3c1d076a85
This patch moves the following methods from the traits objects to the (pre)parser implementation objects: - ExpressionFromIdentifier - ExpressionFromLiteral - ExpressionFromString - FunctionSentExpression - GetNextSymbol - GetNumberAsSymbol - GetSymbol - NewExpressionList - NewPropertyList - NewStatementList - NewSuperCallReference - NewSuperPropertyReference - NewTargetExpression - ThisExpression Also, the method GetIterator is specific only to the parser and is removed from the preparser's implementation. R=adamk@chromium.org, marja@chromium.org BUG= LOG=N Review-Url: https://codereview.chromium.org/2274113002 Cr-Commit-Position: refs/heads/master@{#38890}
6678 lines
249 KiB
C++
6678 lines
249 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/parsing/parser.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "src/api.h"
|
|
#include "src/ast/ast-expression-rewriter.h"
|
|
#include "src/ast/ast-literal-reindexer.h"
|
|
#include "src/ast/ast-traversal-visitor.h"
|
|
#include "src/ast/ast.h"
|
|
#include "src/bailout-reason.h"
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/char-predicates-inl.h"
|
|
#include "src/messages.h"
|
|
#include "src/parsing/parameter-initializer-rewriter.h"
|
|
#include "src/parsing/parse-info.h"
|
|
#include "src/parsing/rewriter.h"
|
|
#include "src/parsing/scanner-character-streams.h"
|
|
#include "src/runtime/runtime.h"
|
|
#include "src/string-stream.h"
|
|
#include "src/tracing/trace-event.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
ScriptData::ScriptData(const byte* data, int length)
|
|
: owns_data_(false), rejected_(false), data_(data), length_(length) {
|
|
if (!IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment)) {
|
|
byte* copy = NewArray<byte>(length);
|
|
DCHECK(IsAligned(reinterpret_cast<intptr_t>(copy), kPointerAlignment));
|
|
CopyBytes(copy, data, length);
|
|
data_ = copy;
|
|
AcquireDataOwnership();
|
|
}
|
|
}
|
|
|
|
FunctionEntry ParseData::GetFunctionEntry(int start) {
|
|
// The current pre-data entry must be a FunctionEntry with the given
|
|
// start position.
|
|
if ((function_index_ + FunctionEntry::kSize <= Length()) &&
|
|
(static_cast<int>(Data()[function_index_]) == start)) {
|
|
int index = function_index_;
|
|
function_index_ += FunctionEntry::kSize;
|
|
Vector<unsigned> subvector(&(Data()[index]), FunctionEntry::kSize);
|
|
return FunctionEntry(subvector);
|
|
}
|
|
return FunctionEntry();
|
|
}
|
|
|
|
|
|
int ParseData::FunctionCount() {
|
|
int functions_size = FunctionsSize();
|
|
if (functions_size < 0) return 0;
|
|
if (functions_size % FunctionEntry::kSize != 0) return 0;
|
|
return functions_size / FunctionEntry::kSize;
|
|
}
|
|
|
|
|
|
bool ParseData::IsSane() {
|
|
if (!IsAligned(script_data_->length(), sizeof(unsigned))) return false;
|
|
// Check that the header data is valid and doesn't specify
|
|
// point to positions outside the store.
|
|
int data_length = Length();
|
|
if (data_length < PreparseDataConstants::kHeaderSize) return false;
|
|
if (Magic() != PreparseDataConstants::kMagicNumber) return false;
|
|
if (Version() != PreparseDataConstants::kCurrentVersion) return false;
|
|
if (HasError()) return false;
|
|
// Check that the space allocated for function entries is sane.
|
|
int functions_size = FunctionsSize();
|
|
if (functions_size < 0) return false;
|
|
if (functions_size % FunctionEntry::kSize != 0) return false;
|
|
// Check that the total size has room for header and function entries.
|
|
int minimum_size =
|
|
PreparseDataConstants::kHeaderSize + functions_size;
|
|
if (data_length < minimum_size) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
void ParseData::Initialize() {
|
|
// Prepares state for use.
|
|
int data_length = Length();
|
|
if (data_length >= PreparseDataConstants::kHeaderSize) {
|
|
function_index_ = PreparseDataConstants::kHeaderSize;
|
|
}
|
|
}
|
|
|
|
|
|
bool ParseData::HasError() {
|
|
return Data()[PreparseDataConstants::kHasErrorOffset];
|
|
}
|
|
|
|
|
|
unsigned ParseData::Magic() {
|
|
return Data()[PreparseDataConstants::kMagicOffset];
|
|
}
|
|
|
|
|
|
unsigned ParseData::Version() {
|
|
return Data()[PreparseDataConstants::kVersionOffset];
|
|
}
|
|
|
|
|
|
int ParseData::FunctionsSize() {
|
|
return static_cast<int>(Data()[PreparseDataConstants::kFunctionsSizeOffset]);
|
|
}
|
|
|
|
// Helper for putting parts of the parse results into a temporary zone when
|
|
// parsing inner function bodies.
|
|
class DiscardableZoneScope {
|
|
public:
|
|
DiscardableZoneScope(Parser* parser, Zone* temp_zone, bool use_temp_zone)
|
|
: ast_node_factory_scope_(parser->factory(), temp_zone, use_temp_zone),
|
|
fni_(parser->ast_value_factory_, temp_zone),
|
|
parser_(parser),
|
|
prev_fni_(parser->fni_),
|
|
prev_zone_(parser->zone_) {
|
|
if (use_temp_zone) {
|
|
parser_->fni_ = &fni_;
|
|
parser_->zone_ = temp_zone;
|
|
}
|
|
}
|
|
~DiscardableZoneScope() {
|
|
parser_->fni_ = prev_fni_;
|
|
parser_->zone_ = prev_zone_;
|
|
}
|
|
|
|
private:
|
|
AstNodeFactory::BodyScope ast_node_factory_scope_;
|
|
FuncNameInferrer fni_;
|
|
Parser* parser_;
|
|
FuncNameInferrer* prev_fni_;
|
|
Zone* prev_zone_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(DiscardableZoneScope);
|
|
};
|
|
|
|
void Parser::SetCachedData(ParseInfo* info) {
|
|
if (compile_options_ == ScriptCompiler::kNoCompileOptions) {
|
|
cached_parse_data_ = NULL;
|
|
} else {
|
|
DCHECK(info->cached_data() != NULL);
|
|
if (compile_options_ == ScriptCompiler::kConsumeParserCache) {
|
|
cached_parse_data_ = ParseData::FromCachedData(*info->cached_data());
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name,
|
|
bool call_super, int pos,
|
|
int end_pos,
|
|
LanguageMode language_mode) {
|
|
int materialized_literal_count = -1;
|
|
int expected_property_count = -1;
|
|
int parameter_count = 0;
|
|
if (name == nullptr) name = ast_value_factory()->empty_string();
|
|
|
|
FunctionKind kind = call_super ? FunctionKind::kDefaultSubclassConstructor
|
|
: FunctionKind::kDefaultBaseConstructor;
|
|
DeclarationScope* function_scope = NewFunctionScope(kind);
|
|
SetLanguageMode(function_scope,
|
|
static_cast<LanguageMode>(language_mode | STRICT));
|
|
// Set start and end position to the same value
|
|
function_scope->set_start_position(pos);
|
|
function_scope->set_end_position(pos);
|
|
ZoneList<Statement*>* body = NULL;
|
|
|
|
{
|
|
FunctionState function_state(&function_state_, &scope_state_,
|
|
function_scope, kind);
|
|
|
|
body = new (zone()) ZoneList<Statement*>(call_super ? 2 : 1, zone());
|
|
if (call_super) {
|
|
// $super_constructor = %_GetSuperConstructor(<this-function>)
|
|
// %reflect_construct(
|
|
// $super_constructor, InternalArray(...args), new.target)
|
|
auto constructor_args_name = ast_value_factory()->empty_string();
|
|
bool is_duplicate;
|
|
bool is_rest = true;
|
|
bool is_optional = false;
|
|
Variable* constructor_args = function_scope->DeclareParameter(
|
|
constructor_args_name, TEMPORARY, is_optional, is_rest, &is_duplicate,
|
|
ast_value_factory());
|
|
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(2, zone());
|
|
VariableProxy* this_function_proxy =
|
|
NewUnresolved(ast_value_factory()->this_function_string(), pos);
|
|
ZoneList<Expression*>* tmp =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
tmp->Add(this_function_proxy, zone());
|
|
Expression* super_constructor = factory()->NewCallRuntime(
|
|
Runtime::kInlineGetSuperConstructor, tmp, pos);
|
|
args->Add(super_constructor, zone());
|
|
Spread* spread_args = factory()->NewSpread(
|
|
factory()->NewVariableProxy(constructor_args), pos, pos);
|
|
ZoneList<Expression*>* spread_args_expr =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
spread_args_expr->Add(spread_args, zone());
|
|
args->AddAll(*PrepareSpreadArguments(spread_args_expr), zone());
|
|
VariableProxy* new_target_proxy =
|
|
NewUnresolved(ast_value_factory()->new_target_string(), pos);
|
|
args->Add(new_target_proxy, zone());
|
|
CallRuntime* call = factory()->NewCallRuntime(
|
|
Context::REFLECT_CONSTRUCT_INDEX, args, pos);
|
|
body->Add(factory()->NewReturnStatement(call, pos), zone());
|
|
}
|
|
|
|
materialized_literal_count = function_state.materialized_literal_count();
|
|
expected_property_count = function_state.expected_property_count();
|
|
}
|
|
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
name, function_scope, body, materialized_literal_count,
|
|
expected_property_count, parameter_count,
|
|
FunctionLiteral::kNoDuplicateParameters,
|
|
FunctionLiteral::kAnonymousExpression,
|
|
FunctionLiteral::kShouldLazyCompile, kind, pos);
|
|
|
|
return function_literal;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Target is a support class to facilitate manipulation of the
|
|
// Parser's target_stack_ (the stack of potential 'break' and
|
|
// 'continue' statement targets). Upon construction, a new target is
|
|
// added; it is removed upon destruction.
|
|
|
|
class Target BASE_EMBEDDED {
|
|
public:
|
|
Target(Target** variable, BreakableStatement* statement)
|
|
: variable_(variable), statement_(statement), previous_(*variable) {
|
|
*variable = this;
|
|
}
|
|
|
|
~Target() {
|
|
*variable_ = previous_;
|
|
}
|
|
|
|
Target* previous() { return previous_; }
|
|
BreakableStatement* statement() { return statement_; }
|
|
|
|
private:
|
|
Target** variable_;
|
|
BreakableStatement* statement_;
|
|
Target* previous_;
|
|
};
|
|
|
|
|
|
class TargetScope BASE_EMBEDDED {
|
|
public:
|
|
explicit TargetScope(Target** variable)
|
|
: variable_(variable), previous_(*variable) {
|
|
*variable = NULL;
|
|
}
|
|
|
|
~TargetScope() {
|
|
*variable_ = previous_;
|
|
}
|
|
|
|
private:
|
|
Target** variable_;
|
|
Target* previous_;
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The CHECK_OK macro is a convenient macro to enforce error
|
|
// handling for functions that may fail (by returning !*ok).
|
|
//
|
|
// CAUTION: This macro appends extra statements after a call,
|
|
// thus it must never be used where only a single statement
|
|
// is correct (e.g. an if statement branch w/o braces)!
|
|
|
|
#define CHECK_OK ok); \
|
|
if (!*ok) return nullptr; \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
#define CHECK_OK_VOID ok); \
|
|
if (!*ok) return; \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
#define CHECK_FAILED /**/); \
|
|
if (failed_) return nullptr; \
|
|
((void)0
|
|
#define DUMMY ) // to make indentation work
|
|
#undef DUMMY
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of Parser
|
|
|
|
bool Parser::ShortcutNumericLiteralBinaryExpression(Expression** x,
|
|
Expression* y,
|
|
Token::Value op, int pos) {
|
|
if ((*x)->AsLiteral() && (*x)->AsLiteral()->raw_value()->IsNumber() &&
|
|
y->AsLiteral() && y->AsLiteral()->raw_value()->IsNumber()) {
|
|
double x_val = (*x)->AsLiteral()->raw_value()->AsNumber();
|
|
double y_val = y->AsLiteral()->raw_value()->AsNumber();
|
|
bool x_has_dot = (*x)->AsLiteral()->raw_value()->ContainsDot();
|
|
bool y_has_dot = y->AsLiteral()->raw_value()->ContainsDot();
|
|
bool has_dot = x_has_dot || y_has_dot;
|
|
switch (op) {
|
|
case Token::ADD:
|
|
*x = factory()->NewNumberLiteral(x_val + y_val, pos, has_dot);
|
|
return true;
|
|
case Token::SUB:
|
|
*x = factory()->NewNumberLiteral(x_val - y_val, pos, has_dot);
|
|
return true;
|
|
case Token::MUL:
|
|
*x = factory()->NewNumberLiteral(x_val * y_val, pos, has_dot);
|
|
return true;
|
|
case Token::DIV:
|
|
*x = factory()->NewNumberLiteral(x_val / y_val, pos, has_dot);
|
|
return true;
|
|
case Token::BIT_OR: {
|
|
int value = DoubleToInt32(x_val) | DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::BIT_AND: {
|
|
int value = DoubleToInt32(x_val) & DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::BIT_XOR: {
|
|
int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SHL: {
|
|
int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1f);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SHR: {
|
|
uint32_t shift = DoubleToInt32(y_val) & 0x1f;
|
|
uint32_t value = DoubleToUint32(x_val) >> shift;
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::SAR: {
|
|
uint32_t shift = DoubleToInt32(y_val) & 0x1f;
|
|
int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift);
|
|
*x = factory()->NewNumberLiteral(value, pos, has_dot);
|
|
return true;
|
|
}
|
|
case Token::EXP: {
|
|
double value = Pow(x_val, y_val);
|
|
int int_value = static_cast<int>(value);
|
|
*x = factory()->NewNumberLiteral(
|
|
int_value == value && value != -0.0 ? int_value : value, pos,
|
|
has_dot);
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Expression* Parser::BuildUnaryExpression(Expression* expression,
|
|
Token::Value op, int pos) {
|
|
DCHECK(expression != NULL);
|
|
if (expression->IsLiteral()) {
|
|
const AstValue* literal = expression->AsLiteral()->raw_value();
|
|
if (op == Token::NOT) {
|
|
// Convert the literal to a boolean condition and negate it.
|
|
bool condition = literal->BooleanValue();
|
|
return factory()->NewBooleanLiteral(!condition, pos);
|
|
} else if (literal->IsNumber()) {
|
|
// Compute some expressions involving only number literals.
|
|
double value = literal->AsNumber();
|
|
bool has_dot = literal->ContainsDot();
|
|
switch (op) {
|
|
case Token::ADD:
|
|
return expression;
|
|
case Token::SUB:
|
|
return factory()->NewNumberLiteral(-value, pos, has_dot);
|
|
case Token::BIT_NOT:
|
|
return factory()->NewNumberLiteral(~DoubleToInt32(value), pos,
|
|
has_dot);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Desugar '+foo' => 'foo*1'
|
|
if (op == Token::ADD) {
|
|
return factory()->NewBinaryOperation(
|
|
Token::MUL, expression, factory()->NewNumberLiteral(1, pos, true), pos);
|
|
}
|
|
// The same idea for '-foo' => 'foo*(-1)'.
|
|
if (op == Token::SUB) {
|
|
return factory()->NewBinaryOperation(
|
|
Token::MUL, expression, factory()->NewNumberLiteral(-1, pos), pos);
|
|
}
|
|
// ...and one more time for '~foo' => 'foo^(~0)'.
|
|
if (op == Token::BIT_NOT) {
|
|
return factory()->NewBinaryOperation(
|
|
Token::BIT_XOR, expression, factory()->NewNumberLiteral(~0, pos), pos);
|
|
}
|
|
return factory()->NewUnaryOperation(op, expression, pos);
|
|
}
|
|
|
|
Expression* Parser::BuildIteratorResult(Expression* value, bool done) {
|
|
int pos = kNoSourcePosition;
|
|
|
|
if (value == nullptr) value = factory()->NewUndefinedLiteral(pos);
|
|
|
|
auto args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(value, zone());
|
|
args->Add(factory()->NewBooleanLiteral(done, pos), zone());
|
|
|
|
return factory()->NewCallRuntime(Runtime::kInlineCreateIterResultObject, args,
|
|
pos);
|
|
}
|
|
|
|
Expression* Parser::NewThrowError(Runtime::FunctionId id,
|
|
MessageTemplate::Template message,
|
|
const AstRawString* arg, int pos) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewSmiLiteral(message, pos), zone());
|
|
args->Add(factory()->NewStringLiteral(arg, pos), zone());
|
|
CallRuntime* call_constructor = factory()->NewCallRuntime(id, args, pos);
|
|
return factory()->NewThrow(call_constructor, pos);
|
|
}
|
|
|
|
Expression* Parser::NewSuperPropertyReference(int pos) {
|
|
// this_function[home_object_symbol]
|
|
VariableProxy* this_function_proxy =
|
|
NewUnresolved(ast_value_factory()->this_function_string(), pos);
|
|
Expression* home_object_symbol_literal =
|
|
factory()->NewSymbolLiteral("home_object_symbol", kNoSourcePosition);
|
|
Expression* home_object = factory()->NewProperty(
|
|
this_function_proxy, home_object_symbol_literal, pos);
|
|
return factory()->NewSuperPropertyReference(
|
|
ThisExpression(pos)->AsVariableProxy(), home_object, pos);
|
|
}
|
|
|
|
Expression* Parser::NewSuperCallReference(int pos) {
|
|
VariableProxy* new_target_proxy =
|
|
NewUnresolved(ast_value_factory()->new_target_string(), pos);
|
|
VariableProxy* this_function_proxy =
|
|
NewUnresolved(ast_value_factory()->this_function_string(), pos);
|
|
return factory()->NewSuperCallReference(
|
|
ThisExpression(pos)->AsVariableProxy(), new_target_proxy,
|
|
this_function_proxy, pos);
|
|
}
|
|
|
|
Expression* Parser::NewTargetExpression(int pos) {
|
|
static const int kNewTargetStringLength = 10;
|
|
auto proxy = NewUnresolved(ast_value_factory()->new_target_string(), pos,
|
|
pos + kNewTargetStringLength);
|
|
proxy->set_is_new_target();
|
|
return proxy;
|
|
}
|
|
|
|
Expression* Parser::FunctionSentExpression(int pos) {
|
|
// We desugar function.sent into %_GeneratorGetInputOrDebugPos(generator).
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
VariableProxy* generator =
|
|
factory()->NewVariableProxy(function_state_->generator_object_variable());
|
|
args->Add(generator, zone());
|
|
return factory()->NewCallRuntime(Runtime::kInlineGeneratorGetInputOrDebugPos,
|
|
args, pos);
|
|
}
|
|
|
|
Literal* Parser::ExpressionFromLiteral(Token::Value token, int pos) {
|
|
switch (token) {
|
|
case Token::NULL_LITERAL:
|
|
return factory()->NewNullLiteral(pos);
|
|
case Token::TRUE_LITERAL:
|
|
return factory()->NewBooleanLiteral(true, pos);
|
|
case Token::FALSE_LITERAL:
|
|
return factory()->NewBooleanLiteral(false, pos);
|
|
case Token::SMI: {
|
|
int value = scanner()->smi_value();
|
|
return factory()->NewSmiLiteral(value, pos);
|
|
}
|
|
case Token::NUMBER: {
|
|
bool has_dot = scanner()->ContainsDot();
|
|
double value = scanner()->DoubleValue();
|
|
return factory()->NewNumberLiteral(value, pos, has_dot);
|
|
}
|
|
default:
|
|
DCHECK(false);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
Expression* Parser::GetIterator(Expression* iterable, int pos) {
|
|
Expression* iterator_symbol_literal =
|
|
factory()->NewSymbolLiteral("iterator_symbol", kNoSourcePosition);
|
|
Expression* prop =
|
|
factory()->NewProperty(iterable, iterator_symbol_literal, pos);
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(0, zone());
|
|
return factory()->NewCall(prop, args, pos);
|
|
}
|
|
|
|
void Parser::MarkTailPosition(Expression* expression) {
|
|
expression->MarkTail();
|
|
}
|
|
|
|
Parser::Parser(ParseInfo* info)
|
|
: ParserBase<Parser>(info->zone(), &scanner_, info->stack_limit(),
|
|
info->extension(), info->ast_value_factory(), NULL),
|
|
scanner_(info->unicode_cache()),
|
|
reusable_preparser_(NULL),
|
|
original_scope_(NULL),
|
|
target_stack_(NULL),
|
|
compile_options_(info->compile_options()),
|
|
cached_parse_data_(NULL),
|
|
total_preparse_skipped_(0),
|
|
pre_parse_timer_(NULL),
|
|
parsing_on_main_thread_(true) {
|
|
// Even though we were passed ParseInfo, we should not store it in
|
|
// Parser - this makes sure that Isolate is not accidentally accessed via
|
|
// ParseInfo during background parsing.
|
|
DCHECK(!info->script().is_null() || info->source_stream() != nullptr ||
|
|
info->character_stream() != nullptr);
|
|
set_allow_lazy(info->allow_lazy_parsing());
|
|
set_allow_natives(FLAG_allow_natives_syntax || info->is_native());
|
|
set_allow_tailcalls(FLAG_harmony_tailcalls && !info->is_native() &&
|
|
info->isolate()->is_tail_call_elimination_enabled());
|
|
set_allow_harmony_do_expressions(FLAG_harmony_do_expressions);
|
|
set_allow_harmony_for_in(FLAG_harmony_for_in);
|
|
set_allow_harmony_function_sent(FLAG_harmony_function_sent);
|
|
set_allow_harmony_restrictive_declarations(
|
|
FLAG_harmony_restrictive_declarations);
|
|
set_allow_harmony_async_await(FLAG_harmony_async_await);
|
|
set_allow_harmony_restrictive_generators(FLAG_harmony_restrictive_generators);
|
|
set_allow_harmony_trailing_commas(FLAG_harmony_trailing_commas);
|
|
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
|
|
++feature) {
|
|
use_counts_[feature] = 0;
|
|
}
|
|
if (info->ast_value_factory() == NULL) {
|
|
// info takes ownership of AstValueFactory.
|
|
info->set_ast_value_factory(new AstValueFactory(zone(), info->hash_seed()));
|
|
info->set_ast_value_factory_owned();
|
|
ast_value_factory_ = info->ast_value_factory();
|
|
ast_node_factory_.set_ast_value_factory(ast_value_factory_);
|
|
}
|
|
}
|
|
|
|
void Parser::DeserializeScopeChain(
|
|
ParseInfo* info, Handle<Context> context,
|
|
Scope::DeserializationMode deserialization_mode) {
|
|
DCHECK(ThreadId::Current().Equals(info->isolate()->thread_id()));
|
|
// TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native
|
|
// context, which will have the "this" binding for script scopes.
|
|
DeclarationScope* script_scope = NewScriptScope();
|
|
info->set_script_scope(script_scope);
|
|
Scope* scope = script_scope;
|
|
if (!context.is_null() && !context->IsNativeContext()) {
|
|
scope = Scope::DeserializeScopeChain(info->isolate(), zone(), *context,
|
|
script_scope, ast_value_factory(),
|
|
deserialization_mode);
|
|
if (info->context().is_null()) {
|
|
DCHECK(deserialization_mode ==
|
|
Scope::DeserializationMode::kDeserializeOffHeap);
|
|
} else {
|
|
// The Scope is backed up by ScopeInfo (which is in the V8 heap); this
|
|
// means the Parser cannot operate independent of the V8 heap. Tell the
|
|
// string table to internalize strings and values right after they're
|
|
// created. This kind of parsing can only be done in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
ast_value_factory()->Internalize(info->isolate());
|
|
}
|
|
}
|
|
original_scope_ = scope;
|
|
}
|
|
|
|
FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) {
|
|
// TODO(bmeurer): We temporarily need to pass allow_nesting = true here,
|
|
// see comment for HistogramTimerScope class.
|
|
|
|
// It's OK to use the Isolate & counters here, since this function is only
|
|
// called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
|
|
HistogramTimerScope timer_scope(isolate->counters()->parse(), true);
|
|
RuntimeCallTimerScope runtime_timer(isolate, &RuntimeCallStats::Parse);
|
|
TRACE_EVENT_RUNTIME_CALL_STATS_TRACING_SCOPED(
|
|
isolate, &tracing::TraceEventStatsTable::Parse);
|
|
Handle<String> source(String::cast(info->script()->source()));
|
|
isolate->counters()->total_parse_size()->Increment(source->length());
|
|
base::ElapsedTimer timer;
|
|
if (FLAG_trace_parse) {
|
|
timer.Start();
|
|
}
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
|
|
// Initialize parser state.
|
|
CompleteParserRecorder recorder;
|
|
|
|
if (produce_cached_parse_data()) {
|
|
log_ = &recorder;
|
|
} else if (consume_cached_parse_data()) {
|
|
cached_parse_data_->Initialize();
|
|
}
|
|
|
|
DeserializeScopeChain(info, info->context(),
|
|
Scope::DeserializationMode::kKeepScopeInfo);
|
|
|
|
source = String::Flatten(source);
|
|
FunctionLiteral* result;
|
|
|
|
{
|
|
std::unique_ptr<Utf16CharacterStream> stream;
|
|
if (source->IsExternalTwoByteString()) {
|
|
stream.reset(new ExternalTwoByteStringUtf16CharacterStream(
|
|
Handle<ExternalTwoByteString>::cast(source), 0, source->length()));
|
|
} else if (source->IsExternalOneByteString()) {
|
|
stream.reset(new ExternalOneByteStringUtf16CharacterStream(
|
|
Handle<ExternalOneByteString>::cast(source), 0, source->length()));
|
|
} else {
|
|
stream.reset(
|
|
new GenericStringUtf16CharacterStream(source, 0, source->length()));
|
|
}
|
|
scanner_.Initialize(stream.get());
|
|
result = DoParseProgram(info);
|
|
}
|
|
if (result != NULL) {
|
|
DCHECK_EQ(scanner_.peek_location().beg_pos, source->length());
|
|
}
|
|
HandleSourceURLComments(isolate, info->script());
|
|
|
|
if (FLAG_trace_parse && result != NULL) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
if (info->is_eval()) {
|
|
PrintF("[parsing eval");
|
|
} else if (info->script()->name()->IsString()) {
|
|
String* name = String::cast(info->script()->name());
|
|
std::unique_ptr<char[]> name_chars = name->ToCString();
|
|
PrintF("[parsing script: %s", name_chars.get());
|
|
} else {
|
|
PrintF("[parsing script");
|
|
}
|
|
PrintF(" - took %0.3f ms]\n", ms);
|
|
}
|
|
if (produce_cached_parse_data()) {
|
|
if (result != NULL) *info->cached_data() = recorder.GetScriptData();
|
|
log_ = NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
FunctionLiteral* Parser::DoParseProgram(ParseInfo* info) {
|
|
// Note that this function can be called from the main thread or from a
|
|
// background thread. We should not access anything Isolate / heap dependent
|
|
// via ParseInfo, and also not pass it forward.
|
|
DCHECK_NULL(scope_state_);
|
|
DCHECK_NULL(target_stack_);
|
|
|
|
Mode parsing_mode = FLAG_lazy && allow_lazy() ? PARSE_LAZILY : PARSE_EAGERLY;
|
|
if (allow_natives() || extension_ != NULL) parsing_mode = PARSE_EAGERLY;
|
|
|
|
FunctionLiteral* result = NULL;
|
|
{
|
|
Scope* outer = original_scope_;
|
|
// If there's a chance that there's a reference to global 'this', predeclare
|
|
// it as a dynamic global on the script scope.
|
|
if (outer->GetReceiverScope()->is_script_scope()) {
|
|
info->script_scope()->DeclareDynamicGlobal(
|
|
ast_value_factory()->this_string(), Variable::THIS);
|
|
}
|
|
DCHECK(outer);
|
|
if (info->is_eval()) {
|
|
if (!outer->is_script_scope() || is_strict(info->language_mode())) {
|
|
parsing_mode = PARSE_EAGERLY;
|
|
}
|
|
outer = NewEvalScope(outer);
|
|
} else if (info->is_module()) {
|
|
DCHECK_EQ(outer, info->script_scope());
|
|
outer = NewModuleScope(info->script_scope());
|
|
}
|
|
|
|
DeclarationScope* scope = outer->AsDeclarationScope();
|
|
|
|
scope->set_start_position(0);
|
|
|
|
// Enter 'scope' with the given parsing mode.
|
|
ParsingModeScope parsing_mode_scope(this, parsing_mode);
|
|
FunctionState function_state(&function_state_, &scope_state_, scope,
|
|
kNormalFunction);
|
|
|
|
ZoneList<Statement*>* body = new(zone()) ZoneList<Statement*>(16, zone());
|
|
bool ok = true;
|
|
int beg_pos = scanner()->location().beg_pos;
|
|
parsing_module_ = info->is_module();
|
|
if (parsing_module_) {
|
|
ParseModuleItemList(body, &ok);
|
|
ok = ok &&
|
|
module()->Validate(this->scope()->AsModuleScope(),
|
|
&pending_error_handler_, zone());
|
|
} else {
|
|
// Don't count the mode in the use counters--give the program a chance
|
|
// to enable script-wide strict mode below.
|
|
this->scope()->SetLanguageMode(info->language_mode());
|
|
ParseStatementList(body, Token::EOS, &ok);
|
|
}
|
|
|
|
// The parser will peek but not consume EOS. Our scope logically goes all
|
|
// the way to the EOS, though.
|
|
scope->set_end_position(scanner()->peek_location().beg_pos);
|
|
|
|
if (ok && is_strict(language_mode())) {
|
|
CheckStrictOctalLiteral(beg_pos, scanner()->location().end_pos, &ok);
|
|
CheckDecimalLiteralWithLeadingZero(use_counts_, beg_pos,
|
|
scanner()->location().end_pos);
|
|
}
|
|
if (ok && is_sloppy(language_mode())) {
|
|
// TODO(littledan): Function bindings on the global object that modify
|
|
// pre-existing bindings should be made writable, enumerable and
|
|
// nonconfigurable if possible, whereas this code will leave attributes
|
|
// unchanged if the property already exists.
|
|
InsertSloppyBlockFunctionVarBindings(scope, nullptr, &ok);
|
|
}
|
|
if (ok) {
|
|
CheckConflictingVarDeclarations(scope, &ok);
|
|
}
|
|
|
|
if (ok && info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) {
|
|
if (body->length() != 1 ||
|
|
!body->at(0)->IsExpressionStatement() ||
|
|
!body->at(0)->AsExpressionStatement()->
|
|
expression()->IsFunctionLiteral()) {
|
|
ReportMessage(MessageTemplate::kSingleFunctionLiteral);
|
|
ok = false;
|
|
}
|
|
}
|
|
|
|
if (ok) {
|
|
RewriteDestructuringAssignments();
|
|
result = factory()->NewScriptOrEvalFunctionLiteral(
|
|
scope, body, function_state.materialized_literal_count(),
|
|
function_state.expected_property_count());
|
|
}
|
|
}
|
|
|
|
// Make sure the target stack is empty.
|
|
DCHECK(target_stack_ == NULL);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
FunctionLiteral* Parser::ParseLazy(Isolate* isolate, ParseInfo* info) {
|
|
// It's OK to use the Isolate & counters here, since this function is only
|
|
// called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
RuntimeCallTimerScope runtime_timer(isolate, &RuntimeCallStats::ParseLazy);
|
|
HistogramTimerScope timer_scope(isolate->counters()->parse_lazy());
|
|
TRACE_EVENT_RUNTIME_CALL_STATS_TRACING_SCOPED(
|
|
isolate, &tracing::TraceEventStatsTable::ParseLazy);
|
|
Handle<String> source(String::cast(info->script()->source()));
|
|
isolate->counters()->total_parse_size()->Increment(source->length());
|
|
base::ElapsedTimer timer;
|
|
if (FLAG_trace_parse) {
|
|
timer.Start();
|
|
}
|
|
Handle<SharedFunctionInfo> shared_info = info->shared_info();
|
|
DeserializeScopeChain(info, info->context(),
|
|
Scope::DeserializationMode::kKeepScopeInfo);
|
|
|
|
// Initialize parser state.
