v8/test/mjsunit/wasm/wasm-module-builder.js
Jakob Kummerow bc3b9332ac [wasm-gc] Implement nominal types
Per https://github.com/WebAssembly/gc/issues/234, this implements
"nominal" type definitions with explicit supertypes, and statically
typed RTT-less instructions for allocation and testing/casting.
This should be fully backwards compatible with existing Wasm modules.

Spec: https://bit.ly/3cWcm6Q ("version 4")

Bug: v8:7748
Change-Id: Id5a1399b368fdfad22036cfd66f1bef593e640f7
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3144916
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Manos Koukoutos <manoskouk@chromium.org>
Cr-Commit-Position: refs/heads/main@{#76844}
2021-09-15 13:43:39 +00:00

2163 lines
63 KiB
JavaScript

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Used for encoding f32 and double constants to bits.
let byte_view = new Uint8Array(8);
let data_view = new DataView(byte_view.buffer);
// The bytes function receives one of
// - several arguments, each of which is either a number or a string of length
// 1; if it's a string, the charcode of the contained character is used.
// - a single array argument containing the actual arguments
// - a single string; the returned buffer will contain the char codes of all
// contained characters.
function bytes(...input) {
if (input.length == 1 && typeof input[0] == 'array') input = input[0];
if (input.length == 1 && typeof input[0] == 'string') {
let len = input[0].length;
let view = new Uint8Array(len);
for (let i = 0; i < len; i++) view[i] = input[0].charCodeAt(i);
return view.buffer;
}
let view = new Uint8Array(input.length);
for (let i = 0; i < input.length; i++) {
let val = input[i];
if (typeof val == 'string') {
if (val.length != 1) {
throw new Error('string inputs must have length 1');
}
val = val.charCodeAt(0);
}
view[i] = val | 0;
}
return view.buffer;
}
// Header declaration constants
var kWasmH0 = 0;
var kWasmH1 = 0x61;
var kWasmH2 = 0x73;
var kWasmH3 = 0x6d;
var kWasmV0 = 0x1;
var kWasmV1 = 0;
var kWasmV2 = 0;
var kWasmV3 = 0;
var kHeaderSize = 8;
var kPageSize = 65536;
var kSpecMaxPages = 65536;
var kMaxVarInt32Size = 5;
var kMaxVarInt64Size = 10;
let kDeclNoLocals = 0;
// Section declaration constants
let kUnknownSectionCode = 0;
let kTypeSectionCode = 1; // Function signature declarations
let kImportSectionCode = 2; // Import declarations
let kFunctionSectionCode = 3; // Function declarations
let kTableSectionCode = 4; // Indirect function table and other tables
let kMemorySectionCode = 5; // Memory attributes
let kGlobalSectionCode = 6; // Global declarations
let kExportSectionCode = 7; // Exports
let kStartSectionCode = 8; // Start function declaration
let kElementSectionCode = 9; // Elements section
let kCodeSectionCode = 10; // Function code
let kDataSectionCode = 11; // Data segments
let kDataCountSectionCode = 12; // Data segment count (between Element & Code)
let kTagSectionCode = 13; // Tag section (between Memory & Global)
// Name section types
let kModuleNameCode = 0;
let kFunctionNamesCode = 1;
let kLocalNamesCode = 2;
let kWasmFunctionTypeForm = 0x60;
let kWasmStructTypeForm = 0x5f;
let kWasmArrayTypeForm = 0x5e;
let kWasmFunctionSubtypeForm = 0x5d;
let kWasmStructSubtypeForm = 0x5c;
let kWasmArraySubtypeForm = 0x5b;
let kLimitsNoMaximum = 0x00;
let kLimitsWithMaximum = 0x01;
let kLimitsSharedNoMaximum = 0x02;
let kLimitsSharedWithMaximum = 0x03;
let kLimitsMemory64NoMaximum = 0x04;
let kLimitsMemory64WithMaximum = 0x05;
// Segment flags
let kActiveNoIndex = 0;
let kPassive = 1;
let kActiveWithIndex = 2;
let kDeclarative = 3;
let kPassiveWithElements = 5;
let kDeclarativeWithElements = 7;
// Function declaration flags
let kDeclFunctionName = 0x01;
let kDeclFunctionImport = 0x02;
let kDeclFunctionLocals = 0x04;
let kDeclFunctionExport = 0x08;
// Value types and related
let kWasmVoid = 0x40;
let kWasmI32 = 0x7f;
let kWasmI64 = 0x7e;
let kWasmF32 = 0x7d;
let kWasmF64 = 0x7c;
let kWasmS128 = 0x7b;
let kWasmI8 = 0x7a;
let kWasmI16 = 0x79;
// These are defined as negative integers to distinguish them from positive type
// indices.
let kWasmFuncRef = -0x10;
let kWasmAnyFunc = kWasmFuncRef; // Alias named as in the JS API spec
let kWasmExternRef = -0x11;
let kWasmAnyRef = -0x12;
let kWasmEqRef = -0x13;
let kWasmI31Ref = -0x16;
let kWasmDataRef = -0x19;
// Use the positive-byte versions inside function bodies.
let kLeb128Mask = 0x7f;
let kFuncRefCode = kWasmFuncRef & kLeb128Mask;
let kAnyFuncCode = kFuncRefCode; // Alias named as in the JS API spec
let kExternRefCode = kWasmExternRef & kLeb128Mask;
let kAnyRefCode = kWasmAnyRef & kLeb128Mask;
let kEqRefCode = kWasmEqRef & kLeb128Mask;
let kI31RefCode = kWasmI31Ref & kLeb128Mask;
let kDataRefCode = kWasmDataRef & kLeb128Mask;
let kWasmOptRef = 0x6c;
let kWasmRef = 0x6b;
function wasmOptRefType(heap_type) {
return {opcode: kWasmOptRef, heap_type: heap_type};
}
function wasmRefType(heap_type) {
return {opcode: kWasmRef, heap_type: heap_type};
}
let kWasmRttWithDepth = 0x69;
function wasmRtt(index, depth) {
if (index < 0) throw new Error("Expecting non-negative type index");
return {opcode: kWasmRttWithDepth, index: index, depth: depth};
}
let kWasmRtt = 0x68;
function wasmRttNoDepth(index) {
if (index < 0) throw new Error("Expecting non-negative type index");
return {opcode: kWasmRtt, index: index};
}
let kExternalFunction = 0;
let kExternalTable = 1;
let kExternalMemory = 2;
let kExternalGlobal = 3;
let kExternalTag = 4;
let kTableZero = 0;
let kMemoryZero = 0;
let kSegmentZero = 0;
let kExceptionAttribute = 0;
// Useful signatures
let kSig_i_i = makeSig([kWasmI32], [kWasmI32]);
let kSig_l_l = makeSig([kWasmI64], [kWasmI64]);
let kSig_i_l = makeSig([kWasmI64], [kWasmI32]);
let kSig_i_ii = makeSig([kWasmI32, kWasmI32], [kWasmI32]);
let kSig_i_iii = makeSig([kWasmI32, kWasmI32, kWasmI32], [kWasmI32]);
let kSig_v_iiii = makeSig([kWasmI32, kWasmI32, kWasmI32, kWasmI32], []);
let kSig_f_ff = makeSig([kWasmF32, kWasmF32], [kWasmF32]);
let kSig_d_dd = makeSig([kWasmF64, kWasmF64], [kWasmF64]);
let kSig_l_ll = makeSig([kWasmI64, kWasmI64], [kWasmI64]);
let kSig_i_dd = makeSig([kWasmF64, kWasmF64], [kWasmI32]);
let kSig_v_v = makeSig([], []);
let kSig_i_v = makeSig([], [kWasmI32]);
let kSig_l_v = makeSig([], [kWasmI64]);
let kSig_f_v = makeSig([], [kWasmF32]);
let kSig_d_v = makeSig([], [kWasmF64]);
let kSig_v_i = makeSig([kWasmI32], []);
let kSig_v_ii = makeSig([kWasmI32, kWasmI32], []);
let kSig_v_iii = makeSig([kWasmI32, kWasmI32, kWasmI32], []);
let kSig_v_l = makeSig([kWasmI64], []);
let kSig_v_d = makeSig([kWasmF64], []);
let kSig_v_dd = makeSig([kWasmF64, kWasmF64], []);
let kSig_v_ddi = makeSig([kWasmF64, kWasmF64, kWasmI32], []);
let kSig_ii_v = makeSig([], [kWasmI32, kWasmI32]);
let kSig_iii_v = makeSig([], [kWasmI32, kWasmI32, kWasmI32]);
let kSig_ii_i = makeSig([kWasmI32], [kWasmI32, kWasmI32]);
let kSig_iii_i = makeSig([kWasmI32], [kWasmI32, kWasmI32, kWasmI32]);
let kSig_ii_ii = makeSig([kWasmI32, kWasmI32], [kWasmI32, kWasmI32]);
