3f702d4bf9
R=mstarzinger@chromium.org BUG= Review URL: https://codereview.chromium.org/177683002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19799 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1183 lines
36 KiB
C++
1183 lines
36 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "ast.h"
|
|
|
|
#include <cmath> // For isfinite.
|
|
#include "builtins.h"
|
|
#include "code-stubs.h"
|
|
#include "contexts.h"
|
|
#include "conversions.h"
|
|
#include "hashmap.h"
|
|
#include "parser.h"
|
|
#include "property-details.h"
|
|
#include "property.h"
|
|
#include "scopes.h"
|
|
#include "string-stream.h"
|
|
#include "type-info.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// All the Accept member functions for each syntax tree node type.
|
|
|
|
#define DECL_ACCEPT(type) \
|
|
void type::Accept(AstVisitor* v) { v->Visit##type(this); }
|
|
AST_NODE_LIST(DECL_ACCEPT)
|
|
#undef DECL_ACCEPT
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of other node functionality.
|
|
|
|
|
|
bool Expression::IsSmiLiteral() {
|
|
return AsLiteral() != NULL && AsLiteral()->value()->IsSmi();
|
|
}
|
|
|
|
|
|
bool Expression::IsStringLiteral() {
|
|
return AsLiteral() != NULL && AsLiteral()->value()->IsString();
|
|
}
|
|
|
|
|
|
bool Expression::IsNullLiteral() {
|
|
return AsLiteral() != NULL && AsLiteral()->value()->IsNull();
|
|
}
|
|
|
|
|
|
bool Expression::IsUndefinedLiteral(Isolate* isolate) {
|
|
VariableProxy* var_proxy = AsVariableProxy();
|
|
if (var_proxy == NULL) return false;
|
|
Variable* var = var_proxy->var();
|
|
// The global identifier "undefined" is immutable. Everything
|
|
// else could be reassigned.
|
|
return var != NULL && var->location() == Variable::UNALLOCATED &&
|
|
var_proxy->name()->Equals(isolate->heap()->undefined_string());
|
|
}
|
|
|
|
|
|
VariableProxy::VariableProxy(Zone* zone, Variable* var, int position)
|
|
: Expression(zone, position),
|
|
name_(var->name()),
|
|
var_(NULL), // Will be set by the call to BindTo.
|
|
is_this_(var->is_this()),
|
|
is_trivial_(false),
|
|
is_lvalue_(false),
|
|
interface_(var->interface()) {
|
|
BindTo(var);
|
|
}
|
|
|
|
|
|
VariableProxy::VariableProxy(Zone* zone,
|
|
Handle<String> name,
|
|
bool is_this,
|
|
Interface* interface,
|
|
int position)
|
|
: Expression(zone, position),
|
|
name_(name),
|
|
var_(NULL),
|
|
is_this_(is_this),
|
|
is_trivial_(false),
|
|
is_lvalue_(false),
|
|
interface_(interface) {
|
|
// Names must be canonicalized for fast equality checks.
|
|
ASSERT(name->IsInternalizedString());
|
|
}
|
|
|
|
|
|
void VariableProxy::BindTo(Variable* var) {
|
|
ASSERT(var_ == NULL); // must be bound only once
|
|
ASSERT(var != NULL); // must bind
|
|
ASSERT(!FLAG_harmony_modules || interface_->IsUnified(var->interface()));
|
|
ASSERT((is_this() && var->is_this()) || name_.is_identical_to(var->name()));
|
|
// Ideally CONST-ness should match. However, this is very hard to achieve
|
|
// because we don't know the exact semantics of conflicting (const and
|
|
// non-const) multiple variable declarations, const vars introduced via
|
|
// eval() etc. Const-ness and variable declarations are a complete mess
|
|
// in JS. Sigh...