|
|
source = String::Flatten(source);
|
|
FunctionLiteral* result;
|
|
{
|
|
std::unique_ptr<Utf16CharacterStream> stream;
|
|
if (source->IsExternalTwoByteString()) {
|
|
stream.reset(new ExternalTwoByteStringUtf16CharacterStream(
|
|
Handle<ExternalTwoByteString>::cast(source),
|
|
shared_info->start_position(), shared_info->end_position()));
|
|
} else if (source->IsExternalOneByteString()) {
|
|
stream.reset(new ExternalOneByteStringUtf16CharacterStream(
|
|
Handle<ExternalOneByteString>::cast(source),
|
|
shared_info->start_position(), shared_info->end_position()));
|
|
} else {
|
|
stream.reset(new GenericStringUtf16CharacterStream(
|
|
source, shared_info->start_position(), shared_info->end_position()));
|
|
}
|
|
Handle<String> name(String::cast(shared_info->name()));
|
|
result =
|
|
DoParseLazy(info, ast_value_factory()->GetString(name), stream.get());
|
|
if (result != nullptr) {
|
|
Handle<String> inferred_name(shared_info->inferred_name());
|
|
result->set_inferred_name(inferred_name);
|
|
}
|
|
}
|
|
|
|
if (FLAG_trace_parse && result != NULL) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
std::unique_ptr<char[]> name_chars = result->debug_name()->ToCString();
|
|
PrintF("[parsing function: %s - took %0.3f ms]\n", name_chars.get(), ms);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static FunctionLiteral::FunctionType ComputeFunctionType(ParseInfo* info) {
|
|
if (info->is_declaration()) {
|
|
return FunctionLiteral::kDeclaration;
|
|
} else if (info->is_named_expression()) {
|
|
return FunctionLiteral::kNamedExpression;
|
|
} else if (IsConciseMethod(info->function_kind()) ||
|
|
IsAccessorFunction(info->function_kind())) {
|
|
return FunctionLiteral::kAccessorOrMethod;
|
|
}
|
|
return FunctionLiteral::kAnonymousExpression;
|
|
}
|
|
|
|
FunctionLiteral* Parser::DoParseLazy(ParseInfo* info,
|
|
const AstRawString* raw_name,
|
|
Utf16CharacterStream* source) {
|
|
scanner_.Initialize(source);
|
|
DCHECK_NULL(scope_state_);
|
|
DCHECK_NULL(target_stack_);
|
|
|
|
DCHECK(ast_value_factory());
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
fni_->PushEnclosingName(raw_name);
|
|
|
|
ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
|
|
|
|
// Place holder for the result.
|
|
FunctionLiteral* result = nullptr;
|
|
|
|
{
|
|
// Parse the function literal.
|
|
Scope* scope = original_scope_;
|
|
DCHECK(scope);
|
|
// If there's a chance that there's a reference to global 'this', predeclare
|
|
// it as a dynamic global on the script scope.
|
|
if (info->is_arrow() && scope->GetReceiverScope()->is_script_scope()) {
|
|
info->script_scope()->DeclareDynamicGlobal(
|
|
ast_value_factory()->this_string(), Variable::THIS);
|
|
}
|
|
FunctionState function_state(&function_state_, &scope_state_, scope,
|
|
info->function_kind());
|
|
DCHECK(is_sloppy(scope->language_mode()) ||
|
|
is_strict(info->language_mode()));
|
|
FunctionLiteral::FunctionType function_type = ComputeFunctionType(info);
|
|
bool ok = true;
|
|
|
|
if (info->is_arrow()) {
|
|
bool is_async = allow_harmony_async_await() && info->is_async();
|
|
if (is_async) {
|
|
DCHECK(!scanner()->HasAnyLineTerminatorAfterNext());
|
|
if (!Check(Token::ASYNC)) {
|
|
CHECK(stack_overflow());
|
|
return nullptr;
|
|
}
|
|
if (!(peek_any_identifier() || peek() == Token::LPAREN)) {
|
|
CHECK(stack_overflow());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// TODO(adamk): We should construct this scope from the ScopeInfo.
|
|
DeclarationScope* scope = NewFunctionScope(FunctionKind::kArrowFunction);
|
|
|
|
// These two bits only need to be explicitly set because we're
|
|
// not passing the ScopeInfo to the Scope constructor.
|
|
// TODO(adamk): Remove these calls once the above NewScope call
|
|
// passes the ScopeInfo.
|
|
if (info->calls_eval()) {
|
|
scope->RecordEvalCall();
|
|
}
|
|
SetLanguageMode(scope, info->language_mode());
|
|
|
|
scope->set_start_position(info->start_position());
|
|
ExpressionClassifier formals_classifier(this);
|
|
ParserFormalParameters formals(scope);
|
|
Checkpoint checkpoint(this);
|
|
{
|
|
// Parsing patterns as variable reference expression creates
|
|
// NewUnresolved references in current scope. Entrer arrow function
|
|
// scope for formal parameter parsing.
|
|
BlockState block_state(&scope_state_, scope);
|
|
if (Check(Token::LPAREN)) {
|
|
// '(' StrictFormalParameters ')'
|
|
ParseFormalParameterList(&formals, &formals_classifier, &ok);
|
|
if (ok) ok = Check(Token::RPAREN);
|
|
} else {
|
|
// BindingIdentifier
|
|
ParseFormalParameter(&formals, &formals_classifier, &ok);
|
|
if (ok) {
|
|
DeclareFormalParameter(formals.scope, formals.at(0),
|
|
&formals_classifier);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ok) {
|
|
checkpoint.Restore(&formals.materialized_literals_count);
|
|
// Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should
|
|
// not be observable, or else the preparser would have failed.
|
|
Expression* expression = ParseArrowFunctionLiteral(
|
|
true, formals, is_async, formals_classifier, &ok);
|
|
if (ok) {
|
|
// Scanning must end at the same position that was recorded
|
|
// previously. If not, parsing has been interrupted due to a stack
|
|
// overflow, at which point the partially parsed arrow function
|
|
// concise body happens to be a valid expression. This is a problem
|
|
// only for arrow functions with single expression bodies, since there
|
|
// is no end token such as "}" for normal functions.
|
|
if (scanner()->location().end_pos == info->end_position()) {
|
|
// The pre-parser saw an arrow function here, so the full parser
|
|
// must produce a FunctionLiteral.
|
|
DCHECK(expression->IsFunctionLiteral());
|
|
result = expression->AsFunctionLiteral();
|
|
} else {
|
|
ok = false;
|
|
}
|
|
}
|
|
}
|
|
} else if (info->is_default_constructor()) {
|
|
DCHECK_EQ(this->scope(), scope);
|
|
result = DefaultConstructor(
|
|
raw_name, IsSubclassConstructor(info->function_kind()),
|
|
info->start_position(), info->end_position(), info->language_mode());
|
|
} else {
|
|
result = ParseFunctionLiteral(raw_name, Scanner::Location::invalid(),
|
|
kSkipFunctionNameCheck,
|
|
info->function_kind(), kNoSourcePosition,
|
|
function_type, info->language_mode(), &ok);
|
|
}
|
|
// Make sure the results agree.
|
|
DCHECK(ok == (result != nullptr));
|
|
}
|
|
|
|
// Make sure the target stack is empty.
|
|
DCHECK_NULL(target_stack_);
|
|
return result;
|
|
}
|
|
|
|
|
|
void Parser::ParseStatementList(ZoneList<Statement*>* body, int end_token,
|
|
bool* ok) {
|
|
// StatementList ::
|
|
// (StatementListItem)* <end_token>
|
|
|
|
// Allocate a target stack to use for this set of source
|
|
// elements. This way, all scripts and functions get their own
|
|
// target stack thus avoiding illegal breaks and continues across
|
|
// functions.
|
|
TargetScope scope(&this->target_stack_);
|
|
|
|
DCHECK(body != NULL);
|
|
bool directive_prologue = true; // Parsing directive prologue.
|
|
|
|
while (peek() != end_token) {
|
|
if (directive_prologue && peek() != Token::STRING) {
|
|
directive_prologue = false;
|
|
}
|
|
|
|
Scanner::Location token_loc = scanner()->peek_location();
|
|
Statement* stat = ParseStatementListItem(CHECK_OK_VOID);
|
|
if (stat == NULL || stat->IsEmpty()) {
|
|
directive_prologue = false; // End of directive prologue.
|
|
continue;
|
|
}
|
|
|
|
if (directive_prologue) {
|
|
// A shot at a directive.
|
|
ExpressionStatement* e_stat;
|
|
Literal* literal;
|
|
// Still processing directive prologue?
|
|
if ((e_stat = stat->AsExpressionStatement()) != NULL &&
|
|
(literal = e_stat->expression()->AsLiteral()) != NULL &&
|
|
literal->raw_value()->IsString()) {
|
|
// Check "use strict" directive (ES5 14.1), "use asm" directive.
|
|
bool use_strict_found =
|
|
literal->raw_value()->AsString() ==
|
|
ast_value_factory()->use_strict_string() &&
|
|
token_loc.end_pos - token_loc.beg_pos ==
|
|
ast_value_factory()->use_strict_string()->length() + 2;
|
|
if (use_strict_found) {
|
|
if (is_sloppy(language_mode())) {
|
|
RaiseLanguageMode(STRICT);
|
|
}
|
|
|
|
if (!this->scope()->HasSimpleParameters()) {
|
|
// TC39 deemed "use strict" directives to be an error when occurring
|
|
// in the body of a function with non-simple parameter list, on
|
|
// 29/7/2015. https://goo.gl/ueA7Ln
|
|
const AstRawString* string = literal->raw_value()->AsString();
|
|
ReportMessageAt(token_loc,
|
|
MessageTemplate::kIllegalLanguageModeDirective,
|
|
string);
|
|
*ok = false;
|
|
return;
|
|
}
|
|
// Because declarations in strict eval code don't leak into the scope
|
|
// of the eval call, it is likely that functions declared in strict
|
|
// eval code will be used within the eval code, so lazy parsing is
|
|
// probably not a win.
|
|
if (this->scope()->is_eval_scope()) mode_ = PARSE_EAGERLY;
|
|
} else if (literal->raw_value()->AsString() ==
|
|
ast_value_factory()->use_asm_string() &&
|
|
token_loc.end_pos - token_loc.beg_pos ==
|
|
ast_value_factory()->use_asm_string()->length() + 2) {
|
|
// Store the usage count; The actual use counter on the isolate is
|
|
// incremented after parsing is done.
|
|
++use_counts_[v8::Isolate::kUseAsm];
|
|
DCHECK(this->scope()->is_declaration_scope());
|
|
this->scope()->AsDeclarationScope()->set_asm_module();
|
|
} else {
|
|
// Should not change mode, but will increment UseCounter
|
|
// if appropriate. Ditto usages below.
|
|
RaiseLanguageMode(SLOPPY);
|
|
}
|
|
} else {
|
|
// End of the directive prologue.
|
|
directive_prologue = false;
|
|
RaiseLanguageMode(SLOPPY);
|
|
}
|
|
} else {
|
|
RaiseLanguageMode(SLOPPY);
|
|
}
|
|
|
|
body->Add(stat, zone());
|
|
}
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseStatementListItem(bool* ok) {
|
|
// (Ecma 262 6th Edition, 13.1):
|
|
// StatementListItem:
|
|
// Statement
|
|
// Declaration
|
|
const Token::Value peeked = peek();
|
|
switch (peeked) {
|
|
case Token::FUNCTION:
|
|
return ParseHoistableDeclaration(NULL, false, ok);
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
return ParseClassDeclaration(NULL, false, ok);
|
|
case Token::CONST:
|
|
return ParseVariableStatement(kStatementListItem, NULL, ok);
|
|
case Token::VAR:
|
|
return ParseVariableStatement(kStatementListItem, NULL, ok);
|
|
case Token::LET:
|
|
if (IsNextLetKeyword()) {
|
|
return ParseVariableStatement(kStatementListItem, NULL, ok);
|
|
}
|
|
break;
|
|
case Token::ASYNC:
|
|
if (allow_harmony_async_await() && PeekAhead() == Token::FUNCTION &&
|
|
!scanner()->HasAnyLineTerminatorAfterNext()) {
|
|
Consume(Token::ASYNC);
|
|
return ParseAsyncFunctionDeclaration(NULL, false, ok);
|
|
}
|
|
/* falls through */
|
|
default:
|
|
break;
|
|
}
|
|
return ParseStatement(NULL, kAllowLabelledFunctionStatement, ok);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseModuleItem(bool* ok) {
|
|
// ecma262/#prod-ModuleItem
|
|
// ModuleItem :
|
|
// ImportDeclaration
|
|
// ExportDeclaration
|
|
// StatementListItem
|
|
|
|
switch (peek()) {
|
|
case Token::IMPORT:
|
|
ParseImportDeclaration(CHECK_OK);
|
|
return factory()->NewEmptyStatement(kNoSourcePosition);
|
|
case Token::EXPORT:
|
|
return ParseExportDeclaration(ok);
|
|
default:
|
|
return ParseStatementListItem(ok);
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::ParseModuleItemList(ZoneList<Statement*>* body, bool* ok) {
|
|
// ecma262/#prod-Module
|
|
// Module :
|
|
// ModuleBody?
|
|
//
|
|
// ecma262/#prod-ModuleItemList
|
|
// ModuleBody :
|
|
// ModuleItem*
|
|
|
|
DCHECK(scope()->is_module_scope());
|
|
while (peek() != Token::EOS) {
|
|
Statement* stat = ParseModuleItem(CHECK_OK_VOID);
|
|
if (stat && !stat->IsEmpty()) {
|
|
body->Add(stat, zone());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
const AstRawString* Parser::ParseModuleSpecifier(bool* ok) {
|
|
// ModuleSpecifier :
|
|
// StringLiteral
|
|
|
|
Expect(Token::STRING, CHECK_OK);
|
|
return GetSymbol();
|
|
}
|
|
|
|
|
|
void Parser::ParseExportClause(ZoneList<const AstRawString*>* export_names,
|
|
ZoneList<Scanner::Location>* export_locations,
|
|
ZoneList<const AstRawString*>* local_names,
|
|
Scanner::Location* reserved_loc, bool* ok) {
|
|
// ExportClause :
|
|
// '{' '}'
|
|
// '{' ExportsList '}'
|
|
// '{' ExportsList ',' '}'
|
|
//
|
|
// ExportsList :
|
|
// ExportSpecifier
|
|
// ExportsList ',' ExportSpecifier
|
|
//
|
|
// ExportSpecifier :
|
|
// IdentifierName
|
|
// IdentifierName 'as' IdentifierName
|
|
|
|
Expect(Token::LBRACE, CHECK_OK_VOID);
|
|
|
|
Token::Value name_tok;
|
|
while ((name_tok = peek()) != Token::RBRACE) {
|
|
// Keep track of the first reserved word encountered in case our
|
|
// caller needs to report an error.
|
|
if (!reserved_loc->IsValid() &&
|
|
!Token::IsIdentifier(name_tok, STRICT, false, parsing_module_)) {
|
|
*reserved_loc = scanner()->location();
|
|
}
|
|
const AstRawString* local_name = ParseIdentifierName(CHECK_OK_VOID);
|
|
const AstRawString* export_name = NULL;
|
|
if (CheckContextualKeyword(CStrVector("as"))) {
|
|
export_name = ParseIdentifierName(CHECK_OK_VOID);
|
|
}
|
|
if (export_name == NULL) {
|
|
export_name = local_name;
|
|
}
|
|
export_names->Add(export_name, zone());
|
|
local_names->Add(local_name, zone());
|
|
export_locations->Add(scanner()->location(), zone());
|
|
if (peek() == Token::RBRACE) break;
|
|
Expect(Token::COMMA, CHECK_OK_VOID);
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK_VOID);
|
|
}
|
|
|
|
|
|
ZoneList<const Parser::NamedImport*>* Parser::ParseNamedImports(
|
|
int pos, bool* ok) {
|
|
// NamedImports :
|
|
// '{' '}'
|
|
// '{' ImportsList '}'
|
|
// '{' ImportsList ',' '}'
|
|
//
|
|
// ImportsList :
|
|
// ImportSpecifier
|
|
// ImportsList ',' ImportSpecifier
|
|
//
|
|
// ImportSpecifier :
|
|
// BindingIdentifier
|
|
// IdentifierName 'as' BindingIdentifier
|
|
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
|
|
auto result = new (zone()) ZoneList<const NamedImport*>(1, zone());
|
|
while (peek() != Token::RBRACE) {
|
|
const AstRawString* import_name = ParseIdentifierName(CHECK_OK);
|
|
const AstRawString* local_name = import_name;
|
|
// In the presence of 'as', the left-side of the 'as' can
|
|
// be any IdentifierName. But without 'as', it must be a valid
|
|
// BindingIdentifier.
|
|
if (CheckContextualKeyword(CStrVector("as"))) {
|
|
local_name = ParseIdentifierName(CHECK_OK);
|
|
}
|
|
if (!Token::IsIdentifier(scanner()->current_token(), STRICT, false,
|
|
parsing_module_)) {
|
|
*ok = false;
|
|
ReportMessage(MessageTemplate::kUnexpectedReserved);
|
|
return nullptr;
|
|
} else if (IsEvalOrArguments(local_name)) {
|
|
*ok = false;
|
|
ReportMessage(MessageTemplate::kStrictEvalArguments);
|
|
return nullptr;
|
|
}
|
|
|
|
DeclareVariable(local_name, CONST, kNeedsInitialization, position(),
|
|
CHECK_OK);
|
|
|
|
NamedImport* import = new (zone()) NamedImport(
|
|
import_name, local_name, scanner()->location());
|
|
result->Add(import, zone());
|
|
|
|
if (peek() == Token::RBRACE) break;
|
|
Expect(Token::COMMA, CHECK_OK);
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
return result;
|
|
}
|
|
|
|
|
|
void Parser::ParseImportDeclaration(bool* ok) {
|
|
// ImportDeclaration :
|
|
// 'import' ImportClause 'from' ModuleSpecifier ';'
|
|
// 'import' ModuleSpecifier ';'
|
|
//
|
|
// ImportClause :
|
|
// ImportedDefaultBinding
|
|
// NameSpaceImport
|
|
// NamedImports
|
|
// ImportedDefaultBinding ',' NameSpaceImport
|
|
// ImportedDefaultBinding ',' NamedImports
|
|
//
|
|
// NameSpaceImport :
|
|
// '*' 'as' ImportedBinding
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::IMPORT, CHECK_OK_VOID);
|
|
|
|
Token::Value tok = peek();
|
|
|
|
// 'import' ModuleSpecifier ';'
|
|
if (tok == Token::STRING) {
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID);
|
|
ExpectSemicolon(CHECK_OK_VOID);
|
|
module()->AddEmptyImport(module_specifier, scanner()->location(), zone());
|
|
return;
|
|
}
|
|
|
|
// Parse ImportedDefaultBinding if present.
|
|
const AstRawString* import_default_binding = nullptr;
|
|
Scanner::Location import_default_binding_loc;
|
|
if (tok != Token::MUL && tok != Token::LBRACE) {
|
|
import_default_binding =
|
|
ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID);
|
|
import_default_binding_loc = scanner()->location();
|
|
DeclareVariable(import_default_binding, CONST, kNeedsInitialization, pos,
|
|
CHECK_OK_VOID);
|
|
}
|
|
|
|
// Parse NameSpaceImport or NamedImports if present.
|
|
const AstRawString* module_namespace_binding = nullptr;
|
|
Scanner::Location module_namespace_binding_loc;
|
|
const ZoneList<const NamedImport*>* named_imports = nullptr;
|
|
if (import_default_binding == nullptr || Check(Token::COMMA)) {
|
|
switch (peek()) {
|
|
case Token::MUL: {
|
|
Consume(Token::MUL);
|
|
ExpectContextualKeyword(CStrVector("as"), CHECK_OK_VOID);
|
|
module_namespace_binding =
|
|
ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID);
|
|
module_namespace_binding_loc = scanner()->location();
|
|
DeclareVariable(module_namespace_binding, CONST, kCreatedInitialized,
|
|
pos, CHECK_OK_VOID);
|
|
break;
|
|
}
|
|
|
|
case Token::LBRACE:
|
|
named_imports = ParseNamedImports(pos, CHECK_OK_VOID);
|
|
break;
|
|
|
|
default:
|
|
*ok = false;
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return;
|
|
}
|
|
}
|
|
|
|
ExpectContextualKeyword(CStrVector("from"), CHECK_OK_VOID);
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID);
|
|
ExpectSemicolon(CHECK_OK_VOID);
|
|
|
|
// Now that we have all the information, we can make the appropriate
|
|
// declarations.
|
|
|
|
// TODO(neis): Would prefer to call DeclareVariable for each case below rather
|
|
// than above and in ParseNamedImports, but then a possible error message
|
|
// would point to the wrong location. Maybe have a DeclareAt version of
|
|
// Declare that takes a location?
|
|
|
|
if (module_namespace_binding != nullptr) {
|
|
module()->AddStarImport(module_namespace_binding, module_specifier,
|
|
module_namespace_binding_loc, zone());
|
|
}
|
|
|
|
if (import_default_binding != nullptr) {
|
|
module()->AddImport(ast_value_factory()->default_string(),
|
|
import_default_binding, module_specifier,
|
|
import_default_binding_loc, zone());
|
|
}
|
|
|
|
if (named_imports != nullptr) {
|
|
if (named_imports->length() == 0) {
|
|
module()->AddEmptyImport(module_specifier, scanner()->location(), zone());
|
|
} else {
|
|
for (int i = 0; i < named_imports->length(); ++i) {
|
|
const NamedImport* import = named_imports->at(i);
|
|
module()->AddImport(import->import_name, import->local_name,
|
|
module_specifier, import->location, zone());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseExportDefault(bool* ok) {
|
|
// Supports the following productions, starting after the 'default' token:
|
|
// 'export' 'default' HoistableDeclaration
|
|
// 'export' 'default' ClassDeclaration
|
|
// 'export' 'default' AssignmentExpression[In] ';'
|
|
|
|
Expect(Token::DEFAULT, CHECK_OK);
|
|
Scanner::Location default_loc = scanner()->location();
|
|
|
|
ZoneList<const AstRawString*> local_names(1, zone());
|
|
Statement* result = nullptr;
|
|
switch (peek()) {
|
|
case Token::FUNCTION:
|
|
result = ParseHoistableDeclaration(&local_names, true, CHECK_OK);
|
|
break;
|
|
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
result = ParseClassDeclaration(&local_names, true, CHECK_OK);
|
|
break;
|
|
|
|
case Token::ASYNC:
|
|
if (allow_harmony_async_await() && PeekAhead() == Token::FUNCTION &&
|
|
!scanner()->HasAnyLineTerminatorAfterNext()) {
|
|
Consume(Token::ASYNC);
|
|
result = ParseAsyncFunctionDeclaration(&local_names, true, CHECK_OK);
|
|
break;
|
|
}
|
|
/* falls through */
|
|
|
|
default: {
|
|
int pos = position();
|
|
ExpressionClassifier classifier(this);
|
|
Expression* value =
|
|
ParseAssignmentExpression(true, &classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
SetFunctionName(value, ast_value_factory()->default_string());
|
|
|
|
const AstRawString* local_name =
|
|
ast_value_factory()->star_default_star_string();
|
|
local_names.Add(local_name, zone());
|
|
|
|
// It's fine to declare this as CONST because the user has no way of
|
|
// writing to it.
|
|
Declaration* decl = DeclareVariable(local_name, CONST, pos, CHECK_OK);
|
|
decl->proxy()->var()->set_initializer_position(position());
|
|
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, decl->proxy(), value, kNoSourcePosition);
|
|
result = factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
|
|
ExpectSemicolon(CHECK_OK);
|
|
break;
|
|
}
|
|
}
|
|
|
|
DCHECK_EQ(local_names.length(), 1);
|
|
module()->AddExport(local_names.first(),
|
|
ast_value_factory()->default_string(), default_loc,
|
|
zone());
|
|
|
|
DCHECK_NOT_NULL(result);
|
|
return result;
|
|
}
|
|
|
|
Statement* Parser::ParseExportDeclaration(bool* ok) {
|
|
// ExportDeclaration:
|
|
// 'export' '*' 'from' ModuleSpecifier ';'
|
|
// 'export' ExportClause ('from' ModuleSpecifier)? ';'
|
|
// 'export' VariableStatement
|
|
// 'export' Declaration
|
|
// 'export' 'default' ... (handled in ParseExportDefault)
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::EXPORT, CHECK_OK);
|
|
|
|
Statement* result = nullptr;
|
|
ZoneList<const AstRawString*> names(1, zone());
|
|
switch (peek()) {
|
|
case Token::DEFAULT:
|
|
return ParseExportDefault(ok);
|
|
|
|
case Token::MUL: {
|
|
Consume(Token::MUL);
|
|
ExpectContextualKeyword(CStrVector("from"), CHECK_OK);
|
|
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
module()->AddStarExport(module_specifier, scanner()->location(), zone());
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
|
|
case Token::LBRACE: {
|
|
// There are two cases here:
|
|
//
|
|
// 'export' ExportClause ';'
|
|
// and
|
|
// 'export' ExportClause FromClause ';'
|
|
//
|
|
// In the first case, the exported identifiers in ExportClause must
|
|
// not be reserved words, while in the latter they may be. We
|
|
// pass in a location that gets filled with the first reserved word
|
|
// encountered, and then throw a SyntaxError if we are in the
|
|
// non-FromClause case.
|
|
Scanner::Location reserved_loc = Scanner::Location::invalid();
|
|
ZoneList<const AstRawString*> export_names(1, zone());
|
|
ZoneList<Scanner::Location> export_locations(1, zone());
|
|
ZoneList<const AstRawString*> original_names(1, zone());
|
|
ParseExportClause(&export_names, &export_locations, &original_names,
|
|
&reserved_loc, CHECK_OK);
|
|
const AstRawString* module_specifier = nullptr;
|
|
if (CheckContextualKeyword(CStrVector("from"))) {
|
|
module_specifier = ParseModuleSpecifier(CHECK_OK);
|
|
} else if (reserved_loc.IsValid()) {
|
|
// No FromClause, so reserved words are invalid in ExportClause.
|
|
*ok = false;
|
|
ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved);
|
|
return nullptr;
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
const int length = export_names.length();
|
|
DCHECK_EQ(length, original_names.length());
|
|
DCHECK_EQ(length, export_locations.length());
|
|
if (module_specifier == nullptr) {
|
|
for (int i = 0; i < length; ++i) {
|
|
module()->AddExport(original_names[i], export_names[i],
|
|
export_locations[i], zone());
|
|
}
|
|
} else if (length == 0) {
|
|
module()->AddEmptyImport(module_specifier, scanner()->location(),
|
|
zone());
|
|
} else {
|
|
for (int i = 0; i < length; ++i) {
|
|
module()->AddExport(original_names[i], export_names[i],
|
|
module_specifier, export_locations[i], zone());
|
|
}
|
|
}
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
|
|
case Token::FUNCTION:
|
|
result = ParseHoistableDeclaration(&names, false, CHECK_OK);
|
|
break;
|
|
|
|
case Token::CLASS:
|
|
Consume(Token::CLASS);
|
|
result = ParseClassDeclaration(&names, false, CHECK_OK);
|
|
break;
|
|
|
|
case Token::VAR:
|
|
case Token::LET:
|
|
case Token::CONST:
|
|
result = ParseVariableStatement(kStatementListItem, &names, CHECK_OK);
|
|
break;
|
|
|
|
case Token::ASYNC:
|
|
if (allow_harmony_async_await()) {
|
|
// TODO(neis): Why don't we have the same check here as in
|
|
// ParseStatementListItem?
|
|
Consume(Token::ASYNC);
|
|
result = ParseAsyncFunctionDeclaration(&names, false, CHECK_OK);
|
|
break;
|
|
}
|
|
/* falls through */
|
|
|
|
default:
|
|
*ok = false;
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return nullptr;
|
|
}
|
|
|
|
ModuleDescriptor* descriptor = module();
|
|
for (int i = 0; i < names.length(); ++i) {
|
|
// TODO(neis): Provide better location.
|
|
descriptor->AddExport(names[i], names[i], scanner()->location(), zone());
|
|
}
|
|
|
|
DCHECK_NOT_NULL(result);
|
|
return result;
|
|
}
|
|
|
|
Statement* Parser::ParseStatement(ZoneList<const AstRawString*>* labels,
|
|
AllowLabelledFunctionStatement allow_function,
|
|
bool* ok) {
|
|
// Statement ::
|
|
// EmptyStatement
|
|
// ...
|
|
|
|
if (peek() == Token::SEMICOLON) {
|
|
Next();
|
|
return factory()->NewEmptyStatement(kNoSourcePosition);
|
|
}
|
|
return ParseSubStatement(labels, allow_function, ok);
|
|
}
|
|
|
|
Statement* Parser::ParseSubStatement(
|
|
ZoneList<const AstRawString*>* labels,
|
|
AllowLabelledFunctionStatement allow_function, bool* ok) {
|
|
// Statement ::
|
|
// Block
|
|
// VariableStatement
|
|
// EmptyStatement
|
|
// ExpressionStatement
|
|
// IfStatement
|
|
// IterationStatement
|
|
// ContinueStatement
|
|
// BreakStatement
|
|
// ReturnStatement
|
|
// WithStatement
|
|
// LabelledStatement
|
|
// SwitchStatement
|
|
// ThrowStatement
|
|
// TryStatement
|
|
// DebuggerStatement
|
|
|
|
// Note: Since labels can only be used by 'break' and 'continue'
|
|
// statements, which themselves are only valid within blocks,
|
|
// iterations or 'switch' statements (i.e., BreakableStatements),
|
|
// labels can be simply ignored in all other cases; except for
|
|
// trivial labeled break statements 'label: break label' which is
|
|
// parsed into an empty statement.
|
|
switch (peek()) {
|
|
case Token::LBRACE:
|
|
return ParseBlock(labels, ok);
|
|
|
|
case Token::SEMICOLON:
|
|
Next();
|
|
return factory()->NewEmptyStatement(kNoSourcePosition);
|
|
|
|
case Token::IF:
|
|
return ParseIfStatement(labels, ok);
|
|
|
|
case Token::DO:
|
|
return ParseDoWhileStatement(labels, ok);
|
|
|
|
case Token::WHILE:
|
|
return ParseWhileStatement(labels, ok);
|
|
|
|
case Token::FOR:
|
|
return ParseForStatement(labels, ok);
|
|
|
|
case Token::CONTINUE:
|
|
case Token::BREAK:
|
|
case Token::RETURN:
|
|
case Token::THROW:
|
|
case Token::TRY: {
|
|
// These statements must have their labels preserved in an enclosing
|
|
// block
|
|
if (labels == NULL) {
|
|
return ParseStatementAsUnlabelled(labels, ok);
|
|
} else {
|
|
Block* result =
|
|
factory()->NewBlock(labels, 1, false, kNoSourcePosition);
|
|
Target target(&this->target_stack_, result);
|
|
Statement* statement = ParseStatementAsUnlabelled(labels, CHECK_OK);
|
|
if (result) result->statements()->Add(statement, zone());
|
|
return result;
|
|
}
|
|
}
|
|
|
|
case Token::WITH:
|
|
return ParseWithStatement(labels, ok);
|
|
|
|
case Token::SWITCH:
|
|
return ParseSwitchStatement(labels, ok);
|
|
|
|
case Token::FUNCTION:
|
|
// FunctionDeclaration only allowed as a StatementListItem, not in
|
|
// an arbitrary Statement position. Exceptions such as
|
|
// ES#sec-functiondeclarations-in-ifstatement-statement-clauses
|
|
// are handled by calling ParseScopedStatement rather than
|
|
// ParseSubStatement directly.