let kSig_iii_ii = makeSig([kWasmI32, kWasmI32], [kWasmI32, kWasmI32, kWasmI32]);
let kSig_v_f = makeSig([kWasmF32], []);
let kSig_f_f = makeSig([kWasmF32], [kWasmF32]);
let kSig_f_d = makeSig([kWasmF64], [kWasmF32]);
let kSig_d_d = makeSig([kWasmF64], [kWasmF64]);
let kSig_r_r = makeSig([kWasmExternRef], [kWasmExternRef]);
let kSig_a_a = makeSig([kWasmAnyFunc], [kWasmAnyFunc]);
let kSig_i_r = makeSig([kWasmExternRef], [kWasmI32]);
let kSig_v_r = makeSig([kWasmExternRef], []);
let kSig_v_a = makeSig([kWasmAnyFunc], []);
let kSig_v_rr = makeSig([kWasmExternRef, kWasmExternRef], []);
let kSig_v_aa = makeSig([kWasmAnyFunc, kWasmAnyFunc], []);
let kSig_r_v = makeSig([], [kWasmExternRef]);
let kSig_a_v = makeSig([], [kWasmAnyFunc]);
let kSig_a_i = makeSig([kWasmI32], [kWasmAnyFunc]);
let kSig_s_i = makeSig([kWasmI32], [kWasmS128]);
let kSig_i_s = makeSig([kWasmS128], [kWasmI32]);
function makeSig(params, results) {
return {params: params, results: results};
}
function makeSig_v_x(x) {
return makeSig([x], []);
}
function makeSig_x_v(x) {
return makeSig([], [x]);
}
function makeSig_v_xx(x) {
return makeSig([x, x], []);
}
function makeSig_r_v(r) {
return makeSig([], [r]);
}
function makeSig_r_x(r, x) {
return makeSig([x], [r]);
}
function makeSig_r_xx(r, x) {
return makeSig([x, x], [r]);
}
// Opcodes
const kWasmOpcodes = {
'Unreachable': 0x00,
'Nop': 0x01,
'Block': 0x02,
'Loop': 0x03,
'If': 0x04,
'Else': 0x05,
'Try': 0x06,
'Catch': 0x07,
'Throw': 0x08,
'Rethrow': 0x09,
'CatchAll': 0x19,
'End': 0x0b,
'Br': 0x0c,
'BrIf': 0x0d,
'BrTable': 0x0e,
'Return': 0x0f,
'CallFunction': 0x10,
'CallIndirect': 0x11,
'ReturnCall': 0x12,
'ReturnCallIndirect': 0x13,
'CallRef': 0x14,
'ReturnCallRef': 0x15,
'Let': 0x17,
'Delegate': 0x18,
'Drop': 0x1a,
'Select': 0x1b,
'SelectWithType': 0x1c,
'LocalGet': 0x20,
'LocalSet': 0x21,
'LocalTee': 0x22,
'GlobalGet': 0x23,
'GlobalSet': 0x24,
'TableGet': 0x25,
'TableSet': 0x26,
'I32LoadMem': 0x28,
'I64LoadMem': 0x29,
'F32LoadMem': 0x2a,
'F64LoadMem': 0x2b,
'I32LoadMem8S': 0x2c,
'I32LoadMem8U': 0x2d,
'I32LoadMem16S': 0x2e,
'I32LoadMem16U': 0x2f,
'I64LoadMem8S': 0x30,
'I64LoadMem8U': 0x31,
'I64LoadMem16S': 0x32,
'I64LoadMem16U': 0x33,
'I64LoadMem32S': 0x34,
'I64LoadMem32U': 0x35,
'I32StoreMem': 0x36,
'I64StoreMem': 0x37,
'F32StoreMem': 0x38,
'F64StoreMem': 0x39,
'I32StoreMem8': 0x3a,
'I32StoreMem16': 0x3b,
'I64StoreMem8': 0x3c,
'I64StoreMem16': 0x3d,
'I64StoreMem32': 0x3e,
'MemorySize': 0x3f,
'MemoryGrow': 0x40,
'I32Const': 0x41,
'I64Const': 0x42,
'F32Const': 0x43,
'F64Const': 0x44,
'I32Eqz': 0x45,
'I32Eq': 0x46,
'I32Ne': 0x47,
'I32LtS': 0x48,
'I32LtU': 0x49,
'I32GtS': 0x4a,
'I32GtU': 0x4b,
'I32LeS': 0x4c,
'I32LeU': 0x4d,
'I32GeS': 0x4e,
'I32GeU': 0x4f,
'I64Eqz': 0x50,
'I64Eq': 0x51,
'I64Ne': 0x52,
'I64LtS': 0x53,
'I64LtU': 0x54,
'I64GtS': 0x55,
'I64GtU': 0x56,
'I64LeS': 0x57,
'I64LeU': 0x58,
'I64GeS': 0x59,
'I64GeU': 0x5a,
'F32Eq': 0x5b,
'F32Ne': 0x5c,
'F32Lt': 0x5d,
'F32Gt': 0x5e,
'F32Le': 0x5f,
'F32Ge': 0x60,
'F64Eq': 0x61,
'F64Ne': 0x62,
'F64Lt': 0x63,
'F64Gt': 0x64,
'F64Le': 0x65,
'F64Ge': 0x66,
'I32Clz': 0x67,
'I32Ctz': 0x68,
'I32Popcnt': 0x69,
'I32Add': 0x6a,
'I32Sub': 0x6b,
'I32Mul': 0x6c,
'I32DivS': 0x6d,
'I32DivU': 0x6e,
'I32RemS': 0x6f,
'I32RemU': 0x70,
'I32And': 0x71,
'I32Ior': 0x72,
'I32Xor': 0x73,
'I32Shl': 0x74,
'I32ShrS': 0x75,
'I32ShrU': 0x76,
'I32Rol': 0x77,
'I32Ror': 0x78,
'I64Clz': 0x79,
'I64Ctz': 0x7a,
'I64Popcnt': 0x7b,
'I64Add': 0x7c,
'I64Sub': 0x7d,
'I64Mul': 0x7e,
'I64DivS': 0x7f,
'I64DivU': 0x80,
'I64RemS': 0x81,
'I64RemU': 0x82,
'I64And': 0x83,
'I64Ior': 0x84,
'I64Xor': 0x85,
'I64Shl': 0x86,
'I64ShrS': 0x87,
'I64ShrU': 0x88,
'I64Rol': 0x89,
'I64Ror': 0x8a,
'F32Abs': 0x8b,
'F32Neg': 0x8c,
'F32Ceil': 0x8d,
'F32Floor': 0x8e,
'F32Trunc': 0x8f,
'F32NearestInt': 0x90,
'F32Sqrt': 0x91,
'F32Add': 0x92,
'F32Sub': 0x93,
'F32Mul': 0x94,
'F32Div': 0x95,
'F32Min': 0x96,
'F32Max': 0x97,
'F32CopySign': 0x98,
'F64Abs': 0x99,
'F64Neg': 0x9a,
'F64Ceil': 0x9b,
'F64Floor': 0x9c,
'F64Trunc': 0x9d,
'F64NearestInt': 0x9e,
'F64Sqrt': 0x9f,
'F64Add': 0xa0,
'F64Sub': 0xa1,
'F64Mul': 0xa2,
'F64Div': 0xa3,
'F64Min': 0xa4,
'F64Max': 0xa5,
'F64CopySign': 0xa6,
'I32ConvertI64': 0xa7,
'I32SConvertF32': 0xa8,
'I32UConvertF32': 0xa9,
'I32SConvertF64': 0xaa,
'I32UConvertF64': 0xab,
'I64SConvertI32': 0xac,
'I64UConvertI32': 0xad,
'I64SConvertF32': 0xae,
'I64UConvertF32': 0xaf,
'I64SConvertF64': 0xb0,
'I64UConvertF64': 0xb1,
'F32SConvertI32': 0xb2,
'F32UConvertI32': 0xb3,
'F32SConvertI64': 0xb4,
'F32UConvertI64': 0xb5,
'F32ConvertF64': 0xb6,
'F64SConvertI32': 0xb7,
'F64UConvertI32': 0xb8,
'F64SConvertI64': 0xb9,
'F64UConvertI64': 0xba,
'F64ConvertF32': 0xbb,
'I32ReinterpretF32': 0xbc,
'I64ReinterpretF64': 0xbd,
'F32ReinterpretI32': 0xbe,
'F64ReinterpretI64': 0xbf,
'I32SExtendI8': 0xc0,
'I32SExtendI16': 0xc1,
'I64SExtendI8': 0xc2,
'I64SExtendI16': 0xc3,
'I64SExtendI32': 0xc4,
'RefNull': 0xd0,
'RefIsNull': 0xd1,
'RefFunc': 0xd2,
'RefAsNonNull': 0xd3,
'BrOnNull': 0xd4,
'RefEq': 0xd5,
'BrOnNonNull': 0xd6
};
function defineWasmOpcode(name, value) {
if (globalThis.kWasmOpcodeNames === undefined) {
globalThis.kWasmOpcodeNames = {};
}
Object.defineProperty(globalThis, name, {value: value});
if (globalThis.kWasmOpcodeNames[value] !== undefined) {
throw new Error(`Duplicate wasm opcode: ${value}. Previous name: ${
globalThis.kWasmOpcodeNames[value]}, new name: ${name}`);
}
globalThis.kWasmOpcodeNames[value] = name;
}
for (let name in kWasmOpcodes) {
defineWasmOpcode(`kExpr${name}`, kWasmOpcodes[name]);
}
// Prefix opcodes
const kPrefixOpcodes = {
'GC': 0xfb,
'Numeric': 0xfc,
'Simd': 0xfd,
'Atomic': 0xfe
};
for (let prefix in kPrefixOpcodes) {
defineWasmOpcode(`k${prefix}Prefix`, kPrefixOpcodes[prefix]);
}
// GC opcodes
let kExprStructNewWithRtt = 0x01;
let kExprStructNewDefaultWithRtt = 0x02;
let kExprStructGet = 0x03;
let kExprStructGetS = 0x04;
let kExprStructGetU = 0x05;
let kExprStructSet = 0x06;
let kExprStructNew = 0x07;
let kExprStructNewDefault = 0x08;
let kExprArrayNewWithRtt = 0x11;
let kExprArrayNewDefaultWithRtt = 0x12;
let kExprArrayGet = 0x13;
let kExprArrayGetS = 0x14;
let kExprArrayGetU = 0x15;
let kExprArraySet = 0x16;
let kExprArrayLen = 0x17;
let kExprArrayCopy = 0x18;
let kExprArrayInit = 0x19;
let kExprArrayInitStatic = 0x1a;
let kExprArrayNew = 0x1b;
let kExprArrayNewDefault = 0x1c;
let kExprI31New = 0x20;
let kExprI31GetS = 0x21;
let kExprI31GetU = 0x22;
let kExprRttCanon = 0x30;
let kExprRttSub = 0x31;
let kExprRttFreshSub = 0x32;
let kExprRefTest = 0x40;
let kExprRefCast = 0x41;
let kExprBrOnCast = 0x42;
let kExprBrOnCastFail = 0x43;
let kExprRefTestStatic = 0x44;
let kExprRefCastStatic = 0x45;
let kExprBrOnCastStatic = 0x46;
let kExprBrOnCastStaticFail = 0x47;
let kExprRefIsFunc = 0x50;
let kExprRefIsData = 0x51;
let kExprRefIsI31 = 0x52;
let kExprRefAsFunc = 0x58;
let kExprRefAsData = 0x59;
let kExprRefAsI31 = 0x5a;
let kExprBrOnFunc = 0x60;
let kExprBrOnData = 0x61;
let kExprBrOnI31 = 0x62;
// Numeric opcodes.
