v8/src/ast.h
mikhail.naganov@gmail.com 3c2a7bdf21 Add name inference for anonymous functions to facilitate debugging and profiling of JS code.
Currently function name inference is wired with AST optimization pass to avoid introducing another pass over AST. A better solution would be to rewrite AST visitors so they can be naturally combined together in a single pass, as their current implementation doesn't allow it.

For examples of cases where function names can be inferred, see the tests file.

Review URL: http://codereview.chromium.org/62146

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@1696 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-04-14 00:51:59 +00:00

1711 lines
50 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_AST_H_
#define V8_AST_H_
#include "execution.h"
#include "factory.h"
#include "runtime.h"
#include "token.h"
#include "variables.h"
#include "macro-assembler.h"
#include "jsregexp.h"
#include "jump-target.h"
namespace v8 { namespace internal {
// The abstract syntax tree is an intermediate, light-weight
// representation of the parsed JavaScript code suitable for
// compilation to native code.
// Nodes are allocated in a separate zone, which allows faster
// allocation and constant-time deallocation of the entire syntax
// tree.
// ----------------------------------------------------------------------------
// Nodes of the abstract syntax tree. Only concrete classes are
// enumerated here.
#define NODE_LIST(V) \
V(Block) \
V(Declaration) \
V(ExpressionStatement) \
V(EmptyStatement) \
V(IfStatement) \
V(ContinueStatement) \
V(BreakStatement) \
V(ReturnStatement) \
V(WithEnterStatement) \
V(WithExitStatement) \
V(SwitchStatement) \
V(LoopStatement) \
V(ForInStatement) \
V(TryCatch) \
V(TryFinally) \
V(DebuggerStatement) \
V(FunctionLiteral) \
V(FunctionBoilerplateLiteral) \
V(Conditional) \
V(Slot) \
V(VariableProxy) \
V(Literal) \
V(RegExpLiteral) \
V(ObjectLiteral) \
V(ArrayLiteral) \
V(CatchExtensionObject) \
V(Assignment) \
V(Throw) \
V(Property) \
V(Call) \
V(CallEval) \
V(CallNew) \
V(CallRuntime) \
V(UnaryOperation) \
V(CountOperation) \
V(BinaryOperation) \
V(CompareOperation) \
V(ThisFunction)
// Forward declarations
class TargetCollector;
class MaterializedLiteral;
#define DEF_FORWARD_DECLARATION(type) class type;
NODE_LIST(DEF_FORWARD_DECLARATION)
#undef DEF_FORWARD_DECLARATION
// Typedef only introduced to avoid unreadable code.
// Please do appreciate the required space in "> >".
typedef ZoneList<Handle<String> > ZoneStringList;
class Node: public ZoneObject {
public:
Node(): statement_pos_(RelocInfo::kNoPosition) { }
virtual ~Node() { }
virtual void Accept(AstVisitor* v) = 0;
// Type testing & conversion.
virtual Statement* AsStatement() { return NULL; }
virtual ExpressionStatement* AsExpressionStatement() { return NULL; }
virtual EmptyStatement* AsEmptyStatement() { return NULL; }
virtual Expression* AsExpression() { return NULL; }
virtual Literal* AsLiteral() { return NULL; }
virtual Slot* AsSlot() { return NULL; }
virtual VariableProxy* AsVariableProxy() { return NULL; }
virtual Property* AsProperty() { return NULL; }
virtual Call* AsCall() { return NULL; }
virtual TargetCollector* AsTargetCollector() { return NULL; }
virtual BreakableStatement* AsBreakableStatement() { return NULL; }
virtual IterationStatement* AsIterationStatement() { return NULL; }
virtual UnaryOperation* AsUnaryOperation() { return NULL; }
virtual BinaryOperation* AsBinaryOperation() { return NULL; }
virtual Assignment* AsAssignment() { return NULL; }
virtual FunctionLiteral* AsFunctionLiteral() { return NULL; }
virtual MaterializedLiteral* AsMaterializedLiteral() { return NULL; }
virtual ObjectLiteral* AsObjectLiteral() { return NULL; }
virtual ArrayLiteral* AsArrayLiteral() { return NULL; }
void set_statement_pos(int statement_pos) { statement_pos_ = statement_pos; }
int statement_pos() const { return statement_pos_; }
private:
int statement_pos_;
};
class Statement: public Node {
public:
virtual Statement* AsStatement() { return this; }
virtual ReturnStatement* AsReturnStatement() { return NULL; }
bool IsEmpty() { return AsEmptyStatement() != NULL; }
};
class Expression: public Node {
public:
virtual Expression* AsExpression() { return this; }
virtual bool IsValidLeftHandSide() { return false; }
// Mark the expression as being compiled as an expression
// statement. This is used to transform postfix increments to
// (faster) prefix increments.
virtual void MarkAsStatement() { /* do nothing */ }
// Static type information for this expression.
SmiAnalysis* type() { return &type_; }
private:
SmiAnalysis type_;
};
/**
* A sentinel used during pre parsing that represents some expression
* that is a valid left hand side without having to actually build
* the expression.
*/
class ValidLeftHandSideSentinel: public Expression {
public:
virtual bool IsValidLeftHandSide() { return true; }
virtual void Accept(AstVisitor* v) { UNREACHABLE(); }
static ValidLeftHandSideSentinel* instance() { return &instance_; }
private:
static ValidLeftHandSideSentinel instance_;
};
class BreakableStatement: public Statement {
public:
enum Type {
TARGET_FOR_ANONYMOUS,
TARGET_FOR_NAMED_ONLY
};
// The labels associated with this statement. May be NULL;
// if it is != NULL, guaranteed to contain at least one entry.