|
|
ReportMessageAt(scanner()->peek_location(),
|
|
is_strict(language_mode())
|
|
? MessageTemplate::kStrictFunction
|
|
: MessageTemplate::kSloppyFunction);
|
|
*ok = false;
|
|
return nullptr;
|
|
|
|
case Token::DEBUGGER:
|
|
return ParseDebuggerStatement(ok);
|
|
|
|
case Token::VAR:
|
|
return ParseVariableStatement(kStatement, NULL, ok);
|
|
|
|
default:
|
|
return ParseExpressionOrLabelledStatement(labels, allow_function, ok);
|
|
}
|
|
}
|
|
|
|
Statement* Parser::ParseStatementAsUnlabelled(
|
|
ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
switch (peek()) {
|
|
case Token::CONTINUE:
|
|
return ParseContinueStatement(ok);
|
|
|
|
case Token::BREAK:
|
|
return ParseBreakStatement(labels, ok);
|
|
|
|
case Token::RETURN:
|
|
return ParseReturnStatement(ok);
|
|
|
|
case Token::THROW:
|
|
return ParseThrowStatement(ok);
|
|
|
|
case Token::TRY:
|
|
return ParseTryStatement(ok);
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
VariableProxy* Parser::NewUnresolved(const AstRawString* name, int begin_pos,
|
|
int end_pos, Variable::Kind kind) {
|
|
return scope()->NewUnresolved(factory(), name, begin_pos, end_pos, kind);
|
|
}
|
|
|
|
VariableProxy* Parser::NewUnresolved(const AstRawString* name) {
|
|
return scope()->NewUnresolved(factory(), name, scanner()->location().beg_pos,
|
|
scanner()->location().end_pos);
|
|
}
|
|
|
|
InitializationFlag Parser::DefaultInitializationFlag(VariableMode mode) {
|
|
DCHECK(IsDeclaredVariableMode(mode));
|
|
return mode == VAR ? kCreatedInitialized : kNeedsInitialization;
|
|
}
|
|
|
|
Declaration* Parser::DeclareVariable(const AstRawString* name,
|
|
VariableMode mode, int pos, bool* ok) {
|
|
return DeclareVariable(name, mode, DefaultInitializationFlag(mode), pos, ok);
|
|
}
|
|
|
|
Declaration* Parser::DeclareVariable(const AstRawString* name,
|
|
VariableMode mode, InitializationFlag init,
|
|
int pos, bool* ok) {
|
|
DCHECK_NOT_NULL(name);
|
|
Scope* scope =
|
|
IsLexicalVariableMode(mode) ? this->scope() : GetDeclarationScope();
|
|
VariableProxy* proxy =
|
|
scope->NewUnresolved(factory(), name, scanner()->location().beg_pos,
|
|
scanner()->location().end_pos);
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, this->scope(), pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, mode, init, CHECK_OK);
|
|
return declaration;
|
|
}
|
|
|
|
Variable* Parser::Declare(Declaration* declaration,
|
|
DeclarationDescriptor::Kind declaration_kind,
|
|
VariableMode mode, InitializationFlag init, bool* ok,
|
|
Scope* scope) {
|
|
DCHECK(IsDeclaredVariableMode(mode) && mode != CONST_LEGACY);
|
|
|
|
VariableProxy* proxy = declaration->proxy();
|
|
DCHECK(proxy->raw_name() != NULL);
|
|
const AstRawString* name = proxy->raw_name();
|
|
|
|
if (scope == nullptr) scope = this->scope();
|
|
if (mode == VAR) scope = scope->GetDeclarationScope();
|
|
DCHECK(!scope->is_catch_scope());
|
|
DCHECK(!scope->is_with_scope());
|
|
DCHECK(scope->is_declaration_scope() ||
|
|
(IsLexicalVariableMode(mode) && scope->is_block_scope()));
|
|
|
|
bool is_function_declaration = declaration->IsFunctionDeclaration();
|
|
|
|
Variable* var = NULL;
|
|
if (scope->is_eval_scope() && is_sloppy(scope->language_mode()) &&
|
|
mode == VAR) {
|
|
// In a var binding in a sloppy direct eval, pollute the enclosing scope
|
|
// with this new binding by doing the following:
|
|
// The proxy is bound to a lookup variable to force a dynamic declaration
|
|
// using the DeclareEvalVar or DeclareEvalFunction runtime functions.
|
|
Variable::Kind kind = Variable::NORMAL;
|
|
// TODO(sigurds) figure out if kNotAssigned is OK here
|
|
var = new (zone()) Variable(scope, name, mode, kind, init, kNotAssigned);
|
|
var->AllocateTo(VariableLocation::LOOKUP, -1);
|
|
} else {
|
|
// Declare the variable in the declaration scope.
|
|
var = scope->LookupLocal(name);
|
|
if (var == NULL) {
|
|
// Declare the name.
|
|
Variable::Kind kind = Variable::NORMAL;
|
|
if (is_function_declaration) {
|
|
kind = Variable::FUNCTION;
|
|
}
|
|
var = scope->DeclareLocal(name, mode, init, kind, kNotAssigned);
|
|
} else if (IsLexicalVariableMode(mode) ||
|
|
IsLexicalVariableMode(var->mode())) {
|
|
// Allow duplicate function decls for web compat, see bug 4693.
|
|
bool duplicate_allowed = false;
|
|
if (is_sloppy(scope->language_mode()) && is_function_declaration &&
|
|
var->is_function()) {
|
|
DCHECK(IsLexicalVariableMode(mode) &&
|
|
IsLexicalVariableMode(var->mode()));
|
|
// If the duplication is allowed, then the var will show up
|
|
// in the SloppyBlockFunctionMap and the new FunctionKind
|
|
// will be a permitted duplicate.
|
|
FunctionKind function_kind =
|
|
declaration->AsFunctionDeclaration()->fun()->kind();
|
|
duplicate_allowed =
|
|
scope->GetDeclarationScope()->sloppy_block_function_map()->Lookup(
|
|
const_cast<AstRawString*>(name), name->hash()) != nullptr &&
|
|
!IsAsyncFunction(function_kind) &&
|
|
!(allow_harmony_restrictive_generators() &&
|
|
IsGeneratorFunction(function_kind));
|
|
}
|
|
if (duplicate_allowed) {
|
|
++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition];
|
|
} else {
|
|
// The name was declared in this scope before; check for conflicting
|
|
// re-declarations. We have a conflict if either of the declarations
|
|
// is not a var (in script scope, we also have to ignore legacy const
|
|
// for compatibility). There is similar code in runtime.cc in the
|
|
// Declare functions. The function CheckConflictingVarDeclarations
|
|
// checks for var and let bindings from different scopes whereas this
|
|
// is a check for conflicting declarations within the same scope. This
|
|
// check also covers the special case
|
|
//
|
|
// function () { let x; { var x; } }
|
|
//
|
|
// because the var declaration is hoisted to the function scope where
|
|
// 'x' is already bound.
|
|
DCHECK(IsDeclaredVariableMode(var->mode()));
|
|
// In harmony we treat re-declarations as early errors. See
|
|
// ES5 16 for a definition of early errors.
|
|
if (declaration_kind == DeclarationDescriptor::NORMAL) {
|
|
ReportMessage(MessageTemplate::kVarRedeclaration, name);
|
|
} else {
|
|
ReportMessage(MessageTemplate::kParamDupe);
|
|
}
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
} else if (mode == VAR) {
|
|
var->set_maybe_assigned();
|
|
}
|
|
}
|
|
DCHECK_NOT_NULL(var);
|
|
|
|
// We add a declaration node for every declaration. The compiler
|
|
// will only generate code if necessary. In particular, declarations
|
|
// for inner local variables that do not represent functions won't
|
|
// result in any generated code.
|
|
//
|
|
// This will lead to multiple declaration nodes for the
|
|
// same variable if it is declared several times. This is not a
|
|
// semantic issue, but it may be a performance issue since it may
|
|
// lead to repeated DeclareEvalVar or DeclareEvalFunction calls.
|
|
scope->AddDeclaration(declaration);
|
|
proxy->BindTo(var);
|
|
return var;
|
|
}
|
|
|
|
|
|
// Language extension which is only enabled for source files loaded
|
|
// through the API's extension mechanism. A native function
|
|
// declaration is resolved by looking up the function through a
|
|
// callback provided by the extension.
|
|
Statement* Parser::ParseNativeDeclaration(bool* ok) {
|
|
int pos = peek_position();
|
|
Expect(Token::FUNCTION, CHECK_OK);
|
|
// Allow "eval" or "arguments" for backward compatibility.
|
|
const AstRawString* name =
|
|
ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
bool done = (peek() == Token::RPAREN);
|
|
while (!done) {
|
|
ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK);
|
|
done = (peek() == Token::RPAREN);
|
|
if (!done) {
|
|
Expect(Token::COMMA, CHECK_OK);
|
|
}
|
|
}
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
Expect(Token::SEMICOLON, CHECK_OK);
|
|
|
|
// Make sure that the function containing the native declaration
|
|
// isn't lazily compiled. The extension structures are only
|
|
// accessible while parsing the first time not when reparsing
|
|
// because of lazy compilation.
|
|
GetClosureScope()->ForceEagerCompilation();
|
|
|
|
// TODO(1240846): It's weird that native function declarations are
|
|
// introduced dynamically when we meet their declarations, whereas
|
|
// other functions are set up when entering the surrounding scope.
|
|
Declaration* decl = DeclareVariable(name, VAR, pos, CHECK_OK);
|
|
NativeFunctionLiteral* lit =
|
|
factory()->NewNativeFunctionLiteral(name, extension_, kNoSourcePosition);
|
|
return factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::INIT, decl->proxy(), lit,
|
|
kNoSourcePosition),
|
|
pos);
|
|
}
|
|
|
|
Statement* Parser::ParseHoistableDeclaration(
|
|
ZoneList<const AstRawString*>* names, bool default_export, bool* ok) {
|
|
Expect(Token::FUNCTION, CHECK_OK);
|
|
int pos = position();
|
|
ParseFunctionFlags flags = ParseFunctionFlags::kIsNormal;
|
|
if (Check(Token::MUL)) {
|
|
flags |= ParseFunctionFlags::kIsGenerator;
|
|
}
|
|
return ParseHoistableDeclaration(pos, flags, names, default_export, ok);
|
|
}
|
|
|
|
Statement* Parser::ParseAsyncFunctionDeclaration(
|
|
ZoneList<const AstRawString*>* names, bool default_export, bool* ok) {
|
|
DCHECK_EQ(scanner()->current_token(), Token::ASYNC);
|
|
int pos = position();
|
|
if (scanner()->HasAnyLineTerminatorBeforeNext()) {
|
|
*ok = false;
|
|
ReportUnexpectedToken(scanner()->current_token());
|
|
return nullptr;
|
|
}
|
|
Expect(Token::FUNCTION, CHECK_OK);
|
|
ParseFunctionFlags flags = ParseFunctionFlags::kIsAsync;
|
|
return ParseHoistableDeclaration(pos, flags, names, default_export, ok);
|
|
}
|
|
|
|
Statement* Parser::ParseHoistableDeclaration(
|
|
int pos, ParseFunctionFlags flags, ZoneList<const AstRawString*>* names,
|
|
bool default_export, bool* ok) {
|
|
// FunctionDeclaration ::
|
|
// 'function' Identifier '(' FormalParameters ')' '{' FunctionBody '}'
|
|
// 'function' '(' FormalParameters ')' '{' FunctionBody '}'
|
|
// GeneratorDeclaration ::
|
|
// 'function' '*' Identifier '(' FormalParameters ')' '{' FunctionBody '}'
|
|
// 'function' '*' '(' FormalParameters ')' '{' FunctionBody '}'
|
|
//
|
|
// The anonymous forms are allowed iff [default_export] is true.
|
|
//
|
|
// 'function' and '*' (if present) have been consumed by the caller.
|
|
|
|
const bool is_generator = flags & ParseFunctionFlags::kIsGenerator;
|
|
const bool is_async = flags & ParseFunctionFlags::kIsAsync;
|
|
DCHECK(!is_generator || !is_async);
|
|
|
|
const AstRawString* name;
|
|
FunctionNameValidity name_validity;
|
|
const AstRawString* variable_name;
|
|
if (default_export && peek() == Token::LPAREN) {
|
|
name = ast_value_factory()->default_string();
|
|
name_validity = kSkipFunctionNameCheck;
|
|
variable_name = ast_value_factory()->star_default_star_string();
|
|
} else {
|
|
bool is_strict_reserved;
|
|
name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK);
|
|
name_validity = is_strict_reserved ? kFunctionNameIsStrictReserved
|
|
: kFunctionNameValidityUnknown;
|
|
variable_name = name;
|
|
}
|
|
|
|
FuncNameInferrer::State fni_state(fni_);
|
|
if (fni_ != NULL) fni_->PushEnclosingName(name);
|
|
FunctionLiteral* fun = ParseFunctionLiteral(
|
|
name, scanner()->location(), name_validity,
|
|
is_generator ? FunctionKind::kGeneratorFunction
|
|
: is_async ? FunctionKind::kAsyncFunction
|
|
: FunctionKind::kNormalFunction,
|
|
pos, FunctionLiteral::kDeclaration, language_mode(), CHECK_OK);
|
|
|
|
// In ES6, a function behaves as a lexical binding, except in
|
|
// a script scope, or the initial scope of eval or another function.
|
|
VariableMode mode =
|
|
(!scope()->is_declaration_scope() || scope()->is_module_scope()) ? LET
|
|
: VAR;
|
|
VariableProxy* proxy = NewUnresolved(variable_name);
|
|
Declaration* declaration =
|
|
factory()->NewFunctionDeclaration(proxy, fun, scope(), pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, mode, kCreatedInitialized,
|
|
CHECK_OK);
|
|
if (names) names->Add(variable_name, zone());
|
|
EmptyStatement* empty = factory()->NewEmptyStatement(kNoSourcePosition);
|
|
// Async functions don't undergo sloppy mode block scoped hoisting, and don't
|
|
// allow duplicates in a block. Both are represented by the
|
|
// sloppy_block_function_map. Don't add them to the map for async functions.
|
|
// Generators are also supposed to be prohibited; currently doing this behind
|
|
// a flag and UseCounting violations to assess web compatibility.
|
|
if (is_sloppy(language_mode()) && !scope()->is_declaration_scope() &&
|
|
!is_async && !(allow_harmony_restrictive_generators() && is_generator)) {
|
|
SloppyBlockFunctionStatement* delegate =
|
|
factory()->NewSloppyBlockFunctionStatement(empty, scope());
|
|
DeclarationScope* target_scope = GetDeclarationScope();
|
|
target_scope->DeclareSloppyBlockFunction(variable_name, delegate);
|
|
return delegate;
|
|
}
|
|
return empty;
|
|
}
|
|
|
|
Statement* Parser::ParseClassDeclaration(ZoneList<const AstRawString*>* names,
|
|
bool default_export, bool* ok) {
|
|
// ClassDeclaration ::
|
|
// 'class' Identifier ('extends' LeftHandExpression)? '{' ClassBody '}'
|
|
// 'class' ('extends' LeftHandExpression)? '{' ClassBody '}'
|
|
//
|
|
// The anonymous form is allowed iff [default_export] is true.
|
|
//
|
|
// 'class' is expected to be consumed by the caller.
|
|
//
|
|
// A ClassDeclaration
|
|
//
|
|
// class C { ... }
|
|
//
|
|
// has the same semantics as:
|
|
//
|
|
// let C = class C { ... };
|
|
//
|
|
// so rewrite it as such.
|
|
|
|
int pos = position();
|
|
|
|
const AstRawString* name;
|
|
bool is_strict_reserved;
|
|
const AstRawString* variable_name;
|
|
if (default_export && (peek() == Token::EXTENDS || peek() == Token::LBRACE)) {
|
|
name = ast_value_factory()->default_string();
|
|
is_strict_reserved = false;
|
|
variable_name = ast_value_factory()->star_default_star_string();
|
|
} else {
|
|
name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK);
|
|
variable_name = name;
|
|
}
|
|
|
|
Expression* value = ParseClassLiteral(nullptr, name, scanner()->location(),
|
|
is_strict_reserved, pos, CHECK_OK);
|
|
|
|
Declaration* decl = DeclareVariable(variable_name, LET, pos, CHECK_OK);
|
|
decl->proxy()->var()->set_initializer_position(position());
|
|
Assignment* assignment =
|
|
factory()->NewAssignment(Token::INIT, decl->proxy(), value, pos);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
if (names) names->Add(variable_name, zone());
|
|
return assignment_statement;
|
|
}
|
|
|
|
Block* Parser::ParseBlock(ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
// The harmony mode uses block elements instead of statements.
|
|
//
|
|
// Block ::
|
|
// '{' StatementList '}'
|
|
|
|
// Construct block expecting 16 statements.
|
|
Block* body = factory()->NewBlock(labels, 16, false, kNoSourcePosition);
|
|
|
|
// Parse the statements and collect escaping labels.
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
{
|
|
BlockState block_state(&scope_state_);
|
|
block_state.set_start_position(scanner()->location().beg_pos);
|
|
Target target(&this->target_stack_, body);
|
|
|
|
while (peek() != Token::RBRACE) {
|
|
Statement* stat = ParseStatementListItem(CHECK_OK);
|
|
if (stat && !stat->IsEmpty()) {
|
|
body->statements()->Add(stat, zone());
|
|
}
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
block_state.set_end_position(scanner()->location().end_pos);
|
|
body->set_scope(block_state.FinalizedBlockScope());
|
|
}
|
|
return body;
|
|
}
|
|
|
|
|
|
Block* Parser::DeclarationParsingResult::BuildInitializationBlock(
|
|
ZoneList<const AstRawString*>* names, bool* ok) {
|
|
Block* result = descriptor.parser->factory()->NewBlock(
|
|
NULL, 1, true, descriptor.declaration_pos);
|
|
for (auto declaration : declarations) {
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
result, &descriptor, &declaration, names, CHECK_OK);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
Block* Parser::ParseVariableStatement(VariableDeclarationContext var_context,
|
|
ZoneList<const AstRawString*>* names,
|
|
bool* ok) {
|
|
// VariableStatement ::
|
|
// VariableDeclarations ';'
|
|
|
|
// The scope of a var declared variable anywhere inside a function
|
|
// is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). Thus we can
|
|
// transform a source-level var declaration into a (Function) Scope
|
|
// declaration, and rewrite the source-level initialization into an assignment
|
|
// statement. We use a block to collect multiple assignments.
|
|
//
|
|
// We mark the block as initializer block because we don't want the
|
|
// rewriter to add a '.result' assignment to such a block (to get compliant
|
|
// behavior for code such as print(eval('var x = 7')), and for cosmetic
|
|
// reasons when pretty-printing. Also, unless an assignment (initialization)
|
|
// is inside an initializer block, it is ignored.
|
|
|
|
DeclarationParsingResult parsing_result;
|
|
Block* result =
|
|
ParseVariableDeclarations(var_context, &parsing_result, names, CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
return result;
|
|
}
|
|
|
|
Block* Parser::ParseVariableDeclarations(
|
|
VariableDeclarationContext var_context,
|
|
DeclarationParsingResult* parsing_result,
|
|
ZoneList<const AstRawString*>* names, bool* ok) {
|
|
// VariableDeclarations ::
|
|
// ('var' | 'const' | 'let') (Identifier ('=' AssignmentExpression)?)+[',']
|
|
//
|
|
// The ES6 Draft Rev3 specifies the following grammar for const declarations
|
|
//
|
|
// ConstDeclaration ::
|
|
// const ConstBinding (',' ConstBinding)* ';'
|
|
// ConstBinding ::
|
|
// Identifier '=' AssignmentExpression
|
|
//
|
|
// TODO(ES6):
|
|
// ConstBinding ::
|
|
// BindingPattern '=' AssignmentExpression
|
|
|
|
parsing_result->descriptor.parser = this;
|
|
parsing_result->descriptor.declaration_kind = DeclarationDescriptor::NORMAL;
|
|
parsing_result->descriptor.declaration_pos = peek_position();
|
|
parsing_result->descriptor.initialization_pos = peek_position();
|
|
parsing_result->descriptor.mode = VAR;
|
|
|
|
Block* init_block = nullptr;
|
|
if (var_context != kForStatement) {
|
|
init_block = factory()->NewBlock(
|
|
NULL, 1, true, parsing_result->descriptor.declaration_pos);
|
|
}
|
|
|
|
if (peek() == Token::VAR) {
|
|
Consume(Token::VAR);
|
|
} else if (peek() == Token::CONST) {
|
|
Consume(Token::CONST);
|
|
DCHECK(var_context != kStatement);
|
|
parsing_result->descriptor.mode = CONST;
|
|
} else if (peek() == Token::LET) {
|
|
Consume(Token::LET);
|
|
DCHECK(var_context != kStatement);
|
|
parsing_result->descriptor.mode = LET;
|
|
} else {
|
|
UNREACHABLE(); // by current callers
|
|
}
|
|
|
|
parsing_result->descriptor.scope = scope();
|
|
parsing_result->descriptor.hoist_scope = nullptr;
|
|
|
|
|
|
bool first_declaration = true;
|
|
int bindings_start = peek_position();
|
|
do {
|
|
FuncNameInferrer::State fni_state(fni_);
|
|
|
|
// Parse name.
|
|
if (!first_declaration) Consume(Token::COMMA);
|
|
|
|
Expression* pattern;
|
|
int decl_pos = peek_position();
|
|
{
|
|
ExpressionClassifier pattern_classifier(this);
|
|
pattern = ParsePrimaryExpression(&pattern_classifier, CHECK_OK);
|
|
ValidateBindingPattern(&pattern_classifier, CHECK_OK);
|
|
if (IsLexicalVariableMode(parsing_result->descriptor.mode)) {
|
|
ValidateLetPattern(&pattern_classifier, CHECK_OK);
|
|
}
|
|
}
|
|
|
|
Scanner::Location variable_loc = scanner()->location();
|
|
const AstRawString* single_name =
|
|
pattern->IsVariableProxy() ? pattern->AsVariableProxy()->raw_name()
|
|
: nullptr;
|
|
if (single_name != nullptr) {
|
|
if (fni_ != NULL) fni_->PushVariableName(single_name);
|
|
}
|
|
|
|
Expression* value = NULL;
|
|
int initializer_position = kNoSourcePosition;
|
|
if (Check(Token::ASSIGN)) {
|
|
ExpressionClassifier classifier(this);
|
|
value = ParseAssignmentExpression(var_context != kForStatement,
|
|
&classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
variable_loc.end_pos = scanner()->location().end_pos;
|
|
|
|
if (!parsing_result->first_initializer_loc.IsValid()) {
|
|
parsing_result->first_initializer_loc = variable_loc;
|
|
}
|
|
|
|
// Don't infer if it is "a = function(){...}();"-like expression.
|
|
if (single_name) {
|
|
if (fni_ != NULL && value->AsCall() == NULL &&
|
|
value->AsCallNew() == NULL) {
|
|
fni_->Infer();
|
|
} else {
|
|
fni_->RemoveLastFunction();
|
|
}
|
|
}
|
|
|
|
ParserBaseTraits<Parser>::SetFunctionNameFromIdentifierRef(value,
|
|
pattern);
|
|
|
|
// End position of the initializer is after the assignment expression.
|
|
initializer_position = scanner()->location().end_pos;
|
|
} else {
|
|
// Initializers may be either required or implied unless this is a
|
|
// for-in/of iteration variable.
|
|
if (var_context != kForStatement || !PeekInOrOf()) {
|
|
// ES6 'const' and binding patterns require initializers.
|
|
if (parsing_result->descriptor.mode == CONST ||
|
|
!pattern->IsVariableProxy()) {
|
|
ReportMessageAt(
|
|
Scanner::Location(decl_pos, scanner()->location().end_pos),
|
|
MessageTemplate::kDeclarationMissingInitializer,
|
|
!pattern->IsVariableProxy() ? "destructuring" : "const");
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
|
|
// 'let x' initializes 'x' to undefined.
|
|
if (parsing_result->descriptor.mode == LET) {
|
|
value = GetLiteralUndefined(position());
|
|
}
|
|
}
|
|
|
|
// End position of the initializer is after the variable.
|
|
initializer_position = position();
|
|
}
|
|
|
|
DeclarationParsingResult::Declaration decl(pattern, initializer_position,
|
|
value);
|
|
if (var_context == kForStatement) {
|
|
// Save the declaration for further handling in ParseForStatement.
|
|
parsing_result->declarations.Add(decl);
|
|
} else {
|
|
// Immediately declare the variable otherwise. This avoids O(N^2)
|
|
// behavior (where N is the number of variables in a single
|
|
// declaration) in the PatternRewriter having to do with removing
|
|
// and adding VariableProxies to the Scope (see bug 4699).
|
|
DCHECK_NOT_NULL(init_block);
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
init_block, &parsing_result->descriptor, &decl, names, CHECK_OK);
|
|
}
|
|
first_declaration = false;
|
|
} while (peek() == Token::COMMA);
|
|
|
|
parsing_result->bindings_loc =
|
|
Scanner::Location(bindings_start, scanner()->location().end_pos);
|
|
|
|
DCHECK(*ok);
|
|
return init_block;
|
|
}
|
|
|
|
|
|
static bool ContainsLabel(ZoneList<const AstRawString*>* labels,
|
|
const AstRawString* label) {
|
|
DCHECK(label != NULL);
|
|
if (labels != NULL) {
|
|
for (int i = labels->length(); i-- > 0; ) {
|
|
if (labels->at(i) == label) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Statement* Parser::ParseFunctionDeclaration(bool* ok) {
|
|
Consume(Token::FUNCTION);
|
|
int pos = position();
|
|
ParseFunctionFlags flags = ParseFunctionFlags::kIsNormal;
|
|
if (Check(Token::MUL)) {
|
|
flags |= ParseFunctionFlags::kIsGenerator;
|
|
if (allow_harmony_restrictive_declarations()) {
|
|
ReportMessageAt(scanner()->location(),
|
|
MessageTemplate::kGeneratorInLegacyContext);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return ParseHoistableDeclaration(pos, flags, nullptr, false, CHECK_OK);
|
|
}
|
|
|
|
Statement* Parser::ParseExpressionOrLabelledStatement(
|
|
ZoneList<const AstRawString*>* labels,
|
|
AllowLabelledFunctionStatement allow_function, bool* ok) {
|
|
// ExpressionStatement | LabelledStatement ::
|
|
// Expression ';'
|
|
// Identifier ':' Statement
|
|
//
|
|
// ExpressionStatement[Yield] :
|
|
// [lookahead ∉ {{, function, class, let [}] Expression[In, ?Yield] ;
|
|
|
|
int pos = peek_position();
|
|
|
|
switch (peek()) {
|
|
case Token::FUNCTION:
|
|
case Token::LBRACE:
|
|
UNREACHABLE(); // Always handled by the callers.
|
|
case Token::CLASS:
|
|
ReportUnexpectedToken(Next());
|
|
*ok = false;
|
|
return nullptr;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
bool starts_with_idenfifier = peek_any_identifier();
|
|
Expression* expr = ParseExpression(true, CHECK_OK);
|
|
if (peek() == Token::COLON && starts_with_idenfifier && expr != NULL &&
|
|
expr->AsVariableProxy() != NULL &&
|
|
!expr->AsVariableProxy()->is_this()) {
|
|
// Expression is a single identifier, and not, e.g., a parenthesized
|
|
// identifier.
|
|
VariableProxy* var = expr->AsVariableProxy();
|
|
const AstRawString* label = var->raw_name();
|
|
// TODO(1240780): We don't check for redeclaration of labels
|
|
// during preparsing since keeping track of the set of active
|
|
// labels requires nontrivial changes to the way scopes are
|
|
// structured. However, these are probably changes we want to
|
|
// make later anyway so we should go back and fix this then.
|
|
if (ContainsLabel(labels, label) || TargetStackContainsLabel(label)) {
|
|
ReportMessage(MessageTemplate::kLabelRedeclaration, label);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
if (labels == NULL) {
|
|
labels = new(zone()) ZoneList<const AstRawString*>(4, zone());
|
|
}
|
|
labels->Add(label, zone());
|
|
// Remove the "ghost" variable that turned out to be a label
|
|
// from the top scope. This way, we don't try to resolve it
|
|
// during the scope processing.
|
|
scope()->RemoveUnresolved(var);
|
|
Expect(Token::COLON, CHECK_OK);
|
|
// ES#sec-labelled-function-declarations Labelled Function Declarations
|
|
if (peek() == Token::FUNCTION && is_sloppy(language_mode())) {
|
|
if (allow_function == kAllowLabelledFunctionStatement) {
|
|
return ParseFunctionDeclaration(ok);
|
|
} else {
|
|
return ParseScopedStatement(labels, true, ok);
|
|
}
|
|
}
|
|
return ParseStatement(labels, kDisallowLabelledFunctionStatement, ok);
|
|
}
|
|
|
|
// If we have an extension, we allow a native function declaration.
|
|
// A native function declaration starts with "native function" with
|
|
// no line-terminator between the two words.
|
|
if (extension_ != NULL && peek() == Token::FUNCTION &&
|
|
!scanner()->HasAnyLineTerminatorBeforeNext() && expr != NULL &&
|
|
expr->AsVariableProxy() != NULL &&
|
|
expr->AsVariableProxy()->raw_name() ==
|
|
ast_value_factory()->native_string() &&
|
|
!scanner()->literal_contains_escapes()) {
|
|
return ParseNativeDeclaration(ok);
|
|
}
|
|
|
|
// Parsed expression statement, followed by semicolon.
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewExpressionStatement(expr, pos);
|
|
}
|
|
|
|
|
|
IfStatement* Parser::ParseIfStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// IfStatement ::
|
|
// 'if' '(' Expression ')' Statement ('else' Statement)?
