3d83638c3c
These instructions have been accepted into the proposal. Bug: v8:11262 Change-Id: Iec0bb9b9b1b0f8ed76ed78e254c64b96981a5f2f Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2589433 Reviewed-by: Deepti Gandluri <gdeepti@chromium.org> Commit-Queue: Zhi An Ng <zhin@chromium.org> Cr-Commit-Position: refs/heads/master@{#71819}
4483 lines
174 KiB
C++
4483 lines
174 KiB
C++
// Copyright 2016 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "src/base/bits.h"
|
|
#include "src/base/logging.h"
|
|
#include "src/base/macros.h"
|
|
#include "src/base/memory.h"
|
|
#include "src/base/overflowing-math.h"
|
|
#include "src/base/utils/random-number-generator.h"
|
|
#include "src/codegen/assembler-inl.h"
|
|
#include "src/codegen/cpu-features.h"
|
|
#include "src/codegen/machine-type.h"
|
|
#include "src/common/globals.h"
|
|
#include "src/flags/flags.h"
|
|
#include "src/utils/utils.h"
|
|
#include "src/utils/vector.h"
|
|
#include "src/wasm/compilation-environment.h"
|
|
#include "src/wasm/value-type.h"
|
|
#include "src/wasm/wasm-constants.h"
|
|
#include "src/wasm/wasm-opcodes.h"
|
|
#include "test/cctest/cctest.h"
|
|
#include "test/cctest/compiler/value-helper.h"
|
|
#include "test/cctest/wasm/wasm-run-utils.h"
|
|
#include "test/common/flag-utils.h"
|
|
#include "test/common/wasm/flag-utils.h"
|
|
#include "test/common/wasm/wasm-macro-gen.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace wasm {
|
|
namespace test_run_wasm_simd {
|
|
|
|
namespace {
|
|
|
|
using DoubleUnOp = double (*)(double);
|
|
using DoubleBinOp = double (*)(double, double);
|
|
using DoubleCompareOp = int64_t (*)(double, double);
|
|
using FloatUnOp = float (*)(float);
|
|
using FloatBinOp = float (*)(float, float);
|
|
using FloatCompareOp = int (*)(float, float);
|
|
using Int64UnOp = int64_t (*)(int64_t);
|
|
using Int64BinOp = int64_t (*)(int64_t, int64_t);
|
|
using Int64ShiftOp = int64_t (*)(int64_t, int);
|
|
using Int32UnOp = int32_t (*)(int32_t);
|
|
using Int32BinOp = int32_t (*)(int32_t, int32_t);
|
|
using Int32CompareOp = int (*)(int32_t, int32_t);
|
|
using Int32ShiftOp = int32_t (*)(int32_t, int);
|
|
using Int16UnOp = int16_t (*)(int16_t);
|
|
using Int16BinOp = int16_t (*)(int16_t, int16_t);
|
|
using Int16CompareOp = int (*)(int16_t, int16_t);
|
|
using Int16ShiftOp = int16_t (*)(int16_t, int);
|
|
using Int8UnOp = int8_t (*)(int8_t);
|
|
using Int8BinOp = int8_t (*)(int8_t, int8_t);
|
|
using Int8CompareOp = int (*)(int8_t, int8_t);
|
|
using Int8ShiftOp = int8_t (*)(int8_t, int);
|
|
|
|
#define WASM_SIMD_TEST(name) \
|
|
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
|
|
TestExecutionTier execution_tier); \
|
|
TEST(RunWasm_##name##_turbofan) { \
|
|
EXPERIMENTAL_FLAG_SCOPE(simd); \
|
|
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \
|
|
} \
|
|
TEST(RunWasm_##name##_liftoff) { \
|
|
EXPERIMENTAL_FLAG_SCOPE(simd); \
|
|
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kLiftoff); \
|
|
} \
|
|
TEST(RunWasm_##name##_interpreter) { \
|
|
EXPERIMENTAL_FLAG_SCOPE(simd); \
|
|
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \
|
|
} \
|
|
TEST(RunWasm_##name##_simd_lowered) { \
|
|
EXPERIMENTAL_FLAG_SCOPE(simd); \
|
|
RunWasm_##name##_Impl(kLowerSimd, TestExecutionTier::kTurbofan); \
|
|
} \
|
|
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
|
|
TestExecutionTier execution_tier)
|
|
|
|
// Generic expected value functions.
|
|
template <typename T, typename = typename std::enable_if<
|
|
std::is_floating_point<T>::value>::type>
|
|
T Negate(T a) {
|
|
return -a;
|
|
}
|
|
|
|
// For signed integral types, use base::AddWithWraparound.
|
|
template <typename T, typename = typename std::enable_if<
|
|
std::is_floating_point<T>::value>::type>
|
|
T Add(T a, T b) {
|
|
return a + b;
|
|
}
|
|
|
|
// For signed integral types, use base::SubWithWraparound.
|
|
template <typename T, typename = typename std::enable_if<
|
|
std::is_floating_point<T>::value>::type>
|
|
T Sub(T a, T b) {
|
|
return a - b;
|
|
}
|
|
|
|
// For signed integral types, use base::MulWithWraparound.
|
|
template <typename T, typename = typename std::enable_if<
|
|
std::is_floating_point<T>::value>::type>
|
|
T Mul(T a, T b) {
|
|
return a * b;
|
|
}
|
|
|
|
template <typename T>
|
|
T Minimum(T a, T b) {
|
|
return std::min(a, b);
|
|
}
|
|
|
|
template <typename T>
|
|
T Maximum(T a, T b) {
|
|
return std::max(a, b);
|
|
}
|
|
|
|
template <typename T>
|
|
T UnsignedMinimum(T a, T b) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? a : b;
|
|
}
|
|
|
|
template <typename T>
|
|
T UnsignedMaximum(T a, T b) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? a : b;
|
|
}
|
|
|
|
int Equal(float a, float b) { return a == b ? -1 : 0; }
|
|
|
|
template <typename T>
|
|
T Equal(T a, T b) {
|
|
return a == b ? -1 : 0;
|
|
}
|
|
|
|
int NotEqual(float a, float b) { return a != b ? -1 : 0; }
|
|
|
|
template <typename T>
|
|
T NotEqual(T a, T b) {
|
|
return a != b ? -1 : 0;
|
|
}
|
|
|
|
int Less(float a, float b) { return a < b ? -1 : 0; }
|
|
|
|
template <typename T>
|
|
T Less(T a, T b) {
|
|
return a < b ? -1 : 0;
|
|
}
|
|
|
|
int LessEqual(float a, float b) { return a <= b ? -1 : 0; }
|
|
|
|
template <typename T>
|
|
T LessEqual(T a, T b) {
|
|
return a <= b ? -1 : 0;
|
|
}
|
|
|
|
int Greater(float a, float b) { return a > b ? -1 : 0; }
|
|
|
|
template <typename T>
|
|
T Greater(T a, T b) {
|
|
return a > b ? -1 : 0;
|
|
}
|
|
|
|
int GreaterEqual(float a, float b) { return a >= b ? -1 : 0; }
|
|
|
|
template <typename T>
|
|
T GreaterEqual(T a, T b) {
|
|
return a >= b ? -1 : 0;
|
|
}
|
|
|
|
template <typename T>
|
|
T UnsignedLess(T a, T b) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
return static_cast<UnsignedT>(a) < static_cast<UnsignedT>(b) ? -1 : 0;
|
|
}
|
|
|
|
template <typename T>
|
|
T UnsignedLessEqual(T a, T b) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? -1 : 0;
|
|
}
|
|
|
|
template <typename T>
|
|
T UnsignedGreater(T a, T b) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
return static_cast<UnsignedT>(a) > static_cast<UnsignedT>(b) ? -1 : 0;
|
|
}
|
|
|
|
template <typename T>
|
|
T UnsignedGreaterEqual(T a, T b) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? -1 : 0;
|
|
}
|
|
|
|
template <typename T>
|
|
T LogicalShiftLeft(T a, int shift) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
return static_cast<UnsignedT>(a) << (shift % (sizeof(T) * 8));
|
|
}
|
|
|
|
template <typename T>
|
|
T LogicalShiftRight(T a, int shift) {
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
return static_cast<UnsignedT>(a) >> (shift % (sizeof(T) * 8));
|
|
}
|
|
|
|
// Define our own ArithmeticShiftRight instead of using the one from utils.h
|
|
// because the shift amount needs to be taken modulo lane width.
|
|
template <typename T>
|
|
T ArithmeticShiftRight(T a, int shift) {
|
|
return a >> (shift % (sizeof(T) * 8));
|
|
}
|
|
|
|
template <typename T>
|
|
T Abs(T a) {
|
|
return std::abs(a);
|
|
}
|
|
|
|
// only used for F64x2 tests below
|
|
int64_t Equal(double a, double b) { return a == b ? -1 : 0; }
|
|
|
|
int64_t NotEqual(double a, double b) { return a != b ? -1 : 0; }
|
|
|
|
int64_t Greater(double a, double b) { return a > b ? -1 : 0; }
|
|
|
|
int64_t GreaterEqual(double a, double b) { return a >= b ? -1 : 0; }
|
|
|
|
int64_t Less(double a, double b) { return a < b ? -1 : 0; }
|
|
|
|
int64_t LessEqual(double a, double b) { return a <= b ? -1 : 0; }
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
|
|
// Only used for qfma and qfms tests below.
|
|
|
|
// FMOperation holds the params (a, b, c) for a Multiply-Add or
|
|
// Multiply-Subtract operation, and the expected result if the operation was
|
|
// fused, rounded only once for the entire operation, or unfused, rounded after
|
|
// multiply and again after add/subtract.
|
|
template <typename T>
|
|
struct FMOperation {
|
|
const T a;
|
|
const T b;
|
|
const T c;
|
|
const T fused_result;
|
|
const T unfused_result;
|
|
};
|
|
|
|
// large_n is large number that overflows T when multiplied by itself, this is a
|
|
// useful constant to test fused/unfused behavior.
|
|
template <typename T>
|
|
constexpr T large_n = T(0);
|
|
|
|
template <>
|
|
constexpr double large_n<double> = 1e200;
|
|
|
|
template <>
|
|
constexpr float large_n<float> = 1e20;
|
|
|
|
// Fused Multiply-Add performs a + b * c.
|
|
template <typename T>
|
|
static constexpr FMOperation<T> qfma_array[] = {
|
|
{1.0f, 2.0f, 3.0f, 7.0f, 7.0f},
|
|
// fused: a + b * c = -inf + (positive overflow) = -inf
|
|
// unfused: a + b * c = -inf + inf = NaN
|
|
{-std::numeric_limits<T>::infinity(), large_n<T>, large_n<T>,
|
|
-std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()},
|
|
// fused: a + b * c = inf + (negative overflow) = inf
|
|
// unfused: a + b * c = inf + -inf = NaN
|
|
{std::numeric_limits<T>::infinity(), -large_n<T>, large_n<T>,
|
|
std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()},
|
|
// NaN
|
|
{std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f,
|
|
std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()},
|
|
// -NaN
|
|
{-std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f,
|
|
std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()}};
|
|
|
|
template <typename T>
|
|
static constexpr Vector<const FMOperation<T>> qfma_vector() {
|
|
return ArrayVector(qfma_array<T>);
|
|
}
|
|
|
|
// Fused Multiply-Subtract performs a - b * c.
|
|
template <typename T>
|
|
static constexpr FMOperation<T> qfms_array[]{
|
|
{1.0f, 2.0f, 3.0f, -5.0f, -5.0f},
|
|
// fused: a - b * c = inf - (positive overflow) = inf
|
|
// unfused: a - b * c = inf - inf = NaN
|
|
{std::numeric_limits<T>::infinity(), large_n<T>, large_n<T>,
|
|
std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()},
|
|
// fused: a - b * c = -inf - (negative overflow) = -inf
|
|
// unfused: a - b * c = -inf - -inf = NaN
|
|
{-std::numeric_limits<T>::infinity(), -large_n<T>, large_n<T>,
|
|
-std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()},
|
|
// NaN
|
|
{std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f,
|
|
std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()},
|
|
// -NaN
|
|
{-std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f,
|
|
std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()}};
|
|
|
|
template <typename T>
|
|
static constexpr Vector<const FMOperation<T>> qfms_vector() {
|
|
return ArrayVector(qfms_array<T>);
|
|
}
|
|
|
|
// Fused results only when fma3 feature is enabled, and running on TurboFan or
|
|
// Liftoff (which can fall back to TurboFan if FMA is not implemented).
|
|
bool ExpectFused(TestExecutionTier tier) {
|
|
#ifdef V8_TARGET_ARCH_X64
|
|
return CpuFeatures::IsSupported(FMA3) &&
|
|
(tier == TestExecutionTier::kTurbofan ||
|
|
tier == TestExecutionTier::kLiftoff);
|
|
#else
|
|
return (tier == TestExecutionTier::kTurbofan ||
|
|
tier == TestExecutionTier::kLiftoff);
|
|
#endif
|
|
}
|
|
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
|
|
|
|
} // namespace
|
|
|
|
#define WASM_SIMD_CHECK_LANE_S(TYPE, value, LANE_TYPE, lane_value, lane_index) \
|
|
WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \
|
|
WASM_SIMD_##TYPE##_EXTRACT_LANE( \
|
|
lane_index, WASM_GET_LOCAL(value))), \
|
|
WASM_RETURN1(WASM_ZERO))
|
|
|
|
// Unsigned Extracts are only available for I8x16, I16x8 types
|
|
#define WASM_SIMD_CHECK_LANE_U(TYPE, value, LANE_TYPE, lane_value, lane_index) \
|
|
WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \
|
|
WASM_SIMD_##TYPE##_EXTRACT_LANE_U( \
|
|
lane_index, WASM_GET_LOCAL(value))), \
|
|
WASM_RETURN1(WASM_ZERO))
|
|
|
|
// The macro below disables tests lowering for certain nodes where the simd
|
|
// lowering doesn't work correctly. Early return here if the CPU does not
|
|
// support SIMD as the graph will be implicitly lowered in that case.
|
|
#define WASM_SIMD_TEST_NO_LOWERING(name) \
|
|
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
|
|
TestExecutionTier execution_tier); \
|
|
TEST(RunWasm_##name##_turbofan) { \
|
|
if (!CpuFeatures::SupportsWasmSimd128()) return; \
|
|
EXPERIMENTAL_FLAG_SCOPE(simd); \
|
|
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \
|
|
} \
|
|
TEST(RunWasm_##name##_liftoff) { \
|
|
if (!CpuFeatures::SupportsWasmSimd128()) return; \
|
|
EXPERIMENTAL_FLAG_SCOPE(simd); \
|
|
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kLiftoff); \
|
|
} \
|
|
TEST(RunWasm_##name##_interpreter) { \
|
|
EXPERIMENTAL_FLAG_SCOPE(simd); \
|
|
RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \
|
|
} \
|
|
void RunWasm_##name##_Impl(LowerSimd lower_simd, \
|
|
TestExecutionTier execution_tier)
|
|
|
|
// Returns true if the platform can represent the result.
|
|
template <typename T>
|
|
bool PlatformCanRepresent(T x) {
|
|
#if V8_TARGET_ARCH_ARM
|
|
return std::fpclassify(x) != FP_SUBNORMAL;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
// Returns true for very small and very large numbers. We skip these test
|
|
// values for the approximation instructions, which don't work at the extremes.
|
|
bool IsExtreme(float x) {
|
|
float abs_x = std::fabs(x);
|
|
const float kSmallFloatThreshold = 1.0e-32f;
|
|
const float kLargeFloatThreshold = 1.0e32f;
|
|
return abs_x != 0.0f && // 0 or -0 are fine.
|
|
(abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold);
|
|
}
|
|
|
|
#if V8_OS_AIX
|
|
template <typename T>
|
|
bool MightReverseSign(T float_op) {
|
|
return float_op == static_cast<T>(Negate) ||
|
|
float_op == static_cast<T>(std::abs);
|
|
}
|
|
#endif
|
|
|
|
WASM_SIMD_TEST(S128Globals) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold input and output vectors.
|
|
int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
BUILD(r, WASM_SET_GLOBAL(1, WASM_GET_GLOBAL(0)), WASM_ONE);
|
|
|
|
FOR_INT32_INPUTS(x) {
|
|
for (int i = 0; i < 4; i++) {
|
|
WriteLittleEndianValue<int32_t>(&g0[i], x);
|
|
}
|
|
r.Call();
|
|
int32_t expected = x;
|
|
for (int i = 0; i < 4; i++) {
|
|
int32_t actual = ReadLittleEndianValue<int32_t>(&g1[i]);
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Splat) {
|
|
WasmRunner<int32_t, float> r(execution_tier, lower_simd);
|
|
// Set up a global to hold output vector.
|
|
float* g = r.builder().AddGlobal<float>(kWasmS128);
|
|
byte param1 = 0;
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(param1))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT32_INPUTS(x) {
|
|
r.Call(x);
|
|
float expected = x;
|
|
for (int i = 0; i < 4; i++) {
|
|
float actual = ReadLittleEndianValue<float>(&g[i]);
|
|
if (std::isnan(expected)) {
|
|
CHECK(std::isnan(actual));
|
|
} else {
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4ReplaceLane) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold input/output vector.
|
|
float* g = r.builder().AddGlobal<float>(kWasmS128);
|
|
// Build function to replace each lane with its (FP) index.
