0, descriptor.GetStackParameterCount());
CodeAssemblerTester asm_tester(isolate, Descriptor());
{
CodeStubAssembler m(asm_tester.state());
m.PopAndReturn(m.SmiUntag(m.Parameter<Smi>(0)),
m.SmiConstant(Smi::FromInt(1234)));
}
// Attempt to generate code must trigger CHECK failure in RawMachineAssebler.
// PopAndReturn is not allowed in builtins with JS linkage and declared stack
// parameters.
asm_tester.GenerateCode();
}
namespace {
TNode<Object> MakeConstantNode(CodeStubAssembler& m, Handle<Object> value) {
if (value->IsSmi()) {
return m.SmiConstant(Smi::ToInt(*value));
}
return m.HeapConstant(Handle<HeapObject>::cast(value));
}
// Buids a CSA function that calls |target| function with given arguments
// |number_of_iterations| times and checks that the stack pointer values before
// the calls and after the calls are the same.
// Then this new function is called multiple times.
template <typename... Args>
void CallFunctionWithStackPointerChecks(Isolate* isolate,
Handle<Object> expected_result,
Handle<Object> target,
Handle<Object> receiver, Args... args) {
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
{
CodeStubAssembler m(asm_tester.state());
TNode<Context> context = m.Parameter<Context>(Descriptor::kContext);
#ifdef V8_CC_GNU
// GetStackPointer is available only when V8_CC_GNU is defined.
const TNode<ExternalReference> get_stack_ptr = m.ExternalConstant(
ExternalReference::Create(reinterpret_cast<Address>(GetStackPointer)));
// CSA doesn't have instructions for reading current stack pointer value,
// so we use a C function that returns address of its local variable.
// This is a good-enough approximation for the stack pointer.
MachineType type_intptr = MachineType::IntPtr();
TNode<WordT> stack_pointer0 =
m.UncheckedCast<WordT>(m.CallCFunction(get_stack_ptr, type_intptr));
#endif
// CSA::CallCFunction() aligns stack pointer before the call, so off-by one
// errors will not be detected. In order to handle this we do the calls in a
// loop in order to exaggerate the effect of potentially broken stack
// pointer so that the GetStackPointer function will be able to notice it.
m.BuildFastLoop<IntPtrT>(
m.IntPtrConstant(0), m.IntPtrConstant(153),
[&](TNode<IntPtrT> index) {
TNode<Object> result = m.Call(context, MakeConstantNode(m, target),
MakeConstantNode(m, receiver),
MakeConstantNode(m, args)...);
CSA_CHECK(
&m, m.TaggedEqual(result, MakeConstantNode(m, expected_result)));
},
1, CodeStubAssembler::IndexAdvanceMode::kPost);
#ifdef V8_CC_GNU
TNode<WordT> stack_pointer1 =
m.UncheckedCast<WordT>(m.CallCFunction(get_stack_ptr, type_intptr));
CSA_CHECK(&m, m.WordEqual(stack_pointer0, stack_pointer1));
#endif
m.Return(m.SmiConstant(42));
}
FunctionTester ft(asm_tester.GenerateCode(), 1); // Include receiver.
Handle<Object> result;
for (int test_count = 0; test_count < 100; ++test_count) {
result = ft.Call().ToHandleChecked();
CHECK_EQ(Smi::FromInt(42), *result);
}
}
} // namespace
TEST(PopAndReturnConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
const int kNumParams = 4; // Not including receiver
{
CodeStubAssembler m(asm_tester.state());
TNode<Int32T> argc =
m.UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
CSA_CHECK(&m, m.Word32Equal(argc, m.Int32Constant(kNumParams)));
m.PopAndReturn(m.IntPtrConstant(kNumParams + 1), // Include receiver.
m.SmiConstant(1234));
}
FunctionTester ft(asm_tester.GenerateCode(), 0);
ft.function->shared().DontAdaptArguments();
// Now call this function multiple time also checking that the stack pointer
// didn't change after the calls.
Handle<Object> receiver = isolate->factory()->undefined_value();
Handle<Smi> expected_result(Smi::FromInt(1234), isolate);
CallFunctionWithStackPointerChecks(isolate, expected_result, ft.function,
receiver,
// Pass kNumParams arguments.
Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate),
Handle<Smi>(Smi::FromInt(3), isolate),
Handle<Smi>(Smi::FromInt(4), isolate));
}
TEST(PopAndReturnVariable) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
const int kNumParams = 4; // Not including receiver
{
CodeStubAssembler m(asm_tester.state());
TNode<Int32T> argc =
m.UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
CSA_CHECK(&m, m.Word32Equal(argc, m.Int32Constant(kNumParams)));
TNode<Int32T> argc_with_receiver = m.Int32Add(argc, m.Int32Constant(1));
m.PopAndReturn(m.ChangeInt32ToIntPtr(argc_with_receiver),
m.SmiConstant(1234));
}
FunctionTester ft(asm_tester.GenerateCode(), 0);
ft.function->shared().DontAdaptArguments();
// Now call this function multiple time also checking that the stack pointer
// didn't change after the calls.
Handle<Object> receiver = isolate->factory()->undefined_value();
Handle<Smi> expected_result(Smi::FromInt(1234), isolate);
CallFunctionWithStackPointerChecks(isolate, expected_result, ft.function,
receiver,
// Pass kNumParams arguments.
Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate),
Handle<Smi>(Smi::FromInt(3), isolate),
Handle<Smi>(Smi::FromInt(4), isolate));
}
TEST(OneToTwoByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters<String>(m.Parameter<String>(1), m.Parameter<String>(2),
m.IntPtrConstant(0), m.IntPtrConstant(0),
m.IntPtrConstant(5), String::ONE_BYTE_ENCODING,
String::TWO_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uc16 array[] = {1000, 1001, 1002, 1003, 1004};
Handle<String> string2 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowGarbageCollection no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(OneToOneByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters<String>(m.Parameter<String>(1), m.Parameter<String>(2),
m.IntPtrConstant(0), m.IntPtrConstant(0),
m.IntPtrConstant(5), String::ONE_BYTE_ENCODING,
String::ONE_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uint8_t array[] = {100, 101, 102, 103, 104};
Handle<String> string2 = isolate->factory()
->NewStringFromOneByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowGarbageCollection no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(OneToOneByteStringCopyNonZeroStart) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters<String>(m.Parameter<String>(1), m.Parameter<String>(2),
m.IntPtrConstant(0), m.IntPtrConstant(3),
m.IntPtrConstant(2), String::ONE_BYTE_ENCODING,
String::ONE_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
Handle<String> string1 = isolate->factory()->InternalizeUtf8String("abcde");
uint8_t array[] = {100, 101, 102, 103, 104};
Handle<String> string2 = isolate->factory()
->NewStringFromOneByte(ArrayVector(array))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowGarbageCollection no_gc;
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqOneByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[4]);
CHECK_EQ(100, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(101, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(102, Handle<SeqOneByteString>::cast(string2)->GetChars(no_gc)[2]);
}
TEST(TwoToTwoByteStringCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
StringBuiltinsAssembler m(asm_tester.state());
m.CopyStringCharacters<String>(m.Parameter<String>(1), m.Parameter<String>(2),
m.IntPtrConstant(0), m.IntPtrConstant(0),
m.IntPtrConstant(5), String::TWO_BYTE_ENCODING,
String::TWO_BYTE_ENCODING);
m.Return(m.SmiConstant(Smi::FromInt(0)));
uc16 array1[] = {2000, 2001, 2002, 2003, 2004};
Handle<String> string1 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array1))
.ToHandleChecked();
uc16 array2[] = {1000, 1001, 1002, 1003, 1004};
Handle<String> string2 = isolate->factory()
->NewStringFromTwoByte(ArrayVector(array2))
.ToHandleChecked();
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.Call(string1, string2);
DisallowGarbageCollection no_gc;
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[0],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[0]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[1],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[1]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[2],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[2]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[3],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[3]);
CHECK_EQ(Handle<SeqTwoByteString>::cast(string1)->GetChars(no_gc)[4],
Handle<SeqTwoByteString>::cast(string2)->GetChars(no_gc)[4]);
}
TEST(Arguments) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
{
CodeStubAssembler m(asm_tester.state());
TNode<Int32T> argc =
m.UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
CodeStubArguments arguments(&m, argc);
CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(0), m.SmiConstant(12)));
CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(1), m.SmiConstant(13)));
CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(2), m.SmiConstant(14)));
arguments.PopAndReturn(arguments.GetReceiver());
}
FunctionTester ft(asm_tester.GenerateCode(), 0);
ft.function->shared().DontAdaptArguments();
Handle<Object> result;
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
// When calling with undefined object as the receiver, the CallFunction
// builtin swaps it to the global proxy object.