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::IF, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
Expression* condition = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
Statement* then_statement = ParseScopedStatement(labels, false, CHECK_OK);
|
|
Statement* else_statement = NULL;
|
|
if (peek() == Token::ELSE) {
|
|
Next();
|
|
else_statement = ParseScopedStatement(labels, false, CHECK_OK);
|
|
} else {
|
|
else_statement = factory()->NewEmptyStatement(kNoSourcePosition);
|
|
}
|
|
return factory()->NewIfStatement(
|
|
condition, then_statement, else_statement, pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseContinueStatement(bool* ok) {
|
|
// ContinueStatement ::
|
|
// 'continue' Identifier? ';'
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::CONTINUE, CHECK_OK);
|
|
const AstRawString* label = NULL;
|
|
Token::Value tok = peek();
|
|
if (!scanner()->HasAnyLineTerminatorBeforeNext() &&
|
|
tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) {
|
|
// ECMA allows "eval" or "arguments" as labels even in strict mode.
|
|
label = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK);
|
|
}
|
|
IterationStatement* target = LookupContinueTarget(label, CHECK_OK);
|
|
if (target == NULL) {
|
|
// Illegal continue statement.
|
|
MessageTemplate::Template message = MessageTemplate::kIllegalContinue;
|
|
if (label != NULL) {
|
|
message = MessageTemplate::kUnknownLabel;
|
|
}
|
|
ReportMessage(message, label);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewContinueStatement(target, pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseBreakStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// BreakStatement ::
|
|
// 'break' Identifier? ';'
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::BREAK, CHECK_OK);
|
|
const AstRawString* label = NULL;
|
|
Token::Value tok = peek();
|
|
if (!scanner()->HasAnyLineTerminatorBeforeNext() &&
|
|
tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) {
|
|
// ECMA allows "eval" or "arguments" as labels even in strict mode.
|
|
label = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK);
|
|
}
|
|
// Parse labeled break statements that target themselves into
|
|
// empty statements, e.g. 'l1: l2: l3: break l2;'
|
|
if (label != NULL && ContainsLabel(labels, label)) {
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewEmptyStatement(pos);
|
|
}
|
|
BreakableStatement* target = NULL;
|
|
target = LookupBreakTarget(label, CHECK_OK);
|
|
if (target == NULL) {
|
|
// Illegal break statement.
|
|
MessageTemplate::Template message = MessageTemplate::kIllegalBreak;
|
|
if (label != NULL) {
|
|
message = MessageTemplate::kUnknownLabel;
|
|
}
|
|
ReportMessage(message, label);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewBreakStatement(target, pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseReturnStatement(bool* ok) {
|
|
// ReturnStatement ::
|
|
// 'return' Expression? ';'
|
|
|
|
// Consume the return token. It is necessary to do that before
|
|
// reporting any errors on it, because of the way errors are
|
|
// reported (underlining).
|
|
Expect(Token::RETURN, CHECK_OK);
|
|
Scanner::Location loc = scanner()->location();
|
|
|
|
Token::Value tok = peek();
|
|
Statement* result;
|
|
Expression* return_value;
|
|
if (scanner()->HasAnyLineTerminatorBeforeNext() ||
|
|
tok == Token::SEMICOLON ||
|
|
tok == Token::RBRACE ||
|
|
tok == Token::EOS) {
|
|
if (IsSubclassConstructor(function_state_->kind())) {
|
|
return_value = ThisExpression(loc.beg_pos);
|
|
} else {
|
|
return_value = GetLiteralUndefined(position());
|
|
}
|
|
} else {
|
|
int pos = peek_position();
|
|
|
|
if (IsSubclassConstructor(function_state_->kind())) {
|
|
// Because of the return code rewriting that happens in case of a subclass
|
|
// constructor we don't want to accept tail calls, therefore we don't set
|
|
// ReturnExprScope to kInsideValidReturnStatement here.
|
|
return_value = ParseExpression(true, CHECK_OK);
|
|
|
|
// For subclass constructors we need to return this in case of undefined
|
|
// return a Smi (transformed into an exception in the ConstructStub)
|
|
// for a non object.
|
|
//
|
|
// return expr;
|
|
//
|
|
// Is rewritten as:
|
|
//
|
|
// return (temp = expr) === undefined ? this :
|
|
// %_IsJSReceiver(temp) ? temp : 1;
|
|
|
|
// temp = expr
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
Assignment* assign = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos);
|
|
|
|
// %_IsJSReceiver(temp)
|
|
ZoneList<Expression*>* is_spec_object_args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
is_spec_object_args->Add(factory()->NewVariableProxy(temp), zone());
|
|
Expression* is_spec_object_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
|
|
|
|
// %_IsJSReceiver(temp) ? temp : 1;
|
|
Expression* is_object_conditional = factory()->NewConditional(
|
|
is_spec_object_call, factory()->NewVariableProxy(temp),
|
|
factory()->NewSmiLiteral(1, pos), pos);
|
|
|
|
// temp === undefined
|
|
Expression* is_undefined = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, assign,
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), pos);
|
|
|
|
// is_undefined ? this : is_object_conditional
|
|
return_value = factory()->NewConditional(
|
|
is_undefined, ThisExpression(pos), is_object_conditional, pos);
|
|
} else {
|
|
ReturnExprScope maybe_allow_tail_calls(
|
|
function_state_, ReturnExprContext::kInsideValidReturnStatement);
|
|
return_value = ParseExpression(true, CHECK_OK);
|
|
|
|
if (allow_tailcalls() && !is_sloppy(language_mode())) {
|
|
// ES6 14.6.1 Static Semantics: IsInTailPosition
|
|
function_state_->AddImplicitTailCallExpression(return_value);
|
|
}
|
|
}
|
|
}
|
|
ExpectSemicolon(CHECK_OK);
|
|
|
|
if (is_generator()) {
|
|
return_value = BuildIteratorResult(return_value, true);
|
|
} else if (is_async_function()) {
|
|
return_value = BuildPromiseResolve(return_value, return_value->position());
|
|
}
|
|
|
|
result = factory()->NewReturnStatement(return_value, loc.beg_pos);
|
|
|
|
DeclarationScope* decl_scope = GetDeclarationScope();
|
|
if (decl_scope->is_script_scope() || decl_scope->is_eval_scope()) {
|
|
ReportMessageAt(loc, MessageTemplate::kIllegalReturn);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseWithStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// WithStatement ::
|
|
// 'with' '(' Expression ')' Statement
|
|
|
|
Expect(Token::WITH, CHECK_OK);
|
|
int pos = position();
|
|
|
|
if (is_strict(language_mode())) {
|
|
ReportMessage(MessageTemplate::kStrictWith);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
Expression* expr = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
Scope* with_scope = NewScope(WITH_SCOPE);
|
|
Statement* body;
|
|
{
|
|
BlockState block_state(&scope_state_, with_scope);
|
|
with_scope->set_start_position(scanner()->peek_location().beg_pos);
|
|
body = ParseScopedStatement(labels, true, CHECK_OK);
|
|
with_scope->set_end_position(scanner()->location().end_pos);
|
|
}
|
|
return factory()->NewWithStatement(with_scope, expr, body, pos);
|
|
}
|
|
|
|
|
|
CaseClause* Parser::ParseCaseClause(bool* default_seen_ptr, bool* ok) {
|
|
// CaseClause ::
|
|
// 'case' Expression ':' StatementList
|
|
// 'default' ':' StatementList
|
|
|
|
Expression* label = NULL; // NULL expression indicates default case
|
|
if (peek() == Token::CASE) {
|
|
Expect(Token::CASE, CHECK_OK);
|
|
label = ParseExpression(true, CHECK_OK);
|
|
} else {
|
|
Expect(Token::DEFAULT, CHECK_OK);
|
|
if (*default_seen_ptr) {
|
|
ReportMessage(MessageTemplate::kMultipleDefaultsInSwitch);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
*default_seen_ptr = true;
|
|
}
|
|
Expect(Token::COLON, CHECK_OK);
|
|
int pos = position();
|
|
ZoneList<Statement*>* statements =
|
|
new(zone()) ZoneList<Statement*>(5, zone());
|
|
Statement* stat = NULL;
|
|
while (peek() != Token::CASE &&
|
|
peek() != Token::DEFAULT &&
|
|
peek() != Token::RBRACE) {
|
|
stat = ParseStatementListItem(CHECK_OK);
|
|
statements->Add(stat, zone());
|
|
}
|
|
return factory()->NewCaseClause(label, statements, pos);
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseSwitchStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
// SwitchStatement ::
|
|
// 'switch' '(' Expression ')' '{' CaseClause* '}'
|
|
// In order to get the CaseClauses to execute in their own lexical scope,
|
|
// but without requiring downstream code to have special scope handling
|
|
// code for switch statements, desugar into blocks as follows:
|
|
// { // To group the statements--harmless to evaluate Expression in scope
|
|
// .tag_variable = Expression;
|
|
// { // To give CaseClauses a scope
|
|
// switch (.tag_variable) { CaseClause* }
|
|
// }
|
|
// }
|
|
|
|
Block* switch_block = factory()->NewBlock(NULL, 2, false, kNoSourcePosition);
|
|
int switch_pos = peek_position();
|
|
|
|
Expect(Token::SWITCH, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
Expression* tag = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
Variable* tag_variable =
|
|
NewTemporary(ast_value_factory()->dot_switch_tag_string());
|
|
Assignment* tag_assign = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag,
|
|
tag->position());
|
|
Statement* tag_statement =
|
|
factory()->NewExpressionStatement(tag_assign, kNoSourcePosition);
|
|
switch_block->statements()->Add(tag_statement, zone());
|
|
|
|
// make statement: undefined;
|
|
// This is needed so the tag isn't returned as the value, in case the switch
|
|
// statements don't have a value.
|
|
switch_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
zone());
|
|
|
|
Block* cases_block = factory()->NewBlock(NULL, 1, false, kNoSourcePosition);
|
|
|
|
SwitchStatement* switch_statement =
|
|
factory()->NewSwitchStatement(labels, switch_pos);
|
|
|
|
{
|
|
BlockState cases_block_state(&scope_state_);
|
|
cases_block_state.set_start_position(scanner()->location().beg_pos);
|
|
cases_block_state.SetNonlinear();
|
|
Target target(&this->target_stack_, switch_statement);
|
|
|
|
Expression* tag_read = factory()->NewVariableProxy(tag_variable);
|
|
|
|
bool default_seen = false;
|
|
ZoneList<CaseClause*>* cases =
|
|
new (zone()) ZoneList<CaseClause*>(4, zone());
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
while (peek() != Token::RBRACE) {
|
|
CaseClause* clause = ParseCaseClause(&default_seen, CHECK_OK);
|
|
cases->Add(clause, zone());
|
|
}
|
|
switch_statement->Initialize(tag_read, cases);
|
|
cases_block->statements()->Add(switch_statement, zone());
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
|
|
cases_block_state.set_end_position(scanner()->location().end_pos);
|
|
cases_block->set_scope(cases_block_state.FinalizedBlockScope());
|
|
}
|
|
|
|
switch_block->statements()->Add(cases_block, zone());
|
|
|
|
return switch_block;
|
|
}
|
|
|
|
|
|
Statement* Parser::ParseThrowStatement(bool* ok) {
|
|
// ThrowStatement ::
|
|
// 'throw' Expression ';'
|
|
|
|
Expect(Token::THROW, CHECK_OK);
|
|
int pos = position();
|
|
if (scanner()->HasAnyLineTerminatorBeforeNext()) {
|
|
ReportMessage(MessageTemplate::kNewlineAfterThrow);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
Expression* exception = ParseExpression(true, CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
|
|
return factory()->NewExpressionStatement(
|
|
factory()->NewThrow(exception, pos), pos);
|
|
}
|
|
|
|
|
|
TryStatement* Parser::ParseTryStatement(bool* ok) {
|
|
// TryStatement ::
|
|
// 'try' Block Catch
|
|
// 'try' Block Finally
|
|
// 'try' Block Catch Finally
|
|
//
|
|
// Catch ::
|
|
// 'catch' '(' Identifier ')' Block
|
|
//
|
|
// Finally ::
|
|
// 'finally' Block
|
|
|
|
Expect(Token::TRY, CHECK_OK);
|
|
int pos = position();
|
|
|
|
Block* try_block;
|
|
{
|
|
ReturnExprScope no_tail_calls(function_state_,
|
|
ReturnExprContext::kInsideTryBlock);
|
|
try_block = ParseBlock(NULL, CHECK_OK);
|
|
}
|
|
|
|
Token::Value tok = peek();
|
|
|
|
bool catch_for_promise_reject = false;
|
|
if (allow_natives() && tok == Token::MOD) {
|
|
Consume(Token::MOD);
|
|
catch_for_promise_reject = true;
|
|
tok = peek();
|
|
}
|
|
|
|
if (tok != Token::CATCH && tok != Token::FINALLY) {
|
|
ReportMessage(MessageTemplate::kNoCatchOrFinally);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
Scope* catch_scope = NULL;
|
|
Variable* catch_variable = NULL;
|
|
Block* catch_block = NULL;
|
|
TailCallExpressionList tail_call_expressions_in_catch_block(zone());
|
|
if (tok == Token::CATCH) {
|
|
Consume(Token::CATCH);
|
|
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
catch_scope = NewScope(CATCH_SCOPE);
|
|
catch_scope->set_start_position(scanner()->location().beg_pos);
|
|
|
|
{
|
|
CollectExpressionsInTailPositionToListScope
|
|
collect_tail_call_expressions_scope(
|
|
function_state_, &tail_call_expressions_in_catch_block);
|
|
BlockState block_state(&scope_state_, catch_scope);
|
|
|
|
catch_block = factory()->NewBlock(nullptr, 16, false, kNoSourcePosition);
|
|
|
|
// Create a block scope to hold any lexical declarations created
|
|
// as part of destructuring the catch parameter.
|
|
{
|
|
BlockState block_state(&scope_state_);
|
|
block_state.set_start_position(scanner()->location().beg_pos);
|
|
Target target(&this->target_stack_, catch_block);
|
|
|
|
const AstRawString* name = ast_value_factory()->dot_catch_string();
|
|
Expression* pattern = nullptr;
|
|
if (peek_any_identifier()) {
|
|
name = ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK);
|
|
} else {
|
|
ExpressionClassifier pattern_classifier(this);
|
|
pattern = ParsePrimaryExpression(&pattern_classifier, CHECK_OK);
|
|
ValidateBindingPattern(&pattern_classifier, CHECK_OK);
|
|
}
|
|
catch_variable = catch_scope->DeclareLocal(
|
|
name, VAR, kCreatedInitialized, Variable::NORMAL);
|
|
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
ZoneList<const AstRawString*> bound_names(1, zone());
|
|
if (pattern != nullptr) {
|
|
DeclarationDescriptor descriptor;
|
|
descriptor.declaration_kind = DeclarationDescriptor::NORMAL;
|
|
descriptor.parser = this;
|
|
descriptor.scope = scope();
|
|
descriptor.hoist_scope = nullptr;
|
|
descriptor.mode = LET;
|
|
descriptor.declaration_pos = pattern->position();
|
|
descriptor.initialization_pos = pattern->position();
|
|
|
|
// Initializer position for variables declared by the pattern.
|
|
const int initializer_position = position();
|
|
|
|
DeclarationParsingResult::Declaration decl(
|
|
pattern, initializer_position,
|
|
factory()->NewVariableProxy(catch_variable));
|
|
|
|
Block* init_block =
|
|
factory()->NewBlock(nullptr, 8, true, kNoSourcePosition);
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
init_block, &descriptor, &decl, &bound_names, CHECK_OK);
|
|
catch_block->statements()->Add(init_block, zone());
|
|
} else {
|
|
bound_names.Add(name, zone());
|
|
}
|
|
|
|
Block* inner_block = ParseBlock(nullptr, CHECK_OK);
|
|
catch_block->statements()->Add(inner_block, zone());
|
|
|
|
// Check for `catch(e) { let e; }` and similar errors.
|
|
Scope* inner_block_scope = inner_block->scope();
|
|
if (inner_block_scope != nullptr) {
|
|
Declaration* decl =
|
|
inner_block_scope->CheckLexDeclarationsConflictingWith(
|
|
bound_names);
|
|
if (decl != nullptr) {
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
int position = decl->proxy()->position();
|
|
Scanner::Location location =
|
|
position == kNoSourcePosition
|
|
? Scanner::Location::invalid()
|
|
: Scanner::Location(position, position + 1);
|
|
ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
}
|
|
block_state.set_end_position(scanner()->location().end_pos);
|
|
catch_block->set_scope(block_state.FinalizedBlockScope());
|
|
}
|
|
}
|
|
|
|
catch_scope->set_end_position(scanner()->location().end_pos);
|
|
tok = peek();
|
|
}
|
|
|
|
Block* finally_block = NULL;
|
|
DCHECK(tok == Token::FINALLY || catch_block != NULL);
|
|
if (tok == Token::FINALLY) {
|
|
Consume(Token::FINALLY);
|
|
finally_block = ParseBlock(NULL, CHECK_OK);
|
|
}
|
|
|
|
// Simplify the AST nodes by converting:
|
|
// 'try B0 catch B1 finally B2'
|
|
// to:
|
|
// 'try { try B0 catch B1 } finally B2'
|
|
|
|
if (catch_block != NULL && finally_block != NULL) {
|
|
// If we have both, create an inner try/catch.
|
|
DCHECK(catch_scope != NULL && catch_variable != NULL);
|
|
TryCatchStatement* statement;
|
|
if (catch_for_promise_reject) {
|
|
statement = factory()->NewTryCatchStatementForPromiseReject(
|
|
try_block, catch_scope, catch_variable, catch_block,
|
|
kNoSourcePosition);
|
|
} else {
|
|
statement = factory()->NewTryCatchStatement(try_block, catch_scope,
|
|
catch_variable, catch_block,
|
|
kNoSourcePosition);
|
|
}
|
|
|
|
try_block = factory()->NewBlock(NULL, 1, false, kNoSourcePosition);
|
|
try_block->statements()->Add(statement, zone());
|
|
catch_block = NULL; // Clear to indicate it's been handled.
|
|
}
|
|
|
|
TryStatement* result = NULL;
|
|
if (catch_block != NULL) {
|
|
// For a try-catch construct append return expressions from the catch block
|
|
// to the list of return expressions.
|
|
function_state_->tail_call_expressions().Append(
|
|
tail_call_expressions_in_catch_block);
|
|
|
|
DCHECK(finally_block == NULL);
|
|
DCHECK(catch_scope != NULL && catch_variable != NULL);
|
|
result = factory()->NewTryCatchStatement(try_block, catch_scope,
|
|
catch_variable, catch_block, pos);
|
|
} else {
|
|
if (FLAG_harmony_explicit_tailcalls &&
|
|
tail_call_expressions_in_catch_block.has_explicit_tail_calls()) {
|
|
// TODO(ishell): update chapter number.
|
|
// ES8 XX.YY.ZZ
|
|
ReportMessageAt(tail_call_expressions_in_catch_block.location(),
|
|
MessageTemplate::kUnexpectedTailCallInCatchBlock);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
DCHECK(finally_block != NULL);
|
|
result = factory()->NewTryFinallyStatement(try_block, finally_block, pos);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
DoWhileStatement* Parser::ParseDoWhileStatement(
|
|
ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
// DoStatement ::
|
|
// 'do' Statement 'while' '(' Expression ')' ';'
|
|
|
|
DoWhileStatement* loop =
|
|
factory()->NewDoWhileStatement(labels, peek_position());
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
Expect(Token::DO, CHECK_OK);
|
|
Statement* body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
Expect(Token::WHILE, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
|
|
Expression* cond = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
// Allow do-statements to be terminated with and without
|
|
// semi-colons. This allows code such as 'do;while(0)return' to
|
|
// parse, which would not be the case if we had used the
|
|
// ExpectSemicolon() functionality here.
|
|
if (peek() == Token::SEMICOLON) Consume(Token::SEMICOLON);
|
|
|
|
if (loop != NULL) loop->Initialize(cond, body);
|
|
return loop;
|
|
}
|
|
|
|
|
|
WhileStatement* Parser::ParseWhileStatement(
|
|
ZoneList<const AstRawString*>* labels, bool* ok) {
|
|
// WhileStatement ::
|
|
// 'while' '(' Expression ')' Statement
|
|
|
|
WhileStatement* loop = factory()->NewWhileStatement(labels, peek_position());
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
Expect(Token::WHILE, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
Expression* cond = ParseExpression(true, CHECK_OK);
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
Statement* body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
|
|
if (loop != NULL) loop->Initialize(cond, body);
|
|
return loop;
|
|
}
|
|
|
|
|
|
// !%_IsJSReceiver(result = iterator.next()) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* Parser::BuildIteratorNextResult(Expression* iterator,
|
|
Variable* result, int pos) {
|
|
Expression* next_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->next_string(), kNoSourcePosition);
|
|
Expression* next_property =
|
|
factory()->NewProperty(iterator, next_literal, kNoSourcePosition);
|
|
ZoneList<Expression*>* next_arguments =
|
|
new (zone()) ZoneList<Expression*>(0, zone());
|
|
Expression* next_call =
|
|
factory()->NewCall(next_property, next_arguments, pos);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
Expression* left =
|
|
factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos);
|
|
|
|
// %_IsJSReceiver(...)
|
|
ZoneList<Expression*>* is_spec_object_args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
is_spec_object_args->Add(left, zone());
|
|
Expression* is_spec_object_call = factory()->NewCallRuntime(
|
|
Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
|
|
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* result_proxy_again = factory()->NewVariableProxy(result);
|
|
ZoneList<Expression*>* throw_arguments =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
throw_arguments->Add(result_proxy_again, zone());
|
|
Expression* throw_call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos);
|
|
|
|
return factory()->NewBinaryOperation(
|
|
Token::AND,
|
|
factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos),
|
|
throw_call, pos);
|
|
}
|
|
|
|
Statement* Parser::InitializeForEachStatement(ForEachStatement* stmt,
|
|
Expression* each,
|
|
Expression* subject,
|
|
Statement* body,
|
|
int each_keyword_pos) {
|
|
ForOfStatement* for_of = stmt->AsForOfStatement();
|
|
if (for_of != NULL) {
|
|
const bool finalize = true;
|
|
return InitializeForOfStatement(for_of, each, subject, body, finalize,
|
|
each_keyword_pos);
|
|
} else {
|
|
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
|
|
Expression* assign_each = PatternRewriter::RewriteDestructuringAssignment(
|
|
this, factory()->NewAssignment(Token::ASSIGN, each, temp_proxy,
|
|
kNoSourcePosition),
|
|
scope());
|
|
auto block = factory()->NewBlock(nullptr, 2, false, kNoSourcePosition);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assign_each, kNoSourcePosition),
|
|
zone());
|
|
block->statements()->Add(body, zone());
|
|
body = block;
|
|
each = factory()->NewVariableProxy(temp);
|
|
}
|
|
stmt->AsForInStatement()->Initialize(each, subject, body);
|
|
}
|
|
return stmt;
|
|
}
|
|
|
|
Statement* Parser::InitializeForOfStatement(ForOfStatement* for_of,
|
|
Expression* each,
|
|
Expression* iterable,
|
|
Statement* body, bool finalize,
|
|
int next_result_pos) {
|
|
// Create the auxiliary expressions needed for iterating over the iterable,
|
|
// and initialize the given ForOfStatement with them.
|
|
// If finalize is true, also instrument the loop with code that performs the
|
|
// proper ES6 iterator finalization. In that case, the result is not
|
|
// immediately a ForOfStatement.
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
auto avfactory = ast_value_factory();
|
|
|
|
Variable* iterator = NewTemporary(ast_value_factory()->dot_iterator_string());
|
|
Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
|
|
Variable* completion = NewTemporary(avfactory->empty_string());
|
|
|
|
// iterator = iterable[Symbol.iterator]()
|
|
Expression* assign_iterator;
|
|
{
|
|
assign_iterator = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(iterator),
|
|
GetIterator(iterable, iterable->position()), iterable->position());
|
|
}
|
|
|
|
// !%_IsJSReceiver(result = iterator.next()) &&
|
|
// %ThrowIteratorResultNotAnObject(result)
|
|
Expression* next_result;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
next_result =
|
|
BuildIteratorNextResult(iterator_proxy, result, next_result_pos);
|
|
}
|
|
|
|
// result.done
|
|
Expression* result_done;
|
|
{
|
|
Expression* done_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->done_string(), kNoSourcePosition);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
result_done =
|
|
factory()->NewProperty(result_proxy, done_literal, kNoSourcePosition);
|
|
}
|
|
|
|
// result.value
|
|
Expression* result_value;
|
|
{
|
|
Expression* value_literal =
|
|
factory()->NewStringLiteral(avfactory->value_string(), nopos);
|
|
Expression* result_proxy = factory()->NewVariableProxy(result);
|
|
result_value = factory()->NewProperty(result_proxy, value_literal, nopos);
|
|
}
|
|
|
|
// {{completion = kAbruptCompletion;}}
|
|
Statement* set_completion_abrupt;
|
|
if (finalize) {
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
|
|
|
|
Block* block = factory()->NewBlock(nullptr, 1, true, nopos);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, nopos), zone());
|
|
set_completion_abrupt = block;
|
|
}
|
|
|
|
// do { let tmp = #result_value; #set_completion_abrupt; tmp }
|
|
// Expression* result_value (gets overwritten)
|
|
if (finalize) {
|
|
Variable* var_tmp = NewTemporary(avfactory->empty_string());
|
|
Expression* tmp = factory()->NewVariableProxy(var_tmp);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, tmp, result_value, nopos);
|
|
|
|
Block* block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, nopos), zone());
|
|
block->statements()->Add(set_completion_abrupt, zone());
|
|
|
|
result_value = factory()->NewDoExpression(block, var_tmp, nopos);
|
|
}
|
|
|
|
// each = #result_value;
|
|
Expression* assign_each;
|
|
{
|
|
assign_each =
|
|
factory()->NewAssignment(Token::ASSIGN, each, result_value, nopos);
|
|
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
|
|
assign_each = PatternRewriter::RewriteDestructuringAssignment(
|
|
this, assign_each->AsAssignment(), scope());
|
|
}
|
|
}
|
|
|
|
// {{completion = kNormalCompletion;}}
|
|
Statement* set_completion_normal;
|
|
if (finalize) {
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
|
|
Block* block = factory()->NewBlock(nullptr, 1, true, nopos);
|
|
block->statements()->Add(
|
|
factory()->NewExpressionStatement(assignment, nopos), zone());
|
|
set_completion_normal = block;
|
|
}
|
|
|
|
// { #loop-body; #set_completion_normal }
|
|
// Statement* body (gets overwritten)
|
|
if (finalize) {
|
|
Block* block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
block->statements()->Add(body, zone());
|
|
block->statements()->Add(set_completion_normal, zone());
|
|
body = block;
|
|
}
|
|
|
|
for_of->Initialize(body, iterator, assign_iterator, next_result, result_done,
|
|
assign_each);
|
|
return finalize ? FinalizeForOfStatement(for_of, completion, nopos) : for_of;
|
|
}
|
|
|
|
Statement* Parser::DesugarLexicalBindingsInForStatement(
|
|
Scope* inner_scope, VariableMode mode, ZoneList<const AstRawString*>* names,
|
|
ForStatement* loop, Statement* init, Expression* cond, Statement* next,
|
|
Statement* body, bool* ok) {
|
|
// ES6 13.7.4.8 specifies that on each loop iteration the let variables are
|
|
// copied into a new environment. Moreover, the "next" statement must be
|
|
// evaluated not in the environment of the just completed iteration but in
|
|
// that of the upcoming one. We achieve this with the following desugaring.
|
|
// Extra care is needed to preserve the completion value of the original loop.
|
|
//
|
|
// We are given a for statement of the form
|
|
//
|
|
// labels: for (let/const x = i; cond; next) body
|
|
//
|
|
// and rewrite it as follows. Here we write {{ ... }} for init-blocks, ie.,
|
|
// blocks whose ignore_completion_value_ flag is set.
|
|
//
|
|
// {
|
|
// let/const x = i;
|
|
// temp_x = x;
|
|
// first = 1;
|
|
// undefined;
|
|
// outer: for (;;) {
|
|
// let/const x = temp_x;
|
|
// {{ if (first == 1) {
|
|
// first = 0;
|
|
// } else {
|
|
// next;
|
|
// }
|
|
// flag = 1;
|
|
// if (!cond) break;
|
|
// }}
|
|
// labels: for (; flag == 1; flag = 0, temp_x = x) {
|
|
// body
|
|
// }
|
|
// {{ if (flag == 1) // Body used break.
|
|
// break;
|
|
// }}
|
|
// }
|
|
// }
|
|
|
|
DCHECK(names->length() > 0);
|
|
ZoneList<Variable*> temps(names->length(), zone());
|
|
|
|
Block* outer_block =
|
|
factory()->NewBlock(NULL, names->length() + 4, false, kNoSourcePosition);
|
|
|
|
// Add statement: let/const x = i.
|
|
outer_block->statements()->Add(init, zone());
|
|
|
|
const AstRawString* temp_name = ast_value_factory()->dot_for_string();
|
|
|
|
// For each lexical variable x:
|
|
// make statement: temp_x = x.
|
|
for (int i = 0; i < names->length(); i++) {
|
|
VariableProxy* proxy = NewUnresolved(names->at(i));
|
|
Variable* temp = NewTemporary(temp_name);
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
|
|
Assignment* assignment = factory()->NewAssignment(Token::ASSIGN, temp_proxy,
|
|
proxy, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
outer_block->statements()->Add(assignment_statement, zone());
|
|
temps.Add(temp, zone());
|
|
}
|
|
|
|
Variable* first = NULL;
|
|
// Make statement: first = 1.
|
|
if (next) {
|
|
first = NewTemporary(temp_name);
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, first_proxy, const1, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
outer_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// make statement: undefined;
|
|
outer_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
zone());
|
|
|
|
// Make statement: outer: for (;;)
|
|
// Note that we don't actually create the label, or set this loop up as an
|
|
// explicit break target, instead handing it directly to those nodes that
|
|
// need to know about it. This should be safe because we don't run any code
|
|
// in this function that looks up break targets.
|
|
ForStatement* outer_loop =
|
|
factory()->NewForStatement(NULL, kNoSourcePosition);
|
|
outer_block->statements()->Add(outer_loop, zone());
|
|
outer_block->set_scope(scope());
|
|
|
|
Block* inner_block = factory()->NewBlock(NULL, 3, false, kNoSourcePosition);
|
|
{
|
|
BlockState block_state(&scope_state_, inner_scope);
|
|
|
|
Block* ignore_completion_block =
|
|
factory()->NewBlock(NULL, names->length() + 3, true, kNoSourcePosition);
|
|
ZoneList<Variable*> inner_vars(names->length(), zone());
|
|
// For each let variable x:
|
|
// make statement: let/const x = temp_x.
|
|
for (int i = 0; i < names->length(); i++) {
|
|
Declaration* decl =
|
|
DeclareVariable(names->at(i), mode, kNoSourcePosition, CHECK_OK);
|
|
inner_vars.Add(decl->proxy()->var(), zone());
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, decl->proxy(), temp_proxy, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
DCHECK(init->position() != kNoSourcePosition);
|
|
decl->proxy()->var()->set_initializer_position(init->position());
|
|
ignore_completion_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// Make statement: if (first == 1) { first = 0; } else { next; }
|
|
if (next) {
|
|
DCHECK(first);
|
|
Expression* compare = NULL;
|
|
// Make compare expression: first == 1.
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
Statement* clear_first = NULL;
|
|
// Make statement: first = 0.
|
|
{
|
|
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
|
|
Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, first_proxy, const0, kNoSourcePosition);
|
|
clear_first =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
}
|
|
Statement* clear_first_or_next = factory()->NewIfStatement(
|
|
compare, clear_first, next, kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(clear_first_or_next, zone());
|
|
}
|
|
|
|
Variable* flag = NewTemporary(temp_name);
|
|
// Make statement: flag = 1.
|
|
{
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, flag_proxy, const1, kNoSourcePosition);
|
|
Statement* assignment_statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(assignment_statement, zone());
|
|
}
|
|
|
|
// Make statement: if (!cond) break.
|
|
if (cond) {
|
|
Statement* stop =
|
|
factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
|
|
Statement* noop = factory()->NewEmptyStatement(kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(
|
|
factory()->NewIfStatement(cond, noop, stop, cond->position()),
|
|
zone());
|
|
}
|
|
|
|
inner_block->statements()->Add(ignore_completion_block, zone());
|
|
// Make cond expression for main loop: flag == 1.
|
|
Expression* flag_cond = NULL;
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
|
|
// Create chain of expressions "flag = 0, temp_x = x, ..."
|
|
Statement* compound_next_statement = NULL;
|
|
{
|
|
Expression* compound_next = NULL;
|
|
// Make expression: flag = 0.
|
|
{
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
|
|
compound_next = factory()->NewAssignment(Token::ASSIGN, flag_proxy,
|
|
const0, kNoSourcePosition);
|
|
}
|
|
|
|
// Make the comma-separated list of temp_x = x assignments.
|
|
int inner_var_proxy_pos = scanner()->location().beg_pos;
|
|
for (int i = 0; i < names->length(); i++) {
|
|
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
|
|
VariableProxy* proxy =
|
|
factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos);
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, temp_proxy, proxy, kNoSourcePosition);
|
|
compound_next = factory()->NewBinaryOperation(
|
|
Token::COMMA, compound_next, assignment, kNoSourcePosition);
|
|
}
|
|
|
|
compound_next_statement =
|
|
factory()->NewExpressionStatement(compound_next, kNoSourcePosition);
|
|
}
|
|
|
|
// Make statement: labels: for (; flag == 1; flag = 0, temp_x = x)
|
|
// Note that we re-use the original loop node, which retains its labels
|
|
// and ensures that any break or continue statements in body point to
|
|
// the right place.
|
|
loop->Initialize(NULL, flag_cond, compound_next_statement, body);
|
|
inner_block->statements()->Add(loop, zone());
|
|
|
|
// Make statement: {{if (flag == 1) break;}}
|
|
{
|
|
Expression* compare = NULL;
|
|
// Make compare expresion: flag == 1.
|
|
{
|
|
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
|
|
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
|
|
compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
|
|
kNoSourcePosition);
|
|
}
|
|
Statement* stop =
|
|
factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
|
|
Statement* empty = factory()->NewEmptyStatement(kNoSourcePosition);
|
|
Statement* if_flag_break =
|
|
factory()->NewIfStatement(compare, stop, empty, kNoSourcePosition);
|
|
Block* ignore_completion_block =
|
|
factory()->NewBlock(NULL, 1, true, kNoSourcePosition);
|
|
ignore_completion_block->statements()->Add(if_flag_break, zone());
|
|
inner_block->statements()->Add(ignore_completion_block, zone());
|
|
}
|
|
|
|
inner_scope->set_end_position(scanner()->location().end_pos);
|
|
inner_block->set_scope(inner_scope);
|
|
}
|
|
|
|
outer_loop->Initialize(NULL, NULL, NULL, inner_block);
|
|
return outer_block;
|
|
}
|
|
|
|
Statement* Parser::ParseScopedStatement(ZoneList<const AstRawString*>* labels,
|
|
bool legacy, bool* ok) {
|
|
if (is_strict(language_mode()) || peek() != Token::FUNCTION ||
|
|
(legacy && allow_harmony_restrictive_declarations())) {
|
|
return ParseSubStatement(labels, kDisallowLabelledFunctionStatement, ok);
|
|
} else {
|
|
if (legacy) {
|
|
++use_counts_[v8::Isolate::kLegacyFunctionDeclaration];
|
|
}
|
|
// Make a block around the statement for a lexical binding
|
|
// is introduced by a FunctionDeclaration.
|
|
BlockState block_state(&scope_state_);
|
|
block_state.set_start_position(scanner()->location().beg_pos);
|
|
Block* block = factory()->NewBlock(NULL, 1, false, kNoSourcePosition);
|
|
Statement* body = ParseFunctionDeclaration(CHECK_OK);
|
|
block->statements()->Add(body, zone());
|
|
block_state.set_end_position(scanner()->location().end_pos);
|
|
block->set_scope(block_state.FinalizedBlockScope());
|
|
return block;
|
|
}
|
|
}
|
|
|
|
Statement* Parser::ParseForStatement(ZoneList<const AstRawString*>* labels,
|
|
bool* ok) {
|
|
int stmt_pos = peek_position();
|
|
Statement* init = NULL;
|
|
ZoneList<const AstRawString*> bound_names(1, zone());
|
|
bool bound_names_are_lexical = false;
|
|
|
|
// Create an in-between scope for let-bound iteration variables.