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_F32(3.14159f))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(temp1), WASM_F32(0.0f))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(temp1), WASM_F32(1.0f))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
|
|
2, WASM_GET_LOCAL(temp1), WASM_F32(2.0f))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(
|
|
3, WASM_GET_LOCAL(temp1), WASM_F32(3.0f))),
|
|
WASM_ONE);
|
|
|
|
r.Call();
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(static_cast<float>(i), ReadLittleEndianValue<float>(&g[i]));
|
|
}
|
|
}
|
|
|
|
// Tests both signed and unsigned conversion.
|
|
WASM_SIMD_TEST(F32x4ConvertI32x4) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Create two output vectors to hold signed and unsigned results.
|
|
float* g0 = r.builder().AddGlobal<float>(kWasmS128);
|
|
float* g1 = r.builder().AddGlobal<float>(kWasmS128);
|
|
// Build fn to splat test value, perform conversions, and write the results.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(
|
|
0, WASM_SIMD_UNOP(kExprF32x4SConvertI32x4, WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(
|
|
1, WASM_SIMD_UNOP(kExprF32x4UConvertI32x4, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT32_INPUTS(x) {
|
|
r.Call(x);
|
|
float expected_signed = static_cast<float>(x);
|
|
float expected_unsigned = static_cast<float>(static_cast<uint32_t>(x));
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<float>(&g0[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<float>(&g1[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool IsSameNan(float expected, float actual) {
|
|
// Sign is non-deterministic.
|
|
uint32_t expected_bits = bit_cast<uint32_t>(expected) & ~0x80000000;
|
|
uint32_t actual_bits = bit_cast<uint32_t>(actual) & ~0x80000000;
|
|
// Some implementations convert signaling NaNs to quiet NaNs.
|
|
return (expected_bits == actual_bits) ||
|
|
((expected_bits | 0x00400000) == actual_bits);
|
|
}
|
|
|
|
bool IsCanonical(float actual) {
|
|
uint32_t actual_bits = bit_cast<uint32_t>(actual);
|
|
// Canonical NaN has quiet bit and no payload.
|
|
return (actual_bits & 0xFFC00000) == actual_bits;
|
|
}
|
|
|
|
void CheckFloatResult(float x, float y, float expected, float actual,
|
|
bool exact = true) {
|
|
if (std::isnan(expected)) {
|
|
CHECK(std::isnan(actual));
|
|
if (std::isnan(x) && IsSameNan(x, actual)) return;
|
|
if (std::isnan(y) && IsSameNan(y, actual)) return;
|
|
if (IsSameNan(expected, actual)) return;
|
|
if (IsCanonical(actual)) return;
|
|
// This is expected to assert; it's useful for debugging.
|
|
CHECK_EQ(bit_cast<uint32_t>(expected), bit_cast<uint32_t>(actual));
|
|
} else {
|
|
if (exact) {
|
|
CHECK_EQ(expected, actual);
|
|
// The sign of 0's must match.
|
|
CHECK_EQ(std::signbit(expected), std::signbit(actual));
|
|
return;
|
|
}
|
|
// Otherwise, perform an approximate equality test. First check for
|
|
// equality to handle +/-Infinity where approximate equality doesn't work.
|
|
if (expected == actual) return;
|
|
|
|
// 1% error allows all platforms to pass easily.
|
|
constexpr float kApproximationError = 0.01f;
|
|
float abs_error = std::abs(expected) * kApproximationError,
|
|
min = expected - abs_error, max = expected + abs_error;
|
|
CHECK_LE(min, actual);
|
|
CHECK_GE(max, actual);
|
|
}
|
|
}
|
|
|
|
// Test some values not included in the float inputs from value_helper. These
|
|
// tests are useful for opcodes that are synthesized during code gen, like Min
|
|
// and Max on ia32 and x64.
|
|
static constexpr uint32_t nan_test_array[] = {
|
|
// Bit patterns of quiet NaNs and signaling NaNs, with or without
|
|
// additional payload.
|
|
0x7FC00000, 0xFFC00000, 0x7FFFFFFF, 0xFFFFFFFF, 0x7F876543, 0xFF876543,
|
|
// NaN with top payload bit unset.
|
|
0x7FA00000,
|
|
// Both Infinities.
|
|
0x7F800000, 0xFF800000,
|
|
// Some "normal" numbers, 1 and -1.
|
|
0x3F800000, 0xBF800000};
|
|
|
|
#define FOR_FLOAT32_NAN_INPUTS(i) \
|
|
for (size_t i = 0; i < arraysize(nan_test_array); ++i)
|
|
|
|
void RunF32x4UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, FloatUnOp expected_op,
|
|
bool exact = true) {
|
|
WasmRunner<int32_t, float> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
float* g = r.builder().AddGlobal<float>(kWasmS128);
|
|
// Build fn to splat test value, perform unop, and write the result.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT32_INPUTS(x) {
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
// Extreme values have larger errors so skip them for approximation tests.
|
|
if (!exact && IsExtreme(x)) continue;
|
|
float expected = expected_op(x);
|
|
#if V8_OS_AIX
|
|
if (!MightReverseSign<FloatUnOp>(expected_op))
|
|
expected = FpOpWorkaround<float>(x, expected);
|
|
#endif
|
|
if (!PlatformCanRepresent(expected)) continue;
|
|
r.Call(x);
|
|
for (int i = 0; i < 4; i++) {
|
|
float actual = ReadLittleEndianValue<float>(&g[i]);
|
|
CheckFloatResult(x, x, expected, actual, exact);
|
|
}
|
|
}
|
|
|
|
FOR_FLOAT32_NAN_INPUTS(i) {
|
|
float x = bit_cast<float>(nan_test_array[i]);
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
// Extreme values have larger errors so skip them for approximation tests.
|
|
if (!exact && IsExtreme(x)) continue;
|
|
float expected = expected_op(x);
|
|
if (!PlatformCanRepresent(expected)) continue;
|
|
r.Call(x);
|
|
for (int i = 0; i < 4; i++) {
|
|
float actual = ReadLittleEndianValue<float>(&g[i]);
|
|
CheckFloatResult(x, x, expected, actual, exact);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Abs) {
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Abs, std::abs);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Neg) {
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Neg, Negate);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Sqrt) {
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Sqrt, std::sqrt);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4RecipApprox) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipApprox,
|
|
base::Recip, false /* !exact */);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4RecipSqrtApprox) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipSqrtApprox,
|
|
base::RecipSqrt, false /* !exact */);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Ceil) {
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Ceil, ceilf, true);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Floor) {
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Floor, floorf, true);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Trunc) {
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Trunc, truncf, true);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4NearestInt) {
|
|
RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4NearestInt, nearbyintf,
|
|
true);
|
|
}
|
|
|
|
void RunF32x4BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, FloatBinOp expected_op) {
|
|
WasmRunner<int32_t, float, float> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
float* g = r.builder().AddGlobal<float>(kWasmS128);
|
|
// Build fn to splat test values, perform binop, and write the result.
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT32_INPUTS(x) {
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
FOR_FLOAT32_INPUTS(y) {
|
|
if (!PlatformCanRepresent(y)) continue;
|
|
float expected = expected_op(x, y);
|
|
if (!PlatformCanRepresent(expected)) continue;
|
|
r.Call(x, y);
|
|
for (int i = 0; i < 4; i++) {
|
|
float actual = ReadLittleEndianValue<float>(&g[i]);
|
|
CheckFloatResult(x, y, expected, actual, true /* exact */);
|
|
}
|
|
}
|
|
}
|
|
|
|
FOR_FLOAT32_NAN_INPUTS(i) {
|
|
float x = bit_cast<float>(nan_test_array[i]);
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
FOR_FLOAT32_NAN_INPUTS(j) {
|
|
float y = bit_cast<float>(nan_test_array[j]);
|
|
if (!PlatformCanRepresent(y)) continue;
|
|
float expected = expected_op(x, y);
|
|
if (!PlatformCanRepresent(expected)) continue;
|
|
r.Call(x, y);
|
|
for (int i = 0; i < 4; i++) {
|
|
float actual = ReadLittleEndianValue<float>(&g[i]);
|
|
CheckFloatResult(x, y, expected, actual, true /* exact */);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef FOR_FLOAT32_NAN_INPUTS
|
|
|
|
WASM_SIMD_TEST(F32x4Add) {
|
|
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Add, Add);
|
|
}
|
|
WASM_SIMD_TEST(F32x4Sub) {
|
|
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Sub, Sub);
|
|
}
|
|
WASM_SIMD_TEST(F32x4Mul) {
|
|
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Mul, Mul);
|
|
}
|
|
WASM_SIMD_TEST(F32x4Div) {
|
|
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Div, base::Divide);
|
|
}
|
|
WASM_SIMD_TEST(F32x4Min) {
|
|
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Min, JSMin);
|
|
}
|
|
WASM_SIMD_TEST(F32x4Max) {
|
|
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Max, JSMax);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Pmin) {
|
|
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Pmin, Minimum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Pmax) {
|
|
RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Pmax, Maximum);
|
|
}
|
|
|
|
void RunF32x4CompareOpTest(TestExecutionTier execution_tier,
|
|
LowerSimd lower_simd, WasmOpcode opcode,
|
|
FloatCompareOp expected_op) {
|
|
WasmRunner<int32_t, float, float> r(execution_tier, lower_simd);
|
|
// Set up global to hold mask output.
|
|
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
// Build fn to splat test values, perform compare op, and write the result.
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT32_INPUTS(x) {
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
FOR_FLOAT32_INPUTS(y) {
|
|
if (!PlatformCanRepresent(y)) continue;
|
|
float diff = x - y; // Model comparison as subtraction.
|
|
if (!PlatformCanRepresent(diff)) continue;
|
|
r.Call(x, y);
|
|
int32_t expected = expected_op(x, y);
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Eq) {
|
|
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Eq, Equal);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Ne) {
|
|
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ne, NotEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Gt) {
|
|
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Gt, Greater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Ge) {
|
|
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ge, GreaterEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Lt) {
|
|
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Lt, Less);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4Le) {
|
|
RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Le, LessEqual);
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 || \
|
|
V8_TARGET_ARCH_ARM
|
|
// TODO(v8:10983) Prototyping sign select.
|
|
template <typename T>
|
|
void RunSignSelect(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode signselect, WasmOpcode splat,
|
|
std::array<int8_t, kSimd128Size> mask) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, T, T> r(execution_tier, lower_simd);
|
|
T* output = r.builder().template AddGlobal<T>(kWasmS128);
|
|
|
|
// Splat 2 constant values, then use a mask that selects alternate lanes.
|
|
BUILD(r, WASM_GET_LOCAL(0), WASM_SIMD_OP(splat), WASM_GET_LOCAL(1),
|
|
WASM_SIMD_OP(splat), WASM_SIMD_CONSTANT(mask), WASM_SIMD_OP(signselect),
|
|
kExprGlobalSet, 0, WASM_ONE);
|
|
|
|
r.Call(1, 2);
|
|
|
|
constexpr int lanes = kSimd128Size / sizeof(T);
|
|
for (int i = 0; i < lanes; i += 2) {
|
|
CHECK_EQ(1, ReadLittleEndianValue<T>(&output[i]));
|
|
}
|
|
for (int i = 1; i < lanes; i += 2) {
|
|
CHECK_EQ(2, ReadLittleEndianValue<T>(&output[i]));
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I8x16SignSelect) {
|
|
std::array<int8_t, kSimd128Size> mask = {0x80, 0, -1, 0, 0x80, 0, -1, 0,
|
|
0x80, 0, -1, 0, 0x80, 0, -1, 0};
|
|
RunSignSelect<int8_t>(execution_tier, lower_simd, kExprI8x16SignSelect,
|
|
kExprI8x16Splat, mask);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I16x8SignSelect) {
|
|
std::array<int16_t, kSimd128Size / 2> selection = {0x8000, 0, -1, 0,
|
|
0x8000, 0, -1, 0};
|
|
std::array<int8_t, kSimd128Size> mask;
|
|
memcpy(mask.data(), selection.data(), kSimd128Size);
|
|
RunSignSelect<int16_t>(execution_tier, lower_simd, kExprI16x8SignSelect,
|
|
kExprI16x8Splat, mask);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I32x4SignSelect) {
|
|
std::array<int32_t, kSimd128Size / 4> selection = {0x80000000, 0, -1, 0};
|
|
std::array<int8_t, kSimd128Size> mask;
|
|
memcpy(mask.data(), selection.data(), kSimd128Size);
|
|
RunSignSelect<int32_t>(execution_tier, lower_simd, kExprI32x4SignSelect,
|
|
kExprI32x4Splat, mask);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I64x2SignSelect) {
|
|
std::array<int64_t, kSimd128Size / 8> selection = {0x8000000000000000, 0};
|
|
std::array<int8_t, kSimd128Size> mask;
|
|
memcpy(mask.data(), selection.data(), kSimd128Size);
|
|
RunSignSelect<int64_t>(execution_tier, lower_simd, kExprI64x2SignSelect,
|
|
kExprI64x2Splat, mask);
|
|
}
|
|
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 ||
|
|
// V8_TARGET_ARCH_ARM
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
|
|
WASM_SIMD_TEST_NO_LOWERING(F32x4Qfma) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, float, float, float> r(execution_tier, lower_simd);
|
|
// Set up global to hold mask output.
|
|
float* g = r.builder().AddGlobal<float>(kWasmS128);
|
|
// Build fn to splat test values, perform compare op, and write the result.
|
|
byte value1 = 0, value2 = 1, value3 = 2;
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_QFMA(
|
|
WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1)),
|
|
WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2)),
|
|
WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value3)))),
|
|
WASM_ONE);
|
|
|
|
for (FMOperation<float> x : qfma_vector<float>()) {
|
|
r.Call(x.a, x.b, x.c);
|
|
float expected =
|
|
ExpectFused(execution_tier) ? x.fused_result : x.unfused_result;
|
|
for (int i = 0; i < 4; i++) {
|
|
float actual = ReadLittleEndianValue<float>(&g[i]);
|
|
CheckFloatResult(x.a, x.b, expected, actual, true /* exact */);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(F32x4Qfms) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, float, float, float> r(execution_tier, lower_simd);
|
|
// Set up global to hold mask output.
|
|
float* g = r.builder().AddGlobal<float>(kWasmS128);
|
|
// Build fn to splat test values, perform compare op, and write the result.
|
|
byte value1 = 0, value2 = 1, value3 = 2;
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_QFMS(
|
|
WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1)),
|
|
WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2)),
|
|
WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value3)))),
|
|
WASM_ONE);
|
|
|
|
for (FMOperation<float> x : qfms_vector<float>()) {
|
|
r.Call(x.a, x.b, x.c);
|
|
float expected =
|
|
ExpectFused(execution_tier) ? x.fused_result : x.unfused_result;
|
|
for (int i = 0; i < 4; i++) {
|
|
float actual = ReadLittleEndianValue<float>(&g[i]);
|
|
CheckFloatResult(x.a, x.b, expected, actual, true /* exact */);
|
|
}
|
|
}
|
|
}
|
|
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
|
|
|
|
WASM_SIMD_TEST(I64x2Splat) {
|
|
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold output vector.
|
|
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
byte param1 = 0;
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(param1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT64_INPUTS(x) {
|
|
r.Call(x);
|
|
int64_t expected = x;
|
|
for (int i = 0; i < 2; i++) {
|
|
int64_t actual = ReadLittleEndianValue<int64_t>(&g[i]);
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2ExtractLane) {
|
|
WasmRunner<int64_t> r(execution_tier, lower_simd);
|
|
r.AllocateLocal(kWasmI64);
|
|
r.AllocateLocal(kWasmS128);
|
|
BUILD(
|
|
r,
|
|
WASM_SET_LOCAL(0, WASM_SIMD_I64x2_EXTRACT_LANE(
|
|
0, WASM_SIMD_I64x2_SPLAT(WASM_I64V(0xFFFFFFFFFF)))),
|
|
WASM_SET_LOCAL(1, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SIMD_I64x2_EXTRACT_LANE(1, WASM_GET_LOCAL(1)));
|
|
CHECK_EQ(0xFFFFFFFFFF, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2ReplaceLane) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold input/output vector.
|
|
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
// Build function to replace each lane with its index.
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I64x2_SPLAT(WASM_I64V(-1))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I64x2_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(temp1), WASM_I64V(0))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_I64x2_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(temp1), WASM_I64V(1))),
|
|
WASM_ONE);
|
|
|
|
r.Call();
|
|
for (int64_t i = 0; i < 2; i++) {
|
|
CHECK_EQ(i, ReadLittleEndianValue<int64_t>(&g[i]));
|
|
}
|
|
}
|
|
|
|
void RunI64x2UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int64UnOp expected_op) {
|
|
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
// Build fn to splat test value, perform unop, and write the result.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT64_INPUTS(x) {
|
|
r.Call(x);
|
|
int64_t expected = expected_op(x);
|
|
for (int i = 0; i < 2; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2Neg) {
|
|
RunI64x2UnOpTest(execution_tier, lower_simd, kExprI64x2Neg,
|
|
base::NegateWithWraparound);
|
|
}
|
|
|
|
void RunI64x2ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int64ShiftOp expected_op) {
|
|
// Intentionally shift by 64, should be no-op.
|
|
for (int shift = 1; shift <= 64; shift++) {
|
|
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
|
|
int32_t* memory = r.builder().AddMemoryElems<int32_t>(1);
|
|
int64_t* g_imm = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
int64_t* g_mem = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
byte value = 0;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
// Shift using an immediate, and shift using a value loaded from memory.
|
|
BUILD(
|
|
r, WASM_SET_LOCAL(simd, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_SHIFT_OP(opcode, WASM_GET_LOCAL(simd),
|
|
WASM_I32V(shift))),
|
|
WASM_SET_GLOBAL(1, WASM_SIMD_SHIFT_OP(
|
|
opcode, WASM_GET_LOCAL(simd),
|
|
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))),
|
|
WASM_ONE);
|
|
|
|
r.builder().WriteMemory(&memory[0], shift);
|
|
FOR_INT64_INPUTS(x) {
|
|
r.Call(x);
|
|
int64_t expected = expected_op(x, shift);
|
|
for (int i = 0; i < 2; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g_imm[i]));
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g_mem[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2Shl) {
|
|
RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2Shl,
|
|
LogicalShiftLeft);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2ShrS) {
|
|
RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2ShrS,
|
|
ArithmeticShiftRight);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2ShrU) {
|
|
RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2ShrU,
|
|
LogicalShiftRight);
|
|
}
|
|
|
|
void RunI64x2BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int64BinOp expected_op) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, int64_t, int64_t> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
// Build fn to splat test values, perform binop, and write the result.
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT64_INPUTS(x) {
|
|
FOR_INT64_INPUTS(y) {
|
|
r.Call(x, y);
|
|
int64_t expected = expected_op(x, y);
|
|
for (int i = 0; i < 2; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2Add) {
|
|
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Add,
|
|
base::AddWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2Sub) {
|
|
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Sub,
|
|
base::SubWithWraparound);
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X || \
|
|
V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS64 || \
|
|
V8_TARGET_ARCH_MIPS
|
|
WASM_SIMD_TEST_NO_LOWERING(I64x2Eq) {
|
|
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Eq, Equal);
|
|
}
|
|
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X ||
|
|
// V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS64 ||
|
|
// V8_TARGET_ARCH_MIPS
|
|
|
|
WASM_SIMD_TEST(F64x2Splat) {
|
|
WasmRunner<int32_t, double> r(execution_tier, lower_simd);
|
|
// Set up a global to hold output vector.
|
|
double* g = r.builder().AddGlobal<double>(kWasmS128);
|
|
byte param1 = 0;
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(param1))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT64_INPUTS(x) {
|
|
r.Call(x);
|
|
double expected = x;
|
|
for (int i = 0; i < 2; i++) {
|
|
double actual = ReadLittleEndianValue<double>(&g[i]);
|
|
if (std::isnan(expected)) {
|
|
CHECK(std::isnan(actual));
|
|
} else {
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2ExtractLane) {
|
|
WasmRunner<double, double> r(execution_tier, lower_simd);
|
|
byte param1 = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmF64);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r,
|
|
WASM_SET_LOCAL(temp1,
|
|
WASM_SIMD_F64x2_EXTRACT_LANE(
|
|
0, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(param1)))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(temp1))),
|
|
WASM_SIMD_F64x2_EXTRACT_LANE(1, WASM_GET_LOCAL(temp2)));
|
|
FOR_FLOAT64_INPUTS(x) {
|
|
double actual = r.Call(x);
|
|
double expected = x;
|
|
if (std::isnan(expected)) {
|
|
CHECK(std::isnan(actual));
|
|
} else {
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2ReplaceLane) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up globals to hold input/output vector.
|
|
double* g0 = r.builder().AddGlobal<double>(kWasmS128);
|
|
double* g1 = r.builder().AddGlobal<double>(kWasmS128);
|
|
// Build function to replace each lane with its (FP) index.
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F64x2_SPLAT(WASM_F64(1e100))),
|
|
// Replace lane 0.