|
|
var_ = var;
|
|
var->set_is_used(true);
|
|
}
|
|
|
|
|
|
Assignment::Assignment(Zone* zone,
|
|
Token::Value op,
|
|
Expression* target,
|
|
Expression* value,
|
|
int pos)
|
|
: Expression(zone, pos),
|
|
op_(op),
|
|
target_(target),
|
|
value_(value),
|
|
binary_operation_(NULL),
|
|
assignment_id_(GetNextId(zone)),
|
|
is_uninitialized_(false),
|
|
store_mode_(STANDARD_STORE) { }
|
|
|
|
|
|
Token::Value Assignment::binary_op() const {
|
|
switch (op_) {
|
|
case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
|
|
case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
|
|
case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
|
|
case Token::ASSIGN_SHL: return Token::SHL;
|
|
case Token::ASSIGN_SAR: return Token::SAR;
|
|
case Token::ASSIGN_SHR: return Token::SHR;
|
|
case Token::ASSIGN_ADD: return Token::ADD;
|
|
case Token::ASSIGN_SUB: return Token::SUB;
|
|
case Token::ASSIGN_MUL: return Token::MUL;
|
|
case Token::ASSIGN_DIV: return Token::DIV;
|
|
case Token::ASSIGN_MOD: return Token::MOD;
|
|
default: UNREACHABLE();
|
|
}
|
|
return Token::ILLEGAL;
|
|
}
|
|
|
|
|
|
bool FunctionLiteral::AllowsLazyCompilation() {
|
|
return scope()->AllowsLazyCompilation();
|
|
}
|
|
|
|
|
|
bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
|
|
return scope()->AllowsLazyCompilationWithoutContext();
|
|
}
|
|
|
|
|
|
int FunctionLiteral::start_position() const {
|
|
return scope()->start_position();
|
|
}
|
|
|
|
|
|
int FunctionLiteral::end_position() const {
|
|
return scope()->end_position();
|
|
}
|
|
|
|
|
|
LanguageMode FunctionLiteral::language_mode() const {
|
|
return scope()->language_mode();
|
|
}
|
|
|
|
|
|
void FunctionLiteral::InitializeSharedInfo(
|
|
Handle<Code> unoptimized_code) {
|
|
for (RelocIterator it(*unoptimized_code); !it.done(); it.next()) {
|
|
RelocInfo* rinfo = it.rinfo();
|
|
if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue;
|
|
Object* obj = rinfo->target_object();
|
|
if (obj->IsSharedFunctionInfo()) {
|
|
SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
|
|
if (shared->start_position() == start_position()) {
|
|
shared_info_ = Handle<SharedFunctionInfo>(shared);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
ObjectLiteralProperty::ObjectLiteralProperty(
|
|
Zone* zone, Literal* key, Expression* value) {
|
|
emit_store_ = true;
|
|
key_ = key;
|
|
value_ = value;
|
|
Object* k = *key->value();
|
|
if (k->IsInternalizedString() &&
|
|
zone->isolate()->heap()->proto_string()->Equals(String::cast(k))) {
|
|
kind_ = PROTOTYPE;
|
|
} else if (value_->AsMaterializedLiteral() != NULL) {
|
|
kind_ = MATERIALIZED_LITERAL;
|
|
} else if (value_->AsLiteral() != NULL) {
|
|
kind_ = CONSTANT;
|
|
} else {
|
|
kind_ = COMPUTED;
|
|
}
|
|
}
|
|
|
|
|
|
ObjectLiteralProperty::ObjectLiteralProperty(
|
|
Zone* zone, bool is_getter, FunctionLiteral* value) {
|
|
emit_store_ = true;
|
|
value_ = value;
|
|
kind_ = is_getter ? GETTER : SETTER;
|
|
}
|
|
|
|
|
|
bool ObjectLiteral::Property::IsCompileTimeValue() {
|
|
return kind_ == CONSTANT ||
|
|
(kind_ == MATERIALIZED_LITERAL &&
|
|
CompileTimeValue::IsCompileTimeValue(value_));
|
|
}
|
|
|
|
|
|
void ObjectLiteral::Property::set_emit_store(bool emit_store) {
|
|
emit_store_ = emit_store;
|
|
}
|
|
|
|
|
|
bool ObjectLiteral::Property::emit_store() {
|
|
return emit_store_;
|
|
}
|
|
|
|
|
|
void ObjectLiteral::CalculateEmitStore(Zone* zone) {
|
|
ZoneAllocationPolicy allocator(zone);
|
|
|
|
ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
|
|
allocator);
|
|
for (int i = properties()->length() - 1; i >= 0; i--) {
|
|
ObjectLiteral::Property* property = properties()->at(i);
|
|
Literal* literal = property->key();
|
|
if (literal->value()->IsNull()) continue;
|
|
uint32_t hash = literal->Hash();
|
|
// If the key of a computed property is in the table, do not emit
|
|
// a store for the property later.