let kExprI32SConvertSatF32 = 0x00;
let kExprI32UConvertSatF32 = 0x01;
let kExprI32SConvertSatF64 = 0x02;
let kExprI32UConvertSatF64 = 0x03;
let kExprI64SConvertSatF32 = 0x04;
let kExprI64UConvertSatF32 = 0x05;
let kExprI64SConvertSatF64 = 0x06;
let kExprI64UConvertSatF64 = 0x07;
let kExprMemoryInit = 0x08;
let kExprDataDrop = 0x09;
let kExprMemoryCopy = 0x0a;
let kExprMemoryFill = 0x0b;
let kExprTableInit = 0x0c;
let kExprElemDrop = 0x0d;
let kExprTableCopy = 0x0e;
let kExprTableGrow = 0x0f;
let kExprTableSize = 0x10;
let kExprTableFill = 0x11;
// Atomic opcodes.
let kExprAtomicNotify = 0x00;
let kExprI32AtomicWait = 0x01;
let kExprI64AtomicWait = 0x02;
let kExprI32AtomicLoad = 0x10;
let kExprI32AtomicLoad8U = 0x12;
let kExprI32AtomicLoad16U = 0x13;
let kExprI32AtomicStore = 0x17;
let kExprI32AtomicStore8U = 0x19;
let kExprI32AtomicStore16U = 0x1a;
let kExprI32AtomicAdd = 0x1e;
let kExprI32AtomicAdd8U = 0x20;
let kExprI32AtomicAdd16U = 0x21;
let kExprI32AtomicSub = 0x25;
let kExprI32AtomicSub8U = 0x27;
let kExprI32AtomicSub16U = 0x28;
let kExprI32AtomicAnd = 0x2c;
let kExprI32AtomicAnd8U = 0x2e;
let kExprI32AtomicAnd16U = 0x2f;
let kExprI32AtomicOr = 0x33;
let kExprI32AtomicOr8U = 0x35;
let kExprI32AtomicOr16U = 0x36;
let kExprI32AtomicXor = 0x3a;
let kExprI32AtomicXor8U = 0x3c;
let kExprI32AtomicXor16U = 0x3d;
let kExprI32AtomicExchange = 0x41;
let kExprI32AtomicExchange8U = 0x43;
let kExprI32AtomicExchange16U = 0x44;
let kExprI32AtomicCompareExchange = 0x48;
let kExprI32AtomicCompareExchange8U = 0x4a;
let kExprI32AtomicCompareExchange16U = 0x4b;
let kExprI64AtomicLoad = 0x11;
let kExprI64AtomicLoad8U = 0x14;
let kExprI64AtomicLoad16U = 0x15;
let kExprI64AtomicLoad32U = 0x16;
let kExprI64AtomicStore = 0x18;
let kExprI64AtomicStore8U = 0x1b;
let kExprI64AtomicStore16U = 0x1c;
let kExprI64AtomicStore32U = 0x1d;
let kExprI64AtomicAdd = 0x1f;
let kExprI64AtomicAdd8U = 0x22;
let kExprI64AtomicAdd16U = 0x23;
let kExprI64AtomicAdd32U = 0x24;
let kExprI64AtomicSub = 0x26;
let kExprI64AtomicSub8U = 0x29;
let kExprI64AtomicSub16U = 0x2a;
let kExprI64AtomicSub32U = 0x2b;
let kExprI64AtomicAnd = 0x2d;
let kExprI64AtomicAnd8U = 0x30;
let kExprI64AtomicAnd16U = 0x31;
let kExprI64AtomicAnd32U = 0x32;
let kExprI64AtomicOr = 0x34;
let kExprI64AtomicOr8U = 0x37;
let kExprI64AtomicOr16U = 0x38;
let kExprI64AtomicOr32U = 0x39;
let kExprI64AtomicXor = 0x3b;
let kExprI64AtomicXor8U = 0x3e;
let kExprI64AtomicXor16U = 0x3f;
let kExprI64AtomicXor32U = 0x40;
let kExprI64AtomicExchange = 0x42;
let kExprI64AtomicExchange8U = 0x45;
let kExprI64AtomicExchange16U = 0x46;
let kExprI64AtomicExchange32U = 0x47;
let kExprI64AtomicCompareExchange = 0x49
let kExprI64AtomicCompareExchange8U = 0x4c;
let kExprI64AtomicCompareExchange16U = 0x4d;
let kExprI64AtomicCompareExchange32U = 0x4e;
// Simd opcodes.