CHECK_EQ(*isolate->global_proxy(), *result);
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate),
Handle<Smi>(Smi::FromInt(15), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->global_proxy(), *result);
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate),
Handle<Smi>(Smi::FromInt(15), isolate),
Handle<Smi>(Smi::FromInt(16), isolate),
Handle<Smi>(Smi::FromInt(17), isolate),
Handle<Smi>(Smi::FromInt(18), isolate),
Handle<Smi>(Smi::FromInt(19), isolate))
.ToHandleChecked();
CHECK_EQ(*isolate->global_proxy(), *result);
}
TEST(ArgumentsForEach) {
Isolate* isolate(CcTest::InitIsolateOnce());
// Setup CSA for creating TFJ-style builtin.
using Descriptor = JSTrampolineDescriptor;
CodeAssemblerTester asm_tester(isolate, Descriptor());
{
CodeStubAssembler m(asm_tester.state());
TNode<Int32T> argc =
m.UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
CodeStubArguments arguments(&m, argc);
TVariable<Smi> sum(&m);
CodeAssemblerVariableList list({&sum}, m.zone());
sum = m.SmiConstant(0);
arguments.ForEach(list, [&](TNode<Object> arg) {
sum = m.SmiAdd(sum.value(), m.CAST(arg));
});
arguments.PopAndReturn(sum.value());
}
FunctionTester ft(asm_tester.GenerateCode(), 0);
ft.function->shared().DontAdaptArguments();
Handle<Object> result;
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate))
.ToHandleChecked();
CHECK_EQ(Smi::FromInt(12 + 13 + 14), *result);
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate),
Handle<Smi>(Smi::FromInt(15), isolate))
.ToHandleChecked();
CHECK_EQ(Smi::FromInt(12 + 13 + 14 + 15), *result);
result = ft.Call(Handle<Smi>(Smi::FromInt(12), isolate),
Handle<Smi>(Smi::FromInt(13), isolate),
Handle<Smi>(Smi::FromInt(14), isolate),
Handle<Smi>(Smi::FromInt(15), isolate),
Handle<Smi>(Smi::FromInt(16), isolate),
Handle<Smi>(Smi::FromInt(17), isolate),
Handle<Smi>(Smi::FromInt(18), isolate),
Handle<Smi>(Smi::FromInt(19), isolate))
.ToHandleChecked();
CHECK_EQ(Smi::FromInt(12 + 13 + 14 + 15 + 16 + 17 + 18 + 19), *result);
}
TEST(IsDebugActive) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
Label if_active(&m), if_not_active(&m);
m.Branch(m.IsDebugActive(), &if_active, &if_not_active);
m.BIND(&if_active);
m.Return(m.TrueConstant());
m.BIND(&if_not_active);
m.Return(m.FalseConstant());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK(!isolate->debug()->is_active());
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
bool* debug_is_active = reinterpret_cast<bool*>(
ExternalReference::debug_is_active_address(isolate).address());
// Cheat to enable debug (TODO: do this properly).
*debug_is_active = true;
result = ft.Call().ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
// Reset debug mode.
*debug_is_active = false;
}
TEST(CallBuiltin) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate,
kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
{
auto receiver = m.Parameter<Object>(1);
auto name = m.Parameter<Name>(2);
auto context = m.Parameter<Context>(kNumParams + 3);
auto value = m.CallBuiltin(Builtins::kGetProperty, context, receiver, name);
m.Return(value);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
Handle<Name> name = factory->InternalizeUtf8String("a");
Handle<Object> value(Smi::FromInt(153), isolate);
Handle<JSObject> object = factory->NewJSObjectWithNullProto();
JSObject::AddProperty(isolate, object, name, value, NONE);
Handle<Object> result = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*value, *result);
}
TEST(TailCallBuiltin) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate,
kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
{
auto receiver = m.Parameter<Object>(1);
auto name = m.Parameter<Name>(2);
auto context = m.Parameter<Context>(kNumParams + 3);
m.TailCallBuiltin(Builtins::kGetProperty, context, receiver, name);
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
Handle<Name> name = factory->InternalizeUtf8String("a");
Handle<Object> value(Smi::FromInt(153), isolate);
Handle<JSObject> object = factory->NewJSObjectWithNullProto();
JSObject::AddProperty(isolate, object, name, value, NONE);
Handle<Object> result = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*value, *result);
}
class AppendJSArrayCodeStubAssembler : public CodeStubAssembler {
public:
AppendJSArrayCodeStubAssembler(compiler::CodeAssemblerState* state,
ElementsKind kind)
: CodeStubAssembler(state), kind_(kind) {}
void TestAppendJSArrayImpl(Isolate* isolate, CodeAssemblerTester* csa_tester,
Handle<Object> o1, Handle<Object> o2,
Handle<Object> o3, Handle<Object> o4,
int initial_size, int result_size) {
Handle<JSArray> array = isolate->factory()->NewJSArray(
kind_, 2, initial_size, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
Object::SetElement(isolate, array, 0, Handle<Smi>(Smi::FromInt(1), isolate),
kDontThrow)
.Check();
Object::SetElement(isolate, array, 1, Handle<Smi>(Smi::FromInt(2), isolate),
kDontThrow)
.Check();
CodeStubArguments args(this, IntPtrConstant(kNumParams));
TVariable<IntPtrT> arg_index(this);
Label bailout(this);
arg_index = IntPtrConstant(0);
TNode<Smi> length = BuildAppendJSArray(kind_, HeapConstant(array), &args,
&arg_index, &bailout);
Return(length);
BIND(&bailout);
Return(SmiTag(IntPtrAdd(arg_index.value(), IntPtrConstant(2))));
FunctionTester ft(csa_tester->GenerateCode(), kNumParams);
Handle<Object> result = ft.Call(o1, o2, o3, o4).ToHandleChecked();
CHECK_EQ(kind_, array->GetElementsKind());
CHECK_EQ(result_size, Handle<Smi>::cast(result)->value());
CHECK_EQ(result_size, Smi::ToInt(array->length()));
Handle<Object> obj =
JSObject::GetElement(isolate, array, 2).ToHandleChecked();
Handle<HeapObject> undefined_value =
Handle<HeapObject>(ReadOnlyRoots(isolate).undefined_value(), isolate);
CHECK_EQ(result_size < 3 ? *undefined_value : *o1, *obj);
obj = JSObject::GetElement(isolate, array, 3).ToHandleChecked();
CHECK_EQ(result_size < 4 ? *undefined_value : *o2, *obj);
obj = JSObject::GetElement(isolate, array, 4).ToHandleChecked();
CHECK_EQ(result_size < 5 ? *undefined_value : *o3, *obj);
obj = JSObject::GetElement(isolate, array, 5).ToHandleChecked();
CHECK_EQ(result_size < 6 ? *undefined_value : *o4, *obj);
}
static void TestAppendJSArray(Isolate* isolate, ElementsKind kind, Object o1,
Object o2, Object o3, Object o4,
int initial_size, int result_size) {
CodeAssemblerTester asm_tester(isolate, kNumParams);
AppendJSArrayCodeStubAssembler m(asm_tester.state(), kind);
m.TestAppendJSArrayImpl(
isolate, &asm_tester, Handle<Object>(o1, isolate),
Handle<Object>(o2, isolate), Handle<Object>(o3, isolate),
Handle<Object>(o4, isolate), initial_size, result_size);
}
private:
static const int kNumParams = 4;
ElementsKind kind_;
};
TEST(BuildAppendJSArrayFastElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastElementGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastSmiElement) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastSmiElementGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastSmiElementObject) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 6, 4);
}
TEST(BuildAppendJSArrayFastSmiElementObjectGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 2, 4);
}
TEST(BuildAppendJSArrayFastDoubleElements) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 6, 6);
}
TEST(BuildAppendJSArrayFastDoubleElementsGrow) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
Smi::FromInt(5), Smi::FromInt(6), 2, 6);
}
TEST(BuildAppendJSArrayFastDoubleElementsObject) {
Isolate* isolate(CcTest::InitIsolateOnce());
AppendJSArrayCodeStubAssembler::TestAppendJSArray(
isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4),
ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 6, 4);
}
namespace {
template <typename Stub, typename... Args>
void Recompile(Args... args) {
Stub stub(args...);
stub.DeleteStubFromCacheForTesting();
stub.GetCode();
}
} // namespace
void CustomPromiseHook(v8::PromiseHookType type, v8::Local<v8::Promise> promise,
v8::Local<v8::Value> parentPromise) {}
TEST(IsPromiseHookEnabled) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
m.Return(
m.SelectBooleanConstant(m.IsPromiseHookEnabledOrHasAsyncEventDelegate()));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
isolate->SetPromiseHook(CustomPromiseHook);
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
isolate->SetPromiseHook(nullptr);
result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(NewJSPromise) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<JSPromise> promise = m.NewJSPromise(context);
m.Return(promise);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsJSPromise());