|
|
if ((property->kind() == ObjectLiteral::Property::MATERIALIZED_LITERAL ||
|
|
property->kind() == ObjectLiteral::Property::COMPUTED) &&
|
|
table.Lookup(literal, hash, false, allocator) != NULL) {
|
|
property->set_emit_store(false);
|
|
} else {
|
|
// Add key to the table.
|
|
table.Lookup(literal, hash, true, allocator);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
|
|
return property != NULL &&
|
|
property->kind() != ObjectLiteral::Property::PROTOTYPE;
|
|
}
|
|
|
|
|
|
void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
|
|
if (!constant_properties_.is_null()) return;
|
|
|
|
// Allocate a fixed array to hold all the constant properties.
|
|
Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
|
|
boilerplate_properties_ * 2, TENURED);
|
|
|
|
int position = 0;
|
|
// Accumulate the value in local variables and store it at the end.
|
|
bool is_simple = true;
|
|
int depth_acc = 1;
|
|
uint32_t max_element_index = 0;
|
|
uint32_t elements = 0;
|
|
for (int i = 0; i < properties()->length(); i++) {
|
|
ObjectLiteral::Property* property = properties()->at(i);
|
|
if (!IsBoilerplateProperty(property)) {
|
|
is_simple = false;
|
|
continue;
|
|
}
|
|
MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
|
|
if (m_literal != NULL) {
|
|
m_literal->BuildConstants(isolate);
|
|
if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
|
|
}
|
|
|
|
// Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
|
|
// value for COMPUTED properties, the real value is filled in at
|
|
// runtime. The enumeration order is maintained.
|
|
Handle<Object> key = property->key()->value();
|
|
Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
|
|
|
|
// Ensure objects that may, at any point in time, contain fields with double
|
|
// representation are always treated as nested objects. This is true for
|
|
// computed fields (value is undefined), and smi and double literals
|
|
// (value->IsNumber()).
|
|
// TODO(verwaest): Remove once we can store them inline.
|
|
if (FLAG_track_double_fields &&
|
|
(value->IsNumber() || value->IsUninitialized())) {
|
|
may_store_doubles_ = true;
|
|
}
|
|
|
|
is_simple = is_simple && !value->IsUninitialized();
|
|
|
|
// Keep track of the number of elements in the object literal and
|
|
// the largest element index. If the largest element index is
|
|
// much larger than the number of elements, creating an object
|
|
// literal with fast elements will be a waste of space.
|
|
uint32_t element_index = 0;
|
|
if (key->IsString()
|
|
&& Handle<String>::cast(key)->AsArrayIndex(&element_index)
|
|
&& element_index > max_element_index) {
|
|
max_element_index = element_index;
|
|
elements++;
|
|
} else if (key->IsSmi()) {
|
|
int key_value = Smi::cast(*key)->value();
|
|
if (key_value > 0
|
|
&& static_cast<uint32_t>(key_value) > max_element_index) {
|
|
max_element_index = key_value;
|
|
}
|
|
elements++;
|
|
}
|
|
|
|
// Add name, value pair to the fixed array.
|
|
constant_properties->set(position++, *key);
|
|
constant_properties->set(position++, *value);
|
|
}
|
|
|
|
constant_properties_ = constant_properties;
|
|
fast_elements_ =
|
|
(max_element_index <= 32) || ((2 * elements) >= max_element_index);
|
|
set_is_simple(is_simple);
|
|
set_depth(depth_acc);
|
|
}
|
|
|
|
|
|
void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
|
|
if (!constant_elements_.is_null()) return;
|
|
|
|
// Allocate a fixed array to hold all the object literals.
|
|
Handle<JSArray> array =
|
|
isolate->factory()->NewJSArray(0, FAST_HOLEY_SMI_ELEMENTS);
|
|
isolate->factory()->SetElementsCapacityAndLength(
|
|
array, values()->length(), values()->length());
|
|
|
|
// Fill in the literals.