let kExprS128LoadMem = 0x00;
let kExprS128Load8x8S = 0x01;
let kExprS128Load8x8U = 0x02;
let kExprS128Load16x4S = 0x03;
let kExprS128Load16x4U = 0x04;
let kExprS128Load32x2S = 0x05;
let kExprS128Load32x2U = 0x06;
let kExprS128Load8Splat = 0x07;
let kExprS128Load16Splat = 0x08;
let kExprS128Load32Splat = 0x09;
let kExprS128Load64Splat = 0x0a;
let kExprS128StoreMem = 0x0b;
let kExprS128Const = 0x0c;
let kExprI8x16Shuffle = 0x0d;
let kExprI8x16Swizzle = 0x0e;
let kExprI8x16Splat = 0x0f;
let kExprI16x8Splat = 0x10;
let kExprI32x4Splat = 0x11;
let kExprI64x2Splat = 0x12;
let kExprF32x4Splat = 0x13;
let kExprF64x2Splat = 0x14;
let kExprI8x16ExtractLaneS = 0x15;
let kExprI8x16ExtractLaneU = 0x16;
let kExprI8x16ReplaceLane = 0x17;
let kExprI16x8ExtractLaneS = 0x18;
let kExprI16x8ExtractLaneU = 0x19;
let kExprI16x8ReplaceLane = 0x1a;
let kExprI32x4ExtractLane = 0x1b;
let kExprI32x4ReplaceLane = 0x1c;
let kExprI64x2ExtractLane = 0x1d;
let kExprI64x2ReplaceLane = 0x1e;
let kExprF32x4ExtractLane = 0x1f;
let kExprF32x4ReplaceLane = 0x20;
let kExprF64x2ExtractLane = 0x21;
let kExprF64x2ReplaceLane = 0x22;
let kExprI8x16Eq = 0x23;
let kExprI8x16Ne = 0x24;
let kExprI8x16LtS = 0x25;
let kExprI8x16LtU = 0x26;
let kExprI8x16GtS = 0x27;
let kExprI8x16GtU = 0x28;
let kExprI8x16LeS = 0x29;
let kExprI8x16LeU = 0x2a;
let kExprI8x16GeS = 0x2b;
let kExprI8x16GeU = 0x2c;
let kExprI16x8Eq = 0x2d;
let kExprI16x8Ne = 0x2e;
let kExprI16x8LtS = 0x2f;
let kExprI16x8LtU = 0x30;
let kExprI16x8GtS = 0x31;
let kExprI16x8GtU = 0x32;
let kExprI16x8LeS = 0x33;
let kExprI16x8LeU = 0x34;
let kExprI16x8GeS = 0x35;
let kExprI16x8GeU = 0x36;
let kExprI32x4Eq = 0x37;
let kExprI32x4Ne = 0x38;
let kExprI32x4LtS = 0x39;
let kExprI32x4LtU = 0x3a;
let kExprI32x4GtS = 0x3b;
let kExprI32x4GtU = 0x3c;
let kExprI32x4LeS = 0x3d;
let kExprI32x4LeU = 0x3e;
let kExprI32x4GeS = 0x3f;
let kExprI32x4GeU = 0x40;
let kExprF32x4Eq = 0x41;
let kExprF32x4Ne = 0x42;
let kExprF32x4Lt = 0x43;
let kExprF32x4Gt = 0x44;
let kExprF32x4Le = 0x45;
let kExprF32x4Ge = 0x46;
let kExprF64x2Eq = 0x47;
let kExprF64x2Ne = 0x48;
let kExprF64x2Lt = 0x49;
let kExprF64x2Gt = 0x4a;
let kExprF64x2Le = 0x4b;
let kExprF64x2Ge = 0x4c;
let kExprS128Not = 0x4d;
let kExprS128And = 0x4e;
let kExprS128AndNot = 0x4f;
let kExprS128Or = 0x50;
let kExprS128Xor = 0x51;
let kExprS128Select = 0x52;
let kExprV128AnyTrue = 0x53;
let kExprS128Load8Lane = 0x54;
let kExprS128Load16Lane = 0x55;
let kExprS128Load32Lane = 0x56;
let kExprS128Load64Lane = 0x57;
let kExprS128Store8Lane = 0x58;
let kExprS128Store16Lane = 0x59;
let kExprS128Store32Lane = 0x5a;
let kExprS128Store64Lane = 0x5b;
let kExprS128Load32Zero = 0x5c;
let kExprS128Load64Zero = 0x5d;
let kExprF32x4DemoteF64x2Zero = 0x5e;
let kExprF64x2PromoteLowF32x4 = 0x5f;
let kExprI8x16Abs = 0x60;
let kExprI8x16Neg = 0x61;
let kExprI8x16Popcnt = 0x62;
let kExprI8x16AllTrue = 0x63;
let kExprI8x16BitMask = 0x64;
let kExprI8x16SConvertI16x8 = 0x65;
let kExprI8x16UConvertI16x8 = 0x66;
let kExprF32x4Ceil = 0x67;
let kExprF32x4Floor = 0x68;
let kExprF32x4Trunc = 0x69;
let kExprF32x4NearestInt = 0x6a;
let kExprI8x16Shl = 0x6b;
let kExprI8x16ShrS = 0x6c;
let kExprI8x16ShrU = 0x6d;
let kExprI8x16Add = 0x6e;
let kExprI8x16AddSatS = 0x6f;
let kExprI8x16AddSatU = 0x70;
let kExprI8x16Sub = 0x71;
let kExprI8x16SubSatS = 0x72;
let kExprI8x16SubSatU = 0x73;
let kExprF64x2Ceil = 0x74;
let kExprF64x2Floor = 0x75;
let kExprI8x16MinS = 0x76;
let kExprI8x16MinU = 0x77;
let kExprI8x16MaxS = 0x78;
let kExprI8x16MaxU = 0x79;
let kExprF64x2Trunc = 0x7a;
let kExprI8x16RoundingAverageU = 0x7b;
let kExprI16x8ExtAddPairwiseI8x16S = 0x7c;
let kExprI16x8ExtAddPairwiseI8x16U = 0x7d;
let kExprI32x4ExtAddPairwiseI16x8S = 0x7e;
let kExprI32x4ExtAddPairwiseI16x8U = 0x7f;
let kExprI16x8Abs = 0x80;
let kExprI16x8Neg = 0x81;
let kExprI16x8Q15MulRSatS = 0x82;
let kExprI16x8AllTrue = 0x83;
let kExprI16x8BitMask = 0x84;
let kExprI16x8SConvertI32x4 = 0x85;
let kExprI16x8UConvertI32x4 = 0x86;
let kExprI16x8SConvertI8x16Low = 0x87;
let kExprI16x8SConvertI8x16High = 0x88;
let kExprI16x8UConvertI8x16Low = 0x89;
let kExprI16x8UConvertI8x16High = 0x8a;
let kExprI16x8Shl = 0x8b;
let kExprI16x8ShrS = 0x8c;
let kExprI16x8ShrU = 0x8d;
let kExprI16x8Add = 0x8e;
let kExprI16x8AddSatS = 0x8f;
let kExprI16x8AddSatU = 0x90;
let kExprI16x8Sub = 0x91;
let kExprI16x8SubSatS = 0x92;
let kExprI16x8SubSatU = 0x93;
let kExprF64x2NearestInt = 0x94;
let kExprI16x8Mul = 0x95;
let kExprI16x8MinS = 0x96;
let kExprI16x8MinU = 0x97;
let kExprI16x8MaxS = 0x98;
let kExprI16x8MaxU = 0x99;
let kExprI16x8RoundingAverageU = 0x9b;
let kExprI16x8ExtMulLowI8x16S = 0x9c;
let kExprI16x8ExtMulHighI8x16S = 0x9d;
let kExprI16x8ExtMulLowI8x16U = 0x9e;
let kExprI16x8ExtMulHighI8x16U = 0x9f;
let kExprI32x4Abs = 0xa0;
let kExprI32x4Neg = 0xa1;
let kExprI32x4AllTrue = 0xa3;
let kExprI32x4BitMask = 0xa4;
let kExprI32x4SConvertI16x8Low = 0xa7;
let kExprI32x4SConvertI16x8High = 0xa8;
let kExprI32x4UConvertI16x8Low = 0xa9;
let kExprI32x4UConvertI16x8High = 0xaa;
let kExprI32x4Shl = 0xab;
let kExprI32x4ShrS = 0xac;
let kExprI32x4ShrU = 0xad;
let kExprI32x4Add = 0xae;
let kExprI32x4Sub = 0xb1;
let kExprI32x4Mul = 0xb5;
let kExprI32x4MinS = 0xb6;
let kExprI32x4MinU = 0xb7;
let kExprI32x4MaxS = 0xb8;
let kExprI32x4MaxU = 0xb9;
let kExprI32x4DotI16x8S = 0xba;
let kExprI32x4ExtMulLowI16x8S = 0xbc;
let kExprI32x4ExtMulHighI16x8S = 0xbd;
let kExprI32x4ExtMulLowI16x8U = 0xbe;
let kExprI32x4ExtMulHighI16x8U = 0xbf;
let kExprI64x2Abs = 0xc0;
let kExprI64x2Neg = 0xc1;
let kExprI64x2AllTrue = 0xc3;
let kExprI64x2BitMask = 0xc4;
let kExprI64x2SConvertI32x4Low = 0xc7;
let kExprI64x2SConvertI32x4High = 0xc8;
let kExprI64x2UConvertI32x4Low = 0xc9;
let kExprI64x2UConvertI32x4High = 0xca;
let kExprI64x2Shl = 0xcb;
let kExprI64x2ShrS = 0xcc;
let kExprI64x2ShrU = 0xcd;
let kExprI64x2Add = 0xce;
let kExprI64x2Sub = 0xd1;
let kExprI64x2Mul = 0xd5;
let kExprI64x2Eq = 0xd6;
let kExprI64x2Ne = 0xd7;
let kExprI64x2LtS = 0xd8;
let kExprI64x2GtS = 0xd9;
let kExprI64x2LeS = 0xda;
let kExprI64x2GeS = 0xdb;
let kExprI64x2ExtMulLowI32x4S = 0xdc;
let kExprI64x2ExtMulHighI32x4S = 0xdd;
let kExprI64x2ExtMulLowI32x4U = 0xde;
let kExprI64x2ExtMulHighI32x4U = 0xdf;
let kExprF32x4Abs = 0xe0;
let kExprF32x4Neg = 0xe1;
let kExprF32x4Sqrt = 0xe3;
let kExprF32x4Add = 0xe4;
let kExprF32x4Sub = 0xe5;
let kExprF32x4Mul = 0xe6;
let kExprF32x4Div = 0xe7;
let kExprF32x4Min = 0xe8;
let kExprF32x4Max = 0xe9;
let kExprF32x4Pmin = 0xea;
let kExprF32x4Pmax = 0xeb;
let kExprF64x2Abs = 0xec;
let kExprF64x2Neg = 0xed;
let kExprF64x2Sqrt = 0xef;
let kExprF64x2Add = 0xf0;
let kExprF64x2Sub = 0xf1;
let kExprF64x2Mul = 0xf2;
let kExprF64x2Div = 0xf3;
let kExprF64x2Min = 0xf4;
let kExprF64x2Max = 0xf5;
let kExprF64x2Pmin = 0xf6;
let kExprF64x2Pmax = 0xf7;
let kExprI32x4SConvertF32x4 = 0xf8;
let kExprI32x4UConvertF32x4 = 0xf9;
let kExprF32x4SConvertI32x4 = 0xfa;
let kExprF32x4UConvertI32x4 = 0xfb;
let kExprI32x4TruncSatF64x2SZero = 0xfc;
let kExprI32x4TruncSatF64x2UZero = 0xfd;
let kExprF64x2ConvertLowI32x4S = 0xfe;
let kExprF64x2ConvertLowI32x4U = 0xff;
// Compilation hint constants.
