ed6c366f98
BUG=chromium:98597 Review URL: https://codereview.chromium.org/12486003 Patch from Paweł Hajdan Jr. <phajdan.jr@chromium.org>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13854 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
294 lines
9.6 KiB
C++
294 lines
9.6 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "v8.h"
|
|
|
|
#include "platform.h"
|
|
#include "cctest.h"
|
|
#include "diy-fp.h"
|
|
#include "double.h"
|
|
#include "fast-dtoa.h"
|
|
#include "gay-precision.h"
|
|
#include "gay-shortest.h"
|
|
|
|
using namespace v8::internal;
|
|
|
|
static const int kBufferSize = 100;
|
|
|
|
|
|
// Removes trailing '0' digits.
|
|
static void TrimRepresentation(Vector<char> representation) {
|
|
int len = StrLength(representation.start());
|
|
int i;
|
|
for (i = len - 1; i >= 0; --i) {
|
|
if (representation[i] != '0') break;
|
|
}
|
|
representation[i + 1] = '\0';
|
|
}
|
|
|
|
|
|
TEST(FastDtoaShortestVariousDoubles) {
|
|
char buffer_container[kBufferSize];
|
|
Vector<char> buffer(buffer_container, kBufferSize);
|
|
int length;
|
|
int point;
|
|
int status;
|
|
|
|
double min_double = 5e-324;
|
|
status = FastDtoa(min_double, FAST_DTOA_SHORTEST, 0,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("5", buffer.start());
|
|
CHECK_EQ(-323, point);
|
|
|
|
double max_double = 1.7976931348623157e308;
|
|
status = FastDtoa(max_double, FAST_DTOA_SHORTEST, 0,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("17976931348623157", buffer.start());
|
|
CHECK_EQ(309, point);
|
|
|
|
status = FastDtoa(4294967272.0, FAST_DTOA_SHORTEST, 0,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("4294967272", buffer.start());
|
|
CHECK_EQ(10, point);
|
|
|
|
status = FastDtoa(4.1855804968213567e298, FAST_DTOA_SHORTEST, 0,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("4185580496821357", buffer.start());
|
|
CHECK_EQ(299, point);
|
|
|
|
status = FastDtoa(5.5626846462680035e-309, FAST_DTOA_SHORTEST, 0,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("5562684646268003", buffer.start());
|
|
CHECK_EQ(-308, point);
|
|
|
|
status = FastDtoa(2147483648.0, FAST_DTOA_SHORTEST, 0,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("2147483648", buffer.start());
|
|
CHECK_EQ(10, point);
|
|
|
|
status = FastDtoa(3.5844466002796428e+298, FAST_DTOA_SHORTEST, 0,
|
|
buffer, &length, &point);
|
|
if (status) { // Not all FastDtoa variants manage to compute this number.
|
|
CHECK_EQ("35844466002796428", buffer.start());
|
|
CHECK_EQ(299, point);
|
|
}
|
|
|
|
uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
|
|
double v = Double(smallest_normal64).value();
|
|
status = FastDtoa(v, FAST_DTOA_SHORTEST, 0, buffer, &length, &point);
|
|
if (status) {
|
|
CHECK_EQ("22250738585072014", buffer.start());
|
|
CHECK_EQ(-307, point);
|
|
}
|
|
|
|
uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
|
|
v = Double(largest_denormal64).value();
|
|
status = FastDtoa(v, FAST_DTOA_SHORTEST, 0, buffer, &length, &point);
|
|
if (status) {
|
|
CHECK_EQ("2225073858507201", buffer.start());
|
|
CHECK_EQ(-307, point);
|
|
}
|
|
}
|
|
|
|
|
|
TEST(FastDtoaPrecisionVariousDoubles) {
|
|
char buffer_container[kBufferSize];
|
|
Vector<char> buffer(buffer_container, kBufferSize);
|
|
int length;
|
|
int point;
|
|
int status;
|
|
|
|
status = FastDtoa(1.0, FAST_DTOA_PRECISION, 3, buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_GE(3, length);
|
|
TrimRepresentation(buffer);
|
|
CHECK_EQ("1", buffer.start());
|
|
CHECK_EQ(1, point);
|
|
|
|
status = FastDtoa(1.5, FAST_DTOA_PRECISION, 10, buffer, &length, &point);
|
|
if (status) {
|
|
CHECK_GE(10, length);
|
|
TrimRepresentation(buffer);
|
|
CHECK_EQ("15", buffer.start());
|
|
CHECK_EQ(1, point);
|
|
}
|
|
|
|
double min_double = 5e-324;
|
|
status = FastDtoa(min_double, FAST_DTOA_PRECISION, 5,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("49407", buffer.start());
|
|
CHECK_EQ(-323, point);
|
|
|
|
double max_double = 1.7976931348623157e308;
|
|
status = FastDtoa(max_double, FAST_DTOA_PRECISION, 7,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("1797693", buffer.start());
|
|
CHECK_EQ(309, point);
|
|
|
|
status = FastDtoa(4294967272.0, FAST_DTOA_PRECISION, 14,
|
|
buffer, &length, &point);
|
|
if (status) {
|
|
CHECK_GE(14, length);
|
|
TrimRepresentation(buffer);
|