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F64x2_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(temp1), WASM_F64(0.0f))),
|
|
// Replace lane 1.
|
|
WASM_SET_GLOBAL(1, WASM_SIMD_F64x2_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(temp1), WASM_F64(1.0f))),
|
|
WASM_ONE);
|
|
|
|
r.Call();
|
|
CHECK_EQ(0., ReadLittleEndianValue<double>(&g0[0]));
|
|
CHECK_EQ(1e100, ReadLittleEndianValue<double>(&g0[1]));
|
|
CHECK_EQ(1e100, ReadLittleEndianValue<double>(&g1[0]));
|
|
CHECK_EQ(1., ReadLittleEndianValue<double>(&g1[1]));
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2ExtractLaneWithI64x2) {
|
|
WasmRunner<int64_t> r(execution_tier, lower_simd);
|
|
BUILD(r, WASM_IF_ELSE_L(
|
|
WASM_F64_EQ(WASM_SIMD_F64x2_EXTRACT_LANE(
|
|
0, WASM_SIMD_I64x2_SPLAT(WASM_I64V(1e15))),
|
|
WASM_F64_REINTERPRET_I64(WASM_I64V(1e15))),
|
|
WASM_I64V(1), WASM_I64V(0)));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2ExtractWithF64x2) {
|
|
WasmRunner<int64_t> r(execution_tier, lower_simd);
|
|
BUILD(r, WASM_IF_ELSE_L(
|
|
WASM_I64_EQ(WASM_SIMD_I64x2_EXTRACT_LANE(
|
|
0, WASM_SIMD_F64x2_SPLAT(WASM_F64(1e15))),
|
|
WASM_I64_REINTERPRET_F64(WASM_F64(1e15))),
|
|
WASM_I64V(1), WASM_I64V(0)));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
|
|
bool IsExtreme(double x) {
|
|
double abs_x = std::fabs(x);
|
|
const double kSmallFloatThreshold = 1.0e-298;
|
|
const double kLargeFloatThreshold = 1.0e298;
|
|
return abs_x != 0.0f && // 0 or -0 are fine.
|
|
(abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold);
|
|
}
|
|
|
|
bool IsSameNan(double expected, double actual) {
|
|
// Sign is non-deterministic.
|
|
uint64_t expected_bits = bit_cast<uint64_t>(expected) & ~0x8000000000000000;
|
|
uint64_t actual_bits = bit_cast<uint64_t>(actual) & ~0x8000000000000000;
|
|
// Some implementations convert signaling NaNs to quiet NaNs.
|
|
return (expected_bits == actual_bits) ||
|
|
((expected_bits | 0x0008000000000000) == actual_bits);
|
|
}
|
|
|
|
bool IsCanonical(double actual) {
|
|
uint64_t actual_bits = bit_cast<uint64_t>(actual);
|
|
// Canonical NaN has quiet bit and no payload.
|
|
return (actual_bits & 0xFFF8000000000000) == actual_bits;
|
|
}
|
|
|
|
void CheckDoubleResult(double x, double y, double expected, double actual,
|
|
bool exact = true) {
|
|
if (std::isnan(expected)) {
|
|
CHECK(std::isnan(actual));
|
|
if (std::isnan(x) && IsSameNan(x, actual)) return;
|
|
if (std::isnan(y) && IsSameNan(y, actual)) return;
|
|
if (IsSameNan(expected, actual)) return;
|
|
if (IsCanonical(actual)) return;
|
|
// This is expected to assert; it's useful for debugging.
|
|
CHECK_EQ(bit_cast<uint64_t>(expected), bit_cast<uint64_t>(actual));
|
|
} else {
|
|
if (exact) {
|
|
CHECK_EQ(expected, actual);
|
|
// The sign of 0's must match.
|
|
CHECK_EQ(std::signbit(expected), std::signbit(actual));
|
|
return;
|
|
}
|
|
// Otherwise, perform an approximate equality test. First check for
|
|
// equality to handle +/-Infinity where approximate equality doesn't work.
|
|
if (expected == actual) return;
|
|
|
|
// 1% error allows all platforms to pass easily.
|
|
constexpr double kApproximationError = 0.01f;
|
|
double abs_error = std::abs(expected) * kApproximationError,
|
|
min = expected - abs_error, max = expected + abs_error;
|
|
CHECK_LE(min, actual);
|
|
CHECK_GE(max, actual);
|
|
}
|
|
}
|
|
|
|
// Test some values not included in the double inputs from value_helper. These
|
|
// tests are useful for opcodes that are synthesized during code gen, like Min
|
|
// and Max on ia32 and x64.
|
|
static constexpr uint64_t double_nan_test_array[] = {
|
|
// quiet NaNs, + and -
|
|
0x7FF8000000000001, 0xFFF8000000000001,
|
|
// with payload
|
|
0x7FF8000000000011, 0xFFF8000000000011,
|
|
// signaling NaNs, + and -
|
|
0x7FF0000000000001, 0xFFF0000000000001,
|
|
// with payload
|
|
0x7FF0000000000011, 0xFFF0000000000011,
|
|
// Both Infinities.
|
|
0x7FF0000000000000, 0xFFF0000000000000,
|
|
// Some "normal" numbers, 1 and -1.
|
|
0x3FF0000000000000, 0xBFF0000000000000};
|
|
|
|
#define FOR_FLOAT64_NAN_INPUTS(i) \
|
|
for (size_t i = 0; i < arraysize(double_nan_test_array); ++i)
|
|
|
|
void RunF64x2UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, DoubleUnOp expected_op,
|
|
bool exact = true) {
|
|
WasmRunner<int32_t, double> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
double* g = r.builder().AddGlobal<double>(kWasmS128);
|
|
// Build fn to splat test value, perform unop, and write the result.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT64_INPUTS(x) {
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
// Extreme values have larger errors so skip them for approximation tests.
|
|
if (!exact && IsExtreme(x)) continue;
|
|
double expected = expected_op(x);
|
|
#if V8_OS_AIX
|
|
if (!MightReverseSign<DoubleUnOp>(expected_op))
|
|
expected = FpOpWorkaround<double>(x, expected);
|
|
#endif
|
|
if (!PlatformCanRepresent(expected)) continue;
|
|
r.Call(x);
|
|
for (int i = 0; i < 2; i++) {
|
|
double actual = ReadLittleEndianValue<double>(&g[i]);
|
|
CheckDoubleResult(x, x, expected, actual, exact);
|
|
}
|
|
}
|
|
|
|
FOR_FLOAT64_NAN_INPUTS(i) {
|
|
double x = bit_cast<double>(double_nan_test_array[i]);
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
// Extreme values have larger errors so skip them for approximation tests.
|
|
if (!exact && IsExtreme(x)) continue;
|
|
double expected = expected_op(x);
|
|
if (!PlatformCanRepresent(expected)) continue;
|
|
r.Call(x);
|
|
for (int i = 0; i < 2; i++) {
|
|
double actual = ReadLittleEndianValue<double>(&g[i]);
|
|
CheckDoubleResult(x, x, expected, actual, exact);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Abs) {
|
|
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Abs, std::abs);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Neg) {
|
|
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Neg, Negate);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Sqrt) {
|
|
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Sqrt, std::sqrt);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Ceil) {
|
|
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Ceil, ceil, true);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Floor) {
|
|
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Floor, floor, true);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Trunc) {
|
|
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Trunc, trunc, true);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2NearestInt) {
|
|
RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2NearestInt, nearbyint,
|
|
true);
|
|
}
|
|
|
|
void RunF64x2BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, DoubleBinOp expected_op) {
|
|
WasmRunner<int32_t, double, double> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
double* g = r.builder().AddGlobal<double>(kWasmS128);
|
|
// Build fn to splat test value, perform binop, and write the result.
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT64_INPUTS(x) {
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
FOR_FLOAT64_INPUTS(y) {
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
double expected = expected_op(x, y);
|
|
if (!PlatformCanRepresent(expected)) continue;
|
|
r.Call(x, y);
|
|
for (int i = 0; i < 2; i++) {
|
|
double actual = ReadLittleEndianValue<double>(&g[i]);
|
|
CheckDoubleResult(x, y, expected, actual, true /* exact */);
|
|
}
|
|
}
|
|
}
|
|
|
|
FOR_FLOAT64_NAN_INPUTS(i) {
|
|
double x = bit_cast<double>(double_nan_test_array[i]);
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
FOR_FLOAT64_NAN_INPUTS(j) {
|
|
double y = bit_cast<double>(double_nan_test_array[j]);
|
|
double expected = expected_op(x, y);
|
|
if (!PlatformCanRepresent(expected)) continue;
|
|
r.Call(x, y);
|
|
for (int i = 0; i < 2; i++) {
|
|
double actual = ReadLittleEndianValue<double>(&g[i]);
|
|
CheckDoubleResult(x, y, expected, actual, true /* exact */);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef FOR_FLOAT64_NAN_INPUTS
|
|
|
|
WASM_SIMD_TEST(F64x2Add) {
|
|
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Add, Add);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Sub) {
|
|
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Sub, Sub);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Mul) {
|
|
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Mul, Mul);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Div) {
|
|
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Div, base::Divide);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Pmin) {
|
|
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Pmin, Minimum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Pmax) {
|
|
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Pmax, Maximum);
|
|
}
|
|
|
|
void RunF64x2CompareOpTest(TestExecutionTier execution_tier,
|
|
LowerSimd lower_simd, WasmOpcode opcode,
|
|
DoubleCompareOp expected_op) {
|
|
WasmRunner<int32_t, double, double> r(execution_tier, lower_simd);
|
|
// Set up global to hold mask output.
|
|
int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
// Build fn to splat test values, perform compare op, and write the result.
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
// Make the lanes of each temp compare differently:
|
|
// temp1 = y, x and temp2 = y, y.
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp1,
|
|
WASM_SIMD_F64x2_REPLACE_LANE(1, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(value2))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT64_INPUTS(x) {
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
FOR_FLOAT64_INPUTS(y) {
|
|
if (!PlatformCanRepresent(y)) continue;
|
|
double diff = x - y; // Model comparison as subtraction.
|
|
if (!PlatformCanRepresent(diff)) continue;
|
|
r.Call(x, y);
|
|
int64_t expected0 = expected_op(x, y);
|
|
int64_t expected1 = expected_op(y, y);
|
|
CHECK_EQ(expected0, ReadLittleEndianValue<int64_t>(&g[0]));
|
|
CHECK_EQ(expected1, ReadLittleEndianValue<int64_t>(&g[1]));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Eq) {
|
|
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Eq, Equal);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Ne) {
|
|
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Ne, NotEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Gt) {
|
|
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Gt, Greater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Ge) {
|
|
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Ge, GreaterEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Lt) {
|
|
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Lt, Less);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Le) {
|
|
RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Le, LessEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Min) {
|
|
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Min, JSMin);
|
|
}
|
|
|
|
WASM_SIMD_TEST(F64x2Max) {
|
|
RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Max, JSMax);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I64x2Mul) {
|
|
RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Mul,
|
|
base::MulWithWraparound);
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
|
|
WASM_SIMD_TEST_NO_LOWERING(F64x2Qfma) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, double, double, double> r(execution_tier, lower_simd);
|
|
// Set up global to hold mask output.
|
|
double* g = r.builder().AddGlobal<double>(kWasmS128);
|
|
// Build fn to splat test values, perform compare op, and write the result.
|
|
byte value1 = 0, value2 = 1, value3 = 2;
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F64x2_QFMA(
|
|
WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value1)),
|
|
WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value2)),
|
|
WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value3)))),
|
|
WASM_ONE);
|
|
|
|
for (FMOperation<double> x : qfma_vector<double>()) {
|
|
r.Call(x.a, x.b, x.c);
|
|
double expected =
|
|
ExpectFused(execution_tier) ? x.fused_result : x.unfused_result;
|
|
for (int i = 0; i < 2; i++) {
|
|
double actual = ReadLittleEndianValue<double>(&g[i]);
|
|
CheckDoubleResult(x.a, x.b, expected, actual, true /* exact */);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(F64x2Qfms) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, double, double, double> r(execution_tier, lower_simd);
|
|
// Set up global to hold mask output.
|
|
double* g = r.builder().AddGlobal<double>(kWasmS128);
|
|
// Build fn to splat test values, perform compare op, and write the result.
|
|
byte value1 = 0, value2 = 1, value3 = 2;
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F64x2_QFMS(
|
|
WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value1)),
|
|
WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value2)),
|
|
WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value3)))),
|
|
WASM_ONE);
|
|
|
|
for (FMOperation<double> x : qfms_vector<double>()) {
|
|
r.Call(x.a, x.b, x.c);
|
|
double expected =
|
|
ExpectFused(execution_tier) ? x.fused_result : x.unfused_result;
|
|
for (int i = 0; i < 2; i++) {
|
|
double actual = ReadLittleEndianValue<double>(&g[i]);
|
|
CheckDoubleResult(x.a, x.b, expected, actual, true /* exact */);
|
|
}
|
|
}
|
|
}
|
|
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X
|
|
|
|
WASM_SIMD_TEST(I32x4Splat) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold output vector.
|
|
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
byte param1 = 0;
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(param1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT32_INPUTS(x) {
|
|
r.Call(x);
|
|
int32_t expected = x;
|
|
for (int i = 0; i < 4; i++) {
|
|
int32_t actual = ReadLittleEndianValue<int32_t>(&g[i]);
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4ReplaceLane) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold input/output vector.
|
|
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
// Build function to replace each lane with its index.
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(-1))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
|
|
2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(
|
|
3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
|
|
WASM_ONE);
|
|
|
|
r.Call();
|
|
for (int32_t i = 0; i < 4; i++) {
|
|
CHECK_EQ(i, ReadLittleEndianValue<int32_t>(&g[i]));
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Splat) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold output vector.
|
|
int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
byte param1 = 0;
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(param1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT16_INPUTS(x) {
|
|
r.Call(x);
|
|
int16_t expected = x;
|
|
for (int i = 0; i < 8; i++) {
|
|
int16_t actual = ReadLittleEndianValue<int16_t>(&g[i]);
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
|
|
// Test values that do not fit in a int16.
|
|
FOR_INT32_INPUTS(x) {
|
|
r.Call(x);
|
|
int16_t expected = truncate_to_int16(x);
|
|
for (int i = 0; i < 8; i++) {
|
|
int16_t actual = ReadLittleEndianValue<int16_t>(&g[i]);
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8ReplaceLane) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold input/output vector.
|
|
int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
// Build function to replace each lane with its index.
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_I32V(-1))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
4, WASM_GET_LOCAL(temp1), WASM_I32V(4))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
5, WASM_GET_LOCAL(temp1), WASM_I32V(5))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
6, WASM_GET_LOCAL(temp1), WASM_I32V(6))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
7, WASM_GET_LOCAL(temp1), WASM_I32V(7))),
|
|
WASM_ONE);
|
|
|
|
r.Call();
|
|
for (int16_t i = 0; i < 8; i++) {
|
|
CHECK_EQ(i, ReadLittleEndianValue<int16_t>(&g[i]));
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16BitMask) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
byte value1 = r.AllocateLocal(kWasmS128);
|
|
|
|
BUILD(r, WASM_SET_LOCAL(value1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SET_LOCAL(value1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(value1), WASM_I32V(0))),
|
|
WASM_SET_LOCAL(value1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(value1), WASM_I32V(-1))),
|
|
WASM_SIMD_UNOP(kExprI8x16BitMask, WASM_GET_LOCAL(value1)));
|
|
|
|
FOR_INT8_INPUTS(x) {
|
|
int32_t actual = r.Call(x);
|
|
// Lane 0 is always 0 (positive), lane 1 is always -1.
|
|
int32_t expected = std::signbit(static_cast<double>(x)) ? 0xFFFE : 0x0002;
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8BitMask) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
byte value1 = r.AllocateLocal(kWasmS128);
|
|
|
|
BUILD(r, WASM_SET_LOCAL(value1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SET_LOCAL(value1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(value1), WASM_I32V(0))),
|
|
WASM_SET_LOCAL(value1, WASM_SIMD_I16x8_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(value1), WASM_I32V(-1))),
|
|
WASM_SIMD_UNOP(kExprI16x8BitMask, WASM_GET_LOCAL(value1)));
|
|
|
|
FOR_INT16_INPUTS(x) {
|
|
int32_t actual = r.Call(x);
|
|
// Lane 0 is always 0 (positive), lane 1 is always -1.
|
|
int32_t expected = std::signbit(static_cast<double>(x)) ? 0xFE : 2;
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4BitMask) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
byte value1 = r.AllocateLocal(kWasmS128);
|
|
|
|
BUILD(r, WASM_SET_LOCAL(value1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SET_LOCAL(value1, WASM_SIMD_I32x4_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(value1), WASM_I32V(0))),
|
|
WASM_SET_LOCAL(value1, WASM_SIMD_I32x4_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(value1), WASM_I32V(-1))),
|
|
WASM_SIMD_UNOP(kExprI32x4BitMask, WASM_GET_LOCAL(value1)));
|
|
|
|
FOR_INT32_INPUTS(x) {
|
|
int32_t actual = r.Call(x);
|
|
// Lane 0 is always 0 (positive), lane 1 is always -1.
|
|
int32_t expected = std::signbit(static_cast<double>(x)) ? 0xE : 2;
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
|
|
// TODO(v8:10997) Prototyping i64x2.bitmask.
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || \
|
|
V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_MIPS
|
|
WASM_SIMD_TEST_NO_LOWERING(I64x2BitMask) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
|
|
byte value1 = r.AllocateLocal(kWasmS128);
|
|
|
|
BUILD(r, WASM_SET_LOCAL(value1, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SET_LOCAL(value1, WASM_SIMD_I64x2_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(value1), WASM_I64V_1(0))),
|
|
WASM_SIMD_UNOP(kExprI64x2BitMask, WASM_GET_LOCAL(value1)));
|
|
|
|
for (int64_t x : compiler::ValueHelper::GetVector<int64_t>()) {
|
|
int32_t actual = r.Call(x);
|
|
// Lane 0 is always 0 (positive).
|
|
int32_t expected = std::signbit(static_cast<double>(x)) ? 0x2 : 0x0;
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM ||
|
|
// V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_MIPS
|
|
|
|
WASM_SIMD_TEST(I8x16Splat) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold output vector.
|
|
int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
byte param1 = 0;
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(param1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT8_INPUTS(x) {
|
|
r.Call(x);
|
|
int8_t expected = x;
|
|
for (int i = 0; i < 16; i++) {
|
|
int8_t actual = ReadLittleEndianValue<int8_t>(&g[i]);
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
|
|
// Test values that do not fit in a int16.
|
|
FOR_INT16_INPUTS(x) {
|
|
r.Call(x);
|
|
int8_t expected = truncate_to_int8(x);
|
|
for (int i = 0; i < 16; i++) {
|
|
int8_t actual = ReadLittleEndianValue<int8_t>(&g[i]);
|
|
CHECK_EQ(actual, expected);
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16ReplaceLane) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up a global to hold input/output vector.
|
|
int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
// Build function to replace each lane with its index.