}
TEST(NewJSPromise2) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<JSPromise> promise =
m.NewJSPromise(context, v8::Promise::kRejected, m.SmiConstant(1));
m.Return(promise);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result->IsJSPromise());
Handle<JSPromise> js_promise = Handle<JSPromise>::cast(result);
CHECK_EQ(v8::Promise::kRejected, js_promise->status());
CHECK_EQ(Smi::FromInt(1), js_promise->result());
CHECK(!js_promise->has_handler());
}
TEST(IsSymbol) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
auto symbol = m.Parameter<HeapObject>(1);
m.Return(m.SelectBooleanConstant(m.IsSymbol(symbol)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(IsPrivateSymbol) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
auto symbol = m.Parameter<HeapObject>(1);
m.Return(m.SelectBooleanConstant(m.IsPrivateSymbol(symbol)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
result = ft.Call(isolate->factory()->NewPrivateSymbol()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result);
}
TEST(PromiseHasHandler) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<JSPromise> promise =
m.NewJSPromise(context, m.UndefinedConstant());
m.Return(m.SelectBooleanConstant(m.PromiseHasHandler(promise)));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result);
}
TEST(CreatePromiseResolvingFunctionsContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
const auto context = m.Parameter<Context>(kNumParams + 3);
const TNode<NativeContext> native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.NewJSPromise(context, m.UndefinedConstant());
const TNode<Context> promise_context =
m.CreatePromiseResolvingFunctionsContext(
context, promise, m.BooleanConstant(false), native_context);
m.Return(promise_context);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK(result->IsContext());
Handle<Context> context_js = Handle<Context>::cast(result);
CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo), context_js->scope_info());
CHECK_EQ(*isolate->native_context(), context_js->native_context());
CHECK(context_js->get(PromiseBuiltins::kPromiseSlot).IsJSPromise());
CHECK_EQ(ReadOnlyRoots(isolate).false_value(),
context_js->get(PromiseBuiltins::kDebugEventSlot));
}
TEST(CreatePromiseResolvingFunctions) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<NativeContext> native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.NewJSPromise(context, m.UndefinedConstant());
PromiseResolvingFunctions funcs = m.CreatePromiseResolvingFunctions(
context, promise, m.BooleanConstant(false), native_context);
TNode<JSFunction> resolve = funcs.resolve;
TNode<JSFunction> reject = funcs.reject;
TNode<IntPtrT> const kSize = m.IntPtrConstant(2);
TNode<FixedArray> const arr =
m.Cast(m.AllocateFixedArray(PACKED_ELEMENTS, kSize));
m.StoreFixedArrayElement(arr, 0, resolve);
m.StoreFixedArrayElement(arr, 1, reject);
m.Return(arr);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsFixedArray());
Handle<FixedArray> result_arr = Handle<FixedArray>::cast(result_obj);
CHECK(result_arr->get(0).IsJSFunction());
CHECK(result_arr->get(1).IsJSFunction());
}
TEST(NewElementsCapacity) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, 2);
CodeStubAssembler m(asm_tester.state());
m.Return(m.SmiTag(
m.CalculateNewElementsCapacity(m.SmiUntag(m.Parameter<Smi>(1)))));
FunctionTester ft(asm_tester.GenerateCode(), 1);
Handle<Smi> test_value = Handle<Smi>(Smi::FromInt(1), isolate);
Handle<Smi> result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(2), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1025), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
}
TEST(NewElementsCapacitySmi) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate, 2);
CodeStubAssembler m(asm_tester.state());
m.Return(m.CalculateNewElementsCapacity(m.UncheckedParameter<Smi>(1)));
FunctionTester ft(asm_tester.GenerateCode(), 1);
Handle<Smi> test_value = Handle<Smi>(Smi::FromInt(0), isolate);
Handle<Smi> result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(2), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
test_value = Handle<Smi>(Smi::FromInt(1025), isolate);
result_obj = ft.CallChecked<Smi>(test_value);
CHECK_EQ(
result_obj->value(),
static_cast<int>(JSObject::NewElementsCapacity(test_value->value())));
}
TEST(AllocateFunctionWithMapAndContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
const auto context = m.Parameter<Context>(kNumParams + 2);
const TNode<NativeContext> native_context = m.LoadNativeContext(context);
const TNode<JSPromise> promise =
m.NewJSPromise(context, m.UndefinedConstant());
TNode<Context> promise_context = m.CreatePromiseResolvingFunctionsContext(
context, promise, m.BooleanConstant(false), native_context);
TNode<Object> resolve_info =
m.PromiseCapabilityDefaultResolveSharedFunConstant();
const TNode<Object> map = m.LoadContextElement(
native_context, Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX);
const TNode<JSFunction> resolve = m.AllocateFunctionWithMapAndContext(
m.CAST(map), m.CAST(resolve_info), promise_context);
m.Return(resolve);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsJSFunction());
Handle<JSFunction> fun = Handle<JSFunction>::cast(result_obj);
CHECK_EQ(ReadOnlyRoots(isolate).empty_property_array(),
fun->property_array());
CHECK_EQ(ReadOnlyRoots(isolate).empty_fixed_array(), fun->elements());
CHECK_EQ(isolate->heap()->many_closures_cell(), fun->raw_feedback_cell());
CHECK(!fun->has_prototype_slot());
CHECK_EQ(*isolate->factory()->promise_capability_default_resolve_shared_fun(),
fun->shared());
CHECK_EQ(isolate->factory()
->promise_capability_default_resolve_shared_fun()
->GetCode(),
fun->code());
}
TEST(CreatePromiseGetCapabilitiesExecutorContext) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 2);
TNode<NativeContext> native_context = m.LoadNativeContext(context);
TNode<PromiseCapability> capability = m.CreatePromiseCapability(
m.UndefinedConstant(), m.UndefinedConstant(), m.UndefinedConstant());
TNode<Context> executor_context =
m.CreatePromiseCapabilitiesExecutorContext(native_context, capability);
m.Return(executor_context);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj =
ft.Call(isolate->factory()->undefined_value()).ToHandleChecked();
CHECK(result_obj->IsContext());
Handle<Context> context_js = Handle<Context>::cast(result_obj);
CHECK_EQ(PromiseBuiltins::kCapabilitiesContextLength, context_js->length());
CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo), context_js->scope_info());
CHECK_EQ(*isolate->native_context(), context_js->native_context());
CHECK(
context_js->get(PromiseBuiltins::kCapabilitySlot).IsPromiseCapability());
}
TEST(NewPromiseCapability) {
Isolate* isolate(CcTest::InitIsolateOnce());
{ // Builtin Promise
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate,
kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
const TNode<NativeContext> native_context = m.LoadNativeContext(context);
const TNode<Object> promise_constructor =
m.LoadContextElement(native_context, Context::PROMISE_FUNCTION_INDEX);
const TNode<Oddball> debug_event = m.TrueConstant();
const TNode<Object> capability =
m.CallBuiltin(Builtins::kNewPromiseCapability, context,
promise_constructor, debug_event);
m.Return(capability);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result_obj = ft.Call().ToHandleChecked();
CHECK(result_obj->IsPromiseCapability());
Handle<PromiseCapability> result =
Handle<PromiseCapability>::cast(result_obj);
CHECK(result->promise().IsJSPromise());
CHECK(result->resolve().IsJSFunction());
CHECK(result->reject().IsJSFunction());
CHECK_EQ(
*isolate->factory()->promise_capability_default_reject_shared_fun(),
JSFunction::cast(result->reject()).shared());
CHECK_EQ(
*isolate->factory()->promise_capability_default_resolve_shared_fun(),
JSFunction::cast(result->resolve()).shared());
Handle<JSFunction> callbacks[] = {
handle(JSFunction::cast(result->resolve()), isolate),
handle(JSFunction::cast(result->reject()), isolate)};
for (auto&& callback : callbacks) {
Handle<Context> context(Context::cast(callback->context()), isolate);
CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo),
context->scope_info());
CHECK_EQ(*isolate->native_context(), context->native_context());
CHECK_EQ(PromiseBuiltins::kPromiseContextLength, context->length());
CHECK_EQ(context->get(PromiseBuiltins::kPromiseSlot), result->promise());
}
}
{ // Custom Promise
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate,
kNumParams + 1); // Include receiver.
PromiseBuiltinsAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
auto constructor = m.Parameter<Object>(1);
const TNode<Oddball> debug_event = m.TrueConstant();
const TNode<Object> capability = m.CallBuiltin(
Builtins::kNewPromiseCapability, context, constructor, debug_event);
m.Return(capability);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<JSFunction> constructor_fn =
Handle<JSFunction>::cast(v8::Utils::OpenHandle(*CompileRun(
"(function FakePromise(executor) {"
" var self = this;"
" function resolve(value) { self.resolvedValue = value; }"
" function reject(reason) { self.rejectedReason = reason; }"
" executor(resolve, reject);"
"})")));
Handle<Object> result_obj = ft.Call(constructor_fn).ToHandleChecked();
CHECK(result_obj->IsPromiseCapability());
Handle<PromiseCapability> result =
Handle<PromiseCapability>::cast(result_obj);
CHECK(result->promise().IsJSObject());
Handle<JSObject> promise(JSObject::cast(result->promise()), isolate);
CHECK_EQ(constructor_fn->prototype_or_initial_map(), promise->map());
CHECK(result->resolve().IsJSFunction());
CHECK(result->reject().IsJSFunction());
Handle<String> resolved_str =
isolate->factory()->NewStringFromAsciiChecked("resolvedStr");
Handle<String> rejected_str =
isolate->factory()->NewStringFromAsciiChecked("rejectedStr");
Handle<Object> argv1[] = {resolved_str};
Handle<Object> ret =
Execution::Call(isolate, handle(result->resolve(), isolate),
isolate->factory()->undefined_value(), 1, argv1)
.ToHandleChecked();
Handle<Object> prop1 =
JSReceiver::GetProperty(isolate, promise, "resolvedValue")
.ToHandleChecked();
CHECK_EQ(*resolved_str, *prop1);
Handle<Object> argv2[] = {rejected_str};
ret = Execution::Call(isolate, handle(result->reject(), isolate),
isolate->factory()->undefined_value(), 1, argv2)
.ToHandleChecked();
Handle<Object> prop2 =
JSReceiver::GetProperty(isolate, promise, "rejectedReason")
.ToHandleChecked();
CHECK_EQ(*rejected_str, *prop2);
}
}
TEST(DirectMemoryTest8BitWord32Immediate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127};
const int element_count = 8;
Label bad(&m);
TNode<RawPtrT> buffer_node = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
TNode<Uint8T> loaded =
m.LoadBufferData<Uint8T>(buffer_node, static_cast<int>(i));
TNode<Word32T> masked = m.Word32And(loaded, m.Int32Constant(buffer[j]));
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest16BitWord32Immediate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int16_t buffer[] = {156, 2234, 4544, 8444, 1723, 3888, 658, 1278};
const int element_count = 8;
Label bad(&m);
TNode<RawPtrT> buffer_node = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
TNode<Uint16T> loaded = m.LoadBufferData<Uint16T>(
buffer_node, static_cast<int>(i * sizeof(int16_t)));
TNode<Word32T> masked = m.Word32And(loaded, m.Int32Constant(buffer[j]));
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest8BitWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127, 67, 38};
const int element_count = 10;
Label bad(&m);
TNode<Uint32T> constants[element_count];
TNode<RawPtrT> buffer_node = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
constants[i] = m.LoadBufferData<Uint8T>(buffer_node, static_cast<int>(i));
}
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
TNode<Uint8T> loaded =
m.LoadBufferData<Uint8T>(buffer_node, static_cast<int>(i));
TNode<Word32T> masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
masked = m.Word32And(constants[i], constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(DirectMemoryTest16BitWord32) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 0;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
int16_t buffer[] = {1, 2, 4, 8, 12345, 33, 65, 255, 67, 3823};
const int element_count = 10;
Label bad(&m);
TNode<Uint32T> constants[element_count];
TNode<RawPtrT> buffer_node1 = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
constants[i] = m.LoadBufferData<Uint16T>(
buffer_node1, static_cast<int>(i * sizeof(int16_t)));
}
TNode<RawPtrT> buffer_node2 = m.PointerConstant(buffer);
for (size_t i = 0; i < element_count; ++i) {
for (size_t j = 0; j < element_count; ++j) {
TNode<Uint16T> loaded = m.LoadBufferData<Uint16T>(
buffer_node1, static_cast<int>(i * sizeof(int16_t)));
TNode<Word32T> masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
// Force a memory access relative to a high-number register.
loaded = m.LoadBufferData<Uint16T>(buffer_node2,
static_cast<int>(i * sizeof(int16_t)));
masked = m.Word32And(loaded, constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
masked = m.Word32And(constants[i], constants[j]);
if ((buffer[j] & buffer[i]) != 0) {
m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad);
} else {
m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad);
}
}
}
m.Return(m.SmiConstant(1));
m.BIND(&bad);
m.Return(m.SmiConstant(0));
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
CHECK_EQ(1, ft.CallChecked<Smi>()->value());
}
TEST(LoadJSArrayElementsMap) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
TNode<NativeContext> native_context = m.LoadNativeContext(context);
TNode<Int32T> kind = m.SmiToInt32(m.Parameter<Smi>(1));
m.Return(m.LoadJSArrayElementsMap(kind, native_context));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
for (int kind = 0; kind <= HOLEY_DOUBLE_ELEMENTS; kind++) {
Handle<Map> csa_result =
ft.CallChecked<Map>(handle(Smi::FromInt(kind), isolate));
ElementsKind elements_kind = static_cast<ElementsKind>(kind);
Handle<Map> result(
isolate->native_context()->GetInitialJSArrayMap(elements_kind),
isolate);
CHECK_EQ(*csa_result, *result);
}
}
TEST(IsWhiteSpaceOrLineTerminator) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{ // Returns true if whitespace, false otherwise.