|
|
bool is_simple = true;
|
|
int depth_acc = 1;
|
|
bool is_holey = false;
|
|
for (int i = 0, n = values()->length(); i < n; i++) {
|
|
Expression* element = values()->at(i);
|
|
MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
|
|
if (m_literal != NULL) {
|
|
m_literal->BuildConstants(isolate);
|
|
if (m_literal->depth() + 1 > depth_acc) {
|
|
depth_acc = m_literal->depth() + 1;
|
|
}
|
|
}
|
|
Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
|
|
if (boilerplate_value->IsTheHole()) {
|
|
is_holey = true;
|
|
} else if (boilerplate_value->IsUninitialized()) {
|
|
is_simple = false;
|
|
JSObject::SetOwnElement(
|
|
array, i, handle(Smi::FromInt(0), isolate), kSloppyMode);
|
|
} else {
|
|
JSObject::SetOwnElement(array, i, boilerplate_value, kSloppyMode);
|
|
}
|
|
}
|
|
|
|
Handle<FixedArrayBase> element_values(array->elements());
|
|
|
|
// Simple and shallow arrays can be lazily copied, we transform the
|
|
// elements array to a copy-on-write array.
|
|
if (is_simple && depth_acc == 1 && values()->length() > 0 &&
|
|
array->HasFastSmiOrObjectElements()) {
|
|
element_values->set_map(isolate->heap()->fixed_cow_array_map());
|
|
}
|
|
|
|
// Remember both the literal's constant values as well as the ElementsKind
|
|
// in a 2-element FixedArray.
|
|
Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
|
|
|
|
ElementsKind kind = array->GetElementsKind();
|
|
kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
|
|
|
|
literals->set(0, Smi::FromInt(kind));
|
|
literals->set(1, *element_values);
|
|
|
|
constant_elements_ = literals;
|
|
set_is_simple(is_simple);
|
|
set_depth(depth_acc);
|
|
}
|
|
|
|
|
|
Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
|
|
Isolate* isolate) {
|
|
if (expression->AsLiteral() != NULL) {
|
|
return expression->AsLiteral()->value();
|
|
}
|
|
if (CompileTimeValue::IsCompileTimeValue(expression)) {
|
|
return CompileTimeValue::GetValue(isolate, expression);
|
|
}
|
|
return isolate->factory()->uninitialized_value();
|
|
}
|
|
|
|
|
|
void MaterializedLiteral::BuildConstants(Isolate* isolate) {
|
|
if (IsArrayLiteral()) {
|
|
return AsArrayLiteral()->BuildConstantElements(isolate);
|
|
}
|
|
if (IsObjectLiteral()) {
|
|
return AsObjectLiteral()->BuildConstantProperties(isolate);
|
|
}
|
|
ASSERT(IsRegExpLiteral());
|
|
ASSERT(depth() >= 1); // Depth should be initialized.
|
|
}
|
|
|
|
|
|
void TargetCollector::AddTarget(Label* target, Zone* zone) {
|
|
// Add the label to the collector, but discard duplicates.
|
|
int length = targets_.length();
|
|
for (int i = 0; i < length; i++) {
|
|
if (targets_[i] == target) return;
|
|
}
|
|
targets_.Add(target, zone);
|
|
}
|
|
|
|
|
|
void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
// TODO(olivf) If this Operation is used in a test context, then the
|
|
// expression has a ToBoolean stub and we want to collect the type
|
|
// information. However the GraphBuilder expects it to be on the instruction
|
|
// corresponding to the TestContext, therefore we have to store it here and
|
|
// not on the operand.
|
|
set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
|
|
}
|
|
|
|
|
|
void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
// TODO(olivf) If this Operation is used in a test context, then the right
|
|
// hand side has a ToBoolean stub and we want to collect the type information.
|
|
// However the GraphBuilder expects it to be on the instruction corresponding
|
|
// to the TestContext, therefore we have to store it here and not on the
|
|
// right hand operand.