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_I32V(-1))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
4, WASM_GET_LOCAL(temp1), WASM_I32V(4))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
5, WASM_GET_LOCAL(temp1), WASM_I32V(5))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
6, WASM_GET_LOCAL(temp1), WASM_I32V(6))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
7, WASM_GET_LOCAL(temp1), WASM_I32V(7))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
8, WASM_GET_LOCAL(temp1), WASM_I32V(8))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
9, WASM_GET_LOCAL(temp1), WASM_I32V(9))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
10, WASM_GET_LOCAL(temp1), WASM_I32V(10))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
11, WASM_GET_LOCAL(temp1), WASM_I32V(11))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
12, WASM_GET_LOCAL(temp1), WASM_I32V(12))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
13, WASM_GET_LOCAL(temp1), WASM_I32V(13))),
|
|
WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
14, WASM_GET_LOCAL(temp1), WASM_I32V(14))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_REPLACE_LANE(
|
|
15, WASM_GET_LOCAL(temp1), WASM_I32V(15))),
|
|
WASM_ONE);
|
|
|
|
r.Call();
|
|
for (int8_t i = 0; i < 16; i++) {
|
|
CHECK_EQ(i, ReadLittleEndianValue<int8_t>(&g[i]));
|
|
}
|
|
}
|
|
|
|
// Use doubles to ensure exact conversion.
|
|
int32_t ConvertToInt(double val, bool unsigned_integer) {
|
|
if (std::isnan(val)) return 0;
|
|
if (unsigned_integer) {
|
|
if (val < 0) return 0;
|
|
if (val > kMaxUInt32) return kMaxUInt32;
|
|
return static_cast<uint32_t>(val);
|
|
} else {
|
|
if (val < kMinInt) return kMinInt;
|
|
if (val > kMaxInt) return kMaxInt;
|
|
return static_cast<int>(val);
|
|
}
|
|
}
|
|
|
|
// Tests both signed and unsigned conversion.
|
|
WASM_SIMD_TEST(I32x4ConvertF32x4) {
|
|
WasmRunner<int32_t, float> r(execution_tier, lower_simd);
|
|
// Create two output vectors to hold signed and unsigned results.
|
|
int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
// Build fn to splat test value, perform conversions, and write the results.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(
|
|
0, WASM_SIMD_UNOP(kExprI32x4SConvertF32x4, WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(
|
|
1, WASM_SIMD_UNOP(kExprI32x4UConvertF32x4, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_FLOAT32_INPUTS(x) {
|
|
if (!PlatformCanRepresent(x)) continue;
|
|
r.Call(x);
|
|
int32_t expected_signed = ConvertToInt(x, false);
|
|
int32_t expected_unsigned = ConvertToInt(x, true);
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g1[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests both signed and unsigned conversion from I16x8 (unpacking).
|
|
WASM_SIMD_TEST(I32x4ConvertI16x8) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Create four output vectors to hold signed and unsigned results.
|
|
int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
int32_t* g2 = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
int32_t* g3 = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
// Build fn to splat test value, perform conversions, and write the results.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8High,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8Low,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8High,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8Low,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT16_INPUTS(x) {
|
|
r.Call(x);
|
|
int32_t expected_signed = static_cast<int32_t>(x);
|
|
int32_t expected_unsigned = static_cast<int32_t>(static_cast<uint16_t>(x));
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i]));
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g1[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g2[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g3[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(v8:10972) Prototyping i64x2 convert from i32x4.
|
|
// Tests both signed and unsigned conversion from I32x4 (unpacking).
|
|
#if V8_TARGET_ARCH_ARM64
|
|
WASM_SIMD_TEST_NO_LOWERING(I64x2ConvertI32x4) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Create four output vectors to hold signed and unsigned results.
|
|
int64_t* g0 = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
int64_t* g1 = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
int64_t* g2 = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
int64_t* g3 = r.builder().AddGlobal<int64_t>(kWasmS128);
|
|
// Build fn to splat test value, perform conversions, and write the results.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI64x2SConvertI32x4High,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI64x2SConvertI32x4Low,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI64x2UConvertI32x4High,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI64x2UConvertI32x4Low,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT32_INPUTS(x) {
|
|
r.Call(x);
|
|
int64_t expected_signed = static_cast<int64_t>(x);
|
|
int64_t expected_unsigned = static_cast<int64_t>(static_cast<uint32_t>(x));
|
|
for (int i = 0; i < 2; i++) {
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int64_t>(&g0[i]));
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int64_t>(&g1[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int64_t>(&g2[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int64_t>(&g3[i]));
|
|
}
|
|
}
|
|
}
|
|
#endif // V8_TARGET_ARCH_ARM64
|
|
|
|
void RunI32x4UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int32UnOp expected_op) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
// Build fn to splat test value, perform unop, and write the result.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT32_INPUTS(x) {
|
|
r.Call(x);
|
|
int32_t expected = expected_op(x);
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4Neg) {
|
|
RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Neg,
|
|
base::NegateWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4Abs) {
|
|
RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Abs, std::abs);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Not) {
|
|
RunI32x4UnOpTest(execution_tier, lower_simd, kExprS128Not,
|
|
[](int32_t x) { return ~x; });
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 || \
|
|
V8_TARGET_ARCH_IA32
|
|
// TODO(v8:11086) Prototype i32x4.extadd_pairwise_i16x8_{s,u}
|
|
template <typename Narrow, typename Wide>
|
|
void RunExtAddPairwiseTest(TestExecutionTier execution_tier,
|
|
LowerSimd lower_simd, WasmOpcode ext_add_pairwise,
|
|
WasmOpcode splat) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
constexpr int num_lanes = kSimd128Size / sizeof(Wide);
|
|
WasmRunner<int32_t, Narrow> r(execution_tier, lower_simd);
|
|
Wide* g = r.builder().template AddGlobal<Wide>(kWasmS128);
|
|
|
|
// TODO(v8:11086) We splat the same value, so pairwise adding ends up adding
|
|
// the same value to itself, consider a more complicated test, like having 2
|
|
// vectors, and shuffling them.
|
|
BUILD(r, WASM_GET_LOCAL(0), WASM_SIMD_OP(splat),
|
|
WASM_SIMD_OP(ext_add_pairwise), kExprGlobalSet, 0, WASM_ONE);
|
|
|
|
for (Narrow x : compiler::ValueHelper::GetVector<Narrow>()) {
|
|
r.Call(x);
|
|
Wide expected = AddLong<Wide>(x, x);
|
|
for (int i = 0; i < num_lanes; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<Wide>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I32x4ExtAddPairwiseI16x8S) {
|
|
RunExtAddPairwiseTest<int16_t, int32_t>(execution_tier, lower_simd,
|
|
kExprI32x4ExtAddPairwiseI16x8S,
|
|
kExprI16x8Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I32x4ExtAddPairwiseI16x8U) {
|
|
RunExtAddPairwiseTest<uint16_t, uint32_t>(execution_tier, lower_simd,
|
|
kExprI32x4ExtAddPairwiseI16x8U,
|
|
kExprI16x8Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I16x8ExtAddPairwiseI8x16S) {
|
|
RunExtAddPairwiseTest<int8_t, int16_t>(execution_tier, lower_simd,
|
|
kExprI16x8ExtAddPairwiseI8x16S,
|
|
kExprI8x16Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I16x8ExtAddPairwiseI8x16U) {
|
|
RunExtAddPairwiseTest<uint8_t, uint16_t>(execution_tier, lower_simd,
|
|
kExprI16x8ExtAddPairwiseI8x16U,
|
|
kExprI8x16Splat);
|
|
}
|
|
#endif // V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X64 ||
|
|
// V8_TARGET_ARCH_IA32
|
|
|
|
void RunI32x4BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int32BinOp expected_op) {
|
|
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
// Build fn to splat test values, perform binop, and write the result.
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT32_INPUTS(x) {
|
|
FOR_INT32_INPUTS(y) {
|
|
r.Call(x, y);
|
|
int32_t expected = expected_op(x, y);
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4Add) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Add,
|
|
base::AddWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4Sub) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Sub,
|
|
base::SubWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4Mul) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Mul,
|
|
base::MulWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4MinS) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinS, Minimum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4MaxS) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxS, Maximum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4MinU) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinU,
|
|
UnsignedMinimum);
|
|
}
|
|
WASM_SIMD_TEST(I32x4MaxU) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxU,
|
|
|
|
UnsignedMaximum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128And) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128And,
|
|
[](int32_t x, int32_t y) { return x & y; });
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Or) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Or,
|
|
[](int32_t x, int32_t y) { return x | y; });
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Xor) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Xor,
|
|
[](int32_t x, int32_t y) { return x ^ y; });
|
|
}
|
|
|
|
// Bitwise operation, doesn't really matter what simd type we test it with.
|
|
WASM_SIMD_TEST(S128AndNot) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128AndNot,
|
|
[](int32_t x, int32_t y) { return x & ~y; });
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4Eq) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Eq, Equal);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4Ne) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Ne, NotEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4LtS) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtS, Less);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4LeS) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeS, LessEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4GtS) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtS, Greater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4GeS) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeS, GreaterEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4LtU) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtU, UnsignedLess);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4LeU) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeU,
|
|
UnsignedLessEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4GtU) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtU, UnsignedGreater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4GeU) {
|
|
RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeU,
|
|
UnsignedGreaterEqual);
|
|
}
|
|
|
|
void RunI32x4ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int32ShiftOp expected_op) {
|
|
// Intentionally shift by 32, should be no-op.
|
|
for (int shift = 1; shift <= 32; shift++) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
int32_t* memory = r.builder().AddMemoryElems<int32_t>(1);
|
|
int32_t* g_imm = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
int32_t* g_mem = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
byte value = 0;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
// Shift using an immediate, and shift using a value loaded from memory.
|
|
BUILD(
|
|
r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_SHIFT_OP(opcode, WASM_GET_LOCAL(simd),
|
|
WASM_I32V(shift))),
|
|
WASM_SET_GLOBAL(1, WASM_SIMD_SHIFT_OP(
|
|
opcode, WASM_GET_LOCAL(simd),
|
|
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))),
|
|
WASM_ONE);
|
|
|
|
r.builder().WriteMemory(&memory[0], shift);
|
|
FOR_INT32_INPUTS(x) {
|
|
r.Call(x);
|
|
int32_t expected = expected_op(x, shift);
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g_imm[i]));
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g_mem[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4Shl) {
|
|
RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4Shl,
|
|
LogicalShiftLeft);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4ShrS) {
|
|
RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrS,
|
|
ArithmeticShiftRight);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4ShrU) {
|
|
RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrU,
|
|
LogicalShiftRight);
|
|
}
|
|
|
|
// Tests both signed and unsigned conversion from I8x16 (unpacking).
|
|
WASM_SIMD_TEST(I16x8ConvertI8x16) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Create four output vectors to hold signed and unsigned results.
|
|
int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
int16_t* g2 = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
int16_t* g3 = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
// Build fn to splat test value, perform conversions, and write the results.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16High,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16Low,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16High,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16Low,
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT8_INPUTS(x) {
|
|
r.Call(x);
|
|
int16_t expected_signed = static_cast<int16_t>(x);
|
|
int16_t expected_unsigned = static_cast<int16_t>(static_cast<uint8_t>(x));
|
|
for (int i = 0; i < 8; i++) {
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i]));
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g1[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g2[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g3[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests both signed and unsigned conversion from I32x4 (packing).
|
|
WASM_SIMD_TEST(I16x8ConvertI32x4) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Create output vectors to hold signed and unsigned results.
|
|
int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
// Build fn to splat test value, perform conversions, and write the results.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(
|
|
0, WASM_SIMD_BINOP(kExprI16x8SConvertI32x4, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(
|
|
1, WASM_SIMD_BINOP(kExprI16x8UConvertI32x4, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT32_INPUTS(x) {
|
|
r.Call(x);
|
|
int16_t expected_signed = Saturate<int16_t>(x);
|
|
int16_t expected_unsigned = Saturate<uint16_t>(x);
|
|
for (int i = 0; i < 8; i++) {
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g1[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
void RunI16x8UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int16UnOp expected_op) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
// Build fn to splat test value, perform unop, and write the result.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT16_INPUTS(x) {
|
|
r.Call(x);
|
|
int16_t expected = expected_op(x);
|
|
for (int i = 0; i < 8; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Neg) {
|
|
RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Neg,
|
|
base::NegateWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Abs) {
|
|
RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Abs, Abs);
|
|
}
|
|
|
|
template <typename T = int16_t, typename OpType = T (*)(T, T)>
|
|
void RunI16x8BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, OpType expected_op) {
|
|
WasmRunner<int32_t, T, T> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
T* g = r.builder().template AddGlobal<T>(kWasmS128);
|
|
// Build fn to splat test values, perform binop, and write the result.
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
for (T x : compiler::ValueHelper::GetVector<T>()) {
|
|
for (T y : compiler::ValueHelper::GetVector<T>()) {
|
|
r.Call(x, y);
|
|
T expected = expected_op(x, y);
|
|
for (int i = 0; i < 8; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Add) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Add,
|
|
base::AddWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8AddSatS) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSatS,
|
|
SaturateAdd<int16_t>);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Sub) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Sub,
|
|
base::SubWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8SubSatS) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSatS,
|
|
SaturateSub<int16_t>);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Mul) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Mul,
|
|
base::MulWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8MinS) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinS, Minimum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8MaxS) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxS, Maximum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8AddSatU) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSatU,
|
|
SaturateAdd<uint16_t>);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8SubSatU) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSatU,
|
|
SaturateSub<uint16_t>);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8MinU) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinU,
|
|
UnsignedMinimum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8MaxU) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxU,
|
|
UnsignedMaximum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Eq) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Eq, Equal);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Ne) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Ne, NotEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8LtS) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtS, Less);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8LeS) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeS, LessEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8GtS) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtS, Greater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8GeS) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeS, GreaterEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8GtU) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtU, UnsignedGreater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8GeU) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeU,
|
|
UnsignedGreaterEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8LtU) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtU, UnsignedLess);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8LeU) {
|
|
RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeU,
|
|
UnsignedLessEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8RoundingAverageU) {
|
|
RunI16x8BinOpTest<uint16_t>(execution_tier, lower_simd,
|
|
kExprI16x8RoundingAverageU,
|
|
base::RoundingAverageUnsigned);
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_ARM64
|
|
// TODO(v8:10971) Prototype i16x8.q15mulr_sat_s
|
|
WASM_SIMD_TEST_NO_LOWERING(I16x8Q15MulRSatS) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
RunI16x8BinOpTest<int16_t>(execution_tier, lower_simd, kExprI16x8Q15MulRSatS,
|
|
SaturateRoundingQMul<int16_t>);
|
|
}
|
|
#endif // V8_TARGET_ARCH_ARM64
|
|
|
|
namespace {
|
|
enum class MulHalf { kLow, kHigh };
|
|
|
|
// Helper to run ext mul tests. It will splat 2 input values into 2 v128, call
|
|
// the mul op on these operands, and set the result into a global.
|
|
// It will zero the top or bottom half of one of the operands, this will catch
|
|
// mistakes if we are multiply the incorrect halves.
|
|
template <typename S, typename T, typename OpType = T (*)(S, S)>
|
|
void RunExtMulTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, OpType expected_op, WasmOpcode splat,
|
|
MulHalf half) {
|
|
WasmRunner<int32_t, S, S> r(execution_tier, lower_simd);
|
|
int lane_to_zero = half == MulHalf::kLow ? 1 : 0;
|
|
T* g = r.builder().template AddGlobal<T>(kWasmS128);
|
|
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(
|
|
0, WASM_SIMD_BINOP(
|
|
opcode,
|
|
WASM_SIMD_I64x2_REPLACE_LANE(
|
|
lane_to_zero, WASM_SIMD_UNOP(splat, WASM_GET_LOCAL(0)),
|
|
WASM_I64V_1(0)),
|
|
WASM_SIMD_UNOP(splat, WASM_GET_LOCAL(1)))),
|
|
WASM_ONE);
|
|
|
|
constexpr int lanes = kSimd128Size / sizeof(T);
|
|
for (S x : compiler::ValueHelper::GetVector<S>()) {
|
|
for (S y : compiler::ValueHelper::GetVector<S>()) {
|
|
r.Call(x, y);
|
|
T expected = expected_op(x, y);
|
|
for (int i = 0; i < lanes; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I16x8ExtMulLowI8x16S) {
|
|
RunExtMulTest<int8_t, int16_t>(execution_tier, lower_simd,
|
|
kExprI16x8ExtMulLowI8x16S, MultiplyLong,
|
|
kExprI8x16Splat, MulHalf::kLow);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I16x8ExtMulHighI8x16S) {
|
|
RunExtMulTest<int8_t, int16_t>(execution_tier, lower_simd,
|
|
kExprI16x8ExtMulHighI8x16S, MultiplyLong,
|
|
kExprI8x16Splat, MulHalf::kHigh);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I16x8ExtMulLowI8x16U) {
|
|
RunExtMulTest<uint8_t, uint16_t>(execution_tier, lower_simd,
|
|
kExprI16x8ExtMulLowI8x16U, MultiplyLong,
|
|
kExprI8x16Splat, MulHalf::kLow);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I16x8ExtMulHighI8x16U) {
|
|
RunExtMulTest<uint8_t, uint16_t>(execution_tier, lower_simd,
|
|
kExprI16x8ExtMulHighI8x16U, MultiplyLong,
|
|
kExprI8x16Splat, MulHalf::kHigh);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I32x4ExtMulLowI16x8S) {
|
|
RunExtMulTest<int16_t, int32_t>(execution_tier, lower_simd,
|
|
kExprI32x4ExtMulLowI16x8S, MultiplyLong,
|
|
kExprI16x8Splat, MulHalf::kLow);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I32x4ExtMulHighI16x8S) {
|
|
RunExtMulTest<int16_t, int32_t>(execution_tier, lower_simd,
|
|
kExprI32x4ExtMulHighI16x8S, MultiplyLong,
|
|
kExprI16x8Splat, MulHalf::kHigh);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I32x4ExtMulLowI16x8U) {
|
|
RunExtMulTest<uint16_t, uint32_t>(execution_tier, lower_simd,
|
|
kExprI32x4ExtMulLowI16x8U, MultiplyLong,
|
|
kExprI16x8Splat, MulHalf::kLow);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I32x4ExtMulHighI16x8U) {
|
|
RunExtMulTest<uint16_t, uint32_t>(execution_tier, lower_simd,
|
|
kExprI32x4ExtMulHighI16x8U, MultiplyLong,
|
|
kExprI16x8Splat, MulHalf::kHigh);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I64x2ExtMulLowI32x4S) {
|
|
RunExtMulTest<int32_t, int64_t>(execution_tier, lower_simd,
|
|
kExprI64x2ExtMulLowI32x4S, MultiplyLong,
|
|
kExprI32x4Splat, MulHalf::kLow);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I64x2ExtMulHighI32x4S) {
|
|
RunExtMulTest<int32_t, int64_t>(execution_tier, lower_simd,
|
|
kExprI64x2ExtMulHighI32x4S, MultiplyLong,
|
|
kExprI32x4Splat, MulHalf::kHigh);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I64x2ExtMulLowI32x4U) {
|
|
RunExtMulTest<uint32_t, uint64_t>(execution_tier, lower_simd,
|
|
kExprI64x2ExtMulLowI32x4U, MultiplyLong,
|
|
kExprI32x4Splat, MulHalf::kLow);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(I64x2ExtMulHighI32x4U) {
|
|
RunExtMulTest<uint32_t, uint64_t>(execution_tier, lower_simd,
|
|
kExprI64x2ExtMulHighI32x4U, MultiplyLong,
|
|
kExprI32x4Splat, MulHalf::kHigh);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4DotI16x8S) {
|
|
WasmRunner<int32_t, int16_t, int16_t> r(execution_tier, lower_simd);
|
|
int32_t* g = r.builder().template AddGlobal<int32_t>(kWasmS128);
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(
|
|
0, WASM_SIMD_BINOP(kExprI32x4DotI16x8S, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
for (int16_t x : compiler::ValueHelper::GetVector<int16_t>()) {
|
|
for (int16_t y : compiler::ValueHelper::GetVector<int16_t>()) {
|
|
r.Call(x, y);
|
|
// x * y * 2 can overflow (0x8000), the behavior is to wraparound.
|
|
int32_t expected = base::MulWithWraparound(x * y, 2);
|
|
for (int i = 0; i < 4; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RunI16x8ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int16ShiftOp expected_op) {
|
|
// Intentionally shift by 16, should be no-op.
|
|
for (int shift = 1; shift <= 16; shift++) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
int32_t* memory = r.builder().AddMemoryElems<int32_t>(1);
|
|
int16_t* g_imm = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
int16_t* g_mem = r.builder().AddGlobal<int16_t>(kWasmS128);
|
|
byte value = 0;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
// Shift using an immediate, and shift using a value loaded from memory.