CodeStubAssembler m(asm_tester.state());
Label if_true(&m), if_false(&m);
m.Branch(m.IsWhiteSpaceOrLineTerminator(
m.UncheckedCast<Uint16T>(m.SmiToInt32(m.Parameter<Smi>(1)))),
&if_true, &if_false);
m.BIND(&if_true);
m.Return(m.TrueConstant());
m.BIND(&if_false);
m.Return(m.FalseConstant());
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> true_value = ft.true_value();
Handle<Object> false_value = ft.false_value();
for (uc16 c = 0; c < 0xFFFF; c++) {
Handle<Object> expected_value =
IsWhiteSpaceOrLineTerminator(c) ? true_value : false_value;
ft.CheckCall(expected_value, handle(Smi::FromInt(c), isolate));
}
}
TEST(BranchIfNumberRelationalComparison) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* f = isolate->factory();
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
Label return_true(&m), return_false(&m);
m.BranchIfNumberRelationalComparison(
Operation::kGreaterThanOrEqual, m.Parameter<Number>(1),
m.Parameter<Number>(2), &return_true, &return_false);
m.BIND(&return_true);
m.Return(m.BooleanConstant(true));
m.BIND(&return_false);
m.Return(m.BooleanConstant(false));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
ft.CheckTrue(f->NewNumber(0), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(1), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(1), f->NewNumber(1));
ft.CheckFalse(f->NewNumber(0), f->NewNumber(1));
ft.CheckFalse(f->NewNumber(-1), f->NewNumber(0));
ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1));
ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1.5));
ft.CheckFalse(f->NewNumber(-1.5), f->NewNumber(-1));
ft.CheckTrue(f->NewNumber(-1.5), f->NewNumber(-1.5));
}
TEST(IsNumberArrayIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
auto number = m.Parameter<Number>(1);
m.Return(
m.SmiFromInt32(m.UncheckedCast<Int32T>(m.IsNumberArrayIndex(number))));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
double indices[] = {Smi::kMinValue,
-11,
-1,
0,
1,
2,
Smi::kMaxValue,
-11.0,
-11.1,
-2.0,
-1.0,
-0.0,
0.0,
0.00001,
0.1,
1,
2,
Smi::kMinValue - 1.0,
Smi::kMinValue + 1.0,
Smi::kMinValue + 1.2,
kMaxInt + 1.2,
kMaxInt - 10.0,
kMaxInt - 1.0,
kMaxInt,
kMaxInt + 1.0,
kMaxInt + 10.0};
for (size_t i = 0; i < arraysize(indices); i++) {
Handle<Object> index = isolate->factory()->NewNumber(indices[i]);
uint32_t array_index;
CHECK_EQ(index->ToArrayIndex(&array_index),
(ft.CallChecked<Smi>(index)->value() == 1));
}
}
TEST(NumberMinMax) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester_min(isolate,
kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester_min.state());
m.Return(m.NumberMin(m.Parameter<Number>(1), m.Parameter<Number>(2)));
}
FunctionTester ft_min(asm_tester_min.GenerateCode(), kNumParams);
CodeAssemblerTester asm_tester_max(isolate,
kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester_max.state());
m.Return(m.NumberMax(m.Parameter<Number>(1), m.Parameter<Number>(2)));
}
FunctionTester ft_max(asm_tester_max.GenerateCode(), kNumParams);
// Test smi values.
Handle<Smi> smi_1(Smi::FromInt(1), isolate);
Handle<Smi> smi_2(Smi::FromInt(2), isolate);
Handle<Smi> smi_5(Smi::FromInt(5), isolate);
CHECK_EQ(ft_min.CallChecked<Smi>(smi_1, smi_2)->value(), 1);
CHECK_EQ(ft_min.CallChecked<Smi>(smi_2, smi_1)->value(), 1);
CHECK_EQ(ft_max.CallChecked<Smi>(smi_1, smi_2)->value(), 2);
CHECK_EQ(ft_max.CallChecked<Smi>(smi_2, smi_1)->value(), 2);
// Test double values.
Handle<Object> double_a = isolate->factory()->NewNumber(2.5);
Handle<Object> double_b = isolate->factory()->NewNumber(3.5);
Handle<Object> nan =
isolate->factory()->NewNumber(std::numeric_limits<double>::quiet_NaN());
Handle<Object> infinity = isolate->factory()->NewNumber(V8_INFINITY);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_a, double_b)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_b, double_a)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(infinity, double_a)->value(), 2.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_a, infinity)->value(), 2.5);
CHECK(std::isnan(ft_min.CallChecked<HeapNumber>(nan, double_a)->value()));
CHECK(std::isnan(ft_min.CallChecked<HeapNumber>(double_a, nan)->value()));
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_a, double_b)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_b, double_a)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(infinity, double_a)->value(),
V8_INFINITY);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_a, infinity)->value(),
V8_INFINITY);
CHECK(std::isnan(ft_max.CallChecked<HeapNumber>(nan, double_a)->value()));
CHECK(std::isnan(ft_max.CallChecked<HeapNumber>(double_a, nan)->value()));
// Mixed smi/double values.
CHECK_EQ(ft_max.CallChecked<HeapNumber>(smi_1, double_b)->value(), 3.5);
CHECK_EQ(ft_max.CallChecked<HeapNumber>(double_b, smi_1)->value(), 3.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(smi_5, double_b)->value(), 3.5);
CHECK_EQ(ft_min.CallChecked<HeapNumber>(double_b, smi_5)->value(), 3.5);
}
TEST(NumberAddSub) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester_add(isolate,
kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester_add.state());
m.Return(m.NumberAdd(m.Parameter<Number>(1), m.Parameter<Number>(2)));
}
FunctionTester ft_add(asm_tester_add.GenerateCode(), kNumParams);
CodeAssemblerTester asm_tester_sub(isolate,
kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester_sub.state());
m.Return(m.NumberSub(m.Parameter<Number>(1), m.Parameter<Number>(2)));
}
FunctionTester ft_sub(asm_tester_sub.GenerateCode(), kNumParams);
// Test smi values.
Handle<Smi> smi_1(Smi::FromInt(1), isolate);
Handle<Smi> smi_2(Smi::FromInt(2), isolate);
CHECK_EQ(ft_add.CallChecked<Smi>(smi_1, smi_2)->value(), 3);
CHECK_EQ(ft_sub.CallChecked<Smi>(smi_2, smi_1)->value(), 1);
// Test double values.
Handle<Object> double_a = isolate->factory()->NewNumber(2.5);
Handle<Object> double_b = isolate->factory()->NewNumber(3.0);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(double_a, double_b)->value(), 5.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(double_a, double_b)->value(), -.5);
// Test overflow.
Handle<Smi> smi_max(Smi::FromInt(Smi::kMaxValue), isolate);
Handle<Smi> smi_min(Smi::FromInt(Smi::kMinValue), isolate);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(smi_max, smi_1)->value(),
static_cast<double>(Smi::kMaxValue) + 1);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(smi_min, smi_1)->value(),
static_cast<double>(Smi::kMinValue) - 1);
// Test mixed smi/double values.