|
|
BlockState for_state(&scope_state_);
|
|
Expect(Token::FOR, CHECK_OK);
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
for_state.set_start_position(scanner()->location().beg_pos);
|
|
for_state.set_is_hidden();
|
|
DeclarationParsingResult parsing_result;
|
|
if (peek() != Token::SEMICOLON) {
|
|
if (peek() == Token::VAR || peek() == Token::CONST ||
|
|
(peek() == Token::LET && IsNextLetKeyword())) {
|
|
ParseVariableDeclarations(kForStatement, &parsing_result, nullptr,
|
|
CHECK_OK);
|
|
|
|
ForEachStatement::VisitMode mode = ForEachStatement::ENUMERATE;
|
|
int each_beg_pos = scanner()->location().beg_pos;
|
|
int each_end_pos = scanner()->location().end_pos;
|
|
|
|
if (CheckInOrOf(&mode, ok)) {
|
|
if (!*ok) return nullptr;
|
|
if (parsing_result.declarations.length() != 1) {
|
|
ReportMessageAt(parsing_result.bindings_loc,
|
|
MessageTemplate::kForInOfLoopMultiBindings,
|
|
ForEachStatement::VisitModeString(mode));
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
DeclarationParsingResult::Declaration& decl =
|
|
parsing_result.declarations[0];
|
|
if (parsing_result.first_initializer_loc.IsValid() &&
|
|
(is_strict(language_mode()) || mode == ForEachStatement::ITERATE ||
|
|
IsLexicalVariableMode(parsing_result.descriptor.mode) ||
|
|
!decl.pattern->IsVariableProxy() || allow_harmony_for_in())) {
|
|
// Only increment the use count if we would have let this through
|
|
// without the flag.
|
|
if (allow_harmony_for_in()) {
|
|
++use_counts_[v8::Isolate::kForInInitializer];
|
|
}
|
|
ReportMessageAt(parsing_result.first_initializer_loc,
|
|
MessageTemplate::kForInOfLoopInitializer,
|
|
ForEachStatement::VisitModeString(mode));
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
|
|
Block* init_block = nullptr;
|
|
bound_names_are_lexical =
|
|
IsLexicalVariableMode(parsing_result.descriptor.mode);
|
|
|
|
// special case for legacy for (var ... = ... in ...)
|
|
if (!bound_names_are_lexical && decl.pattern->IsVariableProxy() &&
|
|
decl.initializer != nullptr) {
|
|
DCHECK(!allow_harmony_for_in());
|
|
++use_counts_[v8::Isolate::kForInInitializer];
|
|
const AstRawString* name =
|
|
decl.pattern->AsVariableProxy()->raw_name();
|
|
VariableProxy* single_var = NewUnresolved(name);
|
|
init_block = factory()->NewBlock(
|
|
nullptr, 2, true, parsing_result.descriptor.declaration_pos);
|
|
init_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::ASSIGN, single_var,
|
|
decl.initializer, kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
zone());
|
|
}
|
|
|
|
// Rewrite a for-in/of statement of the form
|
|
//
|
|
// for (let/const/var x in/of e) b
|
|
//
|
|
// into
|
|
//
|
|
// {
|
|
// <let x' be a temporary variable>
|
|
// for (x' in/of e) {
|
|
// let/const/var x;
|
|
// x = x';
|
|
// b;
|
|
// }
|
|
// let x; // for TDZ
|
|
// }
|
|
|
|
Variable* temp = NewTemporary(ast_value_factory()->dot_for_string());
|
|
ForEachStatement* loop =
|
|
factory()->NewForEachStatement(mode, labels, stmt_pos);
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
int each_keyword_position = scanner()->location().beg_pos;
|
|
|
|
Expression* enumerable;
|
|
if (mode == ForEachStatement::ITERATE) {
|
|
ExpressionClassifier classifier(this);
|
|
enumerable = ParseAssignmentExpression(true, &classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
} else {
|
|
enumerable = ParseExpression(true, CHECK_OK);
|
|
}
|
|
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
|
|
Block* body_block =
|
|
factory()->NewBlock(NULL, 3, false, kNoSourcePosition);
|
|
|
|
Statement* final_loop;
|
|
{
|
|
ReturnExprScope no_tail_calls(function_state_,
|
|
ReturnExprContext::kInsideForInOfBody);
|
|
BlockState block_state(&scope_state_);
|
|
block_state.set_start_position(scanner()->location().beg_pos);
|
|
|
|
Statement* body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
|
|
auto each_initialization_block =
|
|
factory()->NewBlock(nullptr, 1, true, kNoSourcePosition);
|
|
{
|
|
auto descriptor = parsing_result.descriptor;
|
|
descriptor.declaration_pos = kNoSourcePosition;
|
|
descriptor.initialization_pos = kNoSourcePosition;
|
|
decl.initializer = factory()->NewVariableProxy(temp);
|
|
|
|
bool is_for_var_of =
|
|
mode == ForEachStatement::ITERATE &&
|
|
parsing_result.descriptor.mode == VariableMode::VAR;
|
|
|
|
PatternRewriter::DeclareAndInitializeVariables(
|
|
each_initialization_block, &descriptor, &decl,
|
|
bound_names_are_lexical || is_for_var_of ? &bound_names
|
|
: nullptr,
|
|
CHECK_OK);
|
|
|
|
// Annex B.3.5 prohibits the form
|
|
// `try {} catch(e) { for (var e of {}); }`
|
|
// So if we are parsing a statement like `for (var ... of ...)`
|
|
// we need to walk up the scope chain and look for catch scopes
|
|
// which have a simple binding, then compare their binding against
|
|
// all of the names declared in the init of the for-of we're
|
|
// parsing.
|
|
if (is_for_var_of) {
|
|
Scope* catch_scope = scope();
|
|
while (catch_scope != nullptr &&
|
|
!catch_scope->is_declaration_scope()) {
|
|
if (catch_scope->is_catch_scope()) {
|
|
auto name = catch_scope->catch_variable_name();
|
|
if (name !=
|
|
ast_value_factory()
|
|
->dot_catch_string()) { // i.e. is a simple binding
|
|
if (bound_names.Contains(name)) {
|
|
ReportMessageAt(parsing_result.bindings_loc,
|
|
MessageTemplate::kVarRedeclaration, name);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
catch_scope = catch_scope->outer_scope();
|
|
}
|
|
}
|
|
}
|
|
|
|
body_block->statements()->Add(each_initialization_block, zone());
|
|
body_block->statements()->Add(body, zone());
|
|
VariableProxy* temp_proxy =
|
|
factory()->NewVariableProxy(temp, each_beg_pos, each_end_pos);
|
|
final_loop = InitializeForEachStatement(
|
|
loop, temp_proxy, enumerable, body_block, each_keyword_position);
|
|
block_state.set_end_position(scanner()->location().end_pos);
|
|
body_block->set_scope(block_state.FinalizedBlockScope());
|
|
}
|
|
|
|
// Create a TDZ for any lexically-bound names.
|
|
if (bound_names_are_lexical) {
|
|
DCHECK_NULL(init_block);
|
|
|
|
init_block =
|
|
factory()->NewBlock(nullptr, 1, false, kNoSourcePosition);
|
|
|
|
for (int i = 0; i < bound_names.length(); ++i) {
|
|
// TODO(adamk): This needs to be some sort of special
|
|
// INTERNAL variable that's invisible to the debugger
|
|
// but visible to everything else.
|
|
Declaration* tdz_decl = DeclareVariable(
|
|
bound_names[i], LET, kNoSourcePosition, CHECK_OK);
|
|
tdz_decl->proxy()->var()->set_initializer_position(position());
|
|
}
|
|
}
|
|
|
|
for_state.set_end_position(scanner()->location().end_pos);
|
|
Scope* for_scope = for_state.FinalizedBlockScope();
|
|
// Parsed for-in loop w/ variable declarations.
|
|
if (init_block != nullptr) {
|
|
init_block->statements()->Add(final_loop, zone());
|
|
init_block->set_scope(for_scope);
|
|
return init_block;
|
|
} else {
|
|
DCHECK_NULL(for_scope);
|
|
return final_loop;
|
|
}
|
|
} else {
|
|
bound_names_are_lexical =
|
|
IsLexicalVariableMode(parsing_result.descriptor.mode);
|
|
init = parsing_result.BuildInitializationBlock(
|
|
bound_names_are_lexical ? &bound_names : nullptr, CHECK_OK);
|
|
}
|
|
} else {
|
|
int lhs_beg_pos = peek_position();
|
|
ExpressionClassifier classifier(this);
|
|
Expression* expression = ParseExpression(false, &classifier, CHECK_OK);
|
|
int lhs_end_pos = scanner()->location().end_pos;
|
|
ForEachStatement::VisitMode mode = ForEachStatement::ENUMERATE;
|
|
|
|
bool is_for_each = CheckInOrOf(&mode, CHECK_OK);
|
|
bool is_destructuring = is_for_each && (expression->IsArrayLiteral() ||
|
|
expression->IsObjectLiteral());
|
|
|
|
if (is_destructuring) {
|
|
ValidateAssignmentPattern(&classifier, CHECK_OK);
|
|
} else {
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
}
|
|
|
|
if (is_for_each) {
|
|
if (!is_destructuring) {
|
|
expression = this->CheckAndRewriteReferenceExpression(
|
|
expression, lhs_beg_pos, lhs_end_pos,
|
|
MessageTemplate::kInvalidLhsInFor, kSyntaxError, CHECK_OK);
|
|
}
|
|
|
|
ForEachStatement* loop =
|
|
factory()->NewForEachStatement(mode, labels, stmt_pos);
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
int each_keyword_position = scanner()->location().beg_pos;
|
|
|
|
Expression* enumerable;
|
|
if (mode == ForEachStatement::ITERATE) {
|
|
ExpressionClassifier classifier(this);
|
|
enumerable = ParseAssignmentExpression(true, &classifier, CHECK_OK);
|
|
RewriteNonPattern(&classifier, CHECK_OK);
|
|
} else {
|
|
enumerable = ParseExpression(true, CHECK_OK);
|
|
}
|
|
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
// For legacy compat reasons, give for loops similar treatment to
|
|
// if statements in allowing a function declaration for a body
|
|
Statement* body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
Statement* final_loop = InitializeForEachStatement(
|
|
loop, expression, enumerable, body, each_keyword_position);
|
|
|
|
DCHECK_NULL(for_state.FinalizedBlockScope());
|
|
return final_loop;
|
|
|
|
} else {
|
|
init = factory()->NewExpressionStatement(expression, lhs_beg_pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Standard 'for' loop
|
|
ForStatement* loop = factory()->NewForStatement(labels, stmt_pos);
|
|
Target target(&this->target_stack_, loop);
|
|
|
|
// Parsed initializer at this point.
|
|
Expect(Token::SEMICOLON, CHECK_OK);
|
|
|
|
Expression* cond = NULL;
|
|
Statement* next = NULL;
|
|
Statement* body = NULL;
|
|
|
|
// If there are let bindings, then condition and the next statement of the
|
|
// for loop must be parsed in a new scope.
|
|
Scope* inner_scope = scope();
|
|
// TODO(verwaest): Allocate this through a ScopeState as well.
|
|
if (bound_names_are_lexical && bound_names.length() > 0) {
|
|
inner_scope = NewScopeWithParent(inner_scope, BLOCK_SCOPE);
|
|
inner_scope->set_start_position(scanner()->location().beg_pos);
|
|
}
|
|
{
|
|
BlockState block_state(&scope_state_, inner_scope);
|
|
|
|
if (peek() != Token::SEMICOLON) {
|
|
cond = ParseExpression(true, CHECK_OK);
|
|
}
|
|
Expect(Token::SEMICOLON, CHECK_OK);
|
|
|
|
if (peek() != Token::RPAREN) {
|
|
Expression* exp = ParseExpression(true, CHECK_OK);
|
|
next = factory()->NewExpressionStatement(exp, exp->position());
|
|
}
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
|
|
body = ParseScopedStatement(NULL, true, CHECK_OK);
|
|
}
|
|
|
|
Statement* result = NULL;
|
|
if (bound_names_are_lexical && bound_names.length() > 0) {
|
|
result = DesugarLexicalBindingsInForStatement(
|
|
inner_scope, parsing_result.descriptor.mode, &bound_names, loop, init,
|
|
cond, next, body, CHECK_OK);
|
|
for_state.set_end_position(scanner()->location().end_pos);
|
|
} else {
|
|
for_state.set_end_position(scanner()->location().end_pos);
|
|
Scope* for_scope = for_state.FinalizedBlockScope();
|
|
if (for_scope) {
|
|
// Rewrite a for statement of the form
|
|
// for (const x = i; c; n) b
|
|
//
|
|
// into
|
|
//
|
|
// {
|
|
// const x = i;
|
|
// for (; c; n) b
|
|
// }
|
|
//
|
|
// or, desugar
|
|
// for (; c; n) b
|
|
// into
|
|
// {
|
|
// for (; c; n) b
|
|
// }
|
|
// just in case b introduces a lexical binding some other way, e.g., if b
|
|
// is a FunctionDeclaration.
|
|
Block* block = factory()->NewBlock(NULL, 2, false, kNoSourcePosition);
|
|
if (init != nullptr) {
|
|
block->statements()->Add(init, zone());
|
|
}
|
|
block->statements()->Add(loop, zone());
|
|
block->set_scope(for_scope);
|
|
loop->Initialize(NULL, cond, next, body);
|
|
result = block;
|
|
} else {
|
|
loop->Initialize(init, cond, next, body);
|
|
result = loop;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
DebuggerStatement* Parser::ParseDebuggerStatement(bool* ok) {
|
|
// In ECMA-262 'debugger' is defined as a reserved keyword. In some browser
|
|
// contexts this is used as a statement which invokes the debugger as i a
|
|
// break point is present.
|
|
// DebuggerStatement ::
|
|
// 'debugger' ';'
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::DEBUGGER, CHECK_OK);
|
|
ExpectSemicolon(CHECK_OK);
|
|
return factory()->NewDebuggerStatement(pos);
|
|
}
|
|
|
|
|
|
bool CompileTimeValue::IsCompileTimeValue(Expression* expression) {
|
|
if (expression->IsLiteral()) return true;
|
|
MaterializedLiteral* lit = expression->AsMaterializedLiteral();
|
|
return lit != NULL && lit->is_simple();
|
|
}
|
|
|
|
|
|
Handle<FixedArray> CompileTimeValue::GetValue(Isolate* isolate,
|
|
Expression* expression) {
|
|
Factory* factory = isolate->factory();
|
|
DCHECK(IsCompileTimeValue(expression));
|
|
Handle<FixedArray> result = factory->NewFixedArray(2, TENURED);
|
|
ObjectLiteral* object_literal = expression->AsObjectLiteral();
|
|
if (object_literal != NULL) {
|
|
DCHECK(object_literal->is_simple());
|
|
if (object_literal->fast_elements()) {
|
|
result->set(kLiteralTypeSlot, Smi::FromInt(OBJECT_LITERAL_FAST_ELEMENTS));
|
|
} else {
|
|
result->set(kLiteralTypeSlot, Smi::FromInt(OBJECT_LITERAL_SLOW_ELEMENTS));
|
|
}
|
|
result->set(kElementsSlot, *object_literal->constant_properties());
|
|
} else {
|
|
ArrayLiteral* array_literal = expression->AsArrayLiteral();
|
|
DCHECK(array_literal != NULL && array_literal->is_simple());
|
|
result->set(kLiteralTypeSlot, Smi::FromInt(ARRAY_LITERAL));
|
|
result->set(kElementsSlot, *array_literal->constant_elements());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
CompileTimeValue::LiteralType CompileTimeValue::GetLiteralType(
|
|
Handle<FixedArray> value) {
|
|
Smi* literal_type = Smi::cast(value->get(kLiteralTypeSlot));
|
|
return static_cast<LiteralType>(literal_type->value());
|
|
}
|
|
|
|
|
|
Handle<FixedArray> CompileTimeValue::GetElements(Handle<FixedArray> value) {
|
|
return Handle<FixedArray>(FixedArray::cast(value->get(kElementsSlot)));
|
|
}
|
|
|
|
void Parser::ParseArrowFunctionFormalParameters(
|
|
ParserFormalParameters* parameters, Expression* expr, int end_pos,
|
|
bool* ok) {
|
|
// ArrowFunctionFormals ::
|
|
// Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail)
|
|
// Tail
|
|
// NonTailArrowFunctionFormals ::
|
|
// Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy)
|
|
// VariableProxy
|
|
// Tail ::
|
|
// VariableProxy
|
|
// Spread(VariableProxy)
|
|
//
|
|
// As we need to visit the parameters in left-to-right order, we recurse on
|
|
// the left-hand side of comma expressions.
|
|
//
|
|
if (expr->IsBinaryOperation()) {
|
|
BinaryOperation* binop = expr->AsBinaryOperation();
|
|
// The classifier has already run, so we know that the expression is a valid
|
|
// arrow function formals production.
|
|
DCHECK_EQ(binop->op(), Token::COMMA);
|
|
Expression* left = binop->left();
|
|
Expression* right = binop->right();
|
|
int comma_pos = binop->position();
|
|
ParseArrowFunctionFormalParameters(parameters, left, comma_pos,
|
|
CHECK_OK_VOID);
|
|
// LHS of comma expression should be unparenthesized.
|
|
expr = right;
|
|
}
|
|
|
|
// Only the right-most expression may be a rest parameter.
|
|
DCHECK(!parameters->has_rest);
|
|
|
|
bool is_rest = expr->IsSpread();
|
|
if (is_rest) {
|
|
expr = expr->AsSpread()->expression();
|
|
parameters->has_rest = true;
|
|
}
|
|
if (parameters->is_simple) {
|
|
parameters->is_simple = !is_rest && expr->IsVariableProxy();
|
|
}
|
|
|
|
Expression* initializer = nullptr;
|
|
if (expr->IsAssignment()) {
|
|
Assignment* assignment = expr->AsAssignment();
|
|
DCHECK(!assignment->is_compound());
|
|
initializer = assignment->value();
|
|
expr = assignment->target();
|
|
}
|
|
|
|
AddFormalParameter(parameters, expr, initializer, end_pos, is_rest);
|
|
}
|
|
|
|
void Parser::DesugarAsyncFunctionBody(const AstRawString* function_name,
|
|
Scope* scope, ZoneList<Statement*>* body,
|
|
ExpressionClassifier* classifier,
|
|
FunctionKind kind,
|
|
FunctionBodyType body_type,
|
|
bool accept_IN, int pos, bool* ok) {
|
|
// function async_function() {
|
|
// try {
|
|
// .generator_object = %CreateGeneratorObject();
|
|
// ... function body ...
|
|
// } catch (e) {
|
|
// return Promise.reject(e);
|
|
// }
|
|
// }
|
|
scope->ForceContextAllocation();
|
|
Variable* temp =
|
|
NewTemporary(ast_value_factory()->dot_generator_object_string());
|
|
function_state_->set_generator_object_variable(temp);
|
|
|
|
Expression* init_generator_variable = factory()->NewAssignment(
|
|
Token::INIT, factory()->NewVariableProxy(temp),
|
|
BuildCreateJSGeneratorObject(pos, kind), kNoSourcePosition);
|
|
body->Add(factory()->NewExpressionStatement(init_generator_variable,
|
|
kNoSourcePosition),
|
|
zone());
|
|
|
|
Block* try_block = factory()->NewBlock(NULL, 8, true, kNoSourcePosition);
|
|
|
|
ZoneList<Statement*>* inner_body = try_block->statements();
|
|
|
|
Expression* return_value = nullptr;
|
|
if (body_type == FunctionBodyType::kNormal) {
|
|
ParseStatementList(inner_body, Token::RBRACE, CHECK_OK_VOID);
|
|
return_value = factory()->NewUndefinedLiteral(kNoSourcePosition);
|
|
} else {
|
|
return_value =
|
|
ParseAssignmentExpression(accept_IN, classifier, CHECK_OK_VOID);
|
|
RewriteNonPattern(classifier, CHECK_OK_VOID);
|
|
}
|
|
|
|
return_value = BuildPromiseResolve(return_value, return_value->position());
|
|
inner_body->Add(
|
|
factory()->NewReturnStatement(return_value, return_value->position()),
|
|
zone());
|
|
body->Add(BuildRejectPromiseOnException(try_block), zone());
|
|
scope->set_end_position(scanner()->location().end_pos);
|
|
}
|
|
|
|
DoExpression* Parser::ParseDoExpression(bool* ok) {
|
|
// AssignmentExpression ::
|
|
// do '{' StatementList '}'
|
|
int pos = peek_position();
|
|
|
|
Expect(Token::DO, CHECK_OK);
|
|
Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
|
|
Block* block = ParseBlock(nullptr, CHECK_OK);
|
|
DoExpression* expr = factory()->NewDoExpression(block, result, pos);
|
|
if (!Rewriter::Rewrite(this, GetClosureScope(), expr, ast_value_factory())) {
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
void ParserBaseTraits<Parser>::ParseArrowFunctionFormalParameterList(
|
|
ParserFormalParameters* parameters, Expression* expr,
|
|
const Scanner::Location& params_loc, Scanner::Location* duplicate_loc,
|
|
const Scope::Snapshot& scope_snapshot, bool* ok) {
|
|
if (expr->IsEmptyParentheses()) return;
|
|
|
|
delegate()->ParseArrowFunctionFormalParameters(
|
|
parameters, expr, params_loc.end_pos, CHECK_OK_VOID);
|
|
|
|
scope_snapshot.Reparent(parameters->scope);
|
|
|
|
if (parameters->Arity() > Code::kMaxArguments) {
|
|
delegate()->ReportMessageAt(params_loc,
|
|
MessageTemplate::kMalformedArrowFunParamList);
|
|
*ok = false;
|
|
return;
|
|
}
|
|
|
|
Type::ExpressionClassifier classifier(delegate());
|
|
if (!parameters->is_simple) {
|
|
classifier.RecordNonSimpleParameter();
|
|
}
|
|
for (int i = 0; i < parameters->Arity(); ++i) {
|
|
auto parameter = parameters->at(i);
|
|
DeclareFormalParameter(parameters->scope, parameter, &classifier);
|
|
if (!duplicate_loc->IsValid()) {
|
|
*duplicate_loc = classifier.duplicate_formal_parameter_error().location;
|
|
}
|
|
}
|
|
DCHECK_EQ(parameters->is_simple, parameters->scope->has_simple_parameters());
|
|
}
|
|
|
|
void ParserBaseTraits<Parser>::ReindexLiterals(
|
|
const ParserFormalParameters& parameters) {
|
|
if (delegate()->function_state_->materialized_literal_count() > 0) {
|
|
AstLiteralReindexer reindexer;
|
|
|
|
for (const auto p : parameters.params) {
|
|
if (p.pattern != nullptr) reindexer.Reindex(p.pattern);
|
|
if (p.initializer != nullptr) reindexer.Reindex(p.initializer);
|
|
}
|
|
|
|
DCHECK(reindexer.count() <=
|
|
delegate()->function_state_->materialized_literal_count());
|
|
}
|
|
}
|
|
|
|
|
|
FunctionLiteral* Parser::ParseFunctionLiteral(
|
|
const AstRawString* function_name, Scanner::Location function_name_location,
|
|
FunctionNameValidity function_name_validity, FunctionKind kind,
|
|
int function_token_pos, FunctionLiteral::FunctionType function_type,
|
|
LanguageMode language_mode, bool* ok) {
|
|
// Function ::
|
|
// '(' FormalParameterList? ')' '{' FunctionBody '}'
|
|
//
|
|
// Getter ::
|
|
// '(' ')' '{' FunctionBody '}'
|
|
//
|
|
// Setter ::
|
|
// '(' PropertySetParameterList ')' '{' FunctionBody '}'
|
|
|
|
int pos = function_token_pos == kNoSourcePosition ? peek_position()
|
|
: function_token_pos;
|
|
|
|
bool is_generator = IsGeneratorFunction(kind);
|
|
|
|
// Anonymous functions were passed either the empty symbol or a null
|
|
// handle as the function name. Remember if we were passed a non-empty
|
|
// handle to decide whether to invoke function name inference.
|
|
bool should_infer_name = function_name == NULL;
|
|
|
|
// We want a non-null handle as the function name.
|
|
if (should_infer_name) {
|
|
function_name = ast_value_factory()->empty_string();
|
|
}
|
|
|
|
FunctionLiteral::EagerCompileHint eager_compile_hint =
|
|
function_state_->next_function_is_parenthesized()
|
|
? FunctionLiteral::kShouldEagerCompile
|
|
: FunctionLiteral::kShouldLazyCompile;
|
|
|
|
// Determine if the function can be parsed lazily. Lazy parsing is
|
|
// different from lazy compilation; we need to parse more eagerly than we
|
|
// compile.
|
|
|
|
// We can only parse lazily if we also compile lazily. The heuristics for lazy
|
|
// compilation are:
|
|
// - It must not have been prohibited by the caller to Parse (some callers
|
|
// need a full AST).
|
|
// - The outer scope must allow lazy compilation of inner functions.
|
|
// - The function mustn't be a function expression with an open parenthesis
|
|
// before; we consider that a hint that the function will be called
|
|
// immediately, and it would be a waste of time to make it lazily
|
|
// compiled.
|
|
// These are all things we can know at this point, without looking at the
|
|
// function itself.
|
|
|
|
// In addition, we need to distinguish between these cases:
|
|
// (function foo() {
|
|
// bar = function() { return 1; }
|
|
// })();
|
|
// and
|
|
// (function foo() {
|
|
// var a = 1;
|
|
// bar = function() { return a; }
|
|
// })();
|
|
|
|
// Now foo will be parsed eagerly and compiled eagerly (optimization: assume
|
|
// parenthesis before the function means that it will be called
|
|
// immediately). The inner function *must* be parsed eagerly to resolve the
|
|
// possible reference to the variable in foo's scope. However, it's possible
|
|
// that it will be compiled lazily.
|
|
|
|
// To make this additional case work, both Parser and PreParser implement a
|
|
// logic where only top-level functions will be parsed lazily.
|
|
bool is_lazily_parsed = mode() == PARSE_LAZILY &&
|
|
this->scope()->AllowsLazyParsing() &&
|
|
!function_state_->next_function_is_parenthesized();
|
|
|
|
// Determine whether the function body can be discarded after parsing.
|
|
// The preconditions are:
|
|
// - Lazy compilation has to be enabled.
|
|
// - Neither V8 natives nor native function declarations can be allowed,
|
|
// since parsing one would retroactively force the function to be
|
|
// eagerly compiled.
|
|
// - The invoker of this parser can't depend on the AST being eagerly
|
|
// built (either because the function is about to be compiled, or
|
|
// because the AST is going to be inspected for some reason).
|
|
// - Because of the above, we can't be attempting to parse a
|
|
// FunctionExpression; even without enclosing parentheses it might be
|
|
// immediately invoked.
|
|
// - The function literal shouldn't be hinted to eagerly compile.
|
|
// - For asm.js functions the body needs to be available when module
|
|
// validation is active, because we examine the entire module at once.
|
|
bool use_temp_zone =
|
|
!is_lazily_parsed && FLAG_lazy && !allow_natives() &&
|
|
extension_ == NULL && allow_lazy() &&
|
|
function_type == FunctionLiteral::kDeclaration &&
|
|
eager_compile_hint != FunctionLiteral::kShouldEagerCompile &&
|
|
!(FLAG_validate_asm && scope()->IsAsmModule());
|
|
|
|
DeclarationScope* main_scope = nullptr;
|
|
if (use_temp_zone) {
|
|
// This Scope lives in the main Zone; we'll migrate data into it later.
|
|
main_scope = NewFunctionScope(kind);
|
|
}
|
|
|
|
ZoneList<Statement*>* body = nullptr;
|
|
int arity = -1;
|
|
int materialized_literal_count = -1;
|
|
int expected_property_count = -1;
|
|
DuplicateFinder duplicate_finder(scanner()->unicode_cache());
|
|
bool should_be_used_once_hint = false;
|
|
bool has_duplicate_parameters;
|
|
|
|
{
|
|
// Temporary zones can nest. When we migrate free variables (see below), we
|
|
// need to recreate them in the previous Zone.
|
|
AstNodeFactory previous_zone_ast_node_factory(ast_value_factory());
|
|
previous_zone_ast_node_factory.set_zone(zone());
|
|
|
|
// Open a new zone scope, which sets our AstNodeFactory to allocate in the
|
|
// new temporary zone if the preconditions are satisfied, and ensures that
|
|
// the previous zone is always restored after parsing the body. To be able
|
|
// to do scope analysis correctly after full parsing, we migrate needed
|
|
// information from scope into main_scope when the function has been parsed.
|
|
Zone temp_zone(zone()->allocator());
|
|
DiscardableZoneScope zone_scope(this, &temp_zone, use_temp_zone);
|
|
|
|
DeclarationScope* scope = NewFunctionScope(kind);
|
|
SetLanguageMode(scope, language_mode);
|
|
if (!use_temp_zone) {
|
|
main_scope = scope;
|
|
} else {
|
|
DCHECK(main_scope->zone() != scope->zone());
|
|
}
|
|
|
|
FunctionState function_state(&function_state_, &scope_state_, scope, kind);
|
|
#ifdef DEBUG
|
|
scope->SetScopeName(function_name);
|
|
#endif
|
|
ExpressionClassifier formals_classifier(this, &duplicate_finder);
|
|
|
|
if (is_generator) {
|
|
// For generators, allocating variables in contexts is currently a win
|
|
// because it minimizes the work needed to suspend and resume an
|
|
// activation. The machine code produced for generators (by full-codegen)
|
|
// relies on this forced context allocation, but not in an essential way.
|
|
this->scope()->ForceContextAllocation();
|
|
|
|
// Calling a generator returns a generator object. That object is stored
|
|
// in a temporary variable, a definition that is used by "yield"
|
|
// expressions. This also marks the FunctionState as a generator.
|
|
Variable* temp =
|
|
NewTemporary(ast_value_factory()->dot_generator_object_string());
|
|
function_state.set_generator_object_variable(temp);
|
|
}
|
|
|
|
Expect(Token::LPAREN, CHECK_OK);
|
|
int start_position = scanner()->location().beg_pos;
|
|
this->scope()->set_start_position(start_position);
|
|
ParserFormalParameters formals(scope);
|
|
ParseFormalParameterList(&formals, &formals_classifier, CHECK_OK);
|
|
arity = formals.Arity();
|
|
Expect(Token::RPAREN, CHECK_OK);
|
|
int formals_end_position = scanner()->location().end_pos;
|
|
|
|
CheckArityRestrictions(arity, kind, formals.has_rest, start_position,
|
|
formals_end_position, CHECK_OK);
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
// Don't include the rest parameter into the function's formal parameter
|
|
// count (esp. the SharedFunctionInfo::internal_formal_parameter_count,
|
|
// which says whether we need to create an arguments adaptor frame).
|
|
if (formals.has_rest) arity--;
|
|
|
|
// Eager or lazy parse?
|
|
// If is_lazily_parsed, we'll parse lazy. If we can set a bookmark, we'll
|
|
// pass it to SkipLazyFunctionBody, which may use it to abort lazy
|
|
// parsing if it suspect that wasn't a good idea. If so, or if we didn't
|
|
// try to lazy parse in the first place, we'll have to parse eagerly.
|
|
Scanner::BookmarkScope bookmark(scanner());
|
|
if (is_lazily_parsed) {
|
|
Scanner::BookmarkScope* maybe_bookmark =
|
|
bookmark.Set() ? &bookmark : nullptr;
|
|
SkipLazyFunctionBody(&materialized_literal_count,
|
|
&expected_property_count, /*CHECK_OK*/ ok,
|
|
maybe_bookmark);
|
|
|
|
materialized_literal_count += formals.materialized_literals_count +
|
|
function_state.materialized_literal_count();
|
|
|
|
if (bookmark.HasBeenReset()) {
|
|
// Trigger eager (re-)parsing, just below this block.
|
|
is_lazily_parsed = false;
|
|
|
|
// This is probably an initialization function. Inform the compiler it
|
|
// should also eager-compile this function, and that we expect it to be
|
|
// used once.