let kCompilationHintStrategyDefault = 0x00;
let kCompilationHintStrategyLazy = 0x01;
let kCompilationHintStrategyEager = 0x02;
let kCompilationHintStrategyLazyBaselineEagerTopTier = 0x03;
let kCompilationHintTierDefault = 0x00;
let kCompilationHintTierBaseline = 0x01;
let kCompilationHintTierOptimized = 0x02;
let kTrapUnreachable = 0;
let kTrapMemOutOfBounds = 1;
let kTrapDivByZero = 2;
let kTrapDivUnrepresentable = 3;
let kTrapRemByZero = 4;
let kTrapFloatUnrepresentable = 5;
let kTrapTableOutOfBounds = 6;
let kTrapFuncSigMismatch = 7;
let kTrapUnalignedAccess = 8;
let kTrapDataSegmentDropped = 9;
let kTrapElemSegmentDropped = 10;
let kTrapRethrowNull = 11;
let kTrapMsgs = [
'unreachable', // --
'memory access out of bounds', // --
'divide by zero', // --
'divide result unrepresentable', // --
'remainder by zero', // --
'float unrepresentable in integer range', // --
'table index is out of bounds', // --
'null function or function signature mismatch', // --
'operation does not support unaligned accesses', // --
'data segment has been dropped', // --
'element segment has been dropped', // --
'rethrowing null value' // --
];
// This requires test/mjsunit/mjsunit.js.
function assertTraps(trap, code) {
assertThrows(code, WebAssembly.RuntimeError, kTrapMsgs[trap]);
}
class Binary {
constructor() {
this.length = 0;
this.buffer = new Uint8Array(8192);
}
ensure_space(needed) {
if (this.buffer.length - this.length >= needed) return;
let new_capacity = this.buffer.length * 2;
while (new_capacity - this.length < needed) new_capacity *= 2;
let new_buffer = new Uint8Array(new_capacity);
new_buffer.set(this.buffer);
this.buffer = new_buffer;
}
trunc_buffer() {
return new Uint8Array(this.buffer.buffer, 0, this.length);
}
reset() {
this.length = 0;
}
emit_u8(val) {
this.ensure_space(1);
this.buffer[this.length++] = val;
}
emit_u16(val) {
this.ensure_space(2);
this.buffer[this.length++] = val;
this.buffer[this.length++] = val >> 8;
}
emit_u32(val) {
this.ensure_space(4);
this.buffer[this.length++] = val;
this.buffer[this.length++] = val >> 8;
this.buffer[this.length++] = val >> 16;
this.buffer[this.length++] = val >> 24;
}
emit_leb_u(val, max_len) {
this.ensure_space(max_len);
for (let i = 0; i < max_len; ++i) {
let v = val & 0xff;
val = val >>> 7;
if (val == 0) {
this.buffer[this.length++] = v;
return;
}
this.buffer[this.length++] = v | 0x80;
}
throw new Error('Leb value exceeds maximum length of ' + max_len);
}
emit_u32v(val) {
this.emit_leb_u(val, kMaxVarInt32Size);
}
emit_u64v(val) {
this.emit_leb_u(val, kMaxVarInt64Size);
}
emit_bytes(data) {
this.ensure_space(data.length);
this.buffer.set(data, this.length);
this.length += data.length;
}
emit_string(string) {
// When testing illegal names, we pass a byte array directly.
if (string instanceof Array) {
this.emit_u32v(string.length);
this.emit_bytes(string);
return;
}
// This is the hacky way to convert a JavaScript string to a UTF8 encoded
// string only containing single-byte characters.
let string_utf8 = unescape(encodeURIComponent(string));
this.emit_u32v(string_utf8.length);
for (let i = 0; i < string_utf8.length; i++) {
this.emit_u8(string_utf8.charCodeAt(i));
}
}
emit_heap_type(heap_type) {
this.emit_bytes(wasmSignedLeb(heap_type, kMaxVarInt32Size));
}
emit_type(type) {
if ((typeof type) == 'number') {
this.emit_u8(type >= 0 ? type : type & kLeb128Mask);
} else {
this.emit_u8(type.opcode);
if ('depth' in type) this.emit_u8(type.depth);
this.emit_heap_type(type.heap_type);
}
}
emit_init_expr_recursive(expr) {
switch (expr.kind) {
case kExprGlobalGet:
this.emit_u8(kExprGlobalGet);
this.emit_u32v(expr.value);
break;
case kExprI32Const:
this.emit_bytes(wasmI32Const(expr.value));
break;
case kExprI64Const:
this.emit_bytes(wasmI64Const(expr.value));
break;
case kExprF32Const:
this.emit_bytes(wasmF32Const(expr.value));
break;
case kExprF64Const:
this.emit_bytes(wasmF64Const(expr.value));
break;
case kSimdPrefix:
this.emit_bytes(wasmS128Const(expr.value));
break;
case kExprRefFunc:
this.emit_u8(kExprRefFunc);
this.emit_u32v(expr.value);
break;
case kExprRefNull:
this.emit_u8(kExprRefNull);
this.emit_heap_type(expr.value);
break;
case kExprStructNew:
case kExprStructNewWithRtt:
for (let operand of expr.operands) {
this.emit_init_expr_recursive(operand);
}
this.emit_u8(kGCPrefix);
this.emit_u8(expr.kind);
this.emit_u32v(expr.value);
break;
case kExprArrayInit:
case kExprArrayInitStatic:
for (let operand of expr.operands) {
this.emit_init_expr_recursive(operand);
}
this.emit_u8(kGCPrefix);
this.emit_u8(expr.kind);
this.emit_u32v(expr.value);
this.emit_u32v(expr.operands.length - 1);
break;
case kExprRttCanon:
this.emit_u8(kGCPrefix);
this.emit_u8(kExprRttCanon);
this.emit_u32v(expr.value);
break;
case kExprRttSub:
this.emit_init_expr_recursive(expr.parent);
this.emit_u8(kGcPrefix);
this.emit_u8(kExprRttSub);
this.emit_u32v(expr.value);
break;
case kExprRttFreshSub:
this.emit_init_expr_recursive(expr.parent);
this.emit_u8(kGcPrefix);
this.emit_u8(kExprRttFreshSub);
this.emit_u32v(expr.value);
break;
}
}
emit_init_expr(expr) {
this.emit_init_expr_recursive(expr);
this.emit_u8(kExprEnd);
}
emit_header() {
this.emit_bytes([
kWasmH0, kWasmH1, kWasmH2, kWasmH3, kWasmV0, kWasmV1, kWasmV2, kWasmV3
]);
}
emit_section(section_code, content_generator) {
// Emit section name.
this.emit_u8(section_code);
// Emit the section to a temporary buffer: its full length isn't know yet.
const section = new Binary;
content_generator(section);
// Emit section length.
this.emit_u32v(section.length);
// Copy the temporary buffer.
// Avoid spread because {section} can be huge.
this.emit_bytes(section.trunc_buffer());
}
}
class WasmFunctionBuilder {
// Encoding of local names: a string corresponds to a local name,
// a number n corresponds to n undefined names.
constructor(module, name, type_index, arg_names) {
this.module = module;
this.name = name;
this.type_index = type_index;
this.body = [];
this.locals = [];
this.local_names = arg_names;
this.body_offset = undefined; // Not valid until module is serialized.
}
numLocalNames() {
let num_local_names = 0;
for (let loc_name of this.local_names) {
if (typeof loc_name == 'string') ++num_local_names;
}
return num_local_names;
}
exportAs(name) {
this.module.addExport(name, this.index);
return this;
}
exportFunc() {
this.exportAs(this.name);
return this;
}
setCompilationHint(strategy, baselineTier, topTier) {
this.module.setCompilationHint(strategy, baselineTier, topTier, this.index);
return this;
}
addBody(body) {
for (let b of body) {
if (typeof b !== 'number' || (b & (~0xFF)) !== 0) {
throw new Error(
'invalid body (entries must be 8 bit numbers): ' + body);
}
}
this.body = body.slice();
// Automatically add the end for the function block to the body.