CHECK_EQ(ft_add.CallChecked<HeapNumber>(smi_1, double_a)->value(), 3.5);
CHECK_EQ(ft_add.CallChecked<HeapNumber>(double_a, smi_1)->value(), 3.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(smi_1, double_a)->value(), -1.5);
CHECK_EQ(ft_sub.CallChecked<HeapNumber>(double_a, smi_1)->value(), 1.5);
}
TEST(CloneEmptyFixedArray) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter<FixedArrayBase>(1)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->empty_fixed_array());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(0, result.length());
CHECK_EQ(*(isolate->factory()->empty_fixed_array()), result);
}
TEST(CloneFixedArray) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter<FixedArrayBase>(1)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(5, result.length());
CHECK(result.get(0).IsTheHole(isolate));
CHECK_EQ(Smi::cast(result.get(1)).value(), 1234);
CHECK(result.get(2).IsTheHole(isolate));
CHECK(result.get(3).IsTheHole(isolate));
CHECK(result.get(4).IsTheHole(isolate));
}
TEST(CloneFixedArrayCOW) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
m.Return(m.CloneFixedArray(m.Parameter<FixedArrayBase>(1)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
source->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(*source, result);
}
TEST(ExtractFixedArrayCOWForceCopy) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
base::Optional<TNode<Smi>> constant(m.SmiConstant(0));
m.Return(m.ExtractFixedArray(m.Parameter<FixedArrayBase>(1), constant,
base::Optional<TNode<Smi>>(base::nullopt),
base::Optional<TNode<Smi>>(base::nullopt),
flags));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
source->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map());
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_NE(*source, result);
CHECK_EQ(5, result.length());
CHECK(result.get(0).IsTheHole(isolate));
CHECK_EQ(Smi::cast(result.get(1)).value(), 1234);
CHECK(result.get(2).IsTheHole(isolate));
CHECK(result.get(3).IsTheHole(isolate));
CHECK(result.get(4).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimple) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
base::Optional<TNode<IntPtrT>> p1_untagged(m.SmiUntag(m.Parameter<Smi>(2)));
base::Optional<TNode<IntPtrT>> p2_untagged(m.SmiUntag(m.Parameter<Smi>(3)));
m.Return(m.ExtractFixedArray(
m.Parameter<FixedArrayBase>(1), p1_untagged, p2_untagged,
base::Optional<TNode<IntPtrT>>(base::nullopt), flags));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw =
ft.Call(source, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleSmiConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
base::Optional<TNode<Smi>> constant_1(m.SmiConstant(1));
base::Optional<TNode<Smi>> constant_2(m.SmiConstant(2));
m.Return(m.ExtractFixedArray(
m.Parameter<FixedArrayBase>(1), constant_1, constant_2,
base::Optional<TNode<Smi>>(base::nullopt), flags));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrConstant) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
CodeStubAssembler::ExtractFixedArrayFlags flags;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays;
flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW;
base::Optional<TNode<IntPtrT>> constant_1(m.IntPtrConstant(1));
base::Optional<TNode<IntPtrT>> constant_2(m.IntPtrConstant(2));
m.Return(m.ExtractFixedArray(
m.Parameter<FixedArrayBase>(1), constant_1, constant_2,
base::Optional<TNode<IntPtrT>>(base::nullopt), flags));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrConstantNoDoubles) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
base::Optional<TNode<IntPtrT>> constant_1(m.IntPtrConstant(1));
base::Optional<TNode<IntPtrT>> constant_2(m.IntPtrConstant(2));
m.Return(m.ExtractFixedArray(
m.Parameter<FixedArrayBase>(1), constant_1, constant_2,
base::Optional<TNode<IntPtrT>>(base::nullopt),
CodeStubAssembler::ExtractFixedArrayFlag::kFixedArrays));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw = ft.Call(source).ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
}
TEST(ExtractFixedArraySimpleIntPtrParameters) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
base::Optional<TNode<IntPtrT>> p1_untagged(m.SmiUntag(m.Parameter<Smi>(2)));
base::Optional<TNode<IntPtrT>> p2_untagged(m.SmiUntag(m.Parameter<Smi>(3)));
m.Return(m.ExtractFixedArray(m.Parameter<FixedArrayBase>(1), p1_untagged,
p2_untagged));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<FixedArray> source(isolate->factory()->NewFixedArrayWithHoles(5));
source->set(1, Smi::FromInt(1234));
Handle<Object> result_raw =
ft.Call(source, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedArray result(FixedArray::cast(*result_raw));
CHECK_EQ(2, result.length());
CHECK_EQ(Smi::cast(result.get(0)).value(), 1234);
CHECK(result.get(1).IsTheHole(isolate));
Handle<FixedDoubleArray> source_double = Handle<FixedDoubleArray>::cast(
isolate->factory()->NewFixedDoubleArray(5));
source_double->set(0, 10);
source_double->set(1, 11);
source_double->set(2, 12);
source_double->set(3, 13);
source_double->set(4, 14);
Handle<Object> double_result_raw =
ft.Call(source_double, Handle<Smi>(Smi::FromInt(1), isolate),
Handle<Smi>(Smi::FromInt(2), isolate))
.ToHandleChecked();
FixedDoubleArray double_result = FixedDoubleArray::cast(*double_result_raw);
CHECK_EQ(2, double_result.length());
CHECK_EQ(double_result.get_scalar(0), 11);
CHECK_EQ(double_result.get_scalar(1), 12);
}
TEST(SingleInputPhiElimination) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
{
CodeStubAssembler m(asm_tester.state());
TVariable<Smi> temp1(&m);
TVariable<Smi> temp2(&m);
Label temp_label(&m, {&temp1, &temp2});
Label end_label(&m, {&temp1, &temp2});
temp1 = m.Parameter<Smi>(1);
temp2 = m.Parameter<Smi>(1);
m.Branch(m.TaggedEqual(m.UncheckedParameter<Object>(0),
m.UncheckedParameter<Object>(1)),
&end_label, &temp_label);
m.BIND(&temp_label);
temp1 = m.Parameter<Smi>(2);
temp2 = m.Parameter<Smi>(2);
m.Goto(&end_label);
m.BIND(&end_label);
m.Return(m.UncheckedCast<Object>(temp1.value()));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
// Generating code without an assert is enough to make sure that the
// single-input phi is properly eliminated.
}
TEST(SmallOrderedHashMapAllocate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
auto capacity = m.Parameter<Smi>(1);
m.Return(m.AllocateSmallOrderedHashMap(m.SmiToIntPtr(capacity)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Factory* factory = isolate->factory();
int capacity = SmallOrderedHashMap::kMinCapacity;
while (capacity <= SmallOrderedHashMap::kMaxCapacity) {
Handle<SmallOrderedHashMap> expected =
factory->NewSmallOrderedHashMap(capacity);
Handle<Object> result_raw =
ft.Call(Handle<Smi>(Smi::FromInt(capacity), isolate)).ToHandleChecked();
Handle<SmallOrderedHashMap> actual = Handle<SmallOrderedHashMap>(
SmallOrderedHashMap::cast(*result_raw), isolate);
CHECK_EQ(capacity, actual->Capacity());
CHECK_EQ(0, actual->NumberOfElements());
CHECK_EQ(0, actual->NumberOfDeletedElements());
CHECK_EQ(capacity / SmallOrderedHashMap::kLoadFactor,
actual->NumberOfBuckets());
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(expected->address()),
reinterpret_cast<void*>(actual->address()),
SmallOrderedHashMap::SizeFor(capacity)));
#ifdef VERIFY_HEAP
actual->SmallOrderedHashMapVerify(isolate);
#endif
capacity = capacity << 1;
}
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
TEST(SmallOrderedHashSetAllocate) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(asm_tester.state());
auto capacity = m.Parameter<Smi>(1);
m.Return(m.AllocateSmallOrderedHashSet(m.SmiToIntPtr(capacity)));
}
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
int capacity = SmallOrderedHashSet::kMinCapacity;
Factory* factory = isolate->factory();
while (capacity <= SmallOrderedHashSet::kMaxCapacity) {
Handle<SmallOrderedHashSet> expected =
factory->NewSmallOrderedHashSet(capacity);
Handle<Object> result_raw =
ft.Call(Handle<Smi>(Smi::FromInt(capacity), isolate)).ToHandleChecked();
Handle<SmallOrderedHashSet> actual = Handle<SmallOrderedHashSet>(
SmallOrderedHashSet::cast(*result_raw), isolate);
CHECK_EQ(capacity, actual->Capacity());
CHECK_EQ(0, actual->NumberOfElements());
CHECK_EQ(0, actual->NumberOfDeletedElements());
CHECK_EQ(capacity / SmallOrderedHashSet::kLoadFactor,
actual->NumberOfBuckets());
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(expected->address()),
reinterpret_cast<void*>(actual->address()),
SmallOrderedHashSet::SizeFor(capacity)));
#ifdef VERIFY_HEAP
actual->SmallOrderedHashSetVerify(isolate);
#endif
capacity = capacity << 1;
}
#ifdef VERIFY_HEAP
isolate->heap()->Verify();
#endif
}
TEST(IsDoubleElementsKind) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester ft_tester(isolate, kNumParams + 1); // Include receiver.