|
|
eager_compile_hint = FunctionLiteral::kShouldEagerCompile;
|
|
should_be_used_once_hint = true;
|
|
}
|
|
}
|
|
if (!is_lazily_parsed) {
|
|
body = ParseEagerFunctionBody(function_name, pos, formals, kind,
|
|
function_type, CHECK_OK);
|
|
|
|
materialized_literal_count = function_state.materialized_literal_count();
|
|
expected_property_count = function_state.expected_property_count();
|
|
if (use_temp_zone) {
|
|
// If the preconditions are correct the function body should never be
|
|
// accessed, but do this anyway for better behaviour if they're wrong.
|
|
body = nullptr;
|
|
}
|
|
}
|
|
|
|
// Parsing the body may change the language mode in our scope.
|
|
language_mode = scope->language_mode();
|
|
|
|
// Validate name and parameter names. We can do this only after parsing the
|
|
// function, since the function can declare itself strict.
|
|
CheckFunctionName(language_mode, function_name, function_name_validity,
|
|
function_name_location, CHECK_OK);
|
|
const bool allow_duplicate_parameters =
|
|
is_sloppy(language_mode) && formals.is_simple && !IsConciseMethod(kind);
|
|
ValidateFormalParameters(&formals_classifier, language_mode,
|
|
allow_duplicate_parameters, CHECK_OK);
|
|
|
|
if (is_strict(language_mode)) {
|
|
CheckStrictOctalLiteral(scope->start_position(), scope->end_position(),
|
|
CHECK_OK);
|
|
CheckDecimalLiteralWithLeadingZero(use_counts_, scope->start_position(),
|
|
scope->end_position());
|
|
}
|
|
CheckConflictingVarDeclarations(scope, CHECK_OK);
|
|
|
|
if (body) {
|
|
// If body can be inspected, rewrite queued destructuring assignments
|
|
RewriteDestructuringAssignments();
|
|
}
|
|
has_duplicate_parameters =
|
|
!formals_classifier.is_valid_formal_parameter_list_without_duplicates();
|
|
|
|
if (use_temp_zone) {
|
|
DCHECK(main_scope != scope);
|
|
scope->AnalyzePartially(main_scope, &previous_zone_ast_node_factory);
|
|
}
|
|
} // DiscardableZoneScope goes out of scope.
|
|
|
|
FunctionLiteral::ParameterFlag duplicate_parameters =
|
|
has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters
|
|
: FunctionLiteral::kNoDuplicateParameters;
|
|
|
|
// Note that the FunctionLiteral needs to be created in the main Zone again.
|
|
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
|
|
function_name, main_scope, body, materialized_literal_count,
|
|
expected_property_count, arity, duplicate_parameters, function_type,
|
|
eager_compile_hint, kind, pos);
|
|
function_literal->set_function_token_position(function_token_pos);
|
|
if (should_be_used_once_hint)
|
|
function_literal->set_should_be_used_once_hint();
|
|
|
|
if (fni_ != NULL && should_infer_name) fni_->AddFunction(function_literal);
|
|
return function_literal;
|
|
}
|
|
|
|
Expression* Parser::ParseAsyncFunctionExpression(bool* ok) {
|
|
// AsyncFunctionDeclaration ::
|
|
// async [no LineTerminator here] function ( FormalParameters[Await] )
|
|
// { AsyncFunctionBody }
|
|
//
|
|
// async [no LineTerminator here] function BindingIdentifier[Await]
|
|
// ( FormalParameters[Await] ) { AsyncFunctionBody }
|
|
DCHECK_EQ(scanner()->current_token(), Token::ASYNC);
|
|
int pos = position();
|
|
Expect(Token::FUNCTION, CHECK_OK);
|
|
bool is_strict_reserved = false;
|
|
const AstRawString* name = nullptr;
|
|
FunctionLiteral::FunctionType type = FunctionLiteral::kAnonymousExpression;
|
|
|
|
if (peek_any_identifier()) {
|
|
type = FunctionLiteral::kNamedExpression;
|
|
name = ParseIdentifierOrStrictReservedWord(FunctionKind::kAsyncFunction,
|
|
&is_strict_reserved, CHECK_OK);
|
|
}
|
|
return ParseFunctionLiteral(name, scanner()->location(),
|
|
is_strict_reserved ? kFunctionNameIsStrictReserved
|
|
: kFunctionNameValidityUnknown,
|
|
FunctionKind::kAsyncFunction, pos, type,
|
|
language_mode(), CHECK_OK);
|
|
}
|
|
|
|
void Parser::SkipLazyFunctionBody(int* materialized_literal_count,
|
|
int* expected_property_count, bool* ok,
|
|
Scanner::BookmarkScope* bookmark) {
|
|
DCHECK_IMPLIES(bookmark, bookmark->HasBeenSet());
|
|
if (produce_cached_parse_data()) CHECK(log_);
|
|
|
|
int function_block_pos = position();
|
|
DeclarationScope* scope = this->scope()->AsDeclarationScope();
|
|
DCHECK(scope->is_function_scope());
|
|
if (consume_cached_parse_data() && !cached_parse_data_->rejected()) {
|
|
// If we have cached data, we use it to skip parsing the function body. The
|
|
// data contains the information we need to construct the lazy function.
|
|
FunctionEntry entry =
|
|
cached_parse_data_->GetFunctionEntry(function_block_pos);
|
|
// Check that cached data is valid. If not, mark it as invalid (the embedder
|
|
// handles it). Note that end position greater than end of stream is safe,
|
|
// and hard to check.
|
|
if (entry.is_valid() && entry.end_pos() > function_block_pos) {
|
|
scanner()->SeekForward(entry.end_pos() - 1);
|
|
|
|
scope->set_end_position(entry.end_pos());
|
|
Expect(Token::RBRACE, CHECK_OK_VOID);
|
|
total_preparse_skipped_ += scope->end_position() - function_block_pos;
|
|
*materialized_literal_count = entry.literal_count();
|
|
*expected_property_count = entry.property_count();
|
|
SetLanguageMode(scope, entry.language_mode());
|
|
if (entry.uses_super_property()) scope->RecordSuperPropertyUsage();
|
|
if (entry.calls_eval()) scope->RecordEvalCall();
|
|
return;
|
|
}
|
|
cached_parse_data_->Reject();
|
|
}
|
|
// With no cached data, we partially parse the function, without building an
|
|
// AST. This gathers the data needed to build a lazy function.
|
|
SingletonLogger logger;
|
|
PreParser::PreParseResult result =
|
|
ParseLazyFunctionBodyWithPreParser(&logger, bookmark);
|
|
if (bookmark && bookmark->HasBeenReset()) {
|
|
return; // Return immediately if pre-parser devided to abort parsing.
|
|
}
|
|
if (result == PreParser::kPreParseStackOverflow) {
|
|
// Propagate stack overflow.
|
|
set_stack_overflow();
|
|
*ok = false;
|
|
return;
|
|
}
|
|
if (logger.has_error()) {
|
|
ReportMessageAt(Scanner::Location(logger.start(), logger.end()),
|
|
logger.message(), logger.argument_opt(),
|
|
logger.error_type());
|
|
*ok = false;
|
|
return;
|
|
}
|
|
scope->set_end_position(logger.end());
|
|
Expect(Token::RBRACE, CHECK_OK_VOID);
|
|
total_preparse_skipped_ += scope->end_position() - function_block_pos;
|
|
*materialized_literal_count = logger.literals();
|
|
*expected_property_count = logger.properties();
|
|
SetLanguageMode(scope, logger.language_mode());
|
|
if (logger.uses_super_property()) scope->RecordSuperPropertyUsage();
|
|
if (logger.calls_eval()) scope->RecordEvalCall();
|
|
if (produce_cached_parse_data()) {
|
|
DCHECK(log_);
|
|
// Position right after terminal '}'.
|
|
int body_end = scanner()->location().end_pos;
|
|
log_->LogFunction(function_block_pos, body_end, *materialized_literal_count,
|
|
*expected_property_count, language_mode(),
|
|
scope->uses_super_property(), scope->calls_eval());
|
|
}
|
|
}
|
|
|
|
|
|
Statement* Parser::BuildAssertIsCoercible(Variable* var) {
|
|
// if (var === null || var === undefined)
|
|
// throw /* type error kNonCoercible) */;
|
|
|
|
Expression* condition = factory()->NewBinaryOperation(
|
|
Token::OR,
|
|
factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var),
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var),
|
|
factory()->NewNullLiteral(kNoSourcePosition), kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
Expression* throw_type_error = this->NewThrowTypeError(
|
|
MessageTemplate::kNonCoercible, ast_value_factory()->empty_string(),
|
|
kNoSourcePosition);
|
|
IfStatement* if_statement = factory()->NewIfStatement(
|
|
condition,
|
|
factory()->NewExpressionStatement(throw_type_error, kNoSourcePosition),
|
|
factory()->NewEmptyStatement(kNoSourcePosition), kNoSourcePosition);
|
|
return if_statement;
|
|
}
|
|
|
|
|
|
class InitializerRewriter final
|
|
: public AstTraversalVisitor<InitializerRewriter> {
|
|
public:
|
|
InitializerRewriter(uintptr_t stack_limit, Expression* root, Parser* parser,
|
|
Scope* scope)
|
|
: AstTraversalVisitor(stack_limit, root),
|
|
parser_(parser),
|
|
scope_(scope) {}
|
|
|
|
private:
|
|
// This is required so that the overriden Visit* methods can be
|
|
// called by the base class (template).
|
|
friend class AstTraversalVisitor<InitializerRewriter>;
|
|
|
|
// Just rewrite destructuring assignments wrapped in RewritableExpressions.
|
|
void VisitRewritableExpression(RewritableExpression* to_rewrite) {
|
|
if (to_rewrite->is_rewritten()) return;
|
|
Parser::PatternRewriter::RewriteDestructuringAssignment(parser_, to_rewrite,
|
|
scope_);
|
|
}
|
|
|
|
// Code in function literals does not need to be eagerly rewritten, it will be
|
|
// rewritten when scheduled.
|
|
void VisitFunctionLiteral(FunctionLiteral* expr) {}
|
|
|
|
Parser* parser_;
|
|
Scope* scope_;
|
|
};
|
|
|
|
|
|
void Parser::RewriteParameterInitializer(Expression* expr, Scope* scope) {
|
|
InitializerRewriter rewriter(stack_limit_, expr, this, scope);
|
|
rewriter.Run();
|
|
}
|
|
|
|
|
|
Block* Parser::BuildParameterInitializationBlock(
|
|
const ParserFormalParameters& parameters, bool* ok) {
|
|
DCHECK(!parameters.is_simple);
|
|
DCHECK(scope()->is_function_scope());
|
|
Block* init_block = factory()->NewBlock(NULL, 1, true, kNoSourcePosition);
|
|
for (int i = 0; i < parameters.params.length(); ++i) {
|
|
auto parameter = parameters.params[i];
|
|
if (parameter.is_rest && parameter.pattern->IsVariableProxy()) break;
|
|
DeclarationDescriptor descriptor;
|
|
descriptor.declaration_kind = DeclarationDescriptor::PARAMETER;
|
|
descriptor.parser = this;
|
|
descriptor.scope = scope();
|
|
descriptor.hoist_scope = nullptr;
|
|
descriptor.mode = LET;
|
|
descriptor.declaration_pos = parameter.pattern->position();
|
|
// The position that will be used by the AssignmentExpression
|
|
// which copies from the temp parameter to the pattern.
|
|
//
|
|
// TODO(adamk): Should this be kNoSourcePosition, since
|
|
// it's just copying from a temp var to the real param var?
|
|
descriptor.initialization_pos = parameter.pattern->position();
|
|
// The initializer position which will end up in,
|
|
// Variable::initializer_position(), used for hole check elimination.
|
|
int initializer_position = parameter.pattern->position();
|
|
Expression* initial_value =
|
|
factory()->NewVariableProxy(parameters.scope->parameter(i));
|
|
if (parameter.initializer != nullptr) {
|
|
// IS_UNDEFINED($param) ? initializer : $param
|
|
|
|
// Ensure initializer is rewritten
|
|
RewriteParameterInitializer(parameter.initializer, scope());
|
|
|
|
auto condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT,
|
|
factory()->NewVariableProxy(parameters.scope->parameter(i)),
|
|
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
|
|
initial_value = factory()->NewConditional(
|
|
condition, parameter.initializer, initial_value, kNoSourcePosition);
|
|
descriptor.initialization_pos = parameter.initializer->position();
|
|
initializer_position = parameter.initializer_end_position;
|
|
}
|
|
|
|
Scope* param_scope = scope();
|
|
Block* param_block = init_block;
|
|
if (!parameter.is_simple() && scope()->calls_sloppy_eval()) {
|
|
param_scope = NewVarblockScope();
|
|
param_scope->set_start_position(descriptor.initialization_pos);
|
|
param_scope->set_end_position(parameter.initializer_end_position);
|
|
param_scope->RecordEvalCall();
|
|
param_block = factory()->NewBlock(NULL, 8, true, kNoSourcePosition);
|
|
param_block->set_scope(param_scope);
|
|
descriptor.hoist_scope = scope();
|
|
// Pass the appropriate scope in so that PatternRewriter can appropriately
|
|
// rewrite inner initializers of the pattern to param_scope
|
|
descriptor.scope = param_scope;
|
|
// Rewrite the outer initializer to point to param_scope
|
|
ReparentParameterExpressionScope(stack_limit(), initial_value,
|
|
param_scope);
|
|
}
|
|
|
|
BlockState block_state(&scope_state_, param_scope);
|
|
DeclarationParsingResult::Declaration decl(
|
|
parameter.pattern, initializer_position, initial_value);
|
|
PatternRewriter::DeclareAndInitializeVariables(param_block, &descriptor,
|
|
&decl, nullptr, CHECK_OK);
|
|
|
|
if (param_block != init_block) {
|
|
param_scope = block_state.FinalizedBlockScope();
|
|
if (param_scope != nullptr) {
|
|
CheckConflictingVarDeclarations(param_scope, CHECK_OK);
|
|
}
|
|
init_block->statements()->Add(param_block, zone());
|
|
}
|
|
}
|
|
return init_block;
|
|
}
|
|
|
|
Block* Parser::BuildRejectPromiseOnException(Block* block) {
|
|
// try { <block> } catch (error) { return Promise.reject(error); }
|
|
Block* try_block = block;
|
|
Scope* catch_scope = NewScope(CATCH_SCOPE);
|
|
catch_scope->set_is_hidden();
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(), VAR,
|
|
kCreatedInitialized, Variable::NORMAL);
|
|
Block* catch_block = factory()->NewBlock(nullptr, 1, true, kNoSourcePosition);
|
|
|
|
Expression* promise_reject = BuildPromiseReject(
|
|
factory()->NewVariableProxy(catch_variable), kNoSourcePosition);
|
|
|
|
ReturnStatement* return_promise_reject =
|
|
factory()->NewReturnStatement(promise_reject, kNoSourcePosition);
|
|
catch_block->statements()->Add(return_promise_reject, zone());
|
|
TryStatement* try_catch_statement = factory()->NewTryCatchStatement(
|
|
try_block, catch_scope, catch_variable, catch_block, kNoSourcePosition);
|
|
|
|
block = factory()->NewBlock(nullptr, 1, true, kNoSourcePosition);
|
|
block->statements()->Add(try_catch_statement, zone());
|
|
return block;
|
|
}
|
|
|
|
Expression* Parser::BuildCreateJSGeneratorObject(int pos, FunctionKind kind) {
|
|
DCHECK_NOT_NULL(function_state_->generator_object_variable());
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewThisFunction(pos), zone());
|
|
args->Add(IsArrowFunction(kind) ? GetLiteralUndefined(pos)
|
|
: ThisExpression(kNoSourcePosition),
|
|
zone());
|
|
return factory()->NewCallRuntime(Runtime::kCreateJSGeneratorObject, args,
|
|
pos);
|
|
}
|
|
|
|
Expression* Parser::BuildPromiseResolve(Expression* value, int pos) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(value, zone());
|
|
return factory()->NewCallRuntime(Context::PROMISE_CREATE_RESOLVED_INDEX, args,
|
|
pos);
|
|
}
|
|
|
|
Expression* Parser::BuildPromiseReject(Expression* value, int pos) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(value, zone());
|
|
return factory()->NewCallRuntime(Context::PROMISE_CREATE_REJECTED_INDEX, args,
|
|
pos);
|
|
}
|
|
|
|
ZoneList<Statement*>* Parser::ParseEagerFunctionBody(
|
|
const AstRawString* function_name, int pos,
|
|
const ParserFormalParameters& parameters, FunctionKind kind,
|
|
FunctionLiteral::FunctionType function_type, bool* ok) {
|
|
// Everything inside an eagerly parsed function will be parsed eagerly
|
|
// (see comment above).
|
|
ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
|
|
ZoneList<Statement*>* result = new(zone()) ZoneList<Statement*>(8, zone());
|
|
|
|
static const int kFunctionNameAssignmentIndex = 0;
|
|
if (function_type == FunctionLiteral::kNamedExpression) {
|
|
DCHECK(function_name != NULL);
|
|
// If we have a named function expression, we add a local variable
|
|
// declaration to the body of the function with the name of the
|
|
// function and let it refer to the function itself (closure).
|
|
// Not having parsed the function body, the language mode may still change,
|
|
// so we reserve a spot and create the actual const assignment later.
|
|
DCHECK_EQ(kFunctionNameAssignmentIndex, result->length());
|
|
result->Add(NULL, zone());
|
|
}
|
|
|
|
ZoneList<Statement*>* body = result;
|
|
DeclarationScope* function_scope = scope()->AsDeclarationScope();
|
|
DeclarationScope* inner_scope = function_scope;
|
|
Block* inner_block = nullptr;
|
|
if (!parameters.is_simple) {
|
|
inner_scope = NewVarblockScope();
|
|
inner_scope->set_start_position(scanner()->location().beg_pos);
|
|
inner_block = factory()->NewBlock(NULL, 8, true, kNoSourcePosition);
|
|
inner_block->set_scope(inner_scope);
|
|
body = inner_block->statements();
|
|
}
|
|
|
|
{
|
|
BlockState block_state(&scope_state_, inner_scope);
|
|
|
|
if (IsGeneratorFunction(kind)) {
|
|
// We produce:
|
|
//
|
|
// try { InitialYield; ...body...; return {value: undefined, done: true} }
|
|
// finally { %_GeneratorClose(generator) }
|
|
//
|
|
// - InitialYield yields the actual generator object.
|
|
// - Any return statement inside the body will have its argument wrapped
|
|
// in a "done" iterator result object.
|
|
// - If the generator terminates for whatever reason, we must close it.
|
|
// Hence the finally clause.
|
|
|
|
Block* try_block =
|
|
factory()->NewBlock(nullptr, 3, false, kNoSourcePosition);
|
|
|
|
{
|
|
Expression* allocation = BuildCreateJSGeneratorObject(pos, kind);
|
|
VariableProxy* init_proxy = factory()->NewVariableProxy(
|
|
function_state_->generator_object_variable());
|
|
Assignment* assignment = factory()->NewAssignment(
|
|
Token::INIT, init_proxy, allocation, kNoSourcePosition);
|
|
VariableProxy* get_proxy = factory()->NewVariableProxy(
|
|
function_state_->generator_object_variable());
|
|
// The position of the yield is important for reporting the exception
|
|
// caused by calling the .throw method on a generator suspended at the
|
|
// initial yield (i.e. right after generator instantiation).
|
|
Yield* yield = factory()->NewYield(get_proxy, assignment,
|
|
scope()->start_position(),
|
|
Yield::kOnExceptionThrow);
|
|
try_block->statements()->Add(
|
|
factory()->NewExpressionStatement(yield, kNoSourcePosition),
|
|
zone());
|
|
}
|
|
|
|
ParseStatementList(try_block->statements(), Token::RBRACE, CHECK_OK);
|
|
|
|
Statement* final_return = factory()->NewReturnStatement(
|
|
BuildIteratorResult(nullptr, true), kNoSourcePosition);
|
|
try_block->statements()->Add(final_return, zone());
|
|
|
|
Block* finally_block =
|
|
factory()->NewBlock(nullptr, 1, false, kNoSourcePosition);
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
VariableProxy* call_proxy = factory()->NewVariableProxy(
|
|
function_state_->generator_object_variable());
|
|
args->Add(call_proxy, zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kInlineGeneratorClose, args, kNoSourcePosition);
|
|
finally_block->statements()->Add(
|
|
factory()->NewExpressionStatement(call, kNoSourcePosition), zone());
|
|
|
|
body->Add(factory()->NewTryFinallyStatement(try_block, finally_block,
|
|
kNoSourcePosition),
|
|
zone());
|
|
} else if (IsAsyncFunction(kind)) {
|
|
const bool accept_IN = true;
|
|
DesugarAsyncFunctionBody(function_name, inner_scope, body, nullptr, kind,
|
|
FunctionBodyType::kNormal, accept_IN, pos,
|
|
CHECK_OK);
|
|
} else {
|
|
ParseStatementList(body, Token::RBRACE, CHECK_OK);
|
|
}
|
|
|
|
if (IsSubclassConstructor(kind)) {
|
|
body->Add(factory()->NewReturnStatement(
|
|
this->ThisExpression(kNoSourcePosition), kNoSourcePosition),
|
|
zone());
|
|
}
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
scope()->set_end_position(scanner()->location().end_pos);
|
|
|
|
if (!parameters.is_simple) {
|
|
DCHECK_NOT_NULL(inner_scope);
|
|
DCHECK_EQ(function_scope, scope());
|
|
DCHECK_EQ(function_scope, inner_scope->outer_scope());
|
|
DCHECK_EQ(body, inner_block->statements());
|
|
SetLanguageMode(function_scope, inner_scope->language_mode());
|
|
Block* init_block = BuildParameterInitializationBlock(parameters, CHECK_OK);
|
|
|
|
if (is_sloppy(inner_scope->language_mode())) {
|
|
InsertSloppyBlockFunctionVarBindings(inner_scope, function_scope,
|
|
CHECK_OK);
|
|
}
|
|
|
|
if (IsAsyncFunction(kind)) {
|
|
init_block = BuildRejectPromiseOnException(init_block);
|
|
}
|
|
|
|
DCHECK_NOT_NULL(init_block);
|
|
|
|
inner_scope->set_end_position(scanner()->location().end_pos);
|
|
if (inner_scope->FinalizeBlockScope() != nullptr) {
|
|
CheckConflictingVarDeclarations(inner_scope, CHECK_OK);
|
|
InsertShadowingVarBindingInitializers(inner_block);
|
|
}
|
|
inner_scope = nullptr;
|
|
|
|
result->Add(init_block, zone());
|
|
result->Add(inner_block, zone());
|
|
} else {
|
|
DCHECK_EQ(inner_scope, function_scope);
|
|
if (is_sloppy(function_scope->language_mode())) {
|
|
InsertSloppyBlockFunctionVarBindings(function_scope, nullptr, CHECK_OK);
|
|
}
|
|
}
|
|
|
|
if (function_type == FunctionLiteral::kNamedExpression) {
|
|
// Now that we know the language mode, we can create the const assignment
|
|
// in the previously reserved spot.
|
|
DCHECK_EQ(function_scope, scope());
|
|
Variable* fvar = function_scope->DeclareFunctionVar(function_name);
|
|
VariableProxy* fproxy = factory()->NewVariableProxy(fvar);
|
|
result->Set(kFunctionNameAssignmentIndex,
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewAssignment(Token::INIT, fproxy,
|
|
factory()->NewThisFunction(pos),
|
|
kNoSourcePosition),
|
|
kNoSourcePosition));
|
|
}
|
|
|
|
MarkCollectedTailCallExpressions();
|
|
return result;
|
|
}
|
|
|
|
|
|
PreParser::PreParseResult Parser::ParseLazyFunctionBodyWithPreParser(
|
|
SingletonLogger* logger, Scanner::BookmarkScope* bookmark) {
|
|
// This function may be called on a background thread too; record only the
|
|
// main thread preparse times.
|
|
if (pre_parse_timer_ != NULL) {
|
|
pre_parse_timer_->Start();
|
|
}
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.PreParse");
|
|
|
|
DCHECK_EQ(Token::LBRACE, scanner()->current_token());
|
|
|
|
if (reusable_preparser_ == NULL) {
|
|
reusable_preparser_ = new PreParser(zone(), &scanner_, ast_value_factory(),
|
|
NULL, stack_limit_);
|
|
reusable_preparser_->set_allow_lazy(true);
|
|
#define SET_ALLOW(name) reusable_preparser_->set_allow_##name(allow_##name());
|
|
SET_ALLOW(natives);
|
|
SET_ALLOW(harmony_do_expressions);
|
|
SET_ALLOW(harmony_for_in);
|
|
SET_ALLOW(harmony_function_sent);
|
|
SET_ALLOW(harmony_restrictive_declarations);
|
|
SET_ALLOW(harmony_async_await);
|
|
SET_ALLOW(harmony_trailing_commas);
|
|
#undef SET_ALLOW
|
|
}
|
|
PreParser::PreParseResult result = reusable_preparser_->PreParseLazyFunction(
|
|
language_mode(), function_state_->kind(),
|
|
scope()->AsDeclarationScope()->has_simple_parameters(), parsing_module_,
|
|
logger, bookmark, use_counts_);
|
|
if (pre_parse_timer_ != NULL) {
|
|
pre_parse_timer_->Stop();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Expression* Parser::ParseClassLiteral(ExpressionClassifier* classifier,
|
|
const AstRawString* name,
|
|
Scanner::Location class_name_location,
|
|
bool name_is_strict_reserved, int pos,
|
|
bool* ok) {
|
|
// All parts of a ClassDeclaration and ClassExpression are strict code.
|
|
if (name_is_strict_reserved) {
|
|
ReportMessageAt(class_name_location,
|
|
MessageTemplate::kUnexpectedStrictReserved);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
if (IsEvalOrArguments(name)) {
|
|
ReportMessageAt(class_name_location, MessageTemplate::kStrictEvalArguments);
|
|
*ok = false;
|
|
return nullptr;
|
|
}
|
|
|
|
BlockState block_state(&scope_state_);
|
|
RaiseLanguageMode(STRICT);
|
|
#ifdef DEBUG
|
|
scope()->SetScopeName(name);
|
|
#endif
|
|
|
|
VariableProxy* proxy = nullptr;
|
|
if (name != nullptr) {
|
|
proxy = NewUnresolved(name);
|
|
// TODO(verwaest): declare via block_state.
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, block_state.scope(), pos);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, CONST,
|
|
DefaultInitializationFlag(CONST), CHECK_OK);
|
|
}
|
|
|
|
Expression* extends = nullptr;
|
|
if (Check(Token::EXTENDS)) {
|
|
block_state.set_start_position(scanner()->location().end_pos);
|
|
ExpressionClassifier extends_classifier(this);
|
|
extends = ParseLeftHandSideExpression(&extends_classifier, CHECK_OK);
|
|
CheckNoTailCallExpressions(&extends_classifier, CHECK_OK);
|
|
RewriteNonPattern(&extends_classifier, CHECK_OK);
|
|
if (classifier != nullptr) {
|
|
classifier->Accumulate(&extends_classifier,
|
|
ExpressionClassifier::ExpressionProductions);
|
|
}
|
|
} else {
|
|
block_state.set_start_position(scanner()->location().end_pos);
|
|
}
|
|
|
|
|
|
ClassLiteralChecker checker(this);
|
|
ZoneList<ObjectLiteral::Property*>* properties = NewPropertyList(4);
|
|
FunctionLiteral* constructor = nullptr;
|
|
bool has_seen_constructor = false;
|
|
|
|
Expect(Token::LBRACE, CHECK_OK);
|
|
|
|
const bool has_extends = extends != nullptr;
|
|
while (peek() != Token::RBRACE) {
|
|
if (Check(Token::SEMICOLON)) continue;
|
|
FuncNameInferrer::State fni_state(fni_);
|
|
const bool in_class = true;
|
|
bool is_computed_name = false; // Classes do not care about computed
|
|
// property names here.
|
|
ExpressionClassifier property_classifier(this);
|
|
const AstRawString* property_name = nullptr;
|
|
ObjectLiteral::Property* property = ParsePropertyDefinition(
|
|
&checker, in_class, has_extends, MethodKind::kNormal, &is_computed_name,
|
|
&has_seen_constructor, &property_classifier, &property_name, CHECK_OK);
|
|
RewriteNonPattern(&property_classifier, CHECK_OK);
|
|
if (classifier != nullptr) {
|
|
classifier->Accumulate(&property_classifier,
|
|
ExpressionClassifier::ExpressionProductions);
|
|
}
|
|
|
|
if (has_seen_constructor && constructor == nullptr) {
|
|
constructor = GetPropertyValue(property)->AsFunctionLiteral();
|
|
DCHECK_NOT_NULL(constructor);
|
|
constructor->set_raw_name(
|
|
name != nullptr ? name : ast_value_factory()->empty_string());
|
|
} else {
|
|
properties->Add(property, zone());
|
|
}
|
|
|
|
if (fni_ != nullptr) fni_->Infer();
|
|
|
|
if (property_name != ast_value_factory()->constructor_string()) {
|
|
SetFunctionNameFromPropertyName(property, property_name);
|
|
}
|
|
}
|
|
|
|
Expect(Token::RBRACE, CHECK_OK);
|
|
int end_pos = scanner()->location().end_pos;
|
|
|
|
if (constructor == nullptr) {
|
|
constructor = DefaultConstructor(name, has_extends, pos, end_pos,
|
|
block_state.language_mode());
|
|
}
|
|
|
|
// Note that we do not finalize this block scope because it is
|
|
// used as a sentinel value indicating an anonymous class.
|
|
block_state.set_end_position(end_pos);
|
|
|
|
if (name != nullptr) {
|
|
DCHECK_NOT_NULL(proxy);
|
|
proxy->var()->set_initializer_position(end_pos);
|
|
}
|
|
|
|
Block* do_block = factory()->NewBlock(nullptr, 1, false, pos);
|
|
Variable* result_var = NewTemporary(ast_value_factory()->empty_string());
|
|
do_block->set_scope(block_state.FinalizedBlockScope());
|
|
DoExpression* do_expr = factory()->NewDoExpression(do_block, result_var, pos);
|
|
|
|
ClassLiteral* class_literal = factory()->NewClassLiteral(
|
|
proxy, extends, constructor, properties, pos, end_pos);
|
|
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(class_literal, pos), zone());
|
|
do_expr->set_represented_function(constructor);
|
|
Rewriter::Rewrite(this, GetClosureScope(), do_expr, ast_value_factory());
|
|
|
|
return do_expr;
|
|
}
|
|
|
|
|
|
Expression* Parser::ParseV8Intrinsic(bool* ok) {
|
|
// CallRuntime ::
|
|
// '%' Identifier Arguments
|
|
|
|
int pos = peek_position();
|
|
Expect(Token::MOD, CHECK_OK);
|
|
// Allow "eval" or "arguments" for backward compatibility.
|
|
const AstRawString* name = ParseIdentifier(kAllowRestrictedIdentifiers,
|
|
CHECK_OK);
|
|
Scanner::Location spread_pos;
|
|
ExpressionClassifier classifier(this);
|
|
ZoneList<Expression*>* args =
|
|
ParseArguments(&spread_pos, &classifier, CHECK_OK);
|
|
|
|
DCHECK(!spread_pos.IsValid());
|
|
|
|
if (extension_ != NULL) {
|
|
// The extension structures are only accessible while parsing the
|
|
// very first time not when reparsing because of lazy compilation.
|
|
GetClosureScope()->ForceEagerCompilation();
|
|
}
|
|
|
|
const Runtime::Function* function = Runtime::FunctionForName(name->string());
|
|
|
|
if (function != NULL) {
|
|
// Check for possible name clash.
|
|
DCHECK_EQ(Context::kNotFound,
|
|
Context::IntrinsicIndexForName(name->string()));
|
|
// Check for built-in IS_VAR macro.
|
|
if (function->function_id == Runtime::kIS_VAR) {
|
|
DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type);
|
|
// %IS_VAR(x) evaluates to x if x is a variable,
|
|
// leads to a parse error otherwise. Could be implemented as an
|
|
// inline function %_IS_VAR(x) to eliminate this special case.
|
|
if (args->length() == 1 && args->at(0)->AsVariableProxy() != NULL) {
|
|
return args->at(0);
|
|
} else {
|
|
ReportMessage(MessageTemplate::kNotIsvar);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Check that the expected number of arguments are being passed.
|
|
if (function->nargs != -1 && function->nargs != args->length()) {
|
|
ReportMessage(MessageTemplate::kRuntimeWrongNumArgs);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
return factory()->NewCallRuntime(function, args, pos);
|
|
}
|
|
|
|
int context_index = Context::IntrinsicIndexForName(name->string());
|
|
|
|
// Check that the function is defined.
|
|
if (context_index == Context::kNotFound) {
|
|
ReportMessage(MessageTemplate::kNotDefined, name);
|
|
*ok = false;
|
|
return NULL;
|
|
}
|
|
|
|
return factory()->NewCallRuntime(context_index, args, pos);
|
|
}
|
|
|
|
|
|
Literal* Parser::GetLiteralUndefined(int position) {
|
|
return factory()->NewUndefinedLiteral(position);
|
|
}
|
|
|
|
|
|
void Parser::CheckConflictingVarDeclarations(Scope* scope, bool* ok) {
|
|
Declaration* decl = scope->CheckConflictingVarDeclarations();
|
|
if (decl != NULL) {
|
|
// In ES6, conflicting variable bindings are early errors.