|
CHECK_EQ("4294967272", buffer.start());
|
|
CHECK_EQ(10, point);
|
|
}
|
|
|
|
status = FastDtoa(4.1855804968213567e298, FAST_DTOA_PRECISION, 17,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("41855804968213567", buffer.start());
|
|
CHECK_EQ(299, point);
|
|
|
|
status = FastDtoa(5.5626846462680035e-309, FAST_DTOA_PRECISION, 1,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("6", buffer.start());
|
|
CHECK_EQ(-308, point);
|
|
|
|
status = FastDtoa(2147483648.0, FAST_DTOA_PRECISION, 5,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("21475", buffer.start());
|
|
CHECK_EQ(10, point);
|
|
|
|
status = FastDtoa(3.5844466002796428e+298, FAST_DTOA_PRECISION, 10,
|
|
buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_GE(10, length);
|
|
TrimRepresentation(buffer);
|
|
CHECK_EQ("35844466", buffer.start());
|
|
CHECK_EQ(299, point);
|
|
|
|
uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
|
|
double v = Double(smallest_normal64).value();
|
|
status = FastDtoa(v, FAST_DTOA_PRECISION, 17, buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("22250738585072014", buffer.start());
|
|
CHECK_EQ(-307, point);
|
|
|
|
uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
|
|
v = Double(largest_denormal64).value();
|
|
status = FastDtoa(v, FAST_DTOA_PRECISION, 17, buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_GE(20, length);
|
|
TrimRepresentation(buffer);
|
|
CHECK_EQ("22250738585072009", buffer.start());
|
|
CHECK_EQ(-307, point);
|
|
|
|
v = 3.3161339052167390562200598e-237;
|
|
status = FastDtoa(v, FAST_DTOA_PRECISION, 18, buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("331613390521673906", buffer.start());
|
|
CHECK_EQ(-236, point);
|
|
|
|
v = 7.9885183916008099497815232e+191;
|
|
status = FastDtoa(v, FAST_DTOA_PRECISION, 4, buffer, &length, &point);
|
|
CHECK(status);
|
|
CHECK_EQ("7989", buffer.start());
|
|
CHECK_EQ(192, point);
|
|
}
|
|
|
|
|
|
TEST(FastDtoaGayShortest) {
|
|
char buffer_container[kBufferSize];
|
|
Vector<char> buffer(buffer_container, kBufferSize);
|
|
bool status;
|
|
int length;
|
|
int point;
|
|
int succeeded = 0;
|
|
int total = 0;
|
|
bool needed_max_length = false;
|
|
|
|
Vector<const PrecomputedShortest> precomputed =
|
|
PrecomputedShortestRepresentations();
|
|
for (int i = 0; i < precomputed.length(); ++i) {
|
|
const PrecomputedShortest current_test = precomputed[i];
|
|
total++;
|
|
double v = current_test.v;
|
|
status = FastDtoa(v, FAST_DTOA_SHORTEST, 0, buffer, &length, &point);
|
|
CHECK_GE(kFastDtoaMaximalLength, length);
|
|
if (!status) continue;
|
|
if (length == kFastDtoaMaximalLength) needed_max_length = true;
|
|
succeeded++;
|
|
CHECK_EQ(current_test.decimal_point, point);
|
|
CHECK_EQ(current_test.representation, buffer.start());
|
|
}
|
|
CHECK_GT(succeeded*1.0/total, 0.99);
|
|
CHECK(needed_max_length);
|
|
}
|
|
|
|
|
|
TEST(FastDtoaGayPrecision) {
|
|
char buffer_container[kBufferSize];
|
|
Vector<char> buffer(buffer_container, kBufferSize);
|
|
bool status;
|
|
int length;
|
|
int point;
|
|
int succeeded = 0;
|
|
int total = 0;
|
|
// Count separately for entries with less than 15 requested digits.
|
|
int succeeded_15 = 0;
|
|
int total_15 = 0;
|
|
|
|
Vector<const PrecomputedPrecision> precomputed =
|
|
PrecomputedPrecisionRepresentations();
|
|
for (int i = 0; i < precomputed.length(); ++i) {
|
|
const PrecomputedPrecision current_test = precomputed[i];
|
|
double v = current_test.v;
|
|
int number_digits = current_test.number_digits;
|
|
total++;
|
|
if (number_digits <= 15) total_15++;
|
|
status = FastDtoa(v, FAST_DTOA_PRECISION, number_digits,
|
|
buffer, &length, &point);
|
|
CHECK_GE(number_digits, length);
|
|
if (!status) continue;
|
|
succeeded++;
|
|
if (number_digits <= 15) succeeded_15++;
|
|
TrimRepresentation(buffer);
|
|
CHECK_EQ(current_test.decimal_point, point);
|
|
CHECK_EQ(current_test.representation, buffer.start());
|
|
}
|
|
// The precomputed numbers contain many entries with many requested
|
|
// digits. These have a high failure rate and we therefore expect a lower
|
|
// success rate than for the shortest representation.
|
|
CHECK_GT(succeeded*1.0/total, 0.85);
|
|
// However with less than 15 digits almost the algorithm should almost always
|
|
// succeed.
|
|
CHECK_GT(succeeded_15*1.0/total_15, 0.9999);
|
|
}
|