{
CodeStubAssembler m(ft_tester.state());
m.Return(m.SmiFromInt32(m.UncheckedCast<Int32T>(
m.IsDoubleElementsKind(m.SmiToInt32(m.Parameter<Smi>(1))))));
}
FunctionTester ft(ft_tester.GenerateCode(), kNumParams);
CHECK_EQ(
(*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_DOUBLE_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
1);
CHECK_EQ(
(*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_DOUBLE_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
1);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(PACKED_SMI_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(HOLEY_SMI_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
CHECK_EQ((*Handle<Smi>::cast(
ft.Call(Handle<Smi>(Smi::FromInt(DICTIONARY_ELEMENTS), isolate))
.ToHandleChecked()))
.value(),
0);
}
TEST(TestCallBuiltinInlineTrampoline) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 3;
auto str = m.Parameter<String>(1);
auto context = m.Parameter<Context>(kNumParams + kContextOffset);
TNode<Smi> index = m.SmiConstant(2);
m.Return(m.CallStub(Builtins::CallableFor(isolate, Builtins::kStringRepeat),
context, str, index));
AssemblerOptions options = AssemblerOptions::Default(isolate);
options.inline_offheap_trampolines = true;
options.use_pc_relative_calls_and_jumps = false;
options.isolate_independent_code = false;
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
MaybeHandle<Object> result = ft.Call(CcTest::MakeString("abcdef"));
CHECK(String::Equals(isolate, CcTest::MakeString("abcdefabcdef"),
Handle<String>::cast(result.ToHandleChecked())));
}
// TODO(v8:9821): Remove the option to disable inlining off-heap trampolines
// along with this test.
DISABLED_TEST(TestCallBuiltinIndirectLoad) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const int kContextOffset = 2;
auto str = m.Parameter<String>(0);
auto context = m.Parameter<Context>(kNumParams + kContextOffset);
TNode<Smi> index = m.SmiConstant(2);
m.Return(m.CallStub(Builtins::CallableFor(isolate, Builtins::kStringRepeat),
context, str, index));
AssemblerOptions options = AssemblerOptions::Default(isolate);
options.inline_offheap_trampolines = false;
options.use_pc_relative_calls_and_jumps = false;
options.isolate_independent_code = true;
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
MaybeHandle<Object> result = ft.Call(CcTest::MakeString("abcdef"));
CHECK(String::Equals(isolate, CcTest::MakeString("abcdefabcdef"),
Handle<String>::cast(result.ToHandleChecked())));
}
TEST(InstructionSchedulingCallerSavedRegisters) {
// This is a regression test for v8:9775, where TF's instruction scheduler
// incorrectly moved pure operations in between a ArchSaveCallerRegisters and
// a ArchRestoreCallerRegisters instruction.
bool old_turbo_instruction_scheduling = FLAG_turbo_instruction_scheduling;
FLAG_turbo_instruction_scheduling = true;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
{
TNode<IntPtrT> x = m.SmiUntag(m.Parameter<Smi>(1));
TNode<WordT> y = m.WordOr(m.WordShr(x, 1), m.IntPtrConstant(1));
TNode<ExternalReference> isolate_ptr =
m.ExternalConstant(ExternalReference::isolate_address(isolate));
m.CallCFunctionWithCallerSavedRegisters(
m.ExternalConstant(
ExternalReference::smi_lexicographic_compare_function()),
MachineType::Int32(), kSaveFPRegs,
std::make_pair(MachineType::Pointer(), isolate_ptr),
std::make_pair(MachineType::TaggedSigned(), m.SmiConstant(0)),
std::make_pair(MachineType::TaggedSigned(), m.SmiConstant(0)));
m.Return(m.SmiTag(m.Signed(m.WordOr(x, y))));
}
AssemblerOptions options = AssemblerOptions::Default(isolate);
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
Handle<Object> input = isolate->factory()->NewNumber(8);
MaybeHandle<Object> result = ft.Call(input);
CHECK(result.ToHandleChecked()->IsSmi());
CHECK_EQ(result.ToHandleChecked()->Number(), 13);
FLAG_turbo_instruction_scheduling = old_turbo_instruction_scheduling;
}
#if V8_ENABLE_WEBASSEMBLY
TEST(WasmInt32ToHeapNumber) {
Isolate* isolate(CcTest::InitIsolateOnce());
int32_t test_values[] = {
// Smi values.
1,
0,
-1,
kSmiMaxValue,
kSmiMinValue,
// Test integers that can't be Smis (only possible if Smis are 31 bits).
#if defined(V8_HOST_ARCH_32_BIT) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
kSmiMaxValue + 1,
kSmiMinValue - 1,
#endif
};
// FunctionTester can't handle Wasm type arguments, so for each test value,
// build a function with the arguments baked in, then generate a no-argument
// function to call.
const int kNumParams = 1;
for (size_t i = 0; i < arraysize(test_values); ++i) {
int32_t test_value = test_values[i];
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const TNode<Int32T> arg = m.Int32Constant(test_value);
const TNode<Object> call_result = m.CallBuiltin(
Builtins::kWasmInt32ToHeapNumber, m.NoContextConstant(), arg);
m.Return(call_result);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK(result->IsNumber());
Handle<Object> expected(isolate->factory()->NewNumber(test_value));
CHECK(result->StrictEquals(*expected));
}
}
int32_t NumberToInt32(Handle<Object> number) {
if (number->IsSmi()) {
return Smi::ToInt(*number);
}
if (number->IsHeapNumber()) {
double num = HeapNumber::cast(*number).value();
return DoubleToInt32(num);
}
UNREACHABLE();
}
TEST(WasmTaggedNonSmiToInt32) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<Object> test_values[] = {
// No Smis here; the builtin can't handle them correctly.
factory->NewNumber(-0.0),
factory->NewNumber(1.5),
factory->NewNumber(-1.5),
factory->NewNumber(2 * static_cast<double>(kSmiMaxValue)),
factory->NewNumber(2 * static_cast<double>(kSmiMinValue)),
factory->NewNumber(std::numeric_limits<double>::infinity()),
factory->NewNumber(-std::numeric_limits<double>::infinity()),
factory->NewNumber(-std::numeric_limits<double>::quiet_NaN()),
};
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
const auto arg = m.Parameter<Object>(1);
int32_t result = 0;
Node* base = m.IntPtrConstant(reinterpret_cast<intptr_t>(&result));
Node* value = m.CallBuiltin(Builtins::kWasmTaggedNonSmiToInt32, context, arg);
m.StoreNoWriteBarrier(MachineRepresentation::kWord32, base, value);
m.Return(m.UndefinedConstant());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
for (size_t i = 0; i < arraysize(test_values); ++i) {
Handle<Object> test_value = test_values[i];
ft.Call(test_value);
int32_t expected = NumberToInt32(test_value);
CHECK_EQ(result, expected);
}
}
TEST(WasmFloat32ToNumber) {
Isolate* isolate(CcTest::InitIsolateOnce());
float test_values[] = {
// Smi values.
1,
0,
-1,
// Max and min Smis can't be represented as floats.
// Non-Smi values.
-0.0,
1.5,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity(),
};
// FunctionTester can't handle Wasm type arguments, so for each test value,
// build a function with the arguments baked in, then generate a no-argument
// function to call.
const int kNumParams = 1;
for (size_t i = 0; i < arraysize(test_values); ++i) {
double test_value = test_values[i];
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const TNode<Float32T> arg = m.Float32Constant(test_value);
const TNode<Object> call_result = m.CallBuiltin(
Builtins::kWasmFloat32ToNumber, m.NoContextConstant(), arg);
m.Return(call_result);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK(result->IsNumber());
Handle<Object> expected(isolate->factory()->NewNumber(test_value));
CHECK(result->StrictEquals(*expected) ||
(std::isnan(test_value) && std::isnan(result->Number())));
CHECK_EQ(result->IsSmi(), expected->IsSmi());
}
}
TEST(WasmFloat64ToNumber) {
Isolate* isolate(CcTest::InitIsolateOnce());
double test_values[] = {
// Smi values.