|
|
BUILD(
|
|
r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_SHIFT_OP(opcode, WASM_GET_LOCAL(simd),
|
|
WASM_I32V(shift))),
|
|
WASM_SET_GLOBAL(1, WASM_SIMD_SHIFT_OP(
|
|
opcode, WASM_GET_LOCAL(simd),
|
|
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))),
|
|
WASM_ONE);
|
|
|
|
r.builder().WriteMemory(&memory[0], shift);
|
|
FOR_INT16_INPUTS(x) {
|
|
r.Call(x);
|
|
int16_t expected = expected_op(x, shift);
|
|
for (int i = 0; i < 8; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g_imm[i]));
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g_mem[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8Shl) {
|
|
RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8Shl,
|
|
LogicalShiftLeft);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8ShrS) {
|
|
RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrS,
|
|
ArithmeticShiftRight);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8ShrU) {
|
|
RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrU,
|
|
LogicalShiftRight);
|
|
}
|
|
|
|
void RunI8x16UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int8UnOp expected_op) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
// Build fn to splat test value, perform unop, and write the result.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT8_INPUTS(x) {
|
|
r.Call(x);
|
|
int8_t expected = expected_op(x);
|
|
for (int i = 0; i < 16; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16Neg) {
|
|
RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Neg,
|
|
base::NegateWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16Abs) {
|
|
RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Abs, Abs);
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM
|
|
// TODO(v8:11002) Prototype i8x16.popcnt.
|
|
WASM_SIMD_TEST_NO_LOWERING(I8x16Popcnt) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
// Build fn to splat test value, perform unop, and write the result.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(
|
|
0, WASM_SIMD_UNOP(kExprI8x16Popcnt, WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_UINT8_INPUTS(x) {
|
|
r.Call(x);
|
|
unsigned expected = base::bits::CountPopulation(x);
|
|
for (int i = 0; i < 16; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
#endif // V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM
|
|
|
|
// Tests both signed and unsigned conversion from I16x8 (packing).
|
|
WASM_SIMD_TEST(I8x16ConvertI16x8) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Create output vectors to hold signed and unsigned results.
|
|
int8_t* g0 = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
int8_t* g1 = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
// Build fn to splat test value, perform conversions, and write the results.
|
|
byte value = 0;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(
|
|
0, WASM_SIMD_BINOP(kExprI8x16SConvertI16x8, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_SET_GLOBAL(
|
|
1, WASM_SIMD_BINOP(kExprI8x16UConvertI16x8, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp1))),
|
|
WASM_ONE);
|
|
|
|
FOR_INT16_INPUTS(x) {
|
|
r.Call(x);
|
|
int8_t expected_signed = Saturate<int8_t>(x);
|
|
int8_t expected_unsigned = Saturate<uint8_t>(x);
|
|
for (int i = 0; i < 16; i++) {
|
|
CHECK_EQ(expected_signed, ReadLittleEndianValue<int8_t>(&g0[i]));
|
|
CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int8_t>(&g1[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T = int8_t, typename OpType = T (*)(T, T)>
|
|
void RunI8x16BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, OpType expected_op) {
|
|
WasmRunner<int32_t, T, T> r(execution_tier, lower_simd);
|
|
// Global to hold output.
|
|
T* g = r.builder().template AddGlobal<T>(kWasmS128);
|
|
// Build fn to splat test values, perform binop, and write the result.
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_ONE);
|
|
|
|
for (T x : compiler::ValueHelper::GetVector<T>()) {
|
|
for (T y : compiler::ValueHelper::GetVector<T>()) {
|
|
r.Call(x, y);
|
|
T expected = expected_op(x, y);
|
|
for (int i = 0; i < 16; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16Add) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Add,
|
|
base::AddWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16AddSatS) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSatS,
|
|
SaturateAdd<int8_t>);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16Sub) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Sub,
|
|
base::SubWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16SubSatS) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSatS,
|
|
SaturateSub<int8_t>);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16MinS) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinS, Minimum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16MaxS) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxS, Maximum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16AddSatU) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSatU,
|
|
SaturateAdd<uint8_t>);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16SubSatU) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSatU,
|
|
SaturateSub<uint8_t>);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16MinU) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinU,
|
|
UnsignedMinimum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16MaxU) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxU,
|
|
UnsignedMaximum);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16Eq) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Eq, Equal);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16Ne) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Ne, NotEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16GtS) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtS, Greater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16GeS) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeS, GreaterEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16LtS) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtS, Less);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16LeS) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeS, LessEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16GtU) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtU, UnsignedGreater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16GeU) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeU,
|
|
UnsignedGreaterEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16LtU) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtU, UnsignedLess);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16LeU) {
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeU,
|
|
UnsignedLessEqual);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16Mul) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Mul,
|
|
base::MulWithWraparound);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16RoundingAverageU) {
|
|
RunI8x16BinOpTest<uint8_t>(execution_tier, lower_simd,
|
|
kExprI8x16RoundingAverageU,
|
|
base::RoundingAverageUnsigned);
|
|
}
|
|
|
|
void RunI8x16ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode opcode, Int8ShiftOp expected_op) {
|
|
// Intentionally shift by 8, should be no-op.
|
|
for (int shift = 1; shift <= 8; shift++) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
int32_t* memory = r.builder().AddMemoryElems<int32_t>(1);
|
|
int8_t* g_imm = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
int8_t* g_mem = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
byte value = 0;
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
// Shift using an immediate, and shift using a value loaded from memory.
|
|
BUILD(
|
|
r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_SHIFT_OP(opcode, WASM_GET_LOCAL(simd),
|
|
WASM_I32V(shift))),
|
|
WASM_SET_GLOBAL(1, WASM_SIMD_SHIFT_OP(
|
|
opcode, WASM_GET_LOCAL(simd),
|
|
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))),
|
|
WASM_ONE);
|
|
|
|
r.builder().WriteMemory(&memory[0], shift);
|
|
FOR_INT8_INPUTS(x) {
|
|
r.Call(x);
|
|
int8_t expected = expected_op(x, shift);
|
|
for (int i = 0; i < 16; i++) {
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g_imm[i]));
|
|
CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g_mem[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16Shl) {
|
|
RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16Shl,
|
|
LogicalShiftLeft);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16ShrS) {
|
|
RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrS,
|
|
ArithmeticShiftRight);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16ShrU) {
|
|
RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrU,
|
|
LogicalShiftRight);
|
|
}
|
|
|
|
// Test Select by making a mask where the 0th and 3rd lanes are true and the
|
|
// rest false, and comparing for non-equality with zero to convert to a boolean
|
|
// vector.
|
|
#define WASM_SIMD_SELECT_TEST(format) \
|
|
WASM_SIMD_TEST(S##format##Select) { \
|
|
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd); \
|
|
byte val1 = 0; \
|
|
byte val2 = 1; \
|
|
byte src1 = r.AllocateLocal(kWasmS128); \
|
|
byte src2 = r.AllocateLocal(kWasmS128); \
|
|
byte zero = r.AllocateLocal(kWasmS128); \
|
|
byte mask = r.AllocateLocal(kWasmS128); \
|
|
BUILD(r, \
|
|
WASM_SET_LOCAL(src1, \
|
|
WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \
|
|
WASM_SET_LOCAL(src2, \
|
|
WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \
|
|
WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
|
|
1, WASM_GET_LOCAL(zero), WASM_I32V(-1))), \
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
|
|
2, WASM_GET_LOCAL(mask), WASM_I32V(-1))), \
|
|
WASM_SET_LOCAL( \
|
|
mask, \
|
|
WASM_SIMD_SELECT( \
|
|
format, WASM_GET_LOCAL(src1), WASM_GET_LOCAL(src2), \
|
|
WASM_SIMD_BINOP(kExprI##format##Ne, WASM_GET_LOCAL(mask), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 0), \
|
|
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val1, 1), \
|
|
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val1, 2), \
|
|
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 3), WASM_ONE); \
|
|
\
|
|
CHECK_EQ(1, r.Call(0x12, 0x34)); \
|
|
}
|
|
|
|
WASM_SIMD_SELECT_TEST(32x4)
|
|
WASM_SIMD_SELECT_TEST(16x8)
|
|
WASM_SIMD_SELECT_TEST(8x16)
|
|
|
|
// Test Select by making a mask where the 0th and 3rd lanes are non-zero and the
|
|
// rest 0. The mask is not the result of a comparison op.
|
|
#define WASM_SIMD_NON_CANONICAL_SELECT_TEST(format) \
|
|
WASM_SIMD_TEST(S##format##NonCanonicalSelect) { \
|
|
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(execution_tier, \
|
|
lower_simd); \
|
|
byte val1 = 0; \
|
|
byte val2 = 1; \
|
|
byte combined = 2; \
|
|
byte src1 = r.AllocateLocal(kWasmS128); \
|
|
byte src2 = r.AllocateLocal(kWasmS128); \
|
|
byte zero = r.AllocateLocal(kWasmS128); \
|
|
byte mask = r.AllocateLocal(kWasmS128); \
|
|
BUILD(r, \
|
|
WASM_SET_LOCAL(src1, \
|
|
WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \
|
|
WASM_SET_LOCAL(src2, \
|
|
WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \
|
|
WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
|
|
1, WASM_GET_LOCAL(zero), WASM_I32V(0xF))), \
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
|
|
2, WASM_GET_LOCAL(mask), WASM_I32V(0xF))), \
|
|
WASM_SET_LOCAL(mask, WASM_SIMD_SELECT(format, WASM_GET_LOCAL(src1), \
|
|
WASM_GET_LOCAL(src2), \
|
|
WASM_GET_LOCAL(mask))), \
|
|
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 0), \
|
|
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, combined, 1), \
|
|
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, combined, 2), \
|
|
WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 3), WASM_ONE); \
|
|
\
|
|
CHECK_EQ(1, r.Call(0x12, 0x34, 0x32)); \
|
|
}
|
|
|
|
WASM_SIMD_NON_CANONICAL_SELECT_TEST(32x4)
|
|
WASM_SIMD_NON_CANONICAL_SELECT_TEST(16x8)
|
|
WASM_SIMD_NON_CANONICAL_SELECT_TEST(8x16)
|
|
|
|
// Test binary ops with two lane test patterns, all lanes distinct.
|
|
template <typename T>
|
|
void RunBinaryLaneOpTest(
|
|
TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op,
|
|
const std::array<T, kSimd128Size / sizeof(T)>& expected) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
|
|
T* src0 = r.builder().AddGlobal<T>(kWasmS128);
|
|
T* src1 = r.builder().AddGlobal<T>(kWasmS128);
|
|
static const int kElems = kSimd128Size / sizeof(T);
|
|
for (int i = 0; i < kElems; i++) {
|
|
WriteLittleEndianValue<T>(&src0[i], i);
|
|
WriteLittleEndianValue<T>(&src1[i], kElems + i);
|
|
}
|
|
if (simd_op == kExprI8x16Shuffle) {
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_SHUFFLE_OP(simd_op, expected,
|
|
WASM_GET_GLOBAL(0),
|
|
WASM_GET_GLOBAL(1))),
|
|
WASM_ONE);
|
|
} else {
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(simd_op, WASM_GET_GLOBAL(0),
|
|
WASM_GET_GLOBAL(1))),
|
|
WASM_ONE);
|
|
}
|
|
|
|
CHECK_EQ(1, r.Call());
|
|
for (size_t i = 0; i < expected.size(); i++) {
|
|
CHECK_EQ(ReadLittleEndianValue<T>(&src0[i]), expected[i]);
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(I32x4AddHoriz) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
// Inputs are [0 1 2 3] and [4 5 6 7].
|
|
RunBinaryLaneOpTest<int32_t>(execution_tier, lower_simd, kExprI32x4AddHoriz,
|
|
{{1, 5, 9, 13}});
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8AddHoriz) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
// Inputs are [0 1 2 3 4 5 6 7] and [8 9 10 11 12 13 14 15].
|
|
RunBinaryLaneOpTest<int16_t>(execution_tier, lower_simd, kExprI16x8AddHoriz,
|
|
{{1, 5, 9, 13, 17, 21, 25, 29}});
|
|
}
|
|
|
|
WASM_SIMD_TEST(F32x4AddHoriz) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
// Inputs are [0.0f 1.0f 2.0f 3.0f] and [4.0f 5.0f 6.0f 7.0f].
|
|
RunBinaryLaneOpTest<float>(execution_tier, lower_simd, kExprF32x4AddHoriz,
|
|
{{1.0f, 5.0f, 9.0f, 13.0f}});
|
|
}
|
|
|
|
// Test shuffle ops.
|
|
void RunShuffleOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode simd_op,
|
|
const std::array<int8_t, kSimd128Size>& shuffle) {
|
|
// Test the original shuffle.
|
|
RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, shuffle);
|
|
|
|
// Test a non-canonical (inputs reversed) version of the shuffle.
|
|
std::array<int8_t, kSimd128Size> other_shuffle(shuffle);
|
|
for (size_t i = 0; i < shuffle.size(); ++i) other_shuffle[i] ^= kSimd128Size;
|
|
RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op,
|
|
other_shuffle);
|
|
|
|
// Test the swizzle (one-operand) version of the shuffle.
|
|
std::array<int8_t, kSimd128Size> swizzle(shuffle);
|
|
for (size_t i = 0; i < shuffle.size(); ++i) swizzle[i] &= (kSimd128Size - 1);
|
|
RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, swizzle);
|
|
|
|
// Test the non-canonical swizzle (one-operand) version of the shuffle.
|
|
std::array<int8_t, kSimd128Size> other_swizzle(shuffle);
|
|
for (size_t i = 0; i < shuffle.size(); ++i) other_swizzle[i] |= kSimd128Size;
|
|
RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op,
|
|
other_swizzle);
|
|
}
|
|
|
|
#define SHUFFLE_LIST(V) \
|
|
V(S128Identity) \
|
|
V(S32x4Dup) \
|
|
V(S32x4ZipLeft) \
|
|
V(S32x4ZipRight) \
|
|
V(S32x4UnzipLeft) \
|
|
V(S32x4UnzipRight) \
|
|
V(S32x4TransposeLeft) \
|
|
V(S32x4TransposeRight) \
|
|
V(S32x2Reverse) \
|
|
V(S32x4Irregular) \
|
|
V(S32x4Rotate) \
|
|
V(S16x8Dup) \
|
|
V(S16x8ZipLeft) \
|
|
V(S16x8ZipRight) \
|
|
V(S16x8UnzipLeft) \
|
|
V(S16x8UnzipRight) \
|
|
V(S16x8TransposeLeft) \
|
|
V(S16x8TransposeRight) \
|
|
V(S16x4Reverse) \
|
|
V(S16x2Reverse) \
|
|
V(S16x8Irregular) \
|
|
V(S8x16Dup) \
|
|
V(S8x16ZipLeft) \
|
|
V(S8x16ZipRight) \
|
|
V(S8x16UnzipLeft) \
|
|
V(S8x16UnzipRight) \
|
|
V(S8x16TransposeLeft) \
|
|
V(S8x16TransposeRight) \
|
|
V(S8x8Reverse) \
|
|
V(S8x4Reverse) \
|
|
V(S8x2Reverse) \
|
|
V(S8x16Irregular)
|
|
|
|
enum ShuffleKey {
|
|
#define SHUFFLE_ENUM_VALUE(Name) k##Name,
|
|
SHUFFLE_LIST(SHUFFLE_ENUM_VALUE)
|
|
#undef SHUFFLE_ENUM_VALUE
|
|
kNumShuffleKeys
|
|
};
|
|
|
|
using Shuffle = std::array<int8_t, kSimd128Size>;
|
|
using ShuffleMap = std::map<ShuffleKey, const Shuffle>;
|
|
|
|
ShuffleMap test_shuffles = {
|
|
{kS128Identity,
|
|
{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}},
|
|
{kS32x4Dup,
|
|
{{16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19}}},
|
|
{kS32x4ZipLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}}},
|
|
{kS32x4ZipRight,
|
|
{{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}}},
|
|
{kS32x4UnzipLeft,
|
|
{{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}}},
|
|
{kS32x4UnzipRight,
|
|
{{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}}},
|
|
{kS32x4TransposeLeft,
|
|
{{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}}},
|
|
{kS32x4TransposeRight,
|
|
{{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}}},
|
|
{kS32x2Reverse, // swizzle only
|
|
{{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}}},
|
|
{kS32x4Irregular,
|
|
{{0, 1, 2, 3, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 22, 23}}},
|
|
{kS32x4Rotate, {{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3}}},
|
|
{kS16x8Dup,
|
|
{{18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19}}},
|
|
{kS16x8ZipLeft, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}}},
|
|
{kS16x8ZipRight,
|
|
{{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}}},
|
|
{kS16x8UnzipLeft,
|
|
{{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}}},
|
|
{kS16x8UnzipRight,
|
|
{{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}}},
|
|
{kS16x8TransposeLeft,
|
|
{{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}}},
|
|
{kS16x8TransposeRight,
|
|
{{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}}},
|
|
{kS16x4Reverse, // swizzle only
|
|
{{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}}},
|
|
{kS16x2Reverse, // swizzle only
|
|
{{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}}},
|
|
{kS16x8Irregular,
|
|
{{0, 1, 16, 17, 16, 17, 0, 1, 4, 5, 20, 21, 6, 7, 22, 23}}},
|
|
{kS8x16Dup,
|
|
{{19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19}}},
|
|
{kS8x16ZipLeft, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}},
|
|
{kS8x16ZipRight,
|
|
{{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}}},
|
|
{kS8x16UnzipLeft,
|
|
{{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}}},
|
|
{kS8x16UnzipRight,
|
|
{{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}}},
|
|
{kS8x16TransposeLeft,
|
|
{{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}}},
|
|
{kS8x16TransposeRight,
|
|
{{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}}},
|
|
{kS8x8Reverse, // swizzle only
|
|
{{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}}},
|
|
{kS8x4Reverse, // swizzle only
|
|
{{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}}},
|
|
{kS8x2Reverse, // swizzle only
|
|
{{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}}},
|
|
{kS8x16Irregular,
|
|
{{0, 16, 0, 16, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}},
|
|
};
|
|
|
|
#define SHUFFLE_TEST(Name) \
|
|
WASM_SIMD_TEST(Name) { \
|
|
ShuffleMap::const_iterator it = test_shuffles.find(k##Name); \
|
|
DCHECK_NE(it, test_shuffles.end()); \
|
|
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, \
|
|
it->second); \
|
|
}
|
|
SHUFFLE_LIST(SHUFFLE_TEST)
|
|
#undef SHUFFLE_TEST
|
|
#undef SHUFFLE_LIST
|
|
|
|
// Test shuffles that blend the two vectors (elements remain in their lanes.)
|
|
WASM_SIMD_TEST(S8x16Blend) {
|
|
std::array<int8_t, kSimd128Size> expected;
|
|
for (int bias = 1; bias < kSimd128Size; bias++) {
|
|
for (int i = 0; i < bias; i++) expected[i] = i;
|
|
for (int i = bias; i < kSimd128Size; i++) expected[i] = i + kSimd128Size;
|
|
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected);
|
|
}
|
|
}
|
|
|
|
// Test shuffles that concatenate the two vectors.
|
|
WASM_SIMD_TEST(S8x16Concat) {
|
|
std::array<int8_t, kSimd128Size> expected;
|
|
// n is offset or bias of concatenation.
|
|
for (int n = 1; n < kSimd128Size; ++n) {
|
|
int i = 0;
|
|
// last kLanes - n bytes of first vector.
|
|
for (int j = n; j < kSimd128Size; ++j) {
|
|
expected[i++] = j;
|
|
}
|
|
// first n bytes of second vector
|
|
for (int j = 0; j < n; ++j) {
|
|
expected[i++] = j + kSimd128Size;
|
|
}
|
|
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected);
|
|
}
|
|
}
|
|
|
|
struct SwizzleTestArgs {
|
|
const Shuffle input;
|
|
const Shuffle indices;
|
|
const Shuffle expected;
|
|
};
|
|
|
|
static constexpr SwizzleTestArgs swizzle_test_args[] = {
|
|
{{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
|
|
{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
|
|
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
|
|
{{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
|
|
{15, 0, 14, 1, 13, 2, 12, 3, 11, 4, 10, 5, 9, 6, 8, 7},
|
|
{0, 15, 1, 14, 2, 13, 3, 12, 4, 11, 5, 10, 6, 9, 7, 8}},
|
|
{{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
|
|
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
|
|
{15, 13, 11, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
|
// all indices are out of range
|
|
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
|
|
{16, 17, 18, 19, 20, 124, 125, 126, 127, -1, -2, -3, -4, -5, -6, -7},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}};
|
|
|
|
static constexpr Vector<const SwizzleTestArgs> swizzle_test_vector =
|
|
ArrayVector(swizzle_test_args);
|
|
|
|
WASM_SIMD_TEST(I8x16Swizzle) {
|
|
// RunBinaryLaneOpTest set up the two globals to be consecutive integers,
|
|
// [0-15] and [16-31]. Using [0-15] as the indices will not sufficiently test
|
|
// swizzle since the expected result is a no-op, using [16-31] will result in
|
|
// all 0s.