ZoneStringList* labels() const { return labels_; }
// Type testing & conversion.
virtual BreakableStatement* AsBreakableStatement() { return this; }
// Code generation
BreakTarget* break_target() { return &break_target_; }
// Testers.
bool is_target_for_anonymous() const { return type_ == TARGET_FOR_ANONYMOUS; }
protected:
BreakableStatement(ZoneStringList* labels, Type type)
: labels_(labels), type_(type) {
ASSERT(labels == NULL || labels->length() > 0);
}
private:
ZoneStringList* labels_;
Type type_;
BreakTarget break_target_;
};
class Block: public BreakableStatement {
public:
Block(ZoneStringList* labels, int capacity, bool is_initializer_block)
: BreakableStatement(labels, TARGET_FOR_NAMED_ONLY),
statements_(capacity),
is_initializer_block_(is_initializer_block) { }
virtual void Accept(AstVisitor* v);
void AddStatement(Statement* statement) { statements_.Add(statement); }
ZoneList<Statement*>* statements() { return &statements_; }
bool is_initializer_block() const { return is_initializer_block_; }
private:
ZoneList<Statement*> statements_;
bool is_initializer_block_;
};
class Declaration: public Node {
public:
Declaration(VariableProxy* proxy, Variable::Mode mode, FunctionLiteral* fun)
: proxy_(proxy),
mode_(mode),
fun_(fun) {
ASSERT(mode == Variable::VAR || mode == Variable::CONST);
// At the moment there are no "const functions"'s in JavaScript...
ASSERT(fun == NULL || mode == Variable::VAR);
}
virtual void Accept(AstVisitor* v);
VariableProxy* proxy() const { return proxy_; }
Variable::Mode mode() const { return mode_; }
FunctionLiteral* fun() const { return fun_; } // may be NULL
private:
VariableProxy* proxy_;
Variable::Mode mode_;
FunctionLiteral* fun_;
};
class IterationStatement: public BreakableStatement {
public:
// Type testing & conversion.
virtual IterationStatement* AsIterationStatement() { return this; }
Statement* body() const { return body_; }
// Code generation
BreakTarget* continue_target() { return &continue_target_; }
protected:
explicit IterationStatement(ZoneStringList* labels)
: BreakableStatement(labels, TARGET_FOR_ANONYMOUS), body_(NULL) { }
void Initialize(Statement* body) {
body_ = body;
}
private:
Statement* body_;
BreakTarget continue_target_;
};
class LoopStatement: public IterationStatement {
public:
enum Type { DO_LOOP, FOR_LOOP, WHILE_LOOP };
LoopStatement(ZoneStringList* labels, Type type)
: IterationStatement(labels),
type_(type),
init_(NULL),
cond_(NULL),
next_(NULL),
may_have_function_literal_(true) {
}
void Initialize(Statement* init,
Expression* cond,
Statement* next,
Statement* body) {
ASSERT(init == NULL || type_ == FOR_LOOP);
ASSERT(next == NULL || type_ == FOR_LOOP);
IterationStatement::Initialize(body);
init_ = init;
cond_ = cond;
next_ = next;
}
virtual void Accept(AstVisitor* v);
Type type() const { return type_; }
Statement* init() const { return init_; }
Expression* cond() const { return cond_; }
Statement* next() const { return next_; }
bool may_have_function_literal() const {
return may_have_function_literal_;
}
#ifdef DEBUG
const char* OperatorString() const;
#endif
private:
Type type_;
Statement* init_;
Expression* cond_;
Statement* next_;
// True if there is a function literal subexpression in the condition.
bool may_have_function_literal_;
friend class AstOptimizer;
};
class ForInStatement: public IterationStatement {
public:
explicit ForInStatement(ZoneStringList* labels)
: IterationStatement(labels), each_(NULL), enumerable_(NULL) { }
void Initialize(Expression* each, Expression* enumerable, Statement* body) {
IterationStatement::Initialize(body);
each_ = each;
enumerable_ = enumerable;
}
virtual void Accept(AstVisitor* v);
Expression* each() const { return each_; }
Expression* enumerable() const { return enumerable_; }
private:
Expression* each_;
Expression* enumerable_;
};
class ExpressionStatement: public Statement {
public:
explicit ExpressionStatement(Expression* expression)
: expression_(expression) { }
virtual void Accept(AstVisitor* v);
// Type testing & conversion.
virtual ExpressionStatement* AsExpressionStatement() { return this; }
void set_expression(Expression* e) { expression_ = e; }
Expression* expression() { return expression_; }
private:
Expression* expression_;
};
class ContinueStatement: public Statement {
public:
explicit ContinueStatement(IterationStatement* target)
: target_(target) { }
virtual void Accept(AstVisitor* v);
IterationStatement* target() const { return target_; }
private:
IterationStatement* target_;
};
class BreakStatement: public Statement {
public:
explicit BreakStatement(BreakableStatement* target)
: target_(target) { }
virtual void Accept(AstVisitor* v);
BreakableStatement* target() const { return target_; }
private:
BreakableStatement* target_;
};
class ReturnStatement: public Statement {
public:
explicit ReturnStatement(Expression* expression)
: expression_(expression) { }
virtual void Accept(AstVisitor* v);
// Type testing & conversion.