this.body.push(kExprEnd);
return this;
}
addBodyWithEnd(body) {
this.body = body;
return this;
}
getNumLocals() {
let total_locals = 0;
for (let l of this.locals) {
total_locals += l.count
}
return total_locals;
}
addLocals(type, count, names) {
this.locals.push({type: type, count: count});
names = names || [];
if (names.length > count) throw new Error('too many locals names given');
this.local_names.push(...names);
if (count > names.length) this.local_names.push(count - names.length);
return this;
}
end() {
return this.module;
}
}
class WasmInitExpr {
static I32Const(value) {
return {kind: kExprI32Const, value: value};
}
static I64Const(value) {
return {kind: kExprI64Const, value: value};
}
static F32Const(value) {
return {kind: kExprF32Const, value: value};
}
static F64Const(value) {
return {kind: kExprF64Const, value: value};
}
static S128Const(value) {
return {kind: kSimdPrefix, value: value};
}
static GlobalGet(index) {
return {kind: kExprGlobalGet, value: index};
}
static RefFunc(index) {
return {kind: kExprRefFunc, value: index};
}
static RefNull(type) {
return {kind: kExprRefNull, value: type};
}
static StructNewWithRtt(type, args) {
return {kind: kExprStructNewWithRtt, value: type, operands: args};
}
static StructNew(type, args) {
return {kind: kExprStructNew, value: type, operands: args};
}
static ArrayInit(type, args) {
return {kind: kExprArrayInit, value: type, operands: args};
}
static ArrayInitStatic(type, args) {
return {kind: kExprArrayInitStatic, value: type, operands: args};
}
static RttCanon(type) {
return {kind: kExprRttCanon, value: type};
}
static RttSub(type, parent) {
return {kind: kExprRttSub, value: type, parent: parent};
}
static RttFreshSub(type, parent) {
return {kind: kExprRttFreshSub, value: type, parent: parent};
}
static defaultFor(type) {
switch (type) {
case kWasmI32:
return this.I32Const(0);
case kWasmI64:
return this.I64Const(0);
case kWasmF32:
return this.F32Const(0);
case kWasmF64:
return this.F64Const(0);
case kWasmS128:
return this.S128Const(new Array(16).fill(0));
default:
if ((typeof type) != 'number' && type.opcode != kWasmOptRef) {
throw new Error("Non-defaultable type");
}
let heap_type = (typeof type) == 'number' ? type : type.heap_type;
return this.RefNull(heap_type);
}
}
}
class WasmGlobalBuilder {
// {init} should be constructed with WasmInitExpr.
constructor(module, type, mutable, init) {
this.module = module;
this.type = type;
this.mutable = mutable;
this.init = init;
}
exportAs(name) {
this.module.exports.push(
{name: name, kind: kExternalGlobal, index: this.index});
return this;
}
}
class WasmTableBuilder {
constructor(module, type, initial_size, max_size, init_expr) {
this.module = module;
this.type = type;
this.initial_size = initial_size;
this.has_max = max_size !== undefined;
this.max_size = max_size;
this.init_expr = init_expr;
this.has_init = init_expr !== undefined;
}
exportAs(name) {
this.module.exports.push(
{name: name, kind: kExternalTable, index: this.index});
return this;
}
}
function makeField(type, mutability) {
if ((typeof mutability) != 'boolean') {
throw new Error('field mutability must be boolean');
}
return {type: type, mutability: mutability};
}
class WasmStruct {
constructor(fields) {
if (!Array.isArray(fields)) {
throw new Error('struct fields must be an array');
}
this.fields = fields;
this.type_form = kWasmStructTypeForm;
}
}
class WasmStructSubtype extends WasmStruct {
constructor(fields, supertype_idx) {
super(fields);
this.supertype = supertype_idx;
this.type_form = kWasmStructSubtypeForm;
}
}
class WasmArray {
constructor(type, mutability) {
this.type = type;
if (!mutability) throw new Error("Immutable arrays are not supported yet");
this.mutability = mutability;
this.type_form = kWasmArrayTypeForm;
}
}
class WasmArraySubtype extends WasmArray {
constructor(type, mutability, supertype_idx) {
super(type, mutability);
this.supertype = supertype_idx;
this.type_form = kWasmArraySubtypeForm;
}
}
class WasmElemSegment {
constructor(table, offset, type, elements, is_decl) {
this.table = table;
this.offset = offset;
this.type = type;
this.elements = elements;
this.is_decl = is_decl;
// Invariant checks.
if ((table === undefined) != (offset === undefined)) {
throw new Error("invalid element segment");
}
for (let elem of elements) {
if (((typeof elem) == 'number') != (type === undefined)) {
throw new Error("invalid element");
}
}
}
is_active() {
return this.table !== undefined;
}
is_passive() {
return this.table === undefined && !this.is_decl;
}
is_declarative() {
return this.table === undefined && this.is_decl;
}
expressions_as_elements() {
return this.type !== undefined;
}
}
class WasmModuleBuilder {
constructor() {
this.types = [];
this.imports = [];
this.exports = [];
this.globals = [];
this.tables = [];
this.tags = [];
this.functions = [];
this.compilation_hints = [];
this.element_segments = [];
this.data_segments = [];
this.explicit = [];
this.num_imported_funcs = 0;
this.num_imported_globals = 0;
this.num_imported_tables = 0;
this.num_imported_tags = 0;
return this;
}
addStart(start_index) {
this.start_index = start_index;
return this;
}
addMemory(min, max, exported, shared) {
this.memory = {
min: min,
max: max,
exported: exported,
shared: shared || false,
is_memory64: false
};
return this;
}
addMemory64(min, max, exported) {
this.memory = {
min: min,
max: max,
exported: exported,
shared: false,
is_memory64: true
};
return this;
}
addExplicitSection(bytes) {
this.explicit.push(bytes);
return this;
}
stringToBytes(name) {
var result = new Binary();
result.emit_u32v(name.length);
for (var i = 0; i < name.length; i++) {
result.emit_u8(name.charCodeAt(i));
}
return result.trunc_buffer()
}
createCustomSection(name, bytes) {
name = this.stringToBytes(name);
var section = new Binary();
section.emit_u8(0);
section.emit_u32v(name.length + bytes.length);
section.emit_bytes(name);
section.emit_bytes(bytes);
return section.trunc_buffer();
}
addCustomSection(name, bytes) {
this.explicit.push(this.createCustomSection(name, bytes));
}
addType(type) {
this.types.push(type);
var pl = type.params.length; // should have params
var rl = type.results.length; // should have results
return this.types.length - 1;
}
addStruct(fields) {
this.types.push(new WasmStruct(fields));
return this.types.length - 1;
}
kGenericSuperType = 0xFFFFFFFE;
addStructSubtype(fields, supertype_idx = this.kGenericSuperType) {
this.types.push(new WasmStructSubtype(fields, supertype_idx));
return this.types.length - 1;
}
addArray(type, mutability) {
this.types.push(new WasmArray(type, mutability));
return this.types.length - 1;
}
addArraySubtype(type, mutability, supertype_idx = this.kGenericSuperType) {
this.types.push(new WasmArraySubtype(type, mutability, supertype_idx));
return this.types.length - 1;
}
addGlobal(type, mutable, init) {
if (init === undefined) init = WasmInitExpr.defaultFor(type);
let glob = new WasmGlobalBuilder(this, type, mutable, init);
glob.index = this.globals.length + this.num_imported_globals;
this.globals.push(glob);
return glob;
}
addTable(
type, initial_size, max_size = undefined, init_expr = undefined) {
if (type == kWasmI32 || type == kWasmI64 || type == kWasmF32 ||
type == kWasmF64 || type == kWasmS128 || type == kWasmVoid) {
throw new Error('Tables must be of a reference type');
}
let table = new WasmTableBuilder(
this, type, initial_size, max_size, init_expr);
table.index = this.tables.length + this.num_imported_tables;
this.tables.push(table);
return table;
}
addTag(type) {
let type_index = (typeof type) == 'number' ? type : this.addType(type);
let tag_index = this.tags.length + this.num_imported_tags;
this.tags.push(type_index);
return tag_index;
}
addFunction(name, type, arg_names) {
arg_names = arg_names || [];
let type_index = (typeof type) == 'number' ? type : this.addType(type);
let num_args = this.types[type_index].params.length;
if (num_args < arg_names.length)
throw new Error('too many arg names provided');
if (num_args > arg_names.length)
arg_names.push(num_args - arg_names.length);
let func = new WasmFunctionBuilder(this, name, type_index, arg_names);
func.index = this.functions.length + this.num_imported_funcs;
this.functions.push(func);
return func;
}
addImport(module, name, type) {
if (this.functions.length != 0) {
throw new Error('Imported functions must be declared before local ones');
}
let type_index = (typeof type) == 'number' ? type : this.addType(type);
this.imports.push({
module: module,
name: name,
kind: kExternalFunction,
type_index: type_index
});
return this.num_imported_funcs++;
}
addImportedGlobal(module, name, type, mutable = false) {
if (this.globals.length != 0) {
throw new Error('Imported globals must be declared before local ones');
}
let o = {
module: module,
name: name,
kind: kExternalGlobal,
type: type,
mutable: mutable
};
this.imports.push(o);
return this.num_imported_globals++;
}
addImportedMemory(module, name, initial = 0, maximum, shared) {
let o = {
module: module,
name: name,
kind: kExternalMemory,
initial: initial,
maximum: maximum,
shared: shared
};
this.imports.push(o);
return this;
}
addImportedTable(module, name, initial, maximum, type) {
if (this.tables.length != 0) {
throw new Error('Imported tables must be declared before local ones');
}
let o = {
module: module,
name: name,
kind: kExternalTable,
initial: initial,
maximum: maximum,
type: type || kWasmFuncRef
};
this.imports.push(o);
return this.num_imported_tables++;
}
addImportedTag(module, name, type) {
if (this.tags.length != 0) {
throw new Error('Imported tags must be declared before local ones');
}
let type_index = (typeof type) == 'number' ? type : this.addType(type);
let o = {
module: module,
name: name,
kind: kExternalTag,
type_index: type_index
};
this.imports.push(o);
return this.num_imported_tags++;
}
addExport(name, index) {
this.exports.push({name: name, kind: kExternalFunction, index: index});
return this;
}
addExportOfKind(name, kind, index) {
if (index === undefined && kind != kExternalTable &&
kind != kExternalMemory) {
throw new Error(
'Index for exports other than tables/memories must be provided');
}
if (index !== undefined && (typeof index) != 'number') {
throw new Error('Index for exports must be a number')
}
this.exports.push({name: name, kind: kind, index: index});
return this;
}
setCompilationHint(strategy, baselineTier, topTier, index) {
this.compilation_hints[index] = {
strategy: strategy,
baselineTier: baselineTier,
topTier: topTier
};
return this;
}
addDataSegment(addr, data, is_global = false) {
this.data_segments.push(
{addr: addr, data: data, is_global: is_global, is_active: true});
return this.data_segments.length - 1;
}
addPassiveDataSegment(data) {
this.data_segments.push({data: data, is_active: false});
return this.data_segments.length - 1;
}
exportMemoryAs(name) {
this.exports.push({name: name, kind: kExternalMemory, index: 0});
}
// {offset} is an initializer expression.