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
static const int kElems = kSimd128Size / sizeof(uint8_t);
|
|
uint8_t* dst = r.builder().AddGlobal<uint8_t>(kWasmS128);
|
|
uint8_t* src0 = r.builder().AddGlobal<uint8_t>(kWasmS128);
|
|
uint8_t* src1 = r.builder().AddGlobal<uint8_t>(kWasmS128);
|
|
BUILD(
|
|
r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(kExprI8x16Swizzle, WASM_GET_GLOBAL(1),
|
|
WASM_GET_GLOBAL(2))),
|
|
WASM_ONE);
|
|
|
|
for (SwizzleTestArgs si : swizzle_test_vector) {
|
|
for (int i = 0; i < kElems; i++) {
|
|
WriteLittleEndianValue<uint8_t>(&src0[i], si.input[i]);
|
|
WriteLittleEndianValue<uint8_t>(&src1[i], si.indices[i]);
|
|
}
|
|
|
|
CHECK_EQ(1, r.Call());
|
|
|
|
for (int i = 0; i < kElems; i++) {
|
|
CHECK_EQ(ReadLittleEndianValue<uint8_t>(&dst[i]), si.expected[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Combine 3 shuffles a, b, and c by applying both a and b and then applying c
|
|
// to those two results.
|
|
Shuffle Combine(const Shuffle& a, const Shuffle& b, const Shuffle& c) {
|
|
Shuffle result;
|
|
for (int i = 0; i < kSimd128Size; ++i) {
|
|
result[i] = c[i] < kSimd128Size ? a[c[i]] : b[c[i] - kSimd128Size];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const Shuffle& GetRandomTestShuffle(v8::base::RandomNumberGenerator* rng) {
|
|
return test_shuffles[static_cast<ShuffleKey>(rng->NextInt(kNumShuffleKeys))];
|
|
}
|
|
|
|
// Test shuffles that are random combinations of 3 test shuffles. Completely
|
|
// random shuffles almost always generate the slow general shuffle code, so
|
|
// don't exercise as many code paths.
|
|
WASM_SIMD_TEST(I8x16ShuffleFuzz) {
|
|
v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator();
|
|
static const int kTests = 100;
|
|
for (int i = 0; i < kTests; ++i) {
|
|
auto shuffle = Combine(GetRandomTestShuffle(rng), GetRandomTestShuffle(rng),
|
|
GetRandomTestShuffle(rng));
|
|
RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, shuffle);
|
|
}
|
|
}
|
|
|
|
void AppendShuffle(const Shuffle& shuffle, std::vector<byte>* buffer) {
|
|
byte opcode[] = {WASM_SIMD_OP(kExprI8x16Shuffle)};
|
|
for (size_t i = 0; i < arraysize(opcode); ++i) buffer->push_back(opcode[i]);
|
|
for (size_t i = 0; i < kSimd128Size; ++i) buffer->push_back((shuffle[i]));
|
|
}
|
|
|
|
void BuildShuffle(const std::vector<Shuffle>& shuffles,
|
|
std::vector<byte>* buffer) {
|
|
// Perform the leaf shuffles on globals 0 and 1.
|
|
size_t row_index = (shuffles.size() - 1) / 2;
|
|
for (size_t i = row_index; i < shuffles.size(); ++i) {
|
|
byte operands[] = {WASM_GET_GLOBAL(0), WASM_GET_GLOBAL(1)};
|
|
for (size_t j = 0; j < arraysize(operands); ++j)
|
|
buffer->push_back(operands[j]);
|
|
AppendShuffle(shuffles[i], buffer);
|
|
}
|
|
// Now perform inner shuffles in the correct order on operands on the stack.
|
|
do {
|
|
for (size_t i = row_index / 2; i < row_index; ++i) {
|
|
AppendShuffle(shuffles[i], buffer);
|
|
}
|
|
row_index /= 2;
|
|
} while (row_index != 0);
|
|
byte epilog[] = {kExprGlobalSet, static_cast<byte>(0), WASM_ONE};
|
|
for (size_t j = 0; j < arraysize(epilog); ++j) buffer->push_back(epilog[j]);
|
|
}
|
|
|
|
void RunWasmCode(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
const std::vector<byte>& code,
|
|
std::array<int8_t, kSimd128Size>* result) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
// Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
|
|
int8_t* src0 = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
int8_t* src1 = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
for (int i = 0; i < kSimd128Size; ++i) {
|
|
WriteLittleEndianValue<int8_t>(&src0[i], i);
|
|
WriteLittleEndianValue<int8_t>(&src1[i], kSimd128Size + i);
|
|
}
|
|
r.Build(code.data(), code.data() + code.size());
|
|
CHECK_EQ(1, r.Call());
|
|
for (size_t i = 0; i < kSimd128Size; i++) {
|
|
(*result)[i] = ReadLittleEndianValue<int8_t>(&src0[i]);
|
|
}
|
|
}
|
|
|
|
// Test multiple shuffles executed in sequence.
|
|
WASM_SIMD_TEST(S8x16MultiShuffleFuzz) {
|
|
// Don't compare interpreter results with itself.
|
|
if (execution_tier == TestExecutionTier::kInterpreter) {
|
|
return;
|
|
}
|
|
v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator();
|
|
static const int kShuffles = 100;
|
|
for (int i = 0; i < kShuffles; ++i) {
|
|
// Create an odd number in [3..23] of random test shuffles so we can build
|
|
// a complete binary tree (stored as a heap) of shuffle operations. The leaf
|
|
// shuffles operate on the test pattern inputs, while the interior shuffles
|
|
// operate on the results of the two child shuffles.
|
|
int num_shuffles = rng->NextInt(10) * 2 + 3;
|
|
std::vector<Shuffle> shuffles;
|
|
for (int j = 0; j < num_shuffles; ++j) {
|
|
shuffles.push_back(GetRandomTestShuffle(rng));
|
|
}
|
|
// Generate the code for the shuffle expression.
|
|
std::vector<byte> buffer;
|
|
BuildShuffle(shuffles, &buffer);
|
|
|
|
// Run the code using the interpreter to get the expected result.
|
|
std::array<int8_t, kSimd128Size> expected;
|
|
RunWasmCode(TestExecutionTier::kInterpreter, kNoLowerSimd, buffer,
|
|
&expected);
|
|
// Run the SIMD or scalar lowered compiled code and compare results.
|
|
std::array<int8_t, kSimd128Size> result;
|
|
RunWasmCode(execution_tier, lower_simd, buffer, &result);
|
|
for (size_t i = 0; i < kSimd128Size; ++i) {
|
|
CHECK_EQ(result[i], expected[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Boolean unary operations are 'AllTrue' and 'AnyTrue', which return an integer
|
|
// result. Use relational ops on numeric vectors to create the boolean vector
|
|
// test inputs. Test inputs with all true, all false, one true, and one false.
|
|
#define WASM_SIMD_BOOL_REDUCTION_TEST(format, lanes, int_type) \
|
|
WASM_SIMD_TEST(ReductionTest##lanes) { \
|
|
FLAG_SCOPE(wasm_simd_post_mvp); \
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd); \
|
|
if (lanes == 2 && lower_simd == kLowerSimd) return; \
|
|
byte zero = r.AllocateLocal(kWasmS128); \
|
|
byte one_one = r.AllocateLocal(kWasmS128); \
|
|
byte reduced = r.AllocateLocal(kWasmI32); \
|
|
BUILD(r, WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(int_type(0))), \
|
|
WASM_SET_LOCAL( \
|
|
reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \
|
|
WASM_SIMD_BINOP(kExprI##format##Eq, \
|
|
WASM_GET_LOCAL(zero), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \
|
|
WASM_RETURN1(WASM_ZERO)), \
|
|
WASM_SET_LOCAL( \
|
|
reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \
|
|
WASM_SIMD_BINOP(kExprI##format##Ne, \
|
|
WASM_GET_LOCAL(zero), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \
|
|
WASM_RETURN1(WASM_ZERO)), \
|
|
WASM_SET_LOCAL( \
|
|
reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \
|
|
WASM_SIMD_BINOP(kExprI##format##Eq, \
|
|
WASM_GET_LOCAL(zero), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \
|
|
WASM_RETURN1(WASM_ZERO)), \
|
|
WASM_SET_LOCAL( \
|
|
reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \
|
|
WASM_SIMD_BINOP(kExprI##format##Ne, \
|
|
WASM_GET_LOCAL(zero), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \
|
|
WASM_RETURN1(WASM_ZERO)), \
|
|
WASM_SET_LOCAL(one_one, \
|
|
WASM_SIMD_I##format##_REPLACE_LANE( \
|
|
lanes - 1, WASM_GET_LOCAL(zero), int_type(1))), \
|
|
WASM_SET_LOCAL( \
|
|
reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \
|
|
WASM_SIMD_BINOP(kExprI##format##Eq, \
|
|
WASM_GET_LOCAL(one_one), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \
|
|
WASM_RETURN1(WASM_ZERO)), \
|
|
WASM_SET_LOCAL( \
|
|
reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \
|
|
WASM_SIMD_BINOP(kExprI##format##Ne, \
|
|
WASM_GET_LOCAL(one_one), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \
|
|
WASM_RETURN1(WASM_ZERO)), \
|
|
WASM_SET_LOCAL( \
|
|
reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \
|
|
WASM_SIMD_BINOP(kExprI##format##Eq, \
|
|
WASM_GET_LOCAL(one_one), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \
|
|
WASM_RETURN1(WASM_ZERO)), \
|
|
WASM_SET_LOCAL( \
|
|
reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \
|
|
WASM_SIMD_BINOP(kExprI##format##Ne, \
|
|
WASM_GET_LOCAL(one_one), \
|
|
WASM_GET_LOCAL(zero)))), \
|
|
WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \
|
|
WASM_RETURN1(WASM_ZERO)), \
|
|
WASM_ONE); \
|
|
CHECK_EQ(1, r.Call()); \
|
|
}
|
|
|
|
WASM_SIMD_BOOL_REDUCTION_TEST(32x4, 4, WASM_I32V)
|
|
WASM_SIMD_BOOL_REDUCTION_TEST(16x8, 8, WASM_I32V)
|
|
WASM_SIMD_BOOL_REDUCTION_TEST(8x16, 16, WASM_I32V)
|
|
|
|
WASM_SIMD_TEST(SimdI32x4ExtractWithF32x4) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
BUILD(r, WASM_IF_ELSE_I(
|
|
WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))),
|
|
WASM_I32_REINTERPRET_F32(WASM_F32(30.5))),
|
|
WASM_I32V(1), WASM_I32V(0)));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdF32x4ExtractWithI32x4) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
BUILD(r,
|
|
WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))),
|
|
WASM_F32_REINTERPRET_I32(WASM_I32V(15))),
|
|
WASM_I32V(1), WASM_I32V(0)));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdF32x4ExtractLane) {
|
|
WasmRunner<float> r(execution_tier, lower_simd);
|
|
r.AllocateLocal(kWasmF32);
|
|
r.AllocateLocal(kWasmS128);
|
|
BUILD(r,
|
|
WASM_SET_LOCAL(0, WASM_SIMD_F32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5)))),
|
|
WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)));
|
|
CHECK_EQ(30.5, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdF32x4AddWithI32x4) {
|
|
// Choose two floating point values whose sum is normal and exactly
|
|
// representable as a float.
|
|
const int kOne = 0x3F800000;
|
|
const int kTwo = 0x40000000;
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
BUILD(r,
|
|
WASM_IF_ELSE_I(
|
|
WASM_F32_EQ(
|
|
WASM_SIMD_F32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_BINOP(kExprF32x4Add,
|
|
WASM_SIMD_I32x4_SPLAT(WASM_I32V(kOne)),
|
|
WASM_SIMD_I32x4_SPLAT(WASM_I32V(kTwo)))),
|
|
WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(kOne)),
|
|
WASM_F32_REINTERPRET_I32(WASM_I32V(kTwo)))),
|
|
WASM_I32V(1), WASM_I32V(0)));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdI32x4AddWithF32x4) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
BUILD(r,
|
|
WASM_IF_ELSE_I(
|
|
WASM_I32_EQ(
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_BINOP(kExprI32x4Add,
|
|
WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)),
|
|
WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))),
|
|
WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)),
|
|
WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))),
|
|
WASM_I32V(1), WASM_I32V(0)));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdI32x4Local) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
|
|
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(0)));
|
|
CHECK_EQ(31, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdI32x4SplatFromExtract) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
r.AllocateLocal(kWasmI32);
|
|
r.AllocateLocal(kWasmS128);
|
|
BUILD(r,
|
|
WASM_SET_LOCAL(0, WASM_SIMD_I32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))),
|
|
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)));
|
|
CHECK_EQ(76, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdI32x4For) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
r.AllocateLocal(kWasmI32);
|
|
r.AllocateLocal(kWasmS128);
|
|
BUILD(r,
|
|
|
|
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
|
|
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(1),
|
|
WASM_I32V(53))),
|
|
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(1),
|
|
WASM_I32V(23))),
|
|
WASM_SET_LOCAL(0, WASM_I32V(0)),
|
|
WASM_LOOP(
|
|
WASM_SET_LOCAL(
|
|
1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_GET_LOCAL(1),
|
|
WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))),
|
|
WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))),
|
|
WASM_SET_LOCAL(0, WASM_I32V(1)),
|
|
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
|
|
WASM_I32V(36)),
|
|
WASM_SET_LOCAL(0, WASM_I32V(0))),
|
|
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)),
|
|
WASM_I32V(58)),
|
|
WASM_SET_LOCAL(0, WASM_I32V(0))),
|
|
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_LOCAL(1)),
|
|
WASM_I32V(28)),
|
|
WASM_SET_LOCAL(0, WASM_I32V(0))),
|
|
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
|
|
WASM_I32V(36)),
|
|
WASM_SET_LOCAL(0, WASM_I32V(0))),
|
|
WASM_GET_LOCAL(0));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdF32x4For) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
r.AllocateLocal(kWasmI32);
|
|
r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))),
|
|
WASM_SET_LOCAL(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(1),
|
|
WASM_F32(19.5))),
|
|
WASM_SET_LOCAL(0, WASM_I32V(0)),
|
|
WASM_LOOP(
|
|
WASM_SET_LOCAL(
|
|
1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_GET_LOCAL(1),
|
|
WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))),
|
|
WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))),
|
|
WASM_SET_LOCAL(0, WASM_I32V(1)),
|
|
WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
|
|
WASM_F32(27.25)),
|
|
WASM_SET_LOCAL(0, WASM_I32V(0))),
|
|
WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
|
|
WASM_F32(25.5)),
|
|
WASM_SET_LOCAL(0, WASM_I32V(0))),
|
|
WASM_GET_LOCAL(0));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
|
|
template <typename T, int numLanes = 4>
|
|
void SetVectorByLanes(T* v, const std::array<T, numLanes>& arr) {
|
|
for (int lane = 0; lane < numLanes; lane++) {
|
|
WriteLittleEndianValue<T>(&v[lane], arr[lane]);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
const T GetScalar(T* v, int lane) {
|
|
constexpr int kElems = kSimd128Size / sizeof(T);
|
|
const int index = lane;
|
|
USE(kElems);
|
|
DCHECK(index >= 0 && index < kElems);
|
|
return ReadLittleEndianValue<T>(&v[index]);
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdI32x4GetGlobal) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Pad the globals with a few unused slots to get a non-zero offset.
|
|
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
|
|
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
|
|
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
|
|
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
|
|
int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
SetVectorByLanes(global, {{0, 1, 2, 3}});
|
|
r.AllocateLocal(kWasmI32);
|
|
BUILD(
|
|
r, WASM_SET_LOCAL(1, WASM_I32V(1)),
|
|
WASM_IF(WASM_I32_NE(WASM_I32V(0),
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(4))),
|
|
WASM_SET_LOCAL(1, WASM_I32V(0))),
|
|
WASM_IF(WASM_I32_NE(WASM_I32V(1),
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(4))),
|
|
WASM_SET_LOCAL(1, WASM_I32V(0))),
|
|
WASM_IF(WASM_I32_NE(WASM_I32V(2),
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(4))),
|
|
WASM_SET_LOCAL(1, WASM_I32V(0))),
|
|
WASM_IF(WASM_I32_NE(WASM_I32V(3),
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(4))),
|
|
WASM_SET_LOCAL(1, WASM_I32V(0))),
|
|
WASM_GET_LOCAL(1));
|
|
CHECK_EQ(1, r.Call(0));
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdI32x4SetGlobal) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
// Pad the globals with a few unused slots to get a non-zero offset.
|
|
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
|
|
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
|
|
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
|
|
r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused
|
|
int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128);
|
|
BUILD(r, WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))),
|
|
WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(4),
|
|
WASM_I32V(34))),
|
|
WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(4),
|
|
WASM_I32V(45))),
|
|
WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(4),
|
|
WASM_I32V(56))),
|
|
WASM_I32V(1));
|
|
CHECK_EQ(1, r.Call(0));
|
|
CHECK_EQ(GetScalar(global, 0), 23);
|
|
CHECK_EQ(GetScalar(global, 1), 34);
|
|
CHECK_EQ(GetScalar(global, 2), 45);
|
|
CHECK_EQ(GetScalar(global, 3), 56);
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdF32x4GetGlobal) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
float* global = r.builder().AddGlobal<float>(kWasmS128);
|
|
SetVectorByLanes<float>(global, {{0.0, 1.5, 2.25, 3.5}});
|
|
r.AllocateLocal(kWasmI32);
|
|
BUILD(
|
|
r, WASM_SET_LOCAL(1, WASM_I32V(1)),
|
|
WASM_IF(WASM_F32_NE(WASM_F32(0.0),
|
|
WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))),
|
|
WASM_SET_LOCAL(1, WASM_I32V(0))),
|
|
WASM_IF(WASM_F32_NE(WASM_F32(1.5),
|
|
WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))),
|
|
WASM_SET_LOCAL(1, WASM_I32V(0))),
|
|
WASM_IF(WASM_F32_NE(WASM_F32(2.25),
|
|
WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))),
|
|
WASM_SET_LOCAL(1, WASM_I32V(0))),
|
|
WASM_IF(WASM_F32_NE(WASM_F32(3.5),
|
|
WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))),
|
|
WASM_SET_LOCAL(1, WASM_I32V(0))),
|
|
WASM_GET_LOCAL(1));
|
|
CHECK_EQ(1, r.Call(0));
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdF32x4SetGlobal) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
float* global = r.builder().AddGlobal<float>(kWasmS128);
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0),
|
|
WASM_F32(45.5))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0),
|
|
WASM_F32(32.25))),
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0),
|
|
WASM_F32(65.0))),
|
|
WASM_I32V(1));
|
|
CHECK_EQ(1, r.Call(0));
|
|
CHECK_EQ(GetScalar(global, 0), 13.5f);
|
|
CHECK_EQ(GetScalar(global, 1), 45.5f);
|
|
CHECK_EQ(GetScalar(global, 2), 32.25f);
|
|
CHECK_EQ(GetScalar(global, 3), 65.0f);
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_ARM64
|
|
// TODO(v8:11168): Prototyping prefetch.
|
|
WASM_SIMD_TEST(SimdPrefetch) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
|
|
{
|
|
// Test PrefetchT.