virtual ReturnStatement* AsReturnStatement() { return this; }
Expression* expression() { return expression_; }
private:
Expression* expression_;
};
class WithEnterStatement: public Statement {
public:
explicit WithEnterStatement(Expression* expression, bool is_catch_block)
: expression_(expression), is_catch_block_(is_catch_block) { }
virtual void Accept(AstVisitor* v);
Expression* expression() const { return expression_; }
bool is_catch_block() const { return is_catch_block_; }
private:
Expression* expression_;
bool is_catch_block_;
};
class WithExitStatement: public Statement {
public:
WithExitStatement() { }
virtual void Accept(AstVisitor* v);
};
class CaseClause: public ZoneObject {
public:
CaseClause(Expression* label, ZoneList<Statement*>* statements)
: label_(label), statements_(statements) { }
bool is_default() const { return label_ == NULL; }
Expression* label() const {
CHECK(!is_default());
return label_;
}
JumpTarget* body_target() { return &body_target_; }
ZoneList<Statement*>* statements() const { return statements_; }
private:
Expression* label_;
JumpTarget body_target_;
ZoneList<Statement*>* statements_;
};
class SwitchStatement: public BreakableStatement {
public:
explicit SwitchStatement(ZoneStringList* labels)
: BreakableStatement(labels, TARGET_FOR_ANONYMOUS),
tag_(NULL), cases_(NULL) { }
void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
tag_ = tag;
cases_ = cases;
}
virtual void Accept(AstVisitor* v);
Expression* tag() const { return tag_; }
ZoneList<CaseClause*>* cases() const { return cases_; }
private:
Expression* tag_;
ZoneList<CaseClause*>* cases_;
};
// If-statements always have non-null references to their then- and
// else-parts. When parsing if-statements with no explicit else-part,
// the parser implicitly creates an empty statement. Use the
// HasThenStatement() and HasElseStatement() functions to check if a
// given if-statement has a then- or an else-part containing code.
class IfStatement: public Statement {
public:
IfStatement(Expression* condition,
Statement* then_statement,
Statement* else_statement)
: condition_(condition),
then_statement_(then_statement),
else_statement_(else_statement) { }
virtual void Accept(AstVisitor* v);
bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
Expression* condition() const { return condition_; }
Statement* then_statement() const { return then_statement_; }
Statement* else_statement() const { return else_statement_; }
private:
Expression* condition_;
Statement* then_statement_;
Statement* else_statement_;
};
// NOTE: TargetCollectors are represented as nodes to fit in the target
// stack in the compiler; this should probably be reworked.
class TargetCollector: public Node {
public:
explicit TargetCollector(ZoneList<BreakTarget*>* targets)
: targets_(targets) {
}
// Adds a jump target to the collector. The collector stores a pointer not
// a copy of the target to make binding work, so make sure not to pass in
// references to something on the stack.
void AddTarget(BreakTarget* target);
// Virtual behaviour. TargetCollectors are never part of the AST.
virtual void Accept(AstVisitor* v) { UNREACHABLE(); }
virtual TargetCollector* AsTargetCollector() { return this; }
ZoneList<BreakTarget*>* targets() { return targets_; }
private:
ZoneList<BreakTarget*>* targets_;
};
class TryStatement: public Statement {
public:
explicit TryStatement(Block* try_block)
: try_block_(try_block), escaping_targets_(NULL) { }
void set_escaping_targets(ZoneList<BreakTarget*>* targets) {
escaping_targets_ = targets;
}
Block* try_block() const { return try_block_; }
ZoneList<BreakTarget*>* escaping_targets() const { return escaping_targets_; }
private:
Block* try_block_;
ZoneList<BreakTarget*>* escaping_targets_;
};
class TryCatch: public TryStatement {
public:
TryCatch(Block* try_block, Expression* catch_var, Block* catch_block)
: TryStatement(try_block),
catch_var_(catch_var),
catch_block_(catch_block) {
ASSERT(catch_var->AsVariableProxy() != NULL);
}
virtual void Accept(AstVisitor* v);
Expression* catch_var() const { return catch_var_; }
Block* catch_block() const { return catch_block_; }
private:
Expression* catch_var_;
Block* catch_block_;
};
class TryFinally: public TryStatement {
public:
TryFinally(Block* try_block, Block* finally_block)
: TryStatement(try_block),
finally_block_(finally_block) { }
virtual void Accept(AstVisitor* v);
Block* finally_block() const { return finally_block_; }
private:
Block* finally_block_;
};
class DebuggerStatement: public Statement {
public:
virtual void Accept(AstVisitor* v);
};
class EmptyStatement: public Statement {
public:
virtual void Accept(AstVisitor* v);
// Type testing & conversion.
virtual EmptyStatement* AsEmptyStatement() { return this; }
};
class Literal: public Expression {
public:
explicit Literal(Handle<Object> handle) : handle_(handle) { }
virtual void Accept(AstVisitor* v);
// Type testing & conversion.
virtual Literal* AsLiteral() { return this; }
// Check if this literal is identical to the other literal.
bool IsIdenticalTo(const Literal* other) const {
return handle_.is_identical_to(other->handle_);
}
// Identity testers.