|
|
set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
|
|
}
|
|
|
|
|
|
bool BinaryOperation::ResultOverwriteAllowed() {
|
|
switch (op_) {
|
|
case Token::COMMA:
|
|
case Token::OR:
|
|
case Token::AND:
|
|
return false;
|
|
case Token::BIT_OR:
|
|
case Token::BIT_XOR:
|
|
case Token::BIT_AND:
|
|
case Token::SHL:
|
|
case Token::SAR:
|
|
case Token::SHR:
|
|
case Token::ADD:
|
|
case Token::SUB:
|
|
case Token::MUL:
|
|
case Token::DIV:
|
|
case Token::MOD:
|
|
return true;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool IsTypeof(Expression* expr) {
|
|
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
|
|
return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
|
|
}
|
|
|
|
|
|
// Check for the pattern: typeof <expression> equals <string literal>.
|
|
static bool MatchLiteralCompareTypeof(Expression* left,
|
|
Token::Value op,
|
|
Expression* right,
|
|
Expression** expr,
|
|
Handle<String>* check) {
|
|
if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
|
|
*expr = left->AsUnaryOperation()->expression();
|
|
*check = Handle<String>::cast(right->AsLiteral()->value());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
|
|
Handle<String>* check) {
|
|
return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
|
|
MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
|
|
}
|
|
|
|
|
|
static bool IsVoidOfLiteral(Expression* expr) {
|
|
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
|
|
return maybe_unary != NULL &&
|
|
maybe_unary->op() == Token::VOID &&
|
|
maybe_unary->expression()->AsLiteral() != NULL;
|
|
}
|
|
|
|
|
|
// Check for the pattern: void <literal> equals <expression> or
|
|
// undefined equals <expression>
|
|
static bool MatchLiteralCompareUndefined(Expression* left,
|
|
Token::Value op,
|
|
Expression* right,
|
|
Expression** expr,
|
|
Isolate* isolate) {
|
|
if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
|
|
*expr = right;
|
|
return true;
|
|
}
|
|
if (left->IsUndefinedLiteral(isolate) && Token::IsEqualityOp(op)) {
|
|
*expr = right;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool CompareOperation::IsLiteralCompareUndefined(
|
|
Expression** expr, Isolate* isolate) {
|
|
return MatchLiteralCompareUndefined(left_, op_, right_, expr, isolate) ||
|
|
MatchLiteralCompareUndefined(right_, op_, left_, expr, isolate);
|
|
}
|
|
|
|
|
|
// Check for the pattern: null equals <expression>
|
|
static bool MatchLiteralCompareNull(Expression* left,
|
|
Token::Value op,
|
|
Expression* right,
|
|
Expression** expr) {
|
|
if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
|
|
*expr = right;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
|
|
return MatchLiteralCompareNull(left_, op_, right_, expr) ||
|
|
MatchLiteralCompareNull(right_, op_, left_, expr);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Inlining support
|
|
|
|
bool Declaration::IsInlineable() const {
|
|
return proxy()->var()->IsStackAllocated();
|
|
}
|
|
|
|
bool FunctionDeclaration::IsInlineable() const {
|
|
return false;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Recording of type feedback
|
|
|
|
// TODO(rossberg): all RecordTypeFeedback functions should disappear
|
|
// once we use the common type field in the AST consistently.
|
|
|
|
void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
to_boolean_types_ = oracle->ToBooleanTypes(test_id());
|
|
}
|
|
|
|
|
|
int Call::ComputeFeedbackSlotCount(Isolate* isolate) {
|
|
CallType call_type = GetCallType(isolate);
|
|
if (call_type == LOOKUP_SLOT_CALL || call_type == OTHER_CALL) {
|
|
// Call only uses a slot in some cases.
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
Call::CallType Call::GetCallType(Isolate* isolate) const {
|
|
VariableProxy* proxy = expression()->AsVariableProxy();
|
|
if (proxy != NULL) {
|
|
if (proxy->var()->is_possibly_eval(isolate)) {
|
|
return POSSIBLY_EVAL_CALL;
|
|
} else if (proxy->var()->IsUnallocated()) {
|
|
return GLOBAL_CALL;
|
|
} else if (proxy->var()->IsLookupSlot()) {
|
|
return LOOKUP_SLOT_CALL;
|
|
}
|
|
}
|
|
|
|
Property* property = expression()->AsProperty();
|
|
return property != NULL ? PROPERTY_CALL : OTHER_CALL;
|
|
}
|
|
|
|
|
|
bool Call::ComputeGlobalTarget(Handle<GlobalObject> global,
|
|
LookupResult* lookup) {
|
|
target_ = Handle<JSFunction>::null();
|
|
cell_ = Handle<Cell>::null();
|
|
ASSERT(lookup->IsFound() &&
|
|
lookup->type() == NORMAL &&
|
|
lookup->holder() == *global);
|
|
cell_ = Handle<Cell>(global->GetPropertyCell(lookup));
|
|
if (cell_->value()->IsJSFunction()) {
|
|
Handle<JSFunction> candidate(JSFunction::cast(cell_->value()));
|
|
// If the function is in new space we assume it's more likely to
|
|
// change and thus prefer the general IC code.