// If {type} is undefined, then {elements} are function indices. Otherwise,
// they are initializer expressions.
addActiveElementSegment(table, offset, elements, type) {
this.element_segments.push(
new WasmElemSegment(table, offset, type, elements, false));
return this.element_segments.length - 1;
}
// If {type} is undefined, then {elements} are function indices. Otherwise,
// they are initializer expressions.
addPassiveElementSegment(elements, type) {
this.element_segments.push(
new WasmElemSegment(undefined, undefined, type, elements, false));
return this.element_segments.length - 1;
}
// If {type} is undefined, then {elements} are function indices. Otherwise,
// they are initializer expressions.
addDeclarativeElementSegment(elements, type) {
this.element_segments.push(
new WasmElemSegment(undefined, undefined, type, elements, true));
return this.element_segments.length - 1;
}
appendToTable(array) {
for (let n of array) {
if (typeof n != 'number')
throw new Error('invalid table (entries have to be numbers): ' + array);
}
if (this.tables.length == 0) {
this.addTable(kWasmAnyFunc, 0);
}
// Adjust the table to the correct size.
let table = this.tables[0];
const base = table.initial_size;
const table_size = base + array.length;
table.initial_size = table_size;
if (table.has_max && table_size > table.max_size) {
table.max_size = table_size;
}
return this.addActiveElementSegment(0, WasmInitExpr.I32Const(base), array);
}
setTableBounds(min, max = undefined) {
if (this.tables.length != 0) {
throw new Error('The table bounds of table \'0\' have already been set.');
}
this.addTable(kWasmAnyFunc, min, max);
return this;
}
setName(name) {
this.name = name;
return this;
}
toBuffer(debug = false) {
let binary = new Binary;
let wasm = this;
// Add header
binary.emit_header();
// Add type section
if (wasm.types.length > 0) {
if (debug) print('emitting types @ ' + binary.length);
binary.emit_section(kTypeSectionCode, section => {
section.emit_u32v(wasm.types.length);
for (let type of wasm.types) {
if (type instanceof WasmStruct) {
section.emit_u8(type.type_form);
section.emit_u32v(type.fields.length);
for (let field of type.fields) {
section.emit_type(field.type);
section.emit_u8(field.mutability ? 1 : 0);
}
if (type instanceof WasmStructSubtype) {
if (type.supertype === this.kGenericSuperType) {
section.emit_u8(kDataRefCode);
} else {
section.emit_heap_type(type.supertype);
}
}
} else if (type instanceof WasmArray) {
section.emit_u8(type.type_form);
section.emit_type(type.type);
section.emit_u8(type.mutability ? 1 : 0);
if (type instanceof WasmArraySubtype) {
if (type.supertype === this.kGenericSuperType) {
section.emit_u8(kDataRefCode);
} else {
section.emit_heap_type(type.supertype);
}
}
} else {
section.emit_u8(kWasmFunctionTypeForm);
section.emit_u32v(type.params.length);
for (let param of type.params) {
section.emit_type(param);
}
section.emit_u32v(type.results.length);
for (let result of type.results) {
section.emit_type(result);
}
}
}
});
}
// Add imports section
if (wasm.imports.length > 0) {
if (debug) print('emitting imports @ ' + binary.length);
binary.emit_section(kImportSectionCode, section => {
section.emit_u32v(wasm.imports.length);
for (let imp of wasm.imports) {
section.emit_string(imp.module);
section.emit_string(imp.name || '');
section.emit_u8(imp.kind);
if (imp.kind == kExternalFunction) {
section.emit_u32v(imp.type_index);
} else if (imp.kind == kExternalGlobal) {
section.emit_type(imp.type);
section.emit_u8(imp.mutable);
} else if (imp.kind == kExternalMemory) {
var has_max = (typeof imp.maximum) != 'undefined';
var is_shared = (typeof imp.shared) != 'undefined';
if (is_shared) {
section.emit_u8(has_max ? 3 : 2); // flags
} else {
section.emit_u8(has_max ? 1 : 0); // flags
}
section.emit_u32v(imp.initial); // initial
if (has_max) section.emit_u32v(imp.maximum); // maximum
} else if (imp.kind == kExternalTable) {
section.emit_type(imp.type);
var has_max = (typeof imp.maximum) != 'undefined';
section.emit_u8(has_max ? 1 : 0); // flags
section.emit_u32v(imp.initial); // initial
if (has_max) section.emit_u32v(imp.maximum); // maximum
} else if (imp.kind == kExternalTag) {
section.emit_u32v(kExceptionAttribute);
section.emit_u32v(imp.type_index);
} else {
throw new Error('unknown/unsupported import kind ' + imp.kind);
}
}
});
}
// Add functions declarations
if (wasm.functions.length > 0) {
if (debug) print('emitting function decls @ ' + binary.length);
binary.emit_section(kFunctionSectionCode, section => {
section.emit_u32v(wasm.functions.length);
for (let func of wasm.functions) {
section.emit_u32v(func.type_index);
}
});
}
// Add table section
if (wasm.tables.length > 0) {
if (debug) print('emitting tables @ ' + binary.length);
binary.emit_section(kTableSectionCode, section => {
section.emit_u32v(wasm.tables.length);
for (let table of wasm.tables) {
section.emit_type(table.type);
section.emit_u8(table.has_max);
section.emit_u32v(table.initial_size);
if (table.has_max) section.emit_u32v(table.max_size);
if (table.has_init) {
section.emit_init_expr(table.init_expr);
}
}
});
}
// Add memory section
if (wasm.memory !== undefined) {
if (debug) print('emitting memory @ ' + binary.length);
binary.emit_section(kMemorySectionCode, section => {
section.emit_u8(1); // one memory entry
const has_max = wasm.memory.max !== undefined;
if (wasm.memory.is_memory64) {
if (wasm.memory.shared) {
throw new Error('sharing memory64 is not supported (yet)');
}
section.emit_u8(
has_max ? kLimitsMemory64WithMaximum : kLimitsMemory64NoMaximum);
section.emit_u64v(wasm.memory.min);
if (has_max) section.emit_u64v(wasm.memory.max);
} else {
section.emit_u8(
wasm.memory.shared ?
(has_max ? kLimitsSharedWithMaximum :
kLimitsSharedNoMaximum) :
(has_max ? kLimitsWithMaximum : kLimitsNoMaximum));
section.emit_u32v(wasm.memory.min);
if (has_max) section.emit_u32v(wasm.memory.max);
}
});
}
// Add tag section.
if (wasm.tags.length > 0) {
if (debug) print('emitting tags @ ' + binary.length);
binary.emit_section(kTagSectionCode, section => {
section.emit_u32v(wasm.tags.length);
for (let type_index of wasm.tags) {
section.emit_u32v(kExceptionAttribute);
section.emit_u32v(type_index);
}
});
}
// Add global section.
if (wasm.globals.length > 0) {
if (debug) print('emitting globals @ ' + binary.length);
binary.emit_section(kGlobalSectionCode, section => {
section.emit_u32v(wasm.globals.length);
for (let global of wasm.globals) {
section.emit_type(global.type);
section.emit_u8(global.mutable);
section.emit_init_expr(global.init);
}
});
}
// Add export table.
var mem_export = (wasm.memory !== undefined && wasm.memory.exported);
var exports_count = wasm.exports.length + (mem_export ? 1 : 0);
if (exports_count > 0) {
if (debug) print('emitting exports @ ' + binary.length);
binary.emit_section(kExportSectionCode, section => {
section.emit_u32v(exports_count);
for (let exp of wasm.exports) {
section.emit_string(exp.name);
section.emit_u8(exp.kind);
section.emit_u32v(exp.index);
}
if (mem_export) {
section.emit_string('memory');
section.emit_u8(kExternalMemory);
section.emit_u8(0);
}
});
}
// Add start function section.
if (wasm.start_index !== undefined) {
if (debug) print('emitting start function @ ' + binary.length);
binary.emit_section(kStartSectionCode, section => {
section.emit_u32v(wasm.start_index);
});
}
// Add element segments
if (wasm.element_segments.length > 0) {
if (debug) print('emitting element segments @ ' + binary.length);
binary.emit_section(kElementSectionCode, section => {
var segments = wasm.element_segments;
section.emit_u32v(segments.length);
for (let segment of segments) {
// Emit flag and header.