bool IsNull() const { return handle_.is_identical_to(Factory::null_value()); }
bool IsTrue() const { return handle_.is_identical_to(Factory::true_value()); }
bool IsFalse() const {
return handle_.is_identical_to(Factory::false_value());
}
Handle<Object> handle() const { return handle_; }
private:
Handle<Object> handle_;
};
// Base class for literals that needs space in the corresponding JSFunction.
class MaterializedLiteral: public Expression {
public:
explicit MaterializedLiteral(int literal_index, bool is_simple, int depth)
: literal_index_(literal_index), is_simple_(is_simple), depth_(depth) {}
virtual MaterializedLiteral* AsMaterializedLiteral() { return this; }
int literal_index() { return literal_index_; }
// A materialized literal is simple if the values consist of only
// constants and simple object and array literals.
bool is_simple() const { return is_simple_; }
int depth() const { return depth_; }
private:
int literal_index_;
bool is_simple_;
int depth_;
};
// An object literal has a boilerplate object that is used
// for minimizing the work when constructing it at runtime.
class ObjectLiteral: public MaterializedLiteral {
public:
// Property is used for passing information
// about an object literal's properties from the parser
// to the code generator.
class Property: public ZoneObject {
public:
enum Kind {
CONSTANT, // Property with constant value (compile time).
COMPUTED, // Property with computed value (execution time).
MATERIALIZED_LITERAL, // Property value is a materialized literal.
GETTER, SETTER, // Property is an accessor function.
PROTOTYPE // Property is __proto__.
};
Property(Literal* key, Expression* value);
Property(bool is_getter, FunctionLiteral* value);
Literal* key() { return key_; }
Expression* value() { return value_; }
Kind kind() { return kind_; }
private:
Literal* key_;
Expression* value_;
Kind kind_;
};
ObjectLiteral(Handle<FixedArray> constant_properties,
ZoneList<Property*>* properties,
int literal_index,
bool is_simple,
int depth)
: MaterializedLiteral(literal_index, is_simple, depth),
constant_properties_(constant_properties),
properties_(properties) {}
virtual ObjectLiteral* AsObjectLiteral() { return this; }
virtual void Accept(AstVisitor* v);
Handle<FixedArray> constant_properties() const {
return constant_properties_;
}
ZoneList<Property*>* properties() const { return properties_; }
private:
Handle<FixedArray> constant_properties_;
ZoneList<Property*>* properties_;
};
// Node for capturing a regexp literal.
class RegExpLiteral: public MaterializedLiteral {
public:
RegExpLiteral(Handle<String> pattern,
Handle<String> flags,
int literal_index)
: MaterializedLiteral(literal_index, false, 1),
pattern_(pattern),
flags_(flags) {}
virtual void Accept(AstVisitor* v);
Handle<String> pattern() const { return pattern_; }
Handle<String> flags() const { return flags_; }
private:
Handle<String> pattern_;
Handle<String> flags_;
};
// An array literal has a literals object that is used
// for minimizing the work when constructing it at runtime.
class ArrayLiteral: public MaterializedLiteral {
public:
ArrayLiteral(Handle<FixedArray> literals,
ZoneList<Expression*>* values,
int literal_index,
bool is_simple,
int depth)
: MaterializedLiteral(literal_index, is_simple, depth),
literals_(literals),
values_(values) {}
virtual void Accept(AstVisitor* v);
virtual ArrayLiteral* AsArrayLiteral() { return this; }
Handle<FixedArray> literals() const { return literals_; }
ZoneList<Expression*>* values() const { return values_; }
private:
Handle<FixedArray> literals_;
ZoneList<Expression*>* values_;
};
// Node for constructing a context extension object for a catch block.
// The catch context extension object has one property, the catch
// variable, which should be DontDelete.
class CatchExtensionObject: public Expression {
public:
CatchExtensionObject(Literal* key, VariableProxy* value)
: key_(key), value_(value) {
}
virtual void Accept(AstVisitor* v);
Literal* key() const { return key_; }
VariableProxy* value() const { return value_; }
private:
Literal* key_;
VariableProxy* value_;
};
class VariableProxy: public Expression {
public:
virtual void Accept(AstVisitor* v);
// Type testing & conversion
virtual Property* AsProperty() {
return var_ == NULL ? NULL : var_->AsProperty();
}
virtual VariableProxy* AsVariableProxy() { return this; }
Variable* AsVariable() {
return this == NULL || var_ == NULL ? NULL : var_->AsVariable();
}
virtual bool IsValidLeftHandSide() {
return var_ == NULL ? true : var_->IsValidLeftHandSide();
}
bool IsVariable(Handle<String> n) {
return !is_this() && name().is_identical_to(n);
}
// If this assertion fails it means that some code has tried to
// treat the special "this" variable as an ordinary variable with
// the name "this".
Handle<String> name() const { return name_; }
Variable* var() const { return var_; }
UseCount* var_uses() { return &var_uses_; }
UseCount* obj_uses() { return &obj_uses_; }
bool is_this() const { return is_this_; }
bool inside_with() const { return inside_with_; }
// Bind this proxy to the variable var.
void BindTo(Variable* var);
protected:
Handle<String> name_;
Variable* var_; // resolved variable, or NULL
bool is_this_;
bool inside_with_;
// VariableProxy usage info.