|
|
if (!lookup->isolate()->heap()->InNewSpace(*candidate)) {
|
|
target_ = candidate;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void CallNew::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
allocation_site_ =
|
|
oracle->GetCallNewAllocationSite(CallNewFeedbackSlot());
|
|
is_monomorphic_ = oracle->CallNewIsMonomorphic(CallNewFeedbackSlot());
|
|
if (is_monomorphic_) {
|
|
target_ = oracle->GetCallNewTarget(CallNewFeedbackSlot());
|
|
if (!allocation_site_.is_null()) {
|
|
elements_kind_ = allocation_site_->GetElementsKind();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ObjectLiteral::Property::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
|
|
TypeFeedbackId id = key()->LiteralFeedbackId();
|
|
SmallMapList maps;
|
|
oracle->CollectReceiverTypes(id, &maps);
|
|
receiver_type_ = maps.length() == 1 ? maps.at(0)
|
|
: Handle<Map>::null();
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Implementation of AstVisitor
|
|
|
|
void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
|
|
for (int i = 0; i < declarations->length(); i++) {
|
|
Visit(declarations->at(i));
|
|
}
|
|
}
|
|
|
|
|
|
void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
|
|
for (int i = 0; i < statements->length(); i++) {
|
|
Statement* stmt = statements->at(i);
|
|
Visit(stmt);
|
|
if (stmt->IsJump()) break;
|
|
}
|
|
}
|
|
|
|
|
|
void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
|
|
for (int i = 0; i < expressions->length(); i++) {
|
|
// The variable statement visiting code may pass NULL expressions
|
|
// to this code. Maybe this should be handled by introducing an
|
|
// undefined expression or literal? Revisit this code if this
|
|
// changes
|
|
Expression* expression = expressions->at(i);
|
|
if (expression != NULL) Visit(expression);
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Regular expressions
|
|
|
|
#define MAKE_ACCEPT(Name) \
|
|
void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
|
|
return visitor->Visit##Name(this, data); \
|
|
}
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
|
|
#undef MAKE_ACCEPT
|
|
|
|
#define MAKE_TYPE_CASE(Name) \
|
|
RegExp##Name* RegExpTree::As##Name() { \
|
|
return NULL; \
|
|
} \
|
|
bool RegExpTree::Is##Name() { return false; }
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
|
|
#undef MAKE_TYPE_CASE
|
|
|
|
#define MAKE_TYPE_CASE(Name) \
|
|
RegExp##Name* RegExp##Name::As##Name() { \
|
|
return this; \
|
|
} \
|
|
bool RegExp##Name::Is##Name() { return true; }
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
|
|
#undef MAKE_TYPE_CASE
|
|
|
|
|
|
static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
|
|
Interval result = Interval::Empty();
|
|
for (int i = 0; i < children->length(); i++)
|
|
result = result.Union(children->at(i)->CaptureRegisters());
|
|
return result;
|
|
}
|
|
|
|
|
|
Interval RegExpAlternative::CaptureRegisters() {
|
|
return ListCaptureRegisters(nodes());
|
|
}
|
|
|
|
|
|
Interval RegExpDisjunction::CaptureRegisters() {
|
|
return ListCaptureRegisters(alternatives());
|
|
}
|
|
|
|
|
|
Interval RegExpLookahead::CaptureRegisters() {
|
|
return body()->CaptureRegisters();
|
|
}
|
|
|
|
|
|
Interval RegExpCapture::CaptureRegisters() {
|
|
Interval self(StartRegister(index()), EndRegister(index()));
|
|
return self.Union(body()->CaptureRegisters());
|
|
}
|
|
|
|
|
|
Interval RegExpQuantifier::CaptureRegisters() {
|
|
return body()->CaptureRegisters();
|
|
}
|
|
|
|
|
|
bool RegExpAssertion::IsAnchoredAtStart() {