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
int position = decl->proxy()->position();
|
|
Scanner::Location location =
|
|
position == kNoSourcePosition
|
|
? Scanner::Location::invalid()
|
|
: Scanner::Location(position, position + 1);
|
|
ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) {
|
|
// For each var-binding that shadows a parameter, insert an assignment
|
|
// initializing the variable with the parameter.
|
|
Scope* inner_scope = inner_block->scope();
|
|
DCHECK(inner_scope->is_declaration_scope());
|
|
Scope* function_scope = inner_scope->outer_scope();
|
|
DCHECK(function_scope->is_function_scope());
|
|
ZoneList<Declaration*>* decls = inner_scope->declarations();
|
|
BlockState block_state(&scope_state_, inner_scope);
|
|
for (int i = 0; i < decls->length(); ++i) {
|
|
Declaration* decl = decls->at(i);
|
|
if (decl->proxy()->var()->mode() != VAR || !decl->IsVariableDeclaration()) {
|
|
continue;
|
|
}
|
|
const AstRawString* name = decl->proxy()->raw_name();
|
|
Variable* parameter = function_scope->LookupLocal(name);
|
|
if (parameter == nullptr) continue;
|
|
VariableProxy* to = NewUnresolved(name);
|
|
VariableProxy* from = factory()->NewVariableProxy(parameter);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, to, from, kNoSourcePosition);
|
|
Statement* statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
inner_block->statements()->InsertAt(0, statement, zone());
|
|
}
|
|
}
|
|
|
|
void Parser::InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope,
|
|
Scope* complex_params_scope,
|
|
bool* ok) {
|
|
// For each variable which is used as a function declaration in a sloppy
|
|
// block,
|
|
SloppyBlockFunctionMap* map = scope->sloppy_block_function_map();
|
|
for (ZoneHashMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
|
|
AstRawString* name = static_cast<AstRawString*>(p->key);
|
|
|
|
// If the variable wouldn't conflict with a lexical declaration
|
|
// or parameter,
|
|
|
|
// Check if there's a conflict with a parameter.
|
|
// This depends on the fact that functions always have a scope solely to
|
|
// hold complex parameters, and the names local to that scope are
|
|
// precisely the names of the parameters. IsDeclaredParameter(name) does
|
|
// not hold for names declared by complex parameters, nor are those
|
|
// bindings necessarily declared lexically, so we have to check for them
|
|
// explicitly. On the other hand, if there are not complex parameters,
|
|
// it is sufficient to just check IsDeclaredParameter.
|
|
if (complex_params_scope != nullptr) {
|
|
if (complex_params_scope->LookupLocal(name) != nullptr) {
|
|
continue;
|
|
}
|
|
} else {
|
|
if (scope->IsDeclaredParameter(name)) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
bool var_created = false;
|
|
|
|
// Write in assignments to var for each block-scoped function declaration
|
|
auto delegates = static_cast<SloppyBlockFunctionStatement*>(p->value);
|
|
|
|
DeclarationScope* decl_scope = scope;
|
|
while (decl_scope->is_eval_scope()) {
|
|
decl_scope = decl_scope->outer_scope()->GetDeclarationScope();
|
|
}
|
|
Scope* outer_scope = decl_scope->outer_scope();
|
|
|
|
for (SloppyBlockFunctionStatement* delegate = delegates;
|
|
delegate != nullptr; delegate = delegate->next()) {
|
|
// Check if there's a conflict with a lexical declaration
|
|
Scope* query_scope = delegate->scope()->outer_scope();
|
|
Variable* var = nullptr;
|
|
bool should_hoist = true;
|
|
|
|
// Note that we perform this loop for each delegate named 'name',
|
|
// which may duplicate work if those delegates share scopes.
|
|
// It is not sufficient to just do a Lookup on query_scope: for
|
|
// example, that does not prevent hoisting of the function in
|
|
// `{ let e; try {} catch (e) { function e(){} } }`
|
|
do {
|
|
var = query_scope->LookupLocal(name);
|
|
if (var != nullptr && IsLexicalVariableMode(var->mode())) {
|
|
should_hoist = false;
|
|
break;
|
|
}
|
|
query_scope = query_scope->outer_scope();
|
|
} while (query_scope != outer_scope);
|
|
|
|
if (!should_hoist) continue;
|
|
|
|
// Declare a var-style binding for the function in the outer scope
|
|
if (!var_created) {
|
|
var_created = true;
|
|
VariableProxy* proxy = scope->NewUnresolved(factory(), name);
|
|
Declaration* declaration =
|
|
factory()->NewVariableDeclaration(proxy, scope, kNoSourcePosition);
|
|
Declare(declaration, DeclarationDescriptor::NORMAL, VAR,
|
|
DefaultInitializationFlag(VAR), ok, scope);
|
|
DCHECK(ok); // Based on the preceding check, this should not fail
|
|
if (!ok) return;
|
|
}
|
|
|
|
// Read from the local lexical scope and write to the function scope
|
|
VariableProxy* to = scope->NewUnresolved(factory(), name);
|
|
VariableProxy* from = delegate->scope()->NewUnresolved(factory(), name);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, to, from, kNoSourcePosition);
|
|
Statement* statement =
|
|
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
|
|
delegate->set_statement(statement);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Parser support
|
|
|
|
bool Parser::TargetStackContainsLabel(const AstRawString* label) {
|
|
for (Target* t = target_stack_; t != NULL; t = t->previous()) {
|
|
if (ContainsLabel(t->statement()->labels(), label)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
BreakableStatement* Parser::LookupBreakTarget(const AstRawString* label,
|
|
bool* ok) {
|
|
bool anonymous = label == NULL;
|
|
for (Target* t = target_stack_; t != NULL; t = t->previous()) {
|
|
BreakableStatement* stat = t->statement();
|
|
if ((anonymous && stat->is_target_for_anonymous()) ||
|
|
(!anonymous && ContainsLabel(stat->labels(), label))) {
|
|
return stat;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
IterationStatement* Parser::LookupContinueTarget(const AstRawString* label,
|
|
bool* ok) {
|
|
bool anonymous = label == NULL;
|
|
for (Target* t = target_stack_; t != NULL; t = t->previous()) {
|
|
IterationStatement* stat = t->statement()->AsIterationStatement();
|
|
if (stat == NULL) continue;
|
|
|
|
DCHECK(stat->is_target_for_anonymous());
|
|
if (anonymous || ContainsLabel(stat->labels(), label)) {
|
|
return stat;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Parser::HandleSourceURLComments(Isolate* isolate, Handle<Script> script) {
|
|
Handle<String> source_url = scanner_.SourceUrl(isolate);
|
|
if (!source_url.is_null()) {
|
|
script->set_source_url(*source_url);
|
|
}
|
|
Handle<String> source_mapping_url = scanner_.SourceMappingUrl(isolate);
|
|
if (!source_mapping_url.is_null()) {
|
|
script->set_source_mapping_url(*source_mapping_url);
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::Internalize(Isolate* isolate, Handle<Script> script, bool error) {
|
|
// Internalize strings.
|
|
ast_value_factory()->Internalize(isolate);
|
|
|
|
// Error processing.
|
|
if (error) {
|
|
if (stack_overflow()) {
|
|
isolate->StackOverflow();
|
|
} else {
|
|
DCHECK(pending_error_handler_.has_pending_error());
|
|
pending_error_handler_.ThrowPendingError(isolate, script);
|
|
}
|
|
}
|
|
|
|
// Move statistics to Isolate.
|
|
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
|
|
++feature) {
|
|
if (use_counts_[feature] > 0) {
|
|
isolate->CountUsage(v8::Isolate::UseCounterFeature(feature));
|
|
}
|
|
}
|
|
if (scanner_.FoundHtmlComment()) {
|
|
isolate->CountUsage(v8::Isolate::kHtmlComment);
|
|
if (script->line_offset() == 0 && script->column_offset() == 0) {
|
|
isolate->CountUsage(v8::Isolate::kHtmlCommentInExternalScript);
|
|
}
|
|
}
|
|
isolate->counters()->total_preparse_skipped()->Increment(
|
|
total_preparse_skipped_);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// The Parser interface.
|
|
|
|
|
|
bool Parser::ParseStatic(ParseInfo* info) {
|
|
Parser parser(info);
|
|
if (parser.Parse(info)) {
|
|
info->set_language_mode(info->literal()->language_mode());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Parser::Parse(ParseInfo* info) {
|
|
DCHECK(info->literal() == NULL);
|
|
FunctionLiteral* result = NULL;
|
|
// Ok to use Isolate here; this function is only called in the main thread.
|
|
DCHECK(parsing_on_main_thread_);
|
|
Isolate* isolate = info->isolate();
|
|
pre_parse_timer_ = isolate->counters()->pre_parse();
|
|
if (FLAG_trace_parse || allow_natives() || extension_ != NULL) {
|
|
// If intrinsics are allowed, the Parser cannot operate independent of the
|
|
// V8 heap because of Runtime. Tell the string table to internalize strings
|
|
// and values right after they're created.
|
|
ast_value_factory()->Internalize(isolate);
|
|
}
|
|
|
|
if (info->is_lazy()) {
|
|
DCHECK(!info->is_eval());
|
|
if (info->shared_info()->is_function()) {
|
|
result = ParseLazy(isolate, info);
|
|
} else {
|
|
result = ParseProgram(isolate, info);
|
|
}
|
|
} else {
|
|
SetCachedData(info);
|
|
result = ParseProgram(isolate, info);
|
|
}
|
|
info->set_literal(result);
|
|
|
|
Internalize(isolate, info->script(), result == NULL);
|
|
DCHECK(ast_value_factory()->IsInternalized());
|
|
return (result != NULL);
|
|
}
|
|
|
|
|
|
void Parser::ParseOnBackground(ParseInfo* info) {
|
|
parsing_on_main_thread_ = false;
|
|
|
|
DCHECK(info->literal() == NULL);
|
|
FunctionLiteral* result = NULL;
|
|
|
|
CompleteParserRecorder recorder;
|
|
if (produce_cached_parse_data()) log_ = &recorder;
|
|
|
|
std::unique_ptr<Utf16CharacterStream> stream;
|
|
Utf16CharacterStream* stream_ptr;
|
|
if (info->character_stream()) {
|
|
DCHECK(info->source_stream() == nullptr);
|
|
stream_ptr = info->character_stream();
|
|
} else {
|
|
DCHECK(info->character_stream() == nullptr);
|
|
stream.reset(new ExternalStreamingStream(info->source_stream(),
|
|
info->source_stream_encoding()));
|
|
stream_ptr = stream.get();
|
|
}
|
|
DCHECK(info->context().is_null() || info->context()->IsNativeContext());
|
|
|
|
DCHECK(original_scope_);
|
|
|
|
// When streaming, we don't know the length of the source until we have parsed
|
|
// it. The raw data can be UTF-8, so we wouldn't know the source length until
|
|
// we have decoded it anyway even if we knew the raw data length (which we
|
|
// don't). We work around this by storing all the scopes which need their end
|
|
// position set at the end of the script (the top scope and possible eval
|
|
// scopes) and set their end position after we know the script length.
|
|
if (info->is_lazy()) {
|
|
result = DoParseLazy(info, info->function_name(), stream_ptr);
|
|
} else {
|
|
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
|
|
scanner_.Initialize(stream_ptr);
|
|
result = DoParseProgram(info);
|
|
}
|
|
|
|
info->set_literal(result);
|
|
|
|
// We cannot internalize on a background thread; a foreground task will take
|
|
// care of calling Parser::Internalize just before compilation.
|
|
|
|
if (produce_cached_parse_data()) {
|
|
if (result != NULL) *info->cached_data() = recorder.GetScriptData();
|
|
log_ = NULL;
|
|
}
|
|
}
|
|
|
|
Parser::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) {
|
|
return new (zone()) TemplateLiteral(zone(), pos);
|
|
}
|
|
|
|
|
|
void Parser::AddTemplateSpan(TemplateLiteralState* state, bool tail) {
|
|
int pos = scanner()->location().beg_pos;
|
|
int end = scanner()->location().end_pos - (tail ? 1 : 2);
|
|
const AstRawString* tv = scanner()->CurrentSymbol(ast_value_factory());
|
|
const AstRawString* trv = scanner()->CurrentRawSymbol(ast_value_factory());
|
|
Literal* cooked = factory()->NewStringLiteral(tv, pos);
|
|
Literal* raw = factory()->NewStringLiteral(trv, pos);
|
|
(*state)->AddTemplateSpan(cooked, raw, end, zone());
|
|
}
|
|
|
|
|
|
void Parser::AddTemplateExpression(TemplateLiteralState* state,
|
|
Expression* expression) {
|
|
(*state)->AddExpression(expression, zone());
|
|
}
|
|
|
|
|
|
Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start,
|
|
Expression* tag) {
|
|
TemplateLiteral* lit = *state;
|
|
int pos = lit->position();
|
|
const ZoneList<Expression*>* cooked_strings = lit->cooked();
|
|
const ZoneList<Expression*>* raw_strings = lit->raw();
|
|
const ZoneList<Expression*>* expressions = lit->expressions();
|
|
DCHECK_EQ(cooked_strings->length(), raw_strings->length());
|
|
DCHECK_EQ(cooked_strings->length(), expressions->length() + 1);
|
|
|
|
if (!tag) {
|
|
// Build tree of BinaryOps to simplify code-generation
|
|
Expression* expr = cooked_strings->at(0);
|
|
int i = 0;
|
|
while (i < expressions->length()) {
|
|
Expression* sub = expressions->at(i++);
|
|
Expression* cooked_str = cooked_strings->at(i);
|
|
|
|
// Let middle be ToString(sub).
|
|
ZoneList<Expression*>* args =
|
|
new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(sub, zone());
|
|
Expression* middle = factory()->NewCallRuntime(Runtime::kInlineToString,
|
|
args, sub->position());
|
|
|
|
expr = factory()->NewBinaryOperation(
|
|
Token::ADD, factory()->NewBinaryOperation(
|
|
Token::ADD, expr, middle, expr->position()),
|
|
cooked_str, sub->position());
|
|
}
|
|
return expr;
|
|
} else {
|
|
uint32_t hash = ComputeTemplateLiteralHash(lit);
|
|
|
|
int cooked_idx = function_state_->NextMaterializedLiteralIndex();
|
|
int raw_idx = function_state_->NextMaterializedLiteralIndex();
|
|
|
|
// $getTemplateCallSite
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(4, zone());
|
|
args->Add(factory()->NewArrayLiteral(
|
|
const_cast<ZoneList<Expression*>*>(cooked_strings),
|
|
cooked_idx, pos),
|
|
zone());
|
|
args->Add(
|
|
factory()->NewArrayLiteral(
|
|
const_cast<ZoneList<Expression*>*>(raw_strings), raw_idx, pos),
|
|
zone());
|
|
|
|
// Ensure hash is suitable as a Smi value
|
|
Smi* hash_obj = Smi::cast(Internals::IntToSmi(static_cast<int>(hash)));
|
|
args->Add(factory()->NewSmiLiteral(hash_obj->value(), pos), zone());
|
|
|
|
Expression* call_site = factory()->NewCallRuntime(
|
|
Context::GET_TEMPLATE_CALL_SITE_INDEX, args, start);
|
|
|
|
// Call TagFn
|
|
ZoneList<Expression*>* call_args =
|
|
new (zone()) ZoneList<Expression*>(expressions->length() + 1, zone());
|
|
call_args->Add(call_site, zone());
|
|
call_args->AddAll(*expressions, zone());
|
|
return factory()->NewCall(tag, call_args, pos);
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t Parser::ComputeTemplateLiteralHash(const TemplateLiteral* lit) {
|
|
const ZoneList<Expression*>* raw_strings = lit->raw();
|
|
int total = raw_strings->length();
|
|
DCHECK(total);
|
|
|
|
uint32_t running_hash = 0;
|
|
|
|
for (int index = 0; index < total; ++index) {
|
|
if (index) {
|
|
running_hash = StringHasher::ComputeRunningHashOneByte(
|
|
running_hash, "${}", 3);
|
|
}
|
|
|
|
const AstRawString* raw_string =
|
|
raw_strings->at(index)->AsLiteral()->raw_value()->AsString();
|
|
if (raw_string->is_one_byte()) {
|
|
const char* data = reinterpret_cast<const char*>(raw_string->raw_data());
|
|
running_hash = StringHasher::ComputeRunningHashOneByte(
|
|
running_hash, data, raw_string->length());
|
|
} else {
|
|
const uc16* data = reinterpret_cast<const uc16*>(raw_string->raw_data());
|
|
running_hash = StringHasher::ComputeRunningHash(running_hash, data,
|
|
raw_string->length());
|
|
}
|
|
}
|
|
|
|
return running_hash;
|
|
}
|
|
|
|
|
|
ZoneList<v8::internal::Expression*>* Parser::PrepareSpreadArguments(
|
|
ZoneList<v8::internal::Expression*>* list) {
|
|
ZoneList<v8::internal::Expression*>* args =
|
|
new (zone()) ZoneList<v8::internal::Expression*>(1, zone());
|
|
if (list->length() == 1) {
|
|
// Spread-call with single spread argument produces an InternalArray
|
|
// containing the values from the array.
|
|
//
|
|
// Function is called or constructed with the produced array of arguments
|
|
//
|
|
// EG: Apply(Func, Spread(spread0))
|
|
ZoneList<Expression*>* spread_list =
|
|
new (zone()) ZoneList<Expression*>(0, zone());
|
|
spread_list->Add(list->at(0)->AsSpread()->expression(), zone());
|
|
args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX,
|
|
spread_list, kNoSourcePosition),
|
|
zone());
|
|
return args;
|
|
} else {
|
|
// Spread-call with multiple arguments produces array literals for each
|
|
// sequences of unspread arguments, and converts each spread iterable to
|
|
// an Internal array. Finally, all of these produced arrays are flattened
|
|
// into a single InternalArray, containing the arguments for the call.
|
|
//
|
|
// EG: Apply(Func, Flatten([unspread0, unspread1], Spread(spread0),
|
|
// Spread(spread1), [unspread2, unspread3]))
|
|
int i = 0;
|
|
int n = list->length();
|
|
while (i < n) {
|
|
if (!list->at(i)->IsSpread()) {
|
|
ZoneList<v8::internal::Expression*>* unspread =
|
|
new (zone()) ZoneList<v8::internal::Expression*>(1, zone());
|
|
|
|
// Push array of unspread parameters
|
|
while (i < n && !list->at(i)->IsSpread()) {
|
|
unspread->Add(list->at(i++), zone());
|
|
}
|
|
int literal_index = function_state_->NextMaterializedLiteralIndex();
|
|
args->Add(factory()->NewArrayLiteral(unspread, literal_index,
|
|
kNoSourcePosition),
|
|
zone());
|
|
|
|
if (i == n) break;
|
|
}
|
|
|
|
// Push eagerly spread argument
|
|
ZoneList<v8::internal::Expression*>* spread_list =
|
|
new (zone()) ZoneList<v8::internal::Expression*>(1, zone());
|
|
spread_list->Add(list->at(i++)->AsSpread()->expression(), zone());
|
|
args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX,
|
|
spread_list, kNoSourcePosition),
|
|
zone());
|
|
}
|
|
|
|
list = new (zone()) ZoneList<v8::internal::Expression*>(1, zone());
|
|
list->Add(factory()->NewCallRuntime(Context::SPREAD_ARGUMENTS_INDEX, args,
|
|
kNoSourcePosition),
|
|
zone());
|
|
return list;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
Expression* Parser::SpreadCall(Expression* function,
|
|
ZoneList<v8::internal::Expression*>* args,
|
|
int pos) {
|
|
if (function->IsSuperCallReference()) {
|
|
// Super calls
|
|
// $super_constructor = %_GetSuperConstructor(<this-function>)
|
|
// %reflect_construct($super_constructor, args, new.target)
|
|
ZoneList<Expression*>* tmp = new (zone()) ZoneList<Expression*>(1, zone());
|
|
tmp->Add(function->AsSuperCallReference()->this_function_var(), zone());
|
|
Expression* super_constructor = factory()->NewCallRuntime(
|
|
Runtime::kInlineGetSuperConstructor, tmp, pos);
|
|
args->InsertAt(0, super_constructor, zone());
|
|
args->Add(function->AsSuperCallReference()->new_target_var(), zone());
|
|
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args,
|
|
pos);
|
|
} else {
|
|
if (function->IsProperty()) {
|
|
// Method calls
|
|
if (function->AsProperty()->IsSuperAccess()) {
|
|
Expression* home = ThisExpression(kNoSourcePosition);
|
|
args->InsertAt(0, function, zone());
|
|
args->InsertAt(1, home, zone());
|
|
} else {
|
|
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
|
|
VariableProxy* obj = factory()->NewVariableProxy(temp);
|
|
Assignment* assign_obj = factory()->NewAssignment(
|
|
Token::ASSIGN, obj, function->AsProperty()->obj(),
|
|
kNoSourcePosition);
|
|
function = factory()->NewProperty(
|
|
assign_obj, function->AsProperty()->key(), kNoSourcePosition);
|
|
args->InsertAt(0, function, zone());
|
|
obj = factory()->NewVariableProxy(temp);
|
|
args->InsertAt(1, obj, zone());
|
|
}
|
|
} else {
|
|
// Non-method calls
|
|
args->InsertAt(0, function, zone());
|
|
args->InsertAt(1, factory()->NewUndefinedLiteral(kNoSourcePosition),
|
|
zone());
|
|
}
|
|
return factory()->NewCallRuntime(Context::REFLECT_APPLY_INDEX, args, pos);
|
|
}
|
|
}
|
|
|
|
|
|
Expression* Parser::SpreadCallNew(Expression* function,
|
|
ZoneList<v8::internal::Expression*>* args,
|
|
int pos) {
|
|
args->InsertAt(0, function, zone());
|
|
|
|
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos);
|
|
}
|
|
|
|
|
|
void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) {
|
|
v8::Isolate::UseCounterFeature feature;
|
|
if (is_sloppy(mode))
|
|
feature = v8::Isolate::kSloppyMode;
|
|
else if (is_strict(mode))
|
|
feature = v8::Isolate::kStrictMode;
|
|
else
|
|
UNREACHABLE();
|
|
++use_counts_[feature];
|
|
scope->SetLanguageMode(mode);
|
|
}
|
|
|
|
|
|
void Parser::RaiseLanguageMode(LanguageMode mode) {
|
|
LanguageMode old = scope()->language_mode();
|
|
SetLanguageMode(scope(), old > mode ? old : mode);
|
|
}
|
|
|
|
void Parser::MarkCollectedTailCallExpressions() {
|
|
const ZoneList<Expression*>& tail_call_expressions =
|
|
function_state_->tail_call_expressions().expressions();
|
|
for (int i = 0; i < tail_call_expressions.length(); ++i) {
|
|
Expression* expression = tail_call_expressions[i];
|
|
// If only FLAG_harmony_explicit_tailcalls is enabled then expression
|
|
// must be a Call expression.
|
|
DCHECK(FLAG_harmony_tailcalls || !FLAG_harmony_explicit_tailcalls ||
|
|
expression->IsCall());
|
|
MarkTailPosition(expression);
|
|
}
|
|
}
|
|
|
|
Expression* ParserBaseTraits<Parser>::ExpressionListToExpression(
|
|
ZoneList<Expression*>* args) {
|
|
AstNodeFactory* factory = delegate()->factory();
|
|
Expression* expr = args->at(0);
|
|
for (int i = 1; i < args->length(); ++i) {
|
|
expr = factory->NewBinaryOperation(Token::COMMA, expr, args->at(i),
|
|
expr->position());
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
Expression* Parser::RewriteAwaitExpression(Expression* value, int await_pos) {
|
|
// yield %AsyncFunctionAwait(.generator_object, <operand>)
|
|
Variable* generator_object_variable =
|
|
delegate()->function_state_->generator_object_variable();
|
|
|
|
// If generator_object_variable is null,
|
|
if (!generator_object_variable) return value;
|
|
|
|
auto factory = delegate()->factory();
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
Variable* temp_var =
|
|
delegate()->NewTemporary(delegate()->ast_value_factory()->empty_string());
|
|
VariableProxy* temp_proxy = factory->NewVariableProxy(temp_var);
|
|
Block* do_block = factory->NewBlock(nullptr, 2, false, nopos);
|
|
|
|
// Wrap value evaluation to provide a break location.
|
|
Expression* value_assignment =
|
|
factory->NewAssignment(Token::ASSIGN, temp_proxy, value, nopos);
|
|
do_block->statements()->Add(
|
|
factory->NewExpressionStatement(value_assignment, value->position()),
|
|
zone());
|
|
|
|
ZoneList<Expression*>* async_function_await_args =
|
|
new (zone()) ZoneList<Expression*>(2, zone());
|
|
Expression* generator_object =
|
|
factory->NewVariableProxy(generator_object_variable);
|
|
async_function_await_args->Add(generator_object, zone());
|
|
async_function_await_args->Add(temp_proxy, zone());
|
|
Expression* async_function_await = delegate()->factory()->NewCallRuntime(
|
|
Context::ASYNC_FUNCTION_AWAIT_INDEX, async_function_await_args, nopos);
|
|
// Wrap await to provide a break location between value evaluation and yield.
|
|
Expression* await_assignment = factory->NewAssignment(
|
|
Token::ASSIGN, temp_proxy, async_function_await, nopos);
|
|
do_block->statements()->Add(
|
|
factory->NewExpressionStatement(await_assignment, await_pos), zone());
|
|
Expression* do_expr = factory->NewDoExpression(do_block, temp_var, nopos);
|
|
|
|
generator_object = factory->NewVariableProxy(generator_object_variable);
|
|
return factory->NewYield(generator_object, do_expr, nopos,
|
|
Yield::kOnExceptionRethrow);
|
|
}
|
|
|
|
ZoneList<Expression*>* ParserBaseTraits<Parser>::GetNonPatternList() const {
|
|
return delegate()->function_state_->non_patterns_to_rewrite();
|
|
}
|
|
|
|
ZoneList<typename ParserBaseTraits<Parser>::Type::ExpressionClassifier::Error>*
|
|
ParserBaseTraits<Parser>::GetReportedErrorList() const {
|
|
return delegate()->function_state_->GetReportedErrorList();
|
|
}
|
|
|
|
Zone* ParserBaseTraits<Parser>::zone() const { return delegate()->zone(); }
|
|
|
|
class NonPatternRewriter : public AstExpressionRewriter {
|
|
public:
|
|
NonPatternRewriter(uintptr_t stack_limit, Parser* parser)
|
|
: AstExpressionRewriter(stack_limit), parser_(parser) {}
|
|
~NonPatternRewriter() override {}
|
|
|
|
private:
|
|
bool RewriteExpression(Expression* expr) override {
|
|
if (expr->IsRewritableExpression()) return true;
|
|
// Rewrite only what could have been a pattern but is not.
|
|
if (expr->IsArrayLiteral()) {
|
|
// Spread rewriting in array literals.
|
|
ArrayLiteral* lit = expr->AsArrayLiteral();
|
|
VisitExpressions(lit->values());
|
|
replacement_ = parser_->RewriteSpreads(lit);
|
|
return false;
|
|
}
|
|
if (expr->IsObjectLiteral()) {
|
|
return true;
|
|
}
|
|
if (expr->IsBinaryOperation() &&
|
|
expr->AsBinaryOperation()->op() == Token::COMMA) {
|
|
return true;
|
|
}
|
|
// Everything else does not need rewriting.
|
|
return false;
|
|
}
|
|
|
|
void VisitObjectLiteralProperty(ObjectLiteralProperty* property) override {
|
|
if (property == nullptr) return;
|
|
// Do not rewrite (computed) key expressions
|
|
AST_REWRITE_PROPERTY(Expression, property, value);
|
|
}
|
|
|
|
Parser* parser_;
|
|
};
|
|
|
|
|
|
void Parser::RewriteNonPattern(ExpressionClassifier* classifier, bool* ok) {
|
|
ValidateExpression(classifier, CHECK_OK_VOID);
|
|
auto non_patterns_to_rewrite = function_state_->non_patterns_to_rewrite();
|
|
int begin = classifier->GetNonPatternBegin();
|
|
int end = non_patterns_to_rewrite->length();
|
|
if (begin < end) {
|
|
NonPatternRewriter rewriter(stack_limit_, this);
|
|
for (int i = begin; i < end; i++) {
|
|
DCHECK(non_patterns_to_rewrite->at(i)->IsRewritableExpression());
|
|
rewriter.Rewrite(non_patterns_to_rewrite->at(i));
|
|
}
|
|
non_patterns_to_rewrite->Rewind(begin);
|
|
}
|
|
}
|
|
|
|
|
|
void Parser::RewriteDestructuringAssignments() {
|
|
const auto& assignments =
|
|
function_state_->destructuring_assignments_to_rewrite();
|
|
for (int i = assignments.length() - 1; i >= 0; --i) {
|
|
// Rewrite list in reverse, so that nested assignment patterns are rewritten
|
|
// correctly.
|
|
const DestructuringAssignment& pair = assignments.at(i);
|
|
RewritableExpression* to_rewrite =
|
|
pair.assignment->AsRewritableExpression();
|
|
DCHECK_NOT_NULL(to_rewrite);
|
|
if (!to_rewrite->is_rewritten()) {
|
|
PatternRewriter::RewriteDestructuringAssignment(this, to_rewrite,
|
|
pair.scope);
|
|
}
|
|
}
|
|
}
|
|
|
|
Expression* Parser::RewriteExponentiation(Expression* left, Expression* right,
|
|
int pos) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(left, zone());
|
|
args->Add(right, zone());
|
|
return factory()->NewCallRuntime(Context::MATH_POW_INDEX, args, pos);
|
|
}
|
|
|
|
Expression* Parser::RewriteAssignExponentiation(Expression* left,
|
|
Expression* right, int pos) {
|
|
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
if (left->IsVariableProxy()) {
|
|
VariableProxy* lhs = left->AsVariableProxy();
|
|
|
|
Expression* result;
|
|
DCHECK_NOT_NULL(lhs->raw_name());
|
|
result = this->ExpressionFromIdentifier(lhs->raw_name(), lhs->position(),
|
|
lhs->end_position());
|
|
args->Add(left, zone());
|
|
args->Add(right, zone());
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Context::MATH_POW_INDEX, args, pos);
|
|
return factory()->NewAssignment(Token::ASSIGN, result, call, pos);
|
|
} else if (left->IsProperty()) {
|
|
Property* prop = left->AsProperty();
|
|
auto temp_obj = NewTemporary(ast_value_factory()->empty_string());
|
|
auto temp_key = NewTemporary(ast_value_factory()->empty_string());
|
|
Expression* assign_obj = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp_obj), prop->obj(),
|
|
kNoSourcePosition);
|
|
Expression* assign_key = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(temp_key), prop->key(),
|
|
kNoSourcePosition);
|
|
args->Add(factory()->NewProperty(factory()->NewVariableProxy(temp_obj),
|
|
factory()->NewVariableProxy(temp_key),
|
|
left->position()),
|
|
zone());
|
|
args->Add(right, zone());
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Context::MATH_POW_INDEX, args, pos);
|
|
Expression* target = factory()->NewProperty(
|
|
factory()->NewVariableProxy(temp_obj),
|
|
factory()->NewVariableProxy(temp_key), kNoSourcePosition);
|
|
Expression* assign =
|
|
factory()->NewAssignment(Token::ASSIGN, target, call, pos);
|
|
return factory()->NewBinaryOperation(
|
|
Token::COMMA, assign_obj,
|
|
factory()->NewBinaryOperation(Token::COMMA, assign_key, assign, pos),
|
|
pos);
|
|
}
|
|
UNREACHABLE();
|
|
return nullptr;
|
|
}
|
|
|
|
Expression* Parser::RewriteSpreads(ArrayLiteral* lit) {
|
|
// Array literals containing spreads are rewritten using do expressions, e.g.