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
int32_t* memory =
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
BUILD(r, WASM_ZERO, WASM_SIMD_OP(kExprPrefetchT), ZERO_ALIGNMENT,
|
|
ZERO_OFFSET,
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO)));
|
|
|
|
FOR_INT32_INPUTS(i) {
|
|
r.builder().WriteMemory(&memory[0], i);
|
|
CHECK_EQ(i, r.Call());
|
|
}
|
|
}
|
|
|
|
{
|
|
// Test PrefetchNT.
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
int32_t* memory =
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
BUILD(r, WASM_ZERO, WASM_SIMD_OP(kExprPrefetchNT), ZERO_ALIGNMENT,
|
|
ZERO_OFFSET,
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO)));
|
|
|
|
FOR_INT32_INPUTS(i) {
|
|
r.builder().WriteMemory(&memory[0], i);
|
|
CHECK_EQ(i, r.Call());
|
|
}
|
|
}
|
|
|
|
{
|
|
// Test OOB.
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
int32_t* memory =
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
|
|
// Prefetch kWasmPageSize+1 but still load from 0.
|
|
BUILD(r, WASM_I32V(kWasmPageSize + 1), WASM_SIMD_OP(kExprPrefetchNT),
|
|
ZERO_ALIGNMENT, ZERO_OFFSET,
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_ZERO)));
|
|
|
|
FOR_INT32_INPUTS(i) {
|
|
r.builder().WriteMemory(&memory[0], i);
|
|
CHECK_EQ(i, r.Call());
|
|
}
|
|
}
|
|
}
|
|
#endif // V8_TARGET_ARCH_ARM64
|
|
|
|
WASM_SIMD_TEST(SimdLoadStoreLoad) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
int32_t* memory =
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
// Load memory, store it, then reload it and extract the first lane. Use a
|
|
// non-zero offset into the memory of 1 lane (4 bytes) to test indexing.
|
|
BUILD(r, WASM_SIMD_STORE_MEM(WASM_I32V(8), WASM_SIMD_LOAD_MEM(WASM_I32V(4))),
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_I32V(8))));
|
|
|
|
FOR_INT32_INPUTS(i) {
|
|
int32_t expected = i;
|
|
r.builder().WriteMemory(&memory[1], expected);
|
|
CHECK_EQ(expected, r.Call());
|
|
}
|
|
|
|
{
|
|
// OOB tests for loads.
|
|
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
BUILD(r, WASM_SIMD_I32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_LOAD_MEM(WASM_GET_LOCAL(0))));
|
|
|
|
for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1);
|
|
offset < kWasmPageSize; ++offset) {
|
|
CHECK_TRAP(r.Call(offset));
|
|
}
|
|
}
|
|
|
|
{
|
|
// OOB tests for stores.
|
|
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
BUILD(r,
|
|
WASM_SIMD_STORE_MEM(WASM_GET_LOCAL(0), WASM_SIMD_LOAD_MEM(WASM_ZERO)),
|
|
WASM_ONE);
|
|
|
|
for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1);
|
|
offset < kWasmPageSize; ++offset) {
|
|
CHECK_TRAP(r.Call(offset));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(SimdLoadStoreLoadMemargOffset) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
int32_t* memory =
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
constexpr byte offset_1 = 4;
|
|
constexpr byte offset_2 = 8;
|
|
// Load from memory at offset_1, store to offset_2, load from offset_2, and
|
|
// extract first lane. We use non-zero memarg offsets to test offset decoding.
|
|
BUILD(
|
|
r,
|
|
WASM_SIMD_STORE_MEM_OFFSET(
|
|
offset_2, WASM_ZERO, WASM_SIMD_LOAD_MEM_OFFSET(offset_1, WASM_ZERO)),
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_LOAD_MEM_OFFSET(offset_2, WASM_ZERO)));
|
|
|
|
FOR_INT32_INPUTS(i) {
|
|
int32_t expected = i;
|
|
// Index 1 of memory (int32_t) will be bytes 4 to 8.
|
|
r.builder().WriteMemory(&memory[1], expected);
|
|
CHECK_EQ(expected, r.Call());
|
|
}
|
|
|
|
{
|
|
// OOB tests for loads with offsets.
|
|
for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1);
|
|
offset < kWasmPageSize; ++offset) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
BUILD(r, WASM_SIMD_I32x4_EXTRACT_LANE(
|
|
0, WASM_SIMD_LOAD_MEM_OFFSET(U32V_3(offset), WASM_ZERO)));
|
|
CHECK_TRAP(r.Call());
|
|
}
|
|
}
|
|
|
|
{
|
|
// OOB tests for stores with offsets
|
|
for (uint32_t offset = kWasmPageSize - (kSimd128Size - 1);
|
|
offset < kWasmPageSize; ++offset) {
|
|
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
|
|
BUILD(r,
|
|
WASM_SIMD_STORE_MEM_OFFSET(U32V_3(offset), WASM_ZERO,
|
|
WASM_SIMD_LOAD_MEM(WASM_ZERO)),
|
|
WASM_ONE);
|
|
CHECK_TRAP(r.Call(offset));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test a multi-byte opcode with offset values that encode into valid opcodes.
|
|
// This is to exercise decoding logic and make sure we get the lengths right.
|
|
WASM_SIMD_TEST(S128Load8SplatOffset) {
|
|
// This offset is [82, 22] when encoded, which contains valid opcodes.
|
|
constexpr int offset = 4354;
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
int8_t* memory = r.builder().AddMemoryElems<int8_t>(kWasmPageSize);
|
|
int8_t* global = r.builder().AddGlobal<int8_t>(kWasmS128);
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(
|
|
0, WASM_SIMD_LOAD_OP_OFFSET(kExprS128Load8Splat, WASM_I32V(0),
|
|
U32V_2(offset))),
|
|
WASM_ONE);
|
|
|
|
// We don't really care about all valid values, so just test for 1.
|
|
int8_t x = 7;
|
|
r.builder().WriteMemory(&memory[offset], x);
|
|
r.Call();
|
|
for (int i = 0; i < 16; i++) {
|
|
CHECK_EQ(x, ReadLittleEndianValue<int8_t>(&global[i]));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void RunLoadSplatTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode op) {
|
|
constexpr int lanes = 16 / sizeof(T);
|
|
constexpr int mem_index = 16; // Load from mem index 16 (bytes).
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
T* memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
|
|
T* global = r.builder().AddGlobal<T>(kWasmS128);
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_I32V(mem_index))),
|
|
WASM_ONE);
|
|
|
|
for (T x : compiler::ValueHelper::GetVector<T>()) {
|
|
// 16-th byte in memory is lanes-th element (size T) of memory.
|
|
r.builder().WriteMemory(&memory[lanes], x);
|
|
r.Call();
|
|
for (int i = 0; i < lanes; i++) {
|
|
CHECK_EQ(x, ReadLittleEndianValue<T>(&global[i]));
|
|
}
|
|
}
|
|
|
|
// Test for OOB.
|
|
{
|
|
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
|
|
r.builder().AddGlobal<T>(kWasmS128);
|
|
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_GET_LOCAL(0))),
|
|
WASM_ONE);
|
|
|
|
// Load splats load sizeof(T) bytes.
|
|
for (uint32_t offset = kWasmPageSize - (sizeof(T) - 1);
|
|
offset < kWasmPageSize; ++offset) {
|
|
CHECK_TRAP(r.Call(offset));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load8Splat) {
|
|
RunLoadSplatTest<int8_t>(execution_tier, lower_simd, kExprS128Load8Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load16Splat) {
|
|
RunLoadSplatTest<int16_t>(execution_tier, lower_simd, kExprS128Load16Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load32Splat) {
|
|
RunLoadSplatTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load64Splat) {
|
|
RunLoadSplatTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Splat);
|
|
}
|
|
|
|
template <typename S, typename T>
|
|
void RunLoadExtendTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode op) {
|
|
static_assert(sizeof(S) < sizeof(T),
|
|
"load extend should go from smaller to larger type");
|
|
constexpr int lanes_s = 16 / sizeof(S);
|
|
constexpr int lanes_t = 16 / sizeof(T);
|
|
constexpr int mem_index = 16; // Load from mem index 16 (bytes).
|
|
// Load extends always load 64 bits, so alignment values can be from 0 to 3.
|
|
for (byte alignment = 0; alignment <= 3; alignment++) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
S* memory = r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
|
|
T* global = r.builder().AddGlobal<T>(kWasmS128);
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP_ALIGNMENT(
|
|
op, WASM_I32V(mem_index), alignment)),
|
|
WASM_ONE);
|
|
|
|
for (S x : compiler::ValueHelper::GetVector<S>()) {
|
|
for (int i = 0; i < lanes_s; i++) {
|
|
// 16-th byte in memory is lanes-th element (size T) of memory.
|
|
r.builder().WriteMemory(&memory[lanes_s + i], x);
|
|
}
|
|
r.Call();
|
|
for (int i = 0; i < lanes_t; i++) {
|
|
CHECK_EQ(static_cast<T>(x), ReadLittleEndianValue<T>(&global[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test for offset.
|
|
{
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
S* memory = r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
|
|
T* global = r.builder().AddGlobal<T>(kWasmS128);
|
|
constexpr byte offset = sizeof(S);
|
|
BUILD(r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP_OFFSET(op, WASM_ZERO, offset)),
|
|
WASM_ONE);
|
|
|
|
// Let max_s be the max_s value for type S, we set up the memory as such:
|
|
// memory = [max_s, max_s - 1, ... max_s - (lane_s - 1)].
|
|
constexpr S max_s = std::numeric_limits<S>::max();
|
|
for (int i = 0; i < lanes_s; i++) {
|
|
// Integer promotion due to -, static_cast to narrow.
|
|
r.builder().WriteMemory(&memory[i], static_cast<S>(max_s - i));
|
|
}
|
|
|
|
r.Call();
|
|
|
|
// Loads will be offset by sizeof(S), so will always start from (max_s - 1).
|
|
for (int i = 0; i < lanes_t; i++) {
|
|
// Integer promotion due to -, static_cast to narrow.
|
|
T expected = static_cast<T>(max_s - i - 1);
|
|
CHECK_EQ(expected, ReadLittleEndianValue<T>(&global[i]));
|
|
}
|
|
}
|
|
|
|
// Test for OOB.
|
|
{
|
|
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
|
|
r.builder().AddGlobal<T>(kWasmS128);
|
|
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_GET_LOCAL(0))),
|
|
WASM_ONE);
|
|
|
|
// Load extends load 8 bytes, so should trap from -7.
|
|
for (uint32_t offset = kWasmPageSize - 7; offset < kWasmPageSize;
|
|
++offset) {
|
|
CHECK_TRAP(r.Call(offset));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load8x8U) {
|
|
RunLoadExtendTest<uint8_t, uint16_t>(execution_tier, lower_simd,
|
|
kExprS128Load8x8U);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load8x8S) {
|
|
RunLoadExtendTest<int8_t, int16_t>(execution_tier, lower_simd,
|
|
kExprS128Load8x8S);
|
|
}
|
|
WASM_SIMD_TEST(S128Load16x4U) {
|
|
RunLoadExtendTest<uint16_t, uint32_t>(execution_tier, lower_simd,
|
|
kExprS128Load16x4U);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load16x4S) {
|
|
RunLoadExtendTest<int16_t, int32_t>(execution_tier, lower_simd,
|
|
kExprS128Load16x4S);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load32x2U) {
|
|
RunLoadExtendTest<uint32_t, uint64_t>(execution_tier, lower_simd,
|
|
kExprS128Load32x2U);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load32x2S) {
|
|
RunLoadExtendTest<int32_t, int64_t>(execution_tier, lower_simd,
|
|
kExprS128Load32x2S);
|
|
}
|
|
|
|
template <typename S>
|
|
void RunLoadZeroTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode op) {
|
|
constexpr int lanes_s = kSimd128Size / sizeof(S);
|
|
constexpr int mem_index = 16; // Load from mem index 16 (bytes).
|
|
constexpr S sentinel = S{-1};
|
|
S* memory;
|
|
S* global;
|
|
|
|
auto initialize_builder = [=](WasmRunner<int32_t>* r) -> std::tuple<S*, S*> {
|
|
S* memory = r->builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
|
|
S* global = r->builder().AddGlobal<S>(kWasmS128);
|
|
r->builder().RandomizeMemory();
|
|
r->builder().WriteMemory(&memory[lanes_s], sentinel);
|
|
return std::make_tuple(memory, global);
|
|
};
|
|
|
|
// Check all supported alignments.
|
|
constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(S));
|
|
for (byte alignment = 0; alignment <= max_alignment; alignment++) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
std::tie(memory, global) = initialize_builder(&r);
|
|
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_I32V(mem_index))),
|
|
WASM_ONE);
|
|
r.Call();
|
|
|
|
// Only first lane is set to sentinel.
|
|
CHECK_EQ(sentinel, ReadLittleEndianValue<S>(&global[0]));
|
|
// The other lanes are zero.
|
|
for (int i = 1; i < lanes_s; i++) {
|
|
CHECK_EQ(S{0}, ReadLittleEndianValue<S>(&global[i]));
|
|
}
|
|
}
|
|
|
|
{
|
|
// Use memarg to specific offset.
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
std::tie(memory, global) = initialize_builder(&r);
|
|
|
|
BUILD(
|
|
r,
|
|
WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP_OFFSET(op, WASM_ZERO, mem_index)),
|
|
WASM_ONE);
|
|
r.Call();
|
|
|
|
// Only first lane is set to sentinel.
|
|
CHECK_EQ(sentinel, ReadLittleEndianValue<S>(&global[0]));
|
|
// The other lanes are zero.
|
|
for (int i = 1; i < lanes_s; i++) {
|
|
CHECK_EQ(S{0}, ReadLittleEndianValue<S>(&global[i]));
|
|
}
|
|
}
|
|
|
|
// Test for OOB.
|
|
{
|
|
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S));
|
|
r.builder().AddGlobal<S>(kWasmS128);
|
|
|
|
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_GET_LOCAL(0))),
|
|
WASM_ONE);
|
|
|
|
// Load extends load sizeof(S) bytes.
|
|
for (uint32_t offset = kWasmPageSize - (sizeof(S) - 1);
|
|
offset < kWasmPageSize; ++offset) {
|
|
CHECK_TRAP(r.Call(offset));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load32Zero) {
|
|
RunLoadZeroTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Zero);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Load64Zero) {
|
|
RunLoadZeroTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Zero);
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 || \
|
|
V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_S390X || V8_TARGET_ARCH_MIPS64
|
|
// TODO(v8:10975): Prototyping load lane and store lane.
|
|
template <typename T>
|
|
void RunLoadLaneTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode load_op, WasmOpcode splat_op) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
if (execution_tier == TestExecutionTier::kLiftoff) {
|
|
// Not yet implemented.
|
|
return;
|
|
}
|
|
|
|
WasmOpcode const_op =
|
|
splat_op == kExprI64x2Splat ? kExprI64Const : kExprI32Const;
|
|
|
|
constexpr int lanes_s = kSimd128Size / sizeof(T);
|
|
constexpr int mem_index = 16; // Load from mem index 16 (bytes).
|
|
constexpr int splat_value = 33;
|
|
T sentinel = T{-1};
|
|
|
|
T* memory;
|
|
T* global;
|
|
|
|
auto build_fn = [=, &memory, &global](WasmRunner<int32_t>& r, int mem_index,
|
|
int lane, int alignment, int offset) {
|
|
memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
|
|
global = r.builder().AddGlobal<T>(kWasmS128);
|
|
r.builder().WriteMemory(&memory[lanes_s], sentinel);
|
|
// Splat splat_value, then only load and replace a single lane with the
|
|
// sentinel value.
|
|
BUILD(r, WASM_I32V(mem_index), const_op, splat_value,
|
|
WASM_SIMD_OP(splat_op), WASM_SIMD_OP(load_op), alignment, offset,
|
|
lane, kExprGlobalSet, 0, WASM_ONE);
|
|
};
|
|
|
|
auto check_results = [=](T* global, int sentinel_lane = 0) {
|
|
// Only one lane is loaded, the rest of the lanes are unchanged.
|
|
for (int i = 0; i < lanes_s; i++) {
|
|
T expected = i == sentinel_lane ? sentinel : static_cast<T>(splat_value);
|
|
CHECK_EQ(expected, ReadLittleEndianValue<T>(&global[i]));
|
|
}
|
|
};
|
|
|
|
for (int lane_index = 0; lane_index < lanes_s; ++lane_index) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
build_fn(r, mem_index, lane_index, /*alignment=*/0, /*offset=*/0);
|
|
r.Call();
|
|
check_results(global, lane_index);
|
|
}
|
|
|
|
// Check all possible alignments.
|
|
constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(T));
|
|
for (byte alignment = 0; alignment <= max_alignment; ++alignment) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
build_fn(r, mem_index, /*lane=*/0, alignment, /*offset=*/0);
|
|
r.Call();
|
|
check_results(global);
|
|
}
|
|
|
|
{
|
|
// Use memarg to specify offset.
|
|
int lane_index = 0;
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
build_fn(r, /*mem_index=*/0, /*lane=*/0, /*alignment=*/0,
|
|
/*offset=*/mem_index);
|
|
r.Call();
|
|
check_results(global, lane_index);
|
|
}
|
|
|
|
// Test for OOB.
|
|
{
|
|
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
|
|
r.builder().AddGlobal<T>(kWasmS128);
|
|
|
|
BUILD(r, WASM_GET_LOCAL(0), const_op, splat_value, WASM_SIMD_OP(splat_op),
|
|
WASM_SIMD_OP(load_op), ZERO_ALIGNMENT, ZERO_OFFSET, 0, kExprGlobalSet,
|
|
0, WASM_ONE);
|
|
|
|
// Load lane load sizeof(T) bytes.
|
|
for (uint32_t index = kWasmPageSize - (sizeof(T) - 1);
|
|
index < kWasmPageSize; ++index) {
|
|
CHECK_TRAP(r.Call(index));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(S128Load8Lane) {
|
|
RunLoadLaneTest<int8_t>(execution_tier, lower_simd, kExprS128Load8Lane,
|
|
kExprI8x16Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(S128Load16Lane) {
|
|
RunLoadLaneTest<int16_t>(execution_tier, lower_simd, kExprS128Load16Lane,
|
|
kExprI16x8Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(S128Load32Lane) {
|
|
RunLoadLaneTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Lane,
|
|
kExprI32x4Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(S128Load64Lane) {
|
|
RunLoadLaneTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Lane,
|
|
kExprI64x2Splat);
|
|
}
|
|
|
|
template <typename T>
|
|
void RunStoreLaneTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
WasmOpcode store_op, WasmOpcode splat_op) {
|
|
FLAG_SCOPE(wasm_simd_post_mvp);
|
|
if (execution_tier == TestExecutionTier::kLiftoff) {
|
|
// Not yet implemented.