1,
0,
-1,
kSmiMaxValue,
kSmiMinValue,
// Non-Smi values.
-0.0,
1.5,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity(),
};
// FunctionTester can't handle Wasm type arguments, so for each test value,
// build a function with the arguments baked in, then generate a no-argument
// function to call.
const int kNumParams = 1;
for (size_t i = 0; i < arraysize(test_values); ++i) {
double test_value = test_values[i];
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
const TNode<Float64T> arg = m.Float64Constant(test_value);
const TNode<Object> call_result = m.CallBuiltin(
Builtins::kWasmFloat64ToNumber, m.NoContextConstant(), arg);
m.Return(call_result);
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
Handle<Object> result = ft.Call().ToHandleChecked();
CHECK(result->IsNumber());
Handle<Object> expected(isolate->factory()->NewNumber(test_value));
CHECK(result->StrictEquals(*expected) ||
(std::isnan(test_value) && std::isnan(result->Number())));
CHECK_EQ(result->IsSmi(), expected->IsSmi());
}
}
double NumberToFloat64(Handle<Object> number) {
if (number->IsSmi()) {
return Smi::ToInt(*number);
}
if (number->IsHeapNumber()) {
return HeapNumber::cast(*number).value();
}
UNREACHABLE();
}
TEST(WasmTaggedToFloat64) {
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<Object> test_values[] = {
// Smi values.
handle(Smi::FromInt(1), isolate),
handle(Smi::FromInt(0), isolate),
handle(Smi::FromInt(-1), isolate),
handle(Smi::FromInt(kSmiMaxValue), isolate),
handle(Smi::FromInt(kSmiMinValue), isolate),
// Test some non-Smis.
factory->NewNumber(-0.0),
factory->NewNumber(1.5),
factory->NewNumber(-1.5),
// Integer Overflows on platforms with 32 bit Smis.
#if defined(V8_HOST_ARCH_32_BIT) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
factory->NewNumber(2 * kSmiMaxValue),
factory->NewNumber(2 * kSmiMinValue),
#endif
factory->NewNumber(std::numeric_limits<double>::infinity()),
factory->NewNumber(-std::numeric_limits<double>::infinity()),
factory->NewNumber(-std::numeric_limits<double>::quiet_NaN()),
};
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver.
CodeStubAssembler m(asm_tester.state());
auto context = m.Parameter<Context>(kNumParams + 3);
const auto arg = m.Parameter<Object>(1);
double result = 0;
Node* base = m.IntPtrConstant(reinterpret_cast<intptr_t>(&result));
Node* value = m.CallBuiltin(Builtins::kWasmTaggedToFloat64, context, arg);
m.StoreNoWriteBarrier(MachineRepresentation::kFloat64, base, value);
m.Return(m.UndefinedConstant());
FunctionTester ft(asm_tester.GenerateCode(), kNumParams);
for (size_t i = 0; i < arraysize(test_values); ++i) {
Handle<Object> test_value = test_values[i];
ft.Call(test_value);
double expected = NumberToFloat64(test_value);
if (std::isnan(expected)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(result, expected);
}
}
}
#endif // V8_ENABLE_WEBASSEMBLY
TEST(SmiUntagLeftShiftOptimization) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 1;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
TNode<TaggedIndex> param = m.UncheckedParameter<TaggedIndex>(0);
TNode<WordT> unoptimized =
m.IntPtrMul(m.TaggedIndexToIntPtr(param), m.IntPtrConstant(8));
TNode<WordT> optimized = m.WordShl(
m.BitcastTaggedToWordForTagAndSmiBits(param), 3 - kSmiTagSize);
m.StaticAssert(m.WordEqual(unoptimized, optimized));
m.Return(m.UndefinedConstant());
}
AssemblerOptions options = AssemblerOptions::Default(isolate);
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
}
TEST(SmiUntagComparisonOptimization) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeAssemblerTester asm_tester(isolate, kNumParams);
CodeStubAssembler m(asm_tester.state());
{
TNode<Smi> a = m.UncheckedParameter<Smi>(0);
TNode<Smi> b = m.UncheckedParameter<Smi>(1);
TNode<BoolT> unoptimized = m.UintPtrLessThan(m.SmiUntag(a), m.SmiUntag(b));
#ifdef V8_COMPRESS_POINTERS
TNode<BoolT> optimized = m.Uint32LessThan(
m.TruncateIntPtrToInt32(m.BitcastTaggedToWordForTagAndSmiBits(a)),
m.TruncateIntPtrToInt32(m.BitcastTaggedToWordForTagAndSmiBits(b)));
#else
TNode<BoolT> optimized =
m.UintPtrLessThan(m.BitcastTaggedToWordForTagAndSmiBits(a),
m.BitcastTaggedToWordForTagAndSmiBits(b));
#endif
m.StaticAssert(m.Word32Equal(unoptimized, optimized));
m.Return(m.UndefinedConstant());
}
AssemblerOptions options = AssemblerOptions::Default(isolate);
FunctionTester ft(asm_tester.GenerateCode(options), kNumParams);
}
TEST(PopCount) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
const std::vector<std::pair<uint32_t, int>> test_cases = {
{0, 0},
{1, 1},
{(1 << 31), 1},
{0b01010101010101010101010101010101, 16},
{0b10101010101010101010101010101010, 16},
{0b11100011100000011100011111000111, 17} // arbitrarily chosen
};
for (std::pair<uint32_t, int> test_case : test_cases) {
uint32_t value32 = test_case.first;
uint64_t value64 = (static_cast<uint64_t>(value32) << 32) | value32;
int expected_pop32 = test_case.second;
int expected_pop64 = 2 * expected_pop32;
TNode<Int32T> pop32 = m.Word32PopulationCount(m.Uint32Constant(value32));
CSA_CHECK(&m, m.Word32Equal(pop32, m.Int32Constant(expected_pop32)));
if (m.Is64()) {
// TODO(emrich): enable once 64-bit operations are supported on 32-bit
// architectures.
TNode<Int64T> pop64 = m.Word64PopulationCount(m.Uint64Constant(value64));
CSA_CHECK(&m, m.Word64Equal(pop64, m.Int64Constant(expected_pop64)));
}
}
m.Return(m.UndefinedConstant());
FunctionTester ft(asm_tester.GenerateCode());
ft.Call();
}
TEST(CountTrailingZeros) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeAssemblerTester asm_tester(isolate);
CodeStubAssembler m(asm_tester.state());
const std::vector<std::pair<uint32_t, int>> test_cases = {
{1, 0},
{2, 1},
{(0b0101010'0000'0000), 9},
{(1 << 31), 31},
{std::numeric_limits<uint32_t>::max(), 0},
};
for (std::pair<uint32_t, int> test_case : test_cases) {
uint32_t value32 = test_case.first;
uint64_t value64 = static_cast<uint64_t>(value32) << 32;
int expected_ctz32 = test_case.second;
int expected_ctz64 = expected_ctz32 + 32;
TNode<Int32T> pop32 = m.Word32CountTrailingZeros(m.Uint32Constant(value32));
CSA_CHECK(&m, m.Word32Equal(pop32, m.Int32Constant(expected_ctz32)));
if (m.Is64()) {
// TODO(emrich): enable once 64-bit operations are supported on 32-bit
// architectures.
TNode<Int64T> pop64_ext =
m.Word64CountTrailingZeros(m.Uint64Constant(value32));
TNode<Int64T> pop64 =
m.Word64CountTrailingZeros(m.Uint64Constant(value64));
CSA_CHECK(&m, m.Word64Equal(pop64_ext, m.Int64Constant(expected_ctz32)));
CSA_CHECK(&m, m.Word64Equal(pop64, m.Int64Constant(expected_ctz64)));
}
}
m.Return(m.UndefinedConstant());
FunctionTester ft(asm_tester.GenerateCode());
ft.Call();
}
} // namespace compiler
} // namespace internal
} // namespace v8