|
|
// [1, 2, 3, ...x, 4, ...y, 5]
|
|
// is roughly rewritten as:
|
|
// do {
|
|
// $R = [1, 2, 3];
|
|
// for ($i of x) %AppendElement($R, $i);
|
|
// %AppendElement($R, 4);
|
|
// for ($j of y) %AppendElement($R, $j);
|
|
// %AppendElement($R, 5);
|
|
// $R
|
|
// }
|
|
// where $R, $i and $j are fresh temporary variables.
|
|
ZoneList<Expression*>::iterator s = lit->FirstSpread();
|
|
if (s == lit->EndValue()) return nullptr; // no spread, no rewriting...
|
|
Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
|
|
// NOTE: The value assigned to R is the whole original array literal,
|
|
// spreads included. This will be fixed before the rewritten AST is returned.
|
|
// $R = lit
|
|
Expression* init_result = factory()->NewAssignment(
|
|
Token::INIT, factory()->NewVariableProxy(result), lit, kNoSourcePosition);
|
|
Block* do_block = factory()->NewBlock(nullptr, 16, false, kNoSourcePosition);
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(init_result, kNoSourcePosition),
|
|
zone());
|
|
// Traverse the array literal starting from the first spread.
|
|
while (s != lit->EndValue()) {
|
|
Expression* value = *s++;
|
|
Spread* spread = value->AsSpread();
|
|
if (spread == nullptr) {
|
|
// If the element is not a spread, we're adding a single:
|
|
// %AppendElement($R, value)
|
|
ZoneList<Expression*>* append_element_args = NewExpressionList(2);
|
|
append_element_args->Add(factory()->NewVariableProxy(result), zone());
|
|
append_element_args->Add(value, zone());
|
|
do_block->statements()->Add(
|
|
factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kAppendElement,
|
|
append_element_args, kNoSourcePosition),
|
|
kNoSourcePosition),
|
|
zone());
|
|
} else {
|
|
// If it's a spread, we're adding a for/of loop iterating through it.
|
|
Variable* each = NewTemporary(ast_value_factory()->dot_for_string());
|
|
Expression* subject = spread->expression();
|
|
// %AppendElement($R, each)
|
|
Statement* append_body;
|
|
{
|
|
ZoneList<Expression*>* append_element_args = NewExpressionList(2);
|
|
append_element_args->Add(factory()->NewVariableProxy(result), zone());
|
|
append_element_args->Add(factory()->NewVariableProxy(each), zone());
|
|
append_body = factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kAppendElement,
|
|
append_element_args, kNoSourcePosition),
|
|
kNoSourcePosition);
|
|
}
|
|
// for (each of spread) %AppendElement($R, each)
|
|
ForEachStatement* loop = factory()->NewForEachStatement(
|
|
ForEachStatement::ITERATE, nullptr, kNoSourcePosition);
|
|
const bool finalize = false;
|
|
InitializeForOfStatement(loop->AsForOfStatement(),
|
|
factory()->NewVariableProxy(each), subject,
|
|
append_body, finalize);
|
|
do_block->statements()->Add(loop, zone());
|
|
}
|
|
}
|
|
// Now, rewind the original array literal to truncate everything from the
|
|
// first spread (included) until the end. This fixes $R's initialization.
|
|
lit->RewindSpreads();
|
|
return factory()->NewDoExpression(do_block, result, lit->position());
|
|
}
|
|
|
|
void Parser::QueueDestructuringAssignmentForRewriting(Expression* expr) {
|
|
DCHECK(expr->IsRewritableExpression());
|
|
function_state_->AddDestructuringAssignment(
|
|
DestructuringAssignment(expr, delegate()->scope()));
|
|
}
|
|
|
|
void Parser::QueueNonPatternForRewriting(Expression* expr, bool* ok) {
|
|
DCHECK(expr->IsRewritableExpression());
|
|
function_state_->AddNonPatternForRewriting(expr, ok);
|
|
}
|
|
|
|
void ParserBaseTraits<Parser>::SetFunctionNameFromPropertyName(
|
|
ObjectLiteralProperty* property, const AstRawString* name) {
|
|
Expression* value = property->value();
|
|
|
|
// Computed name setting must happen at runtime.
|
|
if (property->is_computed_name()) return;
|
|
|
|
// Getter and setter names are handled here because their names
|
|
// change in ES2015, even though they are not anonymous.
|
|
auto function = value->AsFunctionLiteral();
|
|
if (function != nullptr) {
|
|
bool is_getter = property->kind() == ObjectLiteralProperty::GETTER;
|
|
bool is_setter = property->kind() == ObjectLiteralProperty::SETTER;
|
|
if (is_getter || is_setter) {
|
|
DCHECK_NOT_NULL(name);
|
|
const AstRawString* prefix =
|
|
is_getter ? delegate()->ast_value_factory()->get_space_string()
|
|
: delegate()->ast_value_factory()->set_space_string();
|
|
function->set_raw_name(
|
|
delegate()->ast_value_factory()->NewConsString(prefix, name));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Ignore "__proto__" as a name when it's being used to set the [[Prototype]]
|
|
// of an object literal.
|
|
if (property->kind() == ObjectLiteralProperty::PROTOTYPE) return;
|
|
|
|
DCHECK(!value->IsAnonymousFunctionDefinition() ||
|
|
property->kind() == ObjectLiteralProperty::COMPUTED);
|
|
delegate()->SetFunctionName(value, name);
|
|
}
|
|
|
|
void ParserBaseTraits<Parser>::SetFunctionNameFromIdentifierRef(
|
|
Expression* value, Expression* identifier) {
|
|
if (!identifier->IsVariableProxy()) return;
|
|
delegate()->SetFunctionName(value, identifier->AsVariableProxy()->raw_name());
|
|
}
|
|
|
|
void Parser::SetFunctionName(Expression* value, const AstRawString* name) {
|
|
DCHECK_NOT_NULL(name);
|
|
if (!value->IsAnonymousFunctionDefinition()) return;
|
|
auto function = value->AsFunctionLiteral();
|
|
if (function != nullptr) {
|
|
function->set_raw_name(name);
|
|
} else {
|
|
DCHECK(value->IsDoExpression());
|
|
value->AsDoExpression()->represented_function()->set_raw_name(name);
|
|
}
|
|
}
|
|
|
|
|
|
// Desugaring of yield*
|
|
// ====================
|
|
//
|
|
// With the help of do-expressions and function.sent, we desugar yield* into a
|
|
// loop containing a "raw" yield (a yield that doesn't wrap an iterator result
|
|
// object around its argument). Concretely, "yield* iterable" turns into
|
|
// roughly the following code:
|
|
//
|
|
// do {
|
|
// const kNext = 0;
|
|
// const kReturn = 1;
|
|
// const kThrow = 2;
|
|
//
|
|
// let input = function.sent;
|
|
// let mode = kNext;
|
|
// let output = undefined;
|
|
//
|
|
// let iterator = iterable[Symbol.iterator]();
|
|
// if (!IS_RECEIVER(iterator)) throw MakeTypeError(kSymbolIteratorInvalid);
|
|
//
|
|
// while (true) {
|
|
// // From the generator to the iterator:
|
|
// // Forward input according to resume mode and obtain output.
|
|
// switch (mode) {
|
|
// case kNext:
|
|
// output = iterator.next(input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
// break;
|
|
// case kReturn:
|
|
// IteratorClose(iterator, input, output); // See below.
|
|
// break;
|
|
// case kThrow:
|
|
// let iteratorThrow = iterator.throw;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorThrow)) {
|
|
// IteratorClose(iterator); // See below.
|
|
// throw MakeTypeError(kThrowMethodMissing);
|
|
// }
|
|
// output = %_Call(iteratorThrow, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
// break;
|
|
// }
|
|
// if (output.done) break;
|
|
//
|
|
// // From the generator to its user:
|
|
// // Forward output, receive new input, and determine resume mode.
|
|
// mode = kReturn;
|
|
// try {
|
|
// try {
|
|
// RawYield(output); // See explanation above.
|
|
// mode = kNext;
|
|
// } catch (error) {
|
|
// mode = kThrow;
|
|
// }
|
|
// } finally {
|
|
// input = function.sent;
|
|
// continue;
|
|
// }
|
|
// }
|
|
//
|
|
// if (mode === kReturn) {
|
|
// return {value: output.value, done: true};
|
|
// }
|
|
// output.value
|
|
// }
|
|
//
|
|
// IteratorClose(iterator) expands to the following:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) {
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
// }
|
|
//
|
|
// IteratorClose(iterator, input, output) expands to the following:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn)) return input;
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
|
|
Expression* Parser::RewriteYieldStar(Expression* generator,
|
|
Expression* iterable, int pos) {
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// Forward definition for break/continue statements.
|
|
WhileStatement* loop = factory()->NewWhileStatement(nullptr, nopos);
|
|
|
|
// let input = undefined;
|
|
Variable* var_input = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* initialize_input;
|
|
{
|
|
Expression* input_proxy = factory()->NewVariableProxy(var_input);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, input_proxy,
|
|
factory()->NewUndefinedLiteral(nopos), nopos);
|
|
initialize_input = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// let mode = kNext;
|
|
Variable* var_mode = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* initialize_mode;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* knext =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kNext, nopos);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, mode_proxy, knext, nopos);
|
|
initialize_mode = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// let output = undefined;
|
|
Variable* var_output = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* initialize_output;
|
|
{
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy,
|
|
factory()->NewUndefinedLiteral(nopos), nopos);
|
|
initialize_output = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// let iterator = iterable[Symbol.iterator];
|
|
Variable* var_iterator = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* get_iterator;
|
|
{
|
|
Expression* iterator = GetIterator(iterable, nopos);
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(var_iterator);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, iterator_proxy, iterator, nopos);
|
|
get_iterator = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(iterator)) throw MakeTypeError(kSymbolIteratorInvalid);
|
|
Statement* validate_iterator;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_iterator), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
Expression* call =
|
|
NewThrowTypeError(MessageTemplate::kSymbolIteratorInvalid,
|
|
ast_value_factory()->empty_string(), nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_iterator = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
}
|
|
|
|
// output = iterator.next(input);
|
|
Statement* call_next;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(var_iterator);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->next_string(), nopos);
|
|
Expression* next_property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* input_proxy = factory()->NewVariableProxy(var_input);
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(input_proxy, zone());
|
|
Expression* call = factory()->NewCall(next_property, args, nopos);
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_next = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
Statement* validate_next_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_next_output = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
}
|
|
|
|
// let iteratorThrow = iterator.throw;
|
|
Variable* var_throw = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* get_throw;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(var_iterator);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->throw_string(), nopos);
|
|
Expression* property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* throw_proxy = factory()->NewVariableProxy(var_throw);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, throw_proxy, property, nopos);
|
|
get_throw = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorThrow) {
|
|
// IteratorClose(iterator);
|
|
// throw MakeTypeError(kThrowMethodMissing);
|
|
// }
|
|
Statement* check_throw;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ, factory()->NewVariableProxy(var_throw),
|
|
factory()->NewNullLiteral(nopos), nopos);
|
|
Expression* call =
|
|
NewThrowTypeError(MessageTemplate::kThrowMethodMissing,
|
|
ast_value_factory()->empty_string(), nopos);
|
|
Statement* throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
|
|
Block* then = factory()->NewBlock(nullptr, 4 + 1, false, nopos);
|
|
BuildIteratorCloseForCompletion(
|
|
then->statements(), var_iterator,
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos));
|
|
then->statements()->Add(throw_call, zone());
|
|
check_throw = factory()->NewIfStatement(
|
|
condition, then, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// output = %_Call(iteratorThrow, iterator, input);
|
|
Statement* call_throw;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(3, zone());
|
|
args->Add(factory()->NewVariableProxy(var_throw), zone());
|
|
args->Add(factory()->NewVariableProxy(var_iterator), zone());
|
|
args->Add(factory()->NewVariableProxy(var_input), zone());
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, factory()->NewVariableProxy(var_output), call, nopos);
|
|
call_throw = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
Statement* validate_throw_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_throw_output = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
}
|
|
|
|
// if (output.done) break;
|
|
Statement* if_done;
|
|
{
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->done_string(), nopos);
|
|
Expression* property = factory()->NewProperty(output_proxy, literal, nopos);
|
|
BreakStatement* break_loop = factory()->NewBreakStatement(loop, nopos);
|
|
if_done = factory()->NewIfStatement(
|
|
property, break_loop, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
|
|
// mode = kReturn;
|
|
Statement* set_mode_return;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* kreturn =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kReturn, nopos);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, mode_proxy, kreturn, nopos);
|
|
set_mode_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// Yield(output);
|
|
Statement* yield_output;
|
|
{
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Yield* yield = factory()->NewYield(generator, output_proxy, nopos,
|
|
Yield::kOnExceptionThrow);
|
|
yield_output = factory()->NewExpressionStatement(yield, nopos);
|
|
}
|
|
|
|
// mode = kNext;
|
|
Statement* set_mode_next;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* knext =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kNext, nopos);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, mode_proxy, knext, nopos);
|
|
set_mode_next = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// mode = kThrow;
|
|
Statement* set_mode_throw;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* kthrow =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kThrow, nopos);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, mode_proxy, kthrow, nopos);
|
|
set_mode_throw = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// input = function.sent;
|
|
Statement* get_input;
|
|
{
|
|
Expression* function_sent = FunctionSentExpression(nopos);
|
|
Expression* input_proxy = factory()->NewVariableProxy(var_input);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, input_proxy, function_sent, nopos);
|
|
get_input = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (mode === kReturn) {
|
|
// return {value: output.value, done: true};
|
|
// }
|
|
Statement* maybe_return_value;
|
|
{
|
|
Expression* mode_proxy = factory()->NewVariableProxy(var_mode);
|
|
Expression* kreturn =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kReturn, nopos);
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, mode_proxy, kreturn, nopos);
|
|
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->value_string(), nopos);
|
|
Expression* property = factory()->NewProperty(output_proxy, literal, nopos);
|
|
Statement* return_value = factory()->NewReturnStatement(
|
|
BuildIteratorResult(property, true), nopos);
|
|
|
|
maybe_return_value = factory()->NewIfStatement(
|
|
condition, return_value, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// output.value
|
|
Statement* get_value;
|
|
{
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* literal =
|
|
factory()->NewStringLiteral(ast_value_factory()->value_string(), nopos);
|
|
Expression* property = factory()->NewProperty(output_proxy, literal, nopos);
|
|
get_value = factory()->NewExpressionStatement(property, nopos);
|
|
}
|
|
|
|
// Now put things together.
|
|
|
|
// try { ... } catch(e) { ... }
|
|
Statement* try_catch;
|
|
{
|
|
Block* try_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
try_block->statements()->Add(yield_output, zone());
|
|
try_block->statements()->Add(set_mode_next, zone());
|
|
|
|
Block* catch_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
catch_block->statements()->Add(set_mode_throw, zone());
|
|
|
|
Scope* catch_scope = NewScope(CATCH_SCOPE);
|
|
catch_scope->set_is_hidden();
|
|
const AstRawString* name = ast_value_factory()->dot_catch_string();
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(name, VAR, kCreatedInitialized,
|
|
Variable::NORMAL);
|
|
|
|
try_catch = factory()->NewTryCatchStatementForDesugaring(
|
|
try_block, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
// try { ... } finally { ... }
|
|
Statement* try_finally;
|
|
{
|
|
Block* try_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(try_catch, zone());
|
|
|
|
Block* finally = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
finally->statements()->Add(get_input, zone());
|
|
finally->statements()->Add(factory()->NewContinueStatement(loop, nopos),
|
|
zone());
|
|
|
|
try_finally = factory()->NewTryFinallyStatement(try_block, finally, nopos);
|
|
}
|
|
|
|
// switch (mode) { ... }
|
|
SwitchStatement* switch_mode = factory()->NewSwitchStatement(nullptr, nopos);
|
|
{
|
|
auto case_next = new (zone()) ZoneList<Statement*>(3, zone());
|
|
case_next->Add(call_next, zone());
|
|
case_next->Add(validate_next_output, zone());
|
|
case_next->Add(factory()->NewBreakStatement(switch_mode, nopos), zone());
|
|
|
|
auto case_return = new (zone()) ZoneList<Statement*>(5, zone());
|
|
BuildIteratorClose(case_return, var_iterator, var_input, var_output);
|
|
case_return->Add(factory()->NewBreakStatement(switch_mode, nopos), zone());
|
|
|
|
auto case_throw = new (zone()) ZoneList<Statement*>(5, zone());
|
|
case_throw->Add(get_throw, zone());
|
|
case_throw->Add(check_throw, zone());
|
|
case_throw->Add(call_throw, zone());
|
|
case_throw->Add(validate_throw_output, zone());
|
|
case_throw->Add(factory()->NewBreakStatement(switch_mode, nopos), zone());
|
|
|
|
auto cases = new (zone()) ZoneList<CaseClause*>(3, zone());
|
|
Expression* knext =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kNext, nopos);
|
|
Expression* kreturn =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kReturn, nopos);
|
|
Expression* kthrow =
|
|
factory()->NewSmiLiteral(JSGeneratorObject::kThrow, nopos);
|
|
cases->Add(factory()->NewCaseClause(knext, case_next, nopos), zone());
|
|
cases->Add(factory()->NewCaseClause(kreturn, case_return, nopos), zone());
|
|
cases->Add(factory()->NewCaseClause(kthrow, case_throw, nopos), zone());
|
|
|
|
switch_mode->Initialize(factory()->NewVariableProxy(var_mode), cases);
|
|
}
|
|
|
|
// while (true) { ... }
|
|
// Already defined earlier: WhileStatement* loop = ...
|
|
{
|
|
Block* loop_body = factory()->NewBlock(nullptr, 4, false, nopos);
|
|
loop_body->statements()->Add(switch_mode, zone());
|
|
loop_body->statements()->Add(if_done, zone());
|
|
loop_body->statements()->Add(set_mode_return, zone());
|
|
loop_body->statements()->Add(try_finally, zone());
|
|
|
|
loop->Initialize(factory()->NewBooleanLiteral(true, nopos), loop_body);
|
|
}
|
|
|
|
// do { ... }
|
|
DoExpression* yield_star;
|
|
{
|
|
// The rewriter needs to process the get_value statement only, hence we
|
|
// put the preceding statements into an init block.
|
|
|
|
Block* do_block_ = factory()->NewBlock(nullptr, 7, true, nopos);
|
|
do_block_->statements()->Add(initialize_input, zone());
|
|
do_block_->statements()->Add(initialize_mode, zone());
|
|
do_block_->statements()->Add(initialize_output, zone());
|
|
do_block_->statements()->Add(get_iterator, zone());
|
|
do_block_->statements()->Add(validate_iterator, zone());
|
|
do_block_->statements()->Add(loop, zone());
|
|
do_block_->statements()->Add(maybe_return_value, zone());
|
|
|
|
Block* do_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
do_block->statements()->Add(do_block_, zone());
|
|
do_block->statements()->Add(get_value, zone());
|
|
|
|
Variable* dot_result =
|
|
NewTemporary(ast_value_factory()->dot_result_string());
|
|
yield_star = factory()->NewDoExpression(do_block, dot_result, nopos);
|
|
Rewriter::Rewrite(this, GetClosureScope(), yield_star, ast_value_factory());
|
|
}
|
|
|
|
return yield_star;
|
|
}
|
|
|
|
Statement* Parser::CheckCallable(Variable* var, Expression* error, int pos) {
|
|
const int nopos = kNoSourcePosition;
|
|
Statement* validate_var;
|
|
{
|
|
Expression* type_of = factory()->NewUnaryOperation(
|
|
Token::TYPEOF, factory()->NewVariableProxy(var), nopos);
|
|
Expression* function_literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->function_string(), nopos);
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, type_of, function_literal, nopos);
|
|
|
|
Statement* throw_call = factory()->NewExpressionStatement(error, pos);
|
|
|
|
validate_var = factory()->NewIfStatement(
|
|
condition, factory()->NewEmptyStatement(nopos), throw_call, nopos);
|
|
}
|
|
return validate_var;
|
|
}
|
|
|
|
void Parser::BuildIteratorClose(ZoneList<Statement*>* statements,
|
|
Variable* iterator, Variable* input,
|
|
Variable* var_output) {
|
|
//
|
|
// This function adds four statements to [statements], corresponding to the
|
|
// following code:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
|
|
// return {value: input, done: true};
|
|
// }
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// let iteratorReturn = iterator.return;
|
|
Variable* var_return = var_output; // Reusing the output variable.
|
|
Statement* get_return;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
Expression* literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->return_string(), nopos);
|
|
Expression* property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* return_proxy = factory()->NewVariableProxy(var_return);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
|
|
get_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
|
|
// return {value: input, done: true};
|
|
// }
|
|
Statement* check_return;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ, factory()->NewVariableProxy(var_return),
|
|
factory()->NewNullLiteral(nopos), nopos);
|
|
|
|
Expression* value = factory()->NewVariableProxy(input);
|
|
|
|
Statement* return_input =
|
|
factory()->NewReturnStatement(BuildIteratorResult(value, true), nopos);
|
|
|
|
check_return = factory()->NewIfStatement(
|
|
condition, return_input, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// output = %_Call(iteratorReturn, iterator, input);
|
|
Statement* call_return;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(3, zone());
|
|
args->Add(factory()->NewVariableProxy(var_return), zone());
|
|
args->Add(factory()->NewVariableProxy(iterator), zone());
|
|
args->Add(factory()->NewVariableProxy(input), zone());
|
|
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_RECEIVER(output)) %ThrowIteratorResultNotAnObject(output);
|
|
Statement* validate_output;
|
|
{
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
validate_output = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
}
|
|
|
|
statements->Add(get_return, zone());
|
|
statements->Add(check_return, zone());
|
|
statements->Add(call_return, zone());
|
|
statements->Add(validate_output, zone());
|
|
}
|
|
|
|
void Parser::FinalizeIteratorUse(Variable* completion, Expression* condition,
|
|
Variable* iter, Block* iterator_use,
|
|
Block* target) {
|
|
//
|
|
// This function adds two statements to [target], corresponding to the
|
|
// following code:
|
|
//
|
|
// completion = kNormalCompletion;
|
|
// try {
|
|
// try {
|
|
// iterator_use
|
|
// } catch(e) {
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
// %ReThrow(e);
|
|
// }
|
|
// } finally {
|
|
// if (condition) {
|
|
// #BuildIteratorCloseForCompletion(iter, completion)
|
|
// }
|
|
// }
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// completion = kNormalCompletion;
|
|
Statement* initialize_completion;
|
|
{
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
initialize_completion =
|
|
factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
Statement* set_completion_throw;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(completion),
|
|
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
|
|
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
Expression* assignment = factory()->NewAssignment(
|
|
Token::ASSIGN, proxy,
|
|
factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
|
|
Statement* statement = factory()->NewExpressionStatement(assignment, nopos);
|
|
set_completion_throw = factory()->NewIfStatement(
|
|
condition, statement, factory()->NewEmptyStatement(nopos), nopos);
|
|
}
|
|
|
|
// if (condition) {
|
|
// #BuildIteratorCloseForCompletion(iter, completion)
|
|
// }
|
|
Block* maybe_close;
|
|
{
|
|
Block* block = factory()->NewBlock(nullptr, 2, true, nopos);
|
|
Expression* proxy = factory()->NewVariableProxy(completion);
|
|
BuildIteratorCloseForCompletion(block->statements(), iter, proxy);
|
|
DCHECK(block->statements()->length() == 2);
|
|
|
|
maybe_close = factory()->NewBlock(nullptr, 1, true, nopos);
|
|
maybe_close->statements()->Add(
|
|
factory()->NewIfStatement(condition, block,
|
|
factory()->NewEmptyStatement(nopos), nopos),
|
|
zone());
|
|
}
|
|
|
|
// try { #try_block }
|
|
// catch(e) {
|
|
// #set_completion_throw;
|
|
// %ReThrow(e);
|
|
// }
|
|
Statement* try_catch;
|
|
{
|
|
Scope* catch_scope = NewScopeWithParent(scope(), CATCH_SCOPE);
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(), VAR,
|
|
kCreatedInitialized, Variable::NORMAL);
|
|
catch_scope->set_is_hidden();
|
|
|
|
Statement* rethrow;
|
|
// We use %ReThrow rather than the ordinary throw because we want to
|
|
// preserve the original exception message. This is also why we create a
|
|
// TryCatchStatementForReThrow below (which does not clear the pending
|
|
// message), rather than a TryCatchStatement.
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(catch_variable), zone());
|
|
rethrow = factory()->NewExpressionStatement(
|
|
factory()->NewCallRuntime(Runtime::kReThrow, args, nopos), nopos);
|
|
}
|
|
|
|
Block* catch_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
catch_block->statements()->Add(set_completion_throw, zone());
|
|
catch_block->statements()->Add(rethrow, zone());
|
|
|
|
try_catch = factory()->NewTryCatchStatementForReThrow(
|
|
iterator_use, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
// try { #try_catch } finally { #maybe_close }
|
|
Statement* try_finally;
|
|
{
|
|
Block* try_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(try_catch, zone());
|
|
|
|
try_finally =
|
|
factory()->NewTryFinallyStatement(try_block, maybe_close, nopos);
|
|
}
|
|
|
|
target->statements()->Add(initialize_completion, zone());
|
|
target->statements()->Add(try_finally, zone());
|
|
}
|
|
|
|
void Parser::BuildIteratorCloseForCompletion(ZoneList<Statement*>* statements,
|
|
Variable* iterator,
|
|
Expression* completion) {
|
|
//
|
|
// This function adds two statements to [statements], corresponding to the
|
|
// following code:
|
|
//
|
|
// let iteratorReturn = iterator.return;
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) {
|
|
// if (completion === kThrowCompletion) {
|
|
// if (!IS_CALLABLE(iteratorReturn)) {
|
|
// throw MakeTypeError(kReturnMethodNotCallable);
|
|
// }
|
|
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
|
|
// } else {
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) {
|
|
// %ThrowIterResultNotAnObject(output);
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
// let iteratorReturn = iterator.return;
|
|
Variable* var_return = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* get_return;
|
|
{
|
|
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
|
|
Expression* literal = factory()->NewStringLiteral(
|
|
ast_value_factory()->return_string(), nopos);
|
|
Expression* property =
|
|
factory()->NewProperty(iterator_proxy, literal, nopos);
|
|
Expression* return_proxy = factory()->NewVariableProxy(var_return);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
|
|
get_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
// if (!IS_CALLABLE(iteratorReturn)) {
|
|
// throw MakeTypeError(kReturnMethodNotCallable);
|
|
// }
|
|
Statement* check_return_callable;
|
|
{
|
|
Expression* throw_expr =
|
|
NewThrowTypeError(MessageTemplate::kReturnMethodNotCallable,
|
|
ast_value_factory()->empty_string(), nopos);
|
|
check_return_callable = CheckCallable(var_return, throw_expr, nopos);
|
|
}
|
|
|
|
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
|
|
Statement* try_call_return;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewVariableProxy(var_return), zone());
|
|
args->Add(factory()->NewVariableProxy(iterator), zone());
|
|
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
|
|
Block* try_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(factory()->NewExpressionStatement(call, nopos),
|
|
zone());
|
|
|
|
Block* catch_block = factory()->NewBlock(nullptr, 0, false, nopos);
|
|
|
|
Scope* catch_scope = NewScope(CATCH_SCOPE);
|
|
Variable* catch_variable =
|
|
catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(), VAR,
|
|
kCreatedInitialized, Variable::NORMAL);
|
|
catch_scope->set_is_hidden();
|
|
|
|
try_call_return = factory()->NewTryCatchStatement(
|
|
try_block, catch_scope, catch_variable, catch_block, nopos);
|
|
}
|
|
|
|
// let output = %_Call(iteratorReturn, iterator);
|
|
// if (!IS_RECEIVER(output)) {
|
|
// %ThrowIteratorResultNotAnObject(output);
|
|
// }
|
|
Block* validate_return;
|
|
{
|
|
Variable* var_output = NewTemporary(ast_value_factory()->empty_string());
|
|
Statement* call_return;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(2, zone());
|
|
args->Add(factory()->NewVariableProxy(var_return), zone());
|
|
args->Add(factory()->NewVariableProxy(iterator), zone());
|
|
Expression* call =
|
|
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
|
|
|
|
Expression* output_proxy = factory()->NewVariableProxy(var_output);
|
|
Expression* assignment =
|
|
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
|
|
call_return = factory()->NewExpressionStatement(assignment, nopos);
|
|
}
|
|
|
|
Expression* is_receiver_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
is_receiver_call =
|
|
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
|
|
}
|
|
|
|
Statement* throw_call;
|
|
{
|
|
auto args = new (zone()) ZoneList<Expression*>(1, zone());
|
|
args->Add(factory()->NewVariableProxy(var_output), zone());
|
|
Expression* call = factory()->NewCallRuntime(
|
|
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
|
|
throw_call = factory()->NewExpressionStatement(call, nopos);
|
|
}
|
|
|
|
Statement* check_return = factory()->NewIfStatement(
|
|
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
|
|
nopos);
|
|
|
|
validate_return = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
validate_return->statements()->Add(call_return, zone());
|
|
validate_return->statements()->Add(check_return, zone());
|
|
}
|
|
|
|
// if (completion === kThrowCompletion) {
|
|
// #check_return_callable;
|
|
// #try_call_return;
|
|
// } else {
|
|
// #validate_return;
|
|
// }
|
|
Statement* call_return_carefully;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, completion,
|
|
factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
|
|
|
|
Block* then_block = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
then_block->statements()->Add(check_return_callable, zone());
|
|
then_block->statements()->Add(try_call_return, zone());
|
|
|
|
call_return_carefully = factory()->NewIfStatement(condition, then_block,
|
|
validate_return, nopos);
|
|
}
|
|
|
|
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) { ... }
|
|
Statement* maybe_call_return;
|
|
{
|
|
Expression* condition = factory()->NewCompareOperation(
|
|
Token::EQ, factory()->NewVariableProxy(var_return),
|
|
factory()->NewNullLiteral(nopos), nopos);
|
|
|
|
maybe_call_return = factory()->NewIfStatement(
|
|
condition, factory()->NewEmptyStatement(nopos), call_return_carefully,
|
|
nopos);
|
|
}
|
|
|
|
statements->Add(get_return, zone());
|
|
statements->Add(maybe_call_return, zone());
|
|
}
|
|
|
|
Statement* Parser::FinalizeForOfStatement(ForOfStatement* loop,
|
|
Variable* var_completion, int pos) {
|
|
//
|
|
// This function replaces the loop with the following wrapping:
|
|
//
|
|
// completion = kNormalCompletion;
|
|
// try {
|
|
// try {
|
|
// #loop;
|
|
// } catch(e) {
|
|
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
|
|
// %ReThrow(e);
|
|
// }
|
|
// } finally {
|
|
// if (!(completion === kNormalCompletion || IS_UNDEFINED(#iterator))) {
|
|
// #BuildIteratorCloseForCompletion(#iterator, completion)
|
|
// }
|
|
// }
|
|
//
|
|
// Note that the loop's body and its assign_each already contain appropriate
|
|
// assignments to completion (see InitializeForOfStatement).
|
|
//
|
|
|
|
const int nopos = kNoSourcePosition;
|
|
|
|
// !(completion === kNormalCompletion || IS_UNDEFINED(#iterator))
|
|
Expression* closing_condition;
|
|
{
|
|
Expression* lhs = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(var_completion),
|
|
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
|
|
Expression* rhs = factory()->NewCompareOperation(
|
|
Token::EQ_STRICT, factory()->NewVariableProxy(loop->iterator()),
|
|
factory()->NewUndefinedLiteral(nopos), nopos);
|
|
closing_condition = factory()->NewUnaryOperation(
|
|
Token::NOT, factory()->NewBinaryOperation(Token::OR, lhs, rhs, nopos),
|
|
nopos);
|
|
}
|
|
|
|
Block* final_loop = factory()->NewBlock(nullptr, 2, false, nopos);
|
|
{
|
|
Block* try_block = factory()->NewBlock(nullptr, 1, false, nopos);
|
|
try_block->statements()->Add(loop, zone());
|
|
|
|
FinalizeIteratorUse(var_completion, closing_condition, loop->iterator(),
|
|
try_block, final_loop);
|
|
}
|
|
|
|
return final_loop;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void Parser::Print(AstNode* node) {
|
|
ast_value_factory()->Internalize(Isolate::Current());
|
|
node->Print(Isolate::Current());
|
|
}
|
|
#endif // DEBUG
|
|
|
|
#undef CHECK_OK
|
|
#undef CHECK_OK_VOID
|
|
#undef CHECK_FAILED
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|