UseCount var_uses_; // uses of the variable value
UseCount obj_uses_; // uses of the object the variable points to
VariableProxy(Handle<String> name, bool is_this, bool inside_with);
explicit VariableProxy(bool is_this);
friend class Scope;
};
class VariableProxySentinel: public VariableProxy {
public:
virtual bool IsValidLeftHandSide() { return !is_this(); }
static VariableProxySentinel* this_proxy() { return &this_proxy_; }
static VariableProxySentinel* identifier_proxy() {
return &identifier_proxy_;
}
private:
explicit VariableProxySentinel(bool is_this) : VariableProxy(is_this) { }
static VariableProxySentinel this_proxy_;
static VariableProxySentinel identifier_proxy_;
};
class Slot: public Expression {
public:
enum Type {
// A slot in the parameter section on the stack. index() is
// the parameter index, counting left-to-right, starting at 0.
PARAMETER,
// A slot in the local section on the stack. index() is
// the variable index in the stack frame, starting at 0.
LOCAL,
// An indexed slot in a heap context. index() is the
// variable index in the context object on the heap,
// starting at 0. var()->scope() is the corresponding
// scope.
CONTEXT,
// A named slot in a heap context. var()->name() is the
// variable name in the context object on the heap,
// with lookup starting at the current context. index()
// is invalid.
LOOKUP,
// A property in the global object. var()->name() is
// the property name.
GLOBAL
};
Slot(Variable* var, Type type, int index)
: var_(var), type_(type), index_(index) {
ASSERT(var != NULL);
}
virtual void Accept(AstVisitor* v);
// Type testing & conversion
virtual Slot* AsSlot() { return this; }
// Accessors
Variable* var() const { return var_; }
Type type() const { return type_; }
int index() const { return index_; }
private:
Variable* var_;
Type type_;
int index_;
};
class Property: public Expression {
public:
// Synthetic properties are property lookups introduced by the system,
// to objects that aren't visible to the user. Function calls to synthetic
// properties should use the global object as receiver, not the base object
// of the resolved Reference.
enum Type { NORMAL, SYNTHETIC };
Property(Expression* obj, Expression* key, int pos, Type type = NORMAL)
: obj_(obj), key_(key), pos_(pos), type_(type) { }
virtual void Accept(AstVisitor* v);
// Type testing & conversion
virtual Property* AsProperty() { return this; }
virtual bool IsValidLeftHandSide() { return true; }
Expression* obj() const { return obj_; }
Expression* key() const { return key_; }
int position() const { return pos_; }
bool is_synthetic() const { return type_ == SYNTHETIC; }
// Returns a property singleton property access on 'this'. Used
// during preparsing.
static Property* this_property() { return &this_property_; }
private:
Expression* obj_;
Expression* key_;
int pos_;
Type type_;
// Dummy property used during preparsing.
static Property this_property_;
};
class Call: public Expression {
public:
Call(Expression* expression,
ZoneList<Expression*>* arguments,
int pos)
: expression_(expression),
arguments_(arguments),
pos_(pos) { }
virtual void Accept(AstVisitor* v);
// Type testing and conversion.
virtual Call* AsCall() { return this; }
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
int position() { return pos_; }
static Call* sentinel() { return &sentinel_; }
private:
Expression* expression_;
ZoneList<Expression*>* arguments_;
int pos_;
static Call sentinel_;
};
class CallNew: public Call {
public:
CallNew(Expression* expression, ZoneList<Expression*>* arguments, int pos)
: Call(expression, arguments, pos) { }
virtual void Accept(AstVisitor* v);
};
// The CallEval class represents a call of the form 'eval(...)' where eval
// cannot be seen to be overwritten at compile time. It is potentially a
// direct (i.e. not aliased) eval call. The real nature of the call is
// determined at runtime.
class CallEval: public Call {
public:
CallEval(Expression* expression, ZoneList<Expression*>* arguments, int pos)
: Call(expression, arguments, pos) { }
virtual void Accept(AstVisitor* v);
static CallEval* sentinel() { return &sentinel_; }
private:
static CallEval sentinel_;
};
// The CallRuntime class does not represent any official JavaScript
// language construct. Instead it is used to call a C or JS function
// with a set of arguments. This is used from the builtins that are
// implemented in JavaScript (see "v8natives.js").
class CallRuntime: public Expression {
public:
CallRuntime(Handle<String> name,
Runtime::Function* function,
ZoneList<Expression*>* arguments)
: name_(name), function_(function), arguments_(arguments) { }
virtual void Accept(AstVisitor* v);
Handle<String> name() const { return name_; }
Runtime::Function* function() const { return function_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
private:
Handle<String> name_;
Runtime::Function* function_;
ZoneList<Expression*>* arguments_;
};
class UnaryOperation: public Expression {
public:
UnaryOperation(Token::Value op, Expression* expression)
: op_(op), expression_(expression) {
ASSERT(Token::IsUnaryOp(op));
}
virtual void Accept(AstVisitor* v);
// Type testing & conversion
virtual UnaryOperation* AsUnaryOperation() { return this; }
Token::Value op() const { return op_; }
Expression* expression() const { return expression_; }
private:
Token::Value op_;
Expression* expression_;
};
class BinaryOperation: public Expression {
public:
BinaryOperation(Token::Value op, Expression* left, Expression* right)
: op_(op), left_(left), right_(right) {
ASSERT(Token::IsBinaryOp(op));
}
virtual void Accept(AstVisitor* v);
// Type testing & conversion
virtual BinaryOperation* AsBinaryOperation() { return this; }
// True iff the result can be safely overwritten (to avoid allocation).