|
|
return assertion_type() == RegExpAssertion::START_OF_INPUT;
|
|
}
|
|
|
|
|
|
bool RegExpAssertion::IsAnchoredAtEnd() {
|
|
return assertion_type() == RegExpAssertion::END_OF_INPUT;
|
|
}
|
|
|
|
|
|
bool RegExpAlternative::IsAnchoredAtStart() {
|
|
ZoneList<RegExpTree*>* nodes = this->nodes();
|
|
for (int i = 0; i < nodes->length(); i++) {
|
|
RegExpTree* node = nodes->at(i);
|
|
if (node->IsAnchoredAtStart()) { return true; }
|
|
if (node->max_match() > 0) { return false; }
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool RegExpAlternative::IsAnchoredAtEnd() {
|
|
ZoneList<RegExpTree*>* nodes = this->nodes();
|
|
for (int i = nodes->length() - 1; i >= 0; i--) {
|
|
RegExpTree* node = nodes->at(i);
|
|
if (node->IsAnchoredAtEnd()) { return true; }
|
|
if (node->max_match() > 0) { return false; }
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool RegExpDisjunction::IsAnchoredAtStart() {
|
|
ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
|
for (int i = 0; i < alternatives->length(); i++) {
|
|
if (!alternatives->at(i)->IsAnchoredAtStart())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool RegExpDisjunction::IsAnchoredAtEnd() {
|
|
ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
|
for (int i = 0; i < alternatives->length(); i++) {
|
|
if (!alternatives->at(i)->IsAnchoredAtEnd())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool RegExpLookahead::IsAnchoredAtStart() {
|
|
return is_positive() && body()->IsAnchoredAtStart();
|
|
}
|
|
|
|
|
|
bool RegExpCapture::IsAnchoredAtStart() {
|
|
return body()->IsAnchoredAtStart();
|
|
}
|
|
|
|
|
|
bool RegExpCapture::IsAnchoredAtEnd() {
|
|
return body()->IsAnchoredAtEnd();
|
|
}
|
|
|
|
|
|
// Convert regular expression trees to a simple sexp representation.
|
|
// This representation should be different from the input grammar
|
|
// in as many cases as possible, to make it more difficult for incorrect
|
|
// parses to look as correct ones which is likely if the input and
|
|
// output formats are alike.
|
|
class RegExpUnparser V8_FINAL : public RegExpVisitor {
|
|
public:
|
|
explicit RegExpUnparser(Zone* zone);
|
|
void VisitCharacterRange(CharacterRange that);
|
|
SmartArrayPointer<const char> ToString() { return stream_.ToCString(); }
|
|
#define MAKE_CASE(Name) virtual void* Visit##Name(RegExp##Name*, \
|
|
void* data) V8_OVERRIDE;
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
|
|
#undef MAKE_CASE
|
|
private:
|
|
StringStream* stream() { return &stream_; }
|
|
HeapStringAllocator alloc_;
|
|
StringStream stream_;
|
|
Zone* zone_;
|
|
};
|
|
|
|
|
|
RegExpUnparser::RegExpUnparser(Zone* zone) : stream_(&alloc_), zone_(zone) {
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
|
|
stream()->Add("(|");
|
|
for (int i = 0; i < that->alternatives()->length(); i++) {
|
|
stream()->Add(" ");
|
|
that->alternatives()->at(i)->Accept(this, data);
|
|
}
|
|
stream()->Add(")");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
|
|
stream()->Add("(:");
|
|
for (int i = 0; i < that->nodes()->length(); i++) {
|
|
stream()->Add(" ");
|
|
that->nodes()->at(i)->Accept(this, data);
|
|
}
|
|
stream()->Add(")");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
|
|
stream()->Add("%k", that.from());
|
|
if (!that.IsSingleton()) {
|
|
stream()->Add("-%k", that.to());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
|
|
void* data) {
|
|
if (that->is_negated())
|
|
stream()->Add("^");
|
|
stream()->Add("[");
|
|
for (int i = 0; i < that->ranges(zone_)->length(); i++) {