|
|
return;
|
|
}
|
|
|
|
constexpr int lanes = kSimd128Size / sizeof(T);
|
|
constexpr int mem_index = 16; // Store to mem index 16 (bytes).
|
|
constexpr int splat_value = 33;
|
|
WasmOpcode const_op =
|
|
splat_op == kExprI64x2Splat ? kExprI64Const : kExprI32Const;
|
|
|
|
T* memory; // Will be set by build_fn.
|
|
|
|
auto build_fn = [=, &memory](WasmRunner<int32_t>& r, int mem_index,
|
|
int lane_index, int alignment, int offset) {
|
|
memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
|
|
// Splat splat_value, then only Store and replace a single lane.
|
|
BUILD(r, WASM_I32V(mem_index), const_op, splat_value,
|
|
WASM_SIMD_OP(splat_op), WASM_SIMD_OP(store_op), alignment, offset,
|
|
lane_index, WASM_ONE);
|
|
r.builder().BlankMemory();
|
|
};
|
|
|
|
auto check_results = [=](WasmRunner<int32_t>& r, T* memory) {
|
|
for (int i = 0; i < lanes; i++) {
|
|
CHECK_EQ(0, r.builder().ReadMemory(&memory[i]));
|
|
}
|
|
|
|
CHECK_EQ(splat_value, r.builder().ReadMemory(&memory[lanes]));
|
|
|
|
for (int i = lanes + 1; i < lanes * 2; i++) {
|
|
CHECK_EQ(0, r.builder().ReadMemory(&memory[i]));
|
|
}
|
|
};
|
|
|
|
for (int lane_index = 0; lane_index < lanes; lane_index++) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
build_fn(r, mem_index, lane_index, ZERO_ALIGNMENT, ZERO_OFFSET);
|
|
r.Call();
|
|
check_results(r, memory);
|
|
}
|
|
|
|
// Check all possible alignments.
|
|
constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(T));
|
|
for (byte alignment = 0; alignment <= max_alignment; ++alignment) {
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
build_fn(r, mem_index, /*lane_index=*/0, alignment, ZERO_OFFSET);
|
|
r.Call();
|
|
check_results(r, memory);
|
|
}
|
|
|
|
{
|
|
// Use memarg for offset.
|
|
WasmRunner<int32_t> r(execution_tier, lower_simd);
|
|
build_fn(r, /*mem_index=*/0, /*lane_index=*/0, ZERO_ALIGNMENT, mem_index);
|
|
r.Call();
|
|
check_results(r, memory);
|
|
}
|
|
|
|
// OOB stores
|
|
{
|
|
WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd);
|
|
r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T));
|
|
|
|
BUILD(r, WASM_GET_LOCAL(0), const_op, splat_value, WASM_SIMD_OP(splat_op),
|
|
WASM_SIMD_OP(store_op), ZERO_ALIGNMENT, ZERO_OFFSET, 0, WASM_ONE);
|
|
|
|
// StoreLane stores sizeof(T) bytes.
|
|
for (uint32_t index = kWasmPageSize - (sizeof(T) - 1);
|
|
index < kWasmPageSize; ++index) {
|
|
CHECK_TRAP(r.Call(index));
|
|
}
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(S128Store8Lane) {
|
|
RunStoreLaneTest<int8_t>(execution_tier, lower_simd, kExprS128Store8Lane,
|
|
kExprI8x16Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(S128Store16Lane) {
|
|
RunStoreLaneTest<int16_t>(execution_tier, lower_simd, kExprS128Store16Lane,
|
|
kExprI16x8Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(S128Store32Lane) {
|
|
RunStoreLaneTest<int32_t>(execution_tier, lower_simd, kExprS128Store32Lane,
|
|
kExprI32x4Splat);
|
|
}
|
|
|
|
WASM_SIMD_TEST_NO_LOWERING(S128Store64Lane) {
|
|
RunStoreLaneTest<int64_t>(execution_tier, lower_simd, kExprS128Store64Lane,
|
|
kExprI64x2Splat);
|
|
}
|
|
|
|
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 ||
|
|
// V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_S390X || V8_TARGET_ARCH_MIPS64
|
|
|
|
#define WASM_SIMD_ANYTRUE_TEST(format, lanes, max, param_type) \
|
|
WASM_SIMD_TEST(S##format##AnyTrue) { \
|
|
FLAG_SCOPE(wasm_simd_post_mvp); \
|
|
WasmRunner<int32_t, param_type> r(execution_tier, lower_simd); \
|
|
if (lanes == 2 && lower_simd == kLowerSimd) return; \
|
|
byte simd = r.AllocateLocal(kWasmS128); \
|
|
BUILD( \
|
|
r, \
|
|
WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(0))), \
|
|
WASM_SIMD_UNOP(kExprV##format##AnyTrue, WASM_GET_LOCAL(simd))); \
|
|
CHECK_EQ(1, r.Call(max)); \
|
|
CHECK_EQ(1, r.Call(5)); \
|
|
CHECK_EQ(0, r.Call(0)); \
|
|
}
|
|
WASM_SIMD_ANYTRUE_TEST(32x4, 4, 0xffffffff, int32_t)
|
|
WASM_SIMD_ANYTRUE_TEST(16x8, 8, 0xffff, int32_t)
|
|
WASM_SIMD_ANYTRUE_TEST(8x16, 16, 0xff, int32_t)
|
|
|
|
// Special any true test cases that splats a -0.0 double into a i64x2.
|
|
// This is specifically to ensure that our implementation correct handles that
|
|
// 0.0 and -0.0 will be different in an anytrue (IEEE753 says they are equals).
|
|
WASM_SIMD_TEST(V32x4AnytrueWithNegativeZero) {
|
|
WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd);
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SIMD_UNOP(kExprV32x4AnyTrue, WASM_GET_LOCAL(simd)));
|
|
CHECK_EQ(1, r.Call(0x8000000000000000));
|
|
CHECK_EQ(0, r.Call(0x0000000000000000));
|
|
}
|
|
|
|
#define WASM_SIMD_ALLTRUE_TEST(format, lanes, max, param_type) \
|
|
WASM_SIMD_TEST(V##format##AllTrue) { \
|
|
FLAG_SCOPE(wasm_simd_post_mvp); \
|
|
WasmRunner<int32_t, param_type> r(execution_tier, lower_simd); \
|
|
if (lanes == 2 && lower_simd == kLowerSimd) return; \
|
|
byte simd = r.AllocateLocal(kWasmS128); \
|
|
BUILD( \
|
|
r, \
|
|
WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(0))), \
|
|
WASM_SIMD_UNOP(kExprV##format##AllTrue, WASM_GET_LOCAL(simd))); \
|
|
CHECK_EQ(1, r.Call(max)); \
|
|
CHECK_EQ(1, r.Call(0x1)); \
|
|
CHECK_EQ(0, r.Call(0)); \
|
|
}
|
|
WASM_SIMD_ALLTRUE_TEST(32x4, 4, 0xffffffff, int32_t)
|
|
WASM_SIMD_ALLTRUE_TEST(16x8, 8, 0xffff, int32_t)
|
|
WASM_SIMD_ALLTRUE_TEST(8x16, 16, 0xff, int32_t)
|
|
|
|
WASM_SIMD_TEST(BitSelect) {
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
byte simd = r.AllocateLocal(kWasmS128);
|
|
BUILD(r,
|
|
WASM_SET_LOCAL(
|
|
simd,
|
|
WASM_SIMD_SELECT(32x4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(0x01020304)),
|
|
WASM_SIMD_I32x4_SPLAT(WASM_I32V(0)),
|
|
WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0)))),
|
|
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(simd)));
|
|
CHECK_EQ(0x01020304, r.Call(0xFFFFFFFF));
|
|
}
|
|
|
|
void RunSimdConstTest(TestExecutionTier execution_tier, LowerSimd lower_simd,
|
|
const std::array<uint8_t, kSimd128Size>& expected) {
|
|
WasmRunner<uint32_t> r(execution_tier, lower_simd);
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
uint8_t* src0 = r.builder().AddGlobal<uint8_t>(kWasmS128);
|
|
BUILD(r, WASM_SET_GLOBAL(temp1, WASM_SIMD_CONSTANT(expected)), WASM_ONE);
|
|
CHECK_EQ(1, r.Call());
|
|
for (size_t i = 0; i < expected.size(); i++) {
|
|
CHECK_EQ(ReadLittleEndianValue<uint8_t>(&src0[i]), expected[i]);
|
|
}
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128Const) {
|
|
std::array<uint8_t, kSimd128Size> expected;
|
|
// Test for generic constant
|
|
for (int i = 0; i < kSimd128Size; i++) {
|
|
expected[i] = i;
|
|
}
|
|
RunSimdConstTest(execution_tier, lower_simd, expected);
|
|
|
|
// Keep the first 4 lanes as 0, set the remaining ones.
|
|
for (int i = 0; i < 4; i++) {
|
|
expected[i] = 0;
|
|
}
|
|
for (int i = 4; i < kSimd128Size; i++) {
|
|
expected[i] = i;
|
|
}
|
|
RunSimdConstTest(execution_tier, lower_simd, expected);
|
|
|
|
// Check sign extension logic used to pack int32s into int64.
|
|
expected = {0};
|
|
// Set the top bit of lane 3 (top bit of first int32), the rest can be 0.
|
|
expected[3] = 0x80;
|
|
RunSimdConstTest(execution_tier, lower_simd, expected);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128ConstAllZero) {
|
|
std::array<uint8_t, kSimd128Size> expected = {0};
|
|
RunSimdConstTest(execution_tier, lower_simd, expected);
|
|
}
|
|
|
|
WASM_SIMD_TEST(S128ConstAllOnes) {
|
|
std::array<uint8_t, kSimd128Size> expected;
|
|
// Test for generic constant
|
|
for (int i = 0; i < kSimd128Size; i++) {
|
|
expected[i] = 0xff;
|
|
}
|
|
RunSimdConstTest(execution_tier, lower_simd, expected);
|
|
}
|
|
|
|
void RunI8x16MixedRelationalOpTest(TestExecutionTier execution_tier,
|
|
LowerSimd lower_simd, WasmOpcode opcode,
|
|
Int8BinOp expected_op) {
|
|
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
byte temp3 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_LOCAL(temp3, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_SIMD_I8x16_EXTRACT_LANE(0, WASM_GET_LOCAL(temp3)));
|
|
|
|
CHECK_EQ(expected_op(0xff, static_cast<uint8_t>(0x7fff)),
|
|
r.Call(0xff, 0x7fff));
|
|
CHECK_EQ(expected_op(0xfe, static_cast<uint8_t>(0x7fff)),
|
|
r.Call(0xfe, 0x7fff));
|
|
CHECK_EQ(expected_op(0xff, static_cast<uint8_t>(0x7ffe)),
|
|
r.Call(0xff, 0x7ffe));
|
|
}
|
|
|
|
WASM_SIMD_TEST(I8x16LeUMixed) {
|
|
RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LeU,
|
|
UnsignedLessEqual);
|
|
}
|
|
WASM_SIMD_TEST(I8x16LtUMixed) {
|
|
RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LtU,
|
|
UnsignedLess);
|
|
}
|
|
WASM_SIMD_TEST(I8x16GeUMixed) {
|
|
RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GeU,
|
|
UnsignedGreaterEqual);
|
|
}
|
|
WASM_SIMD_TEST(I8x16GtUMixed) {
|
|
RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GtU,
|
|
UnsignedGreater);
|
|
}
|
|
|
|
void RunI16x8MixedRelationalOpTest(TestExecutionTier execution_tier,
|
|
LowerSimd lower_simd, WasmOpcode opcode,
|
|
Int16BinOp expected_op) {
|
|
WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
|
|
byte value1 = 0, value2 = 1;
|
|
byte temp1 = r.AllocateLocal(kWasmS128);
|
|
byte temp2 = r.AllocateLocal(kWasmS128);
|
|
byte temp3 = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))),
|
|
WASM_SET_LOCAL(temp2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value2))),
|
|
WASM_SET_LOCAL(temp3, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
|
|
WASM_GET_LOCAL(temp2))),
|
|
WASM_SIMD_I16x8_EXTRACT_LANE(0, WASM_GET_LOCAL(temp3)));
|
|
|
|
CHECK_EQ(expected_op(0xffff, static_cast<uint16_t>(0x7fffffff)),
|
|
r.Call(0xffff, 0x7fffffff));
|
|
CHECK_EQ(expected_op(0xfeff, static_cast<uint16_t>(0x7fffffff)),
|
|
r.Call(0xfeff, 0x7fffffff));
|
|
CHECK_EQ(expected_op(0xffff, static_cast<uint16_t>(0x7ffffeff)),
|
|
r.Call(0xffff, 0x7ffffeff));
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8LeUMixed) {
|
|
RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LeU,
|
|
UnsignedLessEqual);
|
|
}
|
|
WASM_SIMD_TEST(I16x8LtUMixed) {
|
|
RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LtU,
|
|
UnsignedLess);
|
|
}
|
|
WASM_SIMD_TEST(I16x8GeUMixed) {
|
|
RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GeU,
|
|
UnsignedGreaterEqual);
|
|
}
|
|
WASM_SIMD_TEST(I16x8GtUMixed) {
|
|
RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GtU,
|
|
UnsignedGreater);
|
|
}
|
|
|
|
WASM_SIMD_TEST(I16x8ExtractLaneU_I8x16Splat) {
|
|
// Test that we are correctly signed/unsigned extending when extracting.
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
|
|
byte simd_val = r.AllocateLocal(kWasmS128);
|
|
BUILD(r, WASM_SET_LOCAL(simd_val, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(0))),
|
|
WASM_SIMD_I16x8_EXTRACT_LANE_U(0, WASM_GET_LOCAL(simd_val)));
|
|
CHECK_EQ(0xfafa, r.Call(0xfa));
|
|
}
|
|
|
|
#define WASM_EXTRACT_I16x8_TEST(Sign, Type) \
|
|
WASM_SIMD_TEST(I16X8ExtractLane##Sign) { \
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); \
|
|
byte int_val = r.AllocateLocal(kWasmI32); \
|
|
byte simd_val = r.AllocateLocal(kWasmS128); \
|
|
BUILD(r, \
|
|
WASM_SET_LOCAL(simd_val, \
|
|
WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(int_val))), \
|
|
WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 0), \
|
|
WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 2), \
|
|
WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 4), \
|
|
WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 6), WASM_ONE); \
|
|
FOR_##Type##_INPUTS(x) { CHECK_EQ(1, r.Call(x)); } \
|
|
}
|
|
WASM_EXTRACT_I16x8_TEST(S, UINT16) WASM_EXTRACT_I16x8_TEST(I, INT16)
|
|
#undef WASM_EXTRACT_I16x8_TEST
|
|
|
|
#define WASM_EXTRACT_I8x16_TEST(Sign, Type) \
|
|
WASM_SIMD_TEST(I8x16ExtractLane##Sign) { \
|
|
WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); \
|
|
byte int_val = r.AllocateLocal(kWasmI32); \
|
|
byte simd_val = r.AllocateLocal(kWasmS128); \
|
|
BUILD(r, \
|
|
WASM_SET_LOCAL(simd_val, \
|
|
WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(int_val))), \
|
|
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 1), \
|
|
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 3), \
|
|
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 5), \
|
|
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 7), \
|
|
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 9), \
|
|
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 10), \
|
|
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 11), \
|
|
WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 13), \
|
|
WASM_ONE); \
|
|
FOR_##Type##_INPUTS(x) { CHECK_EQ(1, r.Call(x)); } \
|
|
}
|
|
WASM_EXTRACT_I8x16_TEST(S, UINT8) WASM_EXTRACT_I8x16_TEST(I, INT8)
|
|
#undef WASM_EXTRACT_I8x16_TEST
|
|
|
|
#undef WASM_SIMD_TEST
|
|
#undef WASM_SIMD_CHECK_LANE_S
|
|
#undef WASM_SIMD_CHECK_LANE_U
|
|
#undef TO_BYTE
|
|
#undef WASM_SIMD_OP
|
|
#undef WASM_SIMD_SPLAT
|
|
#undef WASM_SIMD_UNOP
|
|
#undef WASM_SIMD_BINOP
|
|
#undef WASM_SIMD_SHIFT_OP
|
|
#undef WASM_SIMD_CONCAT_OP
|
|
#undef WASM_SIMD_SELECT
|
|
#undef WASM_SIMD_F64x2_SPLAT
|
|
#undef WASM_SIMD_F64x2_EXTRACT_LANE
|
|
#undef WASM_SIMD_F64x2_REPLACE_LANE
|
|
#undef WASM_SIMD_F32x4_SPLAT
|
|
#undef WASM_SIMD_F32x4_EXTRACT_LANE
|
|
#undef WASM_SIMD_F32x4_REPLACE_LANE
|
|
#undef WASM_SIMD_I64x2_SPLAT
|
|
#undef WASM_SIMD_I64x2_EXTRACT_LANE
|
|
#undef WASM_SIMD_I64x2_REPLACE_LANE
|
|
#undef WASM_SIMD_I32x4_SPLAT
|
|
#undef WASM_SIMD_I32x4_EXTRACT_LANE
|
|
#undef WASM_SIMD_I32x4_REPLACE_LANE
|
|
#undef WASM_SIMD_I16x8_SPLAT
|
|
#undef WASM_SIMD_I16x8_EXTRACT_LANE
|
|
#undef WASM_SIMD_I16x8_EXTRACT_LANE_U
|
|
#undef WASM_SIMD_I16x8_REPLACE_LANE
|
|
#undef WASM_SIMD_I8x16_SPLAT
|
|
#undef WASM_SIMD_I8x16_EXTRACT_LANE
|
|
#undef WASM_SIMD_I8x16_EXTRACT_LANE_U
|
|
#undef WASM_SIMD_I8x16_REPLACE_LANE
|
|
#undef WASM_SIMD_I8x16_SHUFFLE_OP
|
|
#undef WASM_SIMD_LOAD_MEM
|
|
#undef WASM_SIMD_LOAD_MEM_OFFSET
|
|
#undef WASM_SIMD_STORE_MEM
|
|
#undef WASM_SIMD_STORE_MEM_OFFSET
|
|
#undef WASM_SIMD_SELECT_TEST
|
|
#undef WASM_SIMD_NON_CANONICAL_SELECT_TEST
|
|
#undef WASM_SIMD_BOOL_REDUCTION_TEST
|
|
#undef WASM_SIMD_TEST_NO_LOWERING
|
|
#undef WASM_SIMD_ANYTRUE_TEST
|
|
#undef WASM_SIMD_ALLTRUE_TEST
|
|
#undef WASM_SIMD_F64x2_QFMA
|
|
#undef WASM_SIMD_F64x2_QFMS
|
|
#undef WASM_SIMD_F32x4_QFMA
|
|
#undef WASM_SIMD_F32x4_QFMS
|
|
#undef WASM_SIMD_LOAD_OP
|
|
#undef WASM_SIMD_LOAD_OP_OFFSET
|
|
#undef WASM_SIMD_LOAD_OP_ALIGNMENT
|
|
|
|
} // namespace test_run_wasm_simd
|
|
} // namespace wasm
|
|
} // namespace internal
|
|
} // namespace v8
|