// False for operations that can return one of their operands.
bool ResultOverwriteAllowed() {
switch (op_) {
case Token::COMMA:
case Token::OR:
case Token::AND:
return false;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
return true;
default:
UNREACHABLE();
}
return false;
}
Token::Value op() const { return op_; }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
private:
Token::Value op_;
Expression* left_;
Expression* right_;
};
class CountOperation: public Expression {
public:
CountOperation(bool is_prefix, Token::Value op, Expression* expression)
: is_prefix_(is_prefix), op_(op), expression_(expression) {
ASSERT(Token::IsCountOp(op));
}
virtual void Accept(AstVisitor* v);
bool is_prefix() const { return is_prefix_; }
bool is_postfix() const { return !is_prefix_; }
Token::Value op() const { return op_; }
Expression* expression() const { return expression_; }
virtual void MarkAsStatement() { is_prefix_ = true; }
private:
bool is_prefix_;
Token::Value op_;
Expression* expression_;
};
class CompareOperation: public Expression {
public:
CompareOperation(Token::Value op, Expression* left, Expression* right)
: op_(op), left_(left), right_(right) {
ASSERT(Token::IsCompareOp(op));
}
virtual void Accept(AstVisitor* v);
Token::Value op() const { return op_; }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
private:
Token::Value op_;
Expression* left_;
Expression* right_;
};
class Conditional: public Expression {
public:
Conditional(Expression* condition,
Expression* then_expression,
Expression* else_expression)
: condition_(condition),
then_expression_(then_expression),
else_expression_(else_expression) { }
virtual void Accept(AstVisitor* v);
Expression* condition() const { return condition_; }
Expression* then_expression() const { return then_expression_; }
Expression* else_expression() const { return else_expression_; }
private:
Expression* condition_;
Expression* then_expression_;
Expression* else_expression_;
};
class Assignment: public Expression {
public:
Assignment(Token::Value op, Expression* target, Expression* value, int pos)
: op_(op), target_(target), value_(value), pos_(pos),
block_start_(false), block_end_(false) {
ASSERT(Token::IsAssignmentOp(op));
}
virtual void Accept(AstVisitor* v);
virtual Assignment* AsAssignment() { return this; }
Token::Value binary_op() const;
Token::Value op() const { return op_; }
Expression* target() const { return target_; }
Expression* value() const { return value_; }
int position() { return pos_; }
// An initialization block is a series of statments of the form
// x.y.z.a = ...; x.y.z.b = ...; etc. The parser marks the beginning and
// ending of these blocks to allow for optimizations of initialization
// blocks.
bool starts_initialization_block() { return block_start_; }
bool ends_initialization_block() { return block_end_; }
void mark_block_start() { block_start_ = true; }
void mark_block_end() { block_end_ = true; }
private:
Token::Value op_;
Expression* target_;
Expression* value_;
int pos_;
bool block_start_;
bool block_end_;
};
class Throw: public Expression {
public:
Throw(Expression* exception, int pos)
: exception_(exception), pos_(pos) {}
virtual void Accept(AstVisitor* v);
Expression* exception() const { return exception_; }
int position() const { return pos_; }
private:
Expression* exception_;
int pos_;
};
class FunctionLiteral: public Expression {
public:
FunctionLiteral(Handle<String> name,
Scope* scope,
ZoneList<Statement*>* body,
int materialized_literal_count,
bool contains_array_literal,
int expected_property_count,
int num_parameters,
int start_position,
int end_position,
bool is_expression)
: name_(name),
scope_(scope),
body_(body),
materialized_literal_count_(materialized_literal_count),
contains_array_literal_(contains_array_literal),
expected_property_count_(expected_property_count),
num_parameters_(num_parameters),
start_position_(start_position),
end_position_(end_position),
is_expression_(is_expression),
loop_nesting_(0),
function_token_position_(RelocInfo::kNoPosition),
inferred_name_(Heap::empty_string()) {
#ifdef DEBUG
already_compiled_ = false;
#endif
}
virtual void Accept(AstVisitor* v);
// Type testing & conversion
virtual FunctionLiteral* AsFunctionLiteral() { return this; }
Handle<String> name() const { return name_; }
Scope* scope() const { return scope_; }
ZoneList<Statement*>* body() const { return body_; }
void set_function_token_position(int pos) { function_token_position_ = pos; }
int function_token_position() const { return function_token_position_; }
int start_position() const { return start_position_; }
int end_position() const { return end_position_; }
bool is_expression() const { return is_expression_; }
int materialized_literal_count() { return materialized_literal_count_; }
bool contains_array_literal() { return contains_array_literal_; }
int expected_property_count() { return expected_property_count_; }
int num_parameters() { return num_parameters_; }
bool AllowsLazyCompilation();
bool loop_nesting() const { return loop_nesting_; }
void set_loop_nesting(int nesting) { loop_nesting_ = nesting; }
Handle<String> inferred_name() const { return inferred_name_; }
void set_inferred_name(Handle<String> inferred_name) {
inferred_name_ = inferred_name;
}
#ifdef DEBUG
void mark_as_compiled() {
ASSERT(!already_compiled_);
already_compiled_ = true;
}
#endif
private:
Handle<String> name_;
Scope* scope_;
ZoneList<Statement*>* body_;
int materialized_literal_count_;
bool contains_array_literal_;
int expected_property_count_;
int num_parameters_;
int start_position_;
int end_position_;
bool is_expression_;
int loop_nesting_;
int function_token_position_;
Handle<String> inferred_name_;
#ifdef DEBUG
bool already_compiled_;
#endif
};
class FunctionBoilerplateLiteral: public Expression {
public:
explicit FunctionBoilerplateLiteral(Handle<JSFunction> boilerplate)
: boilerplate_(boilerplate) {
ASSERT(boilerplate->IsBoilerplate());
}
Handle<JSFunction> boilerplate() const { return boilerplate_; }
virtual void Accept(AstVisitor* v);
private:
Handle<JSFunction> boilerplate_;
};
class ThisFunction: public Expression {
public:
virtual void Accept(AstVisitor* v);
};
// ----------------------------------------------------------------------------
// Regular expressions
class RegExpVisitor BASE_EMBEDDED {
public:
virtual ~RegExpVisitor() { }
#define MAKE_CASE(Name) \
virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
#undef MAKE_CASE
};
class RegExpTree: public ZoneObject {
public:
static const int kInfinity = kMaxInt;
virtual ~RegExpTree() { }
virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) = 0;
virtual bool IsTextElement() { return false; }
virtual bool IsAnchored() { return false; }
virtual int min_match() = 0;
virtual int max_match() = 0;
// Returns the interval of registers used for captures within this
// expression.