|
|
if (i > 0) stream()->Add(" ");
|
|
VisitCharacterRange(that->ranges(zone_)->at(i));
|
|
}
|
|
stream()->Add("]");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
|
|
switch (that->assertion_type()) {
|
|
case RegExpAssertion::START_OF_INPUT:
|
|
stream()->Add("@^i");
|
|
break;
|
|
case RegExpAssertion::END_OF_INPUT:
|
|
stream()->Add("@$i");
|
|
break;
|
|
case RegExpAssertion::START_OF_LINE:
|
|
stream()->Add("@^l");
|
|
break;
|
|
case RegExpAssertion::END_OF_LINE:
|
|
stream()->Add("@$l");
|
|
break;
|
|
case RegExpAssertion::BOUNDARY:
|
|
stream()->Add("@b");
|
|
break;
|
|
case RegExpAssertion::NON_BOUNDARY:
|
|
stream()->Add("@B");
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
|
|
stream()->Add("'");
|
|
Vector<const uc16> chardata = that->data();
|
|
for (int i = 0; i < chardata.length(); i++) {
|
|
stream()->Add("%k", chardata[i]);
|
|
}
|
|
stream()->Add("'");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
|
|
if (that->elements()->length() == 1) {
|
|
that->elements()->at(0).tree()->Accept(this, data);
|
|
} else {
|
|
stream()->Add("(!");
|
|
for (int i = 0; i < that->elements()->length(); i++) {
|
|
stream()->Add(" ");
|
|
that->elements()->at(i).tree()->Accept(this, data);
|
|
}
|
|
stream()->Add(")");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
|
|
stream()->Add("(# %i ", that->min());
|
|
if (that->max() == RegExpTree::kInfinity) {
|
|
stream()->Add("- ");
|
|
} else {
|
|
stream()->Add("%i ", that->max());
|
|
}
|
|
stream()->Add(that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
|
|
that->body()->Accept(this, data);
|
|
stream()->Add(")");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
|
|
stream()->Add("(^ ");
|
|
that->body()->Accept(this, data);
|
|
stream()->Add(")");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitLookahead(RegExpLookahead* that, void* data) {
|
|
stream()->Add("(-> ");
|
|
stream()->Add(that->is_positive() ? "+ " : "- ");
|
|
that->body()->Accept(this, data);
|
|
stream()->Add(")");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
|
|
void* data) {
|
|
stream()->Add("(<- %i)", that->index());
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
|
|
stream()->Put('%');
|
|
return NULL;
|
|
}
|
|
|
|
|
|
SmartArrayPointer<const char> RegExpTree::ToString(Zone* zone) {
|
|
RegExpUnparser unparser(zone);
|
|
Accept(&unparser, NULL);
|
|
return unparser.ToString();
|
|
}
|
|
|
|
|
|
RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
|
|
: alternatives_(alternatives) {
|
|
ASSERT(alternatives->length() > 1);
|
|
RegExpTree* first_alternative = alternatives->at(0);
|
|
min_match_ = first_alternative->min_match();
|
|
max_match_ = first_alternative->max_match();
|
|
for (int i = 1; i < alternatives->length(); i++) {
|
|
RegExpTree* alternative = alternatives->at(i);
|
|
min_match_ = Min(min_match_, alternative->min_match());
|
|
max_match_ = Max(max_match_, alternative->max_match());
|
|
}
|
|
}
|
|
|
|
|
|
static int IncreaseBy(int previous, int increase) {
|
|
if (RegExpTree::kInfinity - previous < increase) {
|
|
return RegExpTree::kInfinity;
|
|
} else {
|
|
return previous + increase;
|
|
}
|
|
}
|
|
|
|
RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
|
|
: nodes_(nodes) {
|
|
ASSERT(nodes->length() > 1);
|
|
min_match_ = 0;
|
|
max_match_ = 0;
|
|
for (int i = 0; i < nodes->length(); i++) {
|
|
RegExpTree* node = nodes->at(i);
|
|
int node_min_match = node->min_match();
|
|
min_match_ = IncreaseBy(min_match_