// Each case below corresponds to a flag from
// https://webassembly.github.io/spec/core/binary/modules.html#element-section
// (not in increasing order).
if (segment.is_active()) {
if (segment.table == 0 && segment.type === undefined) {
if (segment.expressions_as_elements()) {
section.emit_u8(0x04);
section.emit_init_expr(segment.offset);
} else {
section.emit_u8(0x00)
section.emit_init_expr(segment.offset);
}
} else {
if (segment.expressions_as_elements()) {
section.emit_u8(0x06);
section.emit_u32v(segment.table);
section.emit_init_expr(segment.offset);
section.emit_type(segment.type);
} else {
section.emit_u8(0x02);
section.emit_u32v(segment.table);
section.emit_init_expr(segment.offset);
section.emit_u8(kExternalFunction);
}
}
} else {
if (segment.expressions_as_elements()) {
if (segment.is_passive()) {
section.emit_u8(0x05);
} else {
section.emit_u8(0x07);
}
section.emit_type(segment.type);
} else {
if (segment.is_passive()) {
section.emit_u8(0x01);
} else {
section.emit_u8(0x03);
}
section.emit_u8(kExternalFunction);
}
}
// Emit elements.
section.emit_u32v(segment.elements.length);
for (let element of segment.elements) {
if (segment.expressions_as_elements()) {
section.emit_init_expr(element);
} else {
section.emit_u32v(element);
}
}
}
})
}
// If there are any passive data segments, add the DataCount section.
if (wasm.data_segments.some(seg => !seg.is_active)) {
binary.emit_section(kDataCountSectionCode, section => {
section.emit_u32v(wasm.data_segments.length);
});
}
// If there are compilation hints add a custom section 'compilationHints'
// after the function section and before the code section.
if (wasm.compilation_hints.length > 0) {
if (debug) print('emitting compilation hints @ ' + binary.length);
// Build custom section payload.
let payloadBinary = new Binary();
let implicit_compilation_hints_count = wasm.functions.length;
payloadBinary.emit_u32v(implicit_compilation_hints_count);
// Defaults to the compiler's choice if no better hint was given (0x00).
let defaultHintByte = kCompilationHintStrategyDefault |
(kCompilationHintTierDefault << 2) |
(kCompilationHintTierDefault << 4);
// Emit hint byte for every function defined in this module.
for (let i = 0; i < implicit_compilation_hints_count; i++) {
let index = wasm.num_imported_funcs + i;
var hintByte;
if (index in wasm.compilation_hints) {
let hint = wasm.compilation_hints[index];
hintByte =
hint.strategy | (hint.baselineTier << 2) | (hint.topTier << 4);
} else {
hintByte = defaultHintByte;
}
payloadBinary.emit_u8(hintByte);
}
// Finalize as custom section.
let name = 'compilationHints';
let bytes = this.createCustomSection(name, payloadBinary.trunc_buffer());
binary.emit_bytes(bytes);
}
// Add function bodies.
if (wasm.functions.length > 0) {
// emit function bodies
if (debug) print('emitting code @ ' + binary.length);
let section_length = 0;
binary.emit_section(kCodeSectionCode, section => {
section.emit_u32v(wasm.functions.length);
let header = new Binary;
for (let func of wasm.functions) {
header.reset();
// Function body length will be patched later.
let local_decls = func.locals || [];
header.emit_u32v(local_decls.length);
for (let decl of local_decls) {
header.emit_u32v(decl.count);
header.emit_type(decl.type);
}
section.emit_u32v(header.length + func.body.length);
section.emit_bytes(header.trunc_buffer());
// Set to section offset for now, will update.
func.body_offset = section.length;
section.emit_bytes(func.body);
}
section_length = section.length;
});
for (let func of wasm.functions) {
func.body_offset += binary.length - section_length;
}
}
// Add data segments.
if (wasm.data_segments.length > 0) {
if (debug) print('emitting data segments @ ' + binary.length);
binary.emit_section(kDataSectionCode, section => {
section.emit_u32v(wasm.data_segments.length);
for (let seg of wasm.data_segments) {
if (seg.is_active) {
section.emit_u8(0); // linear memory index 0 / flags
if (seg.is_global) {
// initializer is a global variable
section.emit_u8(kExprGlobalGet);
section.emit_u32v(seg.addr);
} else {
// initializer is a constant
section.emit_u8(kExprI32Const);
section.emit_u32v(seg.addr);
}
section.emit_u8(kExprEnd);
} else {
section.emit_u8(kPassive); // flags
}
section.emit_u32v(seg.data.length);
section.emit_bytes(seg.data);
}
});
}
// Add any explicitly added sections
for (let exp of wasm.explicit) {
if (debug) print('emitting explicit @ ' + binary.length);
binary.emit_bytes(exp);
}
// Add names.
let num_function_names = 0;
let num_functions_with_local_names = 0;
for (let func of wasm.functions) {
if (func.name !== undefined) ++num_function_names;
if (func.numLocalNames() > 0) ++num_functions_with_local_names;
}
if (num_function_names > 0 || num_functions_with_local_names > 0 ||
wasm.name !== undefined) {
if (debug) print('emitting names @ ' + binary.length);
binary.emit_section(kUnknownSectionCode, section => {
section.emit_string('name');
// Emit module name.
if (wasm.name !== undefined) {
section.emit_section(kModuleNameCode, name_section => {
name_section.emit_string(wasm.name);
});
}
// Emit function names.
if (num_function_names > 0) {
section.emit_section(kFunctionNamesCode, name_section => {
name_section.emit_u32v(num_function_names);
for (let func of wasm.functions) {
if (func.name === undefined) continue;
name_section.emit_u32v(func.index);
name_section.emit_string(func.name);
}
});
}
// Emit local names.
if (num_functions_with_local_names > 0) {
section.emit_section(kLocalNamesCode, name_section => {
name_section.emit_u32v(num_functions_with_local_names);
for (let func of wasm.functions) {
if (func.numLocalNames() == 0) continue;
name_section.emit_u32v(func.index);
name_section.emit_u32v(func.numLocalNames());
let name_index = 0;
for (let i = 0; i < func.local_names.length; ++i) {
if (typeof func.local_names[i] == 'string') {
name_section.emit_u32v(name_index);
name_section.emit_string(func.local_names[i]);
name_index++;
} else {
name_index += func.local_names[i];
}
}
}
});
}
});
}
return binary.trunc_buffer();
}
toArray(debug = false) {
return Array.from(this.toBuffer(debug));
}
instantiate(ffi) {
let module = this.toModule();
let instance = new WebAssembly.Instance(module, ffi);
return instance;
}
asyncInstantiate(ffi) {
return WebAssembly.instantiate(this.toBuffer(), ffi)
.then(({module, instance}) => instance);
}
toModule(debug = false) {
return new WebAssembly.Module(this.toBuffer(debug));
}
}
function wasmSignedLeb(val, max_len = 5) {
let res = [];
for (let i = 0; i < max_len; ++i) {
let v = val & 0x7f;
// If {v} sign-extended from 7 to 32 bits is equal to val, we are done.
if (((v << 25) >> 25) == val) {
res.push(v);
return res;
}
res.push(v | 0x80);
val = val >> 7;
}
throw new Error(
'Leb value <' + val + '> exceeds maximum length of ' + max_len);
}
function wasmUnsignedLeb(val, max_len = 5) {
let res = [];
for (let i = 0; i < max_len; ++i) {
let v = val & 0x7f;
if (v == val) {
res.push(v);
return res;
}
res.push(v | 0x80);
val = val >>> 7;
}
throw new Error(
'Leb value <' + val + '> exceeds maximum length of ' + max_len);
}
function wasmI32Const(val) {
return [kExprI32Const, ...wasmSignedLeb(val, 5)];
}
// Note: Since {val} is a JS number, the generated constant only has 53 bits of
// precision.
function wasmI64Const(val) {
return [kExprI64Const, ...wasmSignedLeb(val, 10)];
}
function wasmF32Const(f) {
// Write in little-endian order at offset 0.
data_view.setFloat32(0, f, true);
return [
kExprF32Const, byte_view[0], byte_view[1], byte_view[2], byte_view[3]
];
}
function wasmF64Const(f) {
// Write in little-endian order at offset 0.
data_view.setFloat64(0, f, true);
return [
kExprF64Const, byte_view[0], byte_view[1], byte_view[2], byte_view[3],
byte_view[4], byte_view[5], byte_view[6], byte_view[7]
];
}
function wasmS128Const(f) {
// Write in little-endian order at offset 0.
return [kSimdPrefix, kExprS128Const, ...f];
}
function getOpcodeName(opcode) {
return globalThis.kWasmOpcodeNames?.[opcode] ?? 'unknown';
}