virtual Interval CaptureRegisters() { return Interval::Empty(); }
virtual void AppendToText(RegExpText* text);
SmartPointer<const char> ToString();
#define MAKE_ASTYPE(Name) \
virtual RegExp##Name* As##Name(); \
virtual bool Is##Name();
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
#undef MAKE_ASTYPE
};
class RegExpDisjunction: public RegExpTree {
public:
explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives);
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpDisjunction* AsDisjunction();
virtual Interval CaptureRegisters();
virtual bool IsDisjunction();
virtual bool IsAnchored();
virtual int min_match() { return min_match_; }
virtual int max_match() { return max_match_; }
ZoneList<RegExpTree*>* alternatives() { return alternatives_; }
private:
ZoneList<RegExpTree*>* alternatives_;
int min_match_;
int max_match_;
};
class RegExpAlternative: public RegExpTree {
public:
explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes);
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpAlternative* AsAlternative();
virtual Interval CaptureRegisters();
virtual bool IsAlternative();
virtual bool IsAnchored();
virtual int min_match() { return min_match_; }
virtual int max_match() { return max_match_; }
ZoneList<RegExpTree*>* nodes() { return nodes_; }
private:
ZoneList<RegExpTree*>* nodes_;
int min_match_;
int max_match_;
};
class RegExpAssertion: public RegExpTree {
public:
enum Type {
START_OF_LINE,
START_OF_INPUT,
END_OF_LINE,
END_OF_INPUT,
BOUNDARY,
NON_BOUNDARY
};
explicit RegExpAssertion(Type type) : type_(type) { }
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpAssertion* AsAssertion();
virtual bool IsAssertion();
virtual bool IsAnchored();
virtual int min_match() { return 0; }
virtual int max_match() { return 0; }
Type type() { return type_; }
private:
Type type_;
};
class CharacterSet BASE_EMBEDDED {
public:
explicit CharacterSet(uc16 standard_set_type)
: ranges_(NULL),
standard_set_type_(standard_set_type) {}
explicit CharacterSet(ZoneList<CharacterRange>* ranges)
: ranges_(ranges),
standard_set_type_(0) {}
ZoneList<CharacterRange>* ranges();
uc16 standard_set_type() { return standard_set_type_; }
void set_standard_set_type(uc16 special_set_type) {
standard_set_type_ = special_set_type;
}
bool is_standard() { return standard_set_type_ != 0; }
private:
ZoneList<CharacterRange>* ranges_;
// If non-zero, the value represents a standard set (e.g., all whitespace
// characters) without having to expand the ranges.
uc16 standard_set_type_;
};
class RegExpCharacterClass: public RegExpTree {
public:
RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated)
: set_(ranges),
is_negated_(is_negated) { }
explicit RegExpCharacterClass(uc16 type)
: set_(type),
is_negated_(false) { }
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpCharacterClass* AsCharacterClass();
virtual bool IsCharacterClass();
virtual bool IsTextElement() { return true; }
virtual int min_match() { return 1; }
virtual int max_match() { return 1; }
virtual void AppendToText(RegExpText* text);
CharacterSet character_set() { return set_; }
// TODO(lrn): Remove need for complex version if is_standard that
// recognizes a mangled standard set and just do { return set_.is_special(); }
bool is_standard();
// Returns a value representing the standard character set if is_standard()
// returns true.
// Currently used values are:
// s : unicode whitespace
// S : unicode non-whitespace
// w : ASCII word character (digit, letter, underscore)
// W : non-ASCII word character
// d : ASCII digit
// D : non-ASCII digit
// . : non-unicode non-newline
// * : All characters
uc16 standard_type() { return set_.standard_set_type(); }
ZoneList<CharacterRange>* ranges() { return set_.ranges(); }
bool is_negated() { return is_negated_; }
private:
CharacterSet set_;
bool is_negated_;
};
class RegExpAtom: public RegExpTree {
public:
explicit RegExpAtom(Vector<const uc16> data) : data_(data) { }
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpAtom* AsAtom();
virtual bool IsAtom();
virtual bool IsTextElement() { return true; }
virtual int min_match() { return data_.length(); }
virtual int max_match() { return data_.length(); }
virtual void AppendToText(RegExpText* text);
Vector<const uc16> data() { return data_; }
int length() { return data_.length(); }
private:
Vector<const uc16> data_;
};
class RegExpText: public RegExpTree {
public:
RegExpText() : elements_(2), length_(0) {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpText* AsText();
virtual bool IsText();
virtual bool IsTextElement() { return true; }
virtual int min_match() { return length_; }
virtual int max_match() { return length_; }
virtual void AppendToText(RegExpText* text);
void AddElement(TextElement elm) {
elements_.Add(elm);
length_ += elm.length();
};
ZoneList<TextElement>* elements() { return &elements_; }
private:
ZoneList<TextElement> elements_;
int length_;
};
class RegExpQuantifier: public RegExpTree {
public:
RegExpQuantifier(int min, int max, bool is_greedy, RegExpTree* body)
: min_(min),
max_(max),
is_greedy_(is_greedy),
body_(body),
min_match_(min * body->min_match()) {
if (max > 0 && body->max_match() > kInfinity / max) {
max_match_ = kInfinity;
} else {
max_match_ = max * body->max_match();
}
}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
static RegExpNode* ToNode(int min,
int max,
bool is_greedy,
RegExpTree* body,
RegExpCompiler* compiler,
RegExpNode* on_success,
bool not_at_start = false);
virtual RegExpQuantifier* AsQuantifier();
virtual Interval CaptureRegisters();
virtual bool IsQuantifier();
virtual int min_match() { return min_match_; }
virtual int max_match() { return max_match_; }
int min() { return min_; }
int max() { return max_; }
bool is_greedy() { return is_greedy_; }
RegExpTree* body() { return body_; }
private:
int min_;
int max_;
bool is_greedy_;
RegExpTree* body_;
int min_match_;
int max_match_;
};
enum CaptureAvailability {
CAPTURE_AVAILABLE,
CAPTURE_UNREACHABLE,
CAPTURE_PERMANENTLY_UNREACHABLE
};
class RegExpCapture: public RegExpTree {
public:
explicit RegExpCapture(RegExpTree* body, int index)
: body_(body), index_(index), available_(CAPTURE_AVAILABLE) { }
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
static RegExpNode* ToNode(RegExpTree* body,
int index,
RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpCapture* AsCapture();
virtual bool IsAnchored();
virtual Interval CaptureRegisters();
virtual bool IsCapture();
virtual int min_match() { return body_->min_match(); }
virtual int max_match() { return body_->max_match(); }
RegExpTree* body() { return body_; }
int index() { return index_; }
inline CaptureAvailability available() { return available_; }
inline void set_available(CaptureAvailability availability) {
available_ = availability;
}
static int StartRegister(int index) { return index * 2; }
static int EndRegister(int index) { return index * 2 + 1; }
private:
RegExpTree* body_;
int index_;
CaptureAvailability available_;
};
class RegExpLookahead: public RegExpTree {
public:
RegExpLookahead(RegExpTree* body,
bool is_positive,
int capture_count,
int capture_from)
: body_(body),
is_positive_(is_positive),
capture_count_(capture_count),
capture_from_(capture_from) { }
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpLookahead* AsLookahead();
virtual Interval CaptureRegisters();
virtual bool IsLookahead();
virtual bool IsAnchored();
virtual int min_match() { return 0; }
virtual int max_match() { return 0; }
RegExpTree* body() { return body_; }
bool is_positive() { return is_positive_; }
int capture_count() { return capture_count_; }
int capture_from() { return capture_from_; }
private:
RegExpTree* body_;
bool is_positive_;
int capture_count_;
int capture_from_;
};
class RegExpBackReference: public RegExpTree {
public:
explicit RegExpBackReference(RegExpCapture* capture)
: capture_(capture) { }
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpBackReference* AsBackReference();
virtual bool IsBackReference();
virtual int min_match() { return 0; }
virtual int max_match() { return capture_->max_match(); }
int index() { return capture_->index(); }
RegExpCapture* capture() { return capture_; }
private:
RegExpCapture* capture_;
};
class RegExpEmpty: public RegExpTree {
public:
RegExpEmpty() { }
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpEmpty* AsEmpty();
virtual bool IsEmpty();
virtual int min_match() { return 0; }
virtual int max_match() { return 0; }
static RegExpEmpty* GetInstance() { return &kInstance; }
private:
static RegExpEmpty kInstance;
};
// ----------------------------------------------------------------------------
// Basic visitor
// - leaf node visitors are abstract.
class AstVisitor BASE_EMBEDDED {
public:
AstVisitor() : stack_overflow_(false) { }
virtual ~AstVisitor() { }
// Dispatch
void Visit(Node* node) { node->Accept(this); }
// Iteration
virtual void VisitStatements(ZoneList<Statement*>* statements);
virtual void VisitExpressions(ZoneList<Expression*>* expressions);
// Stack overflow tracking support.
bool HasStackOverflow() const { return stack_overflow_; }
bool CheckStackOverflow() {
if (stack_overflow_) return true;
StackLimitCheck check;
if (!check.HasOverflowed()) return false;
return (stack_overflow_ = true);
}
// If a stack-overflow exception is encountered when visiting a
// node, calling SetStackOverflow will make sure that the visitor
// bails out without visiting more nodes.
void SetStackOverflow() { stack_overflow_ = true; }
// Individual nodes
#define DEF_VISIT(type) \
virtual void Visit##type(type* node) = 0;
NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
private:
bool stack_overflow_;
};
} } // namespace v8::internal
#endif // V8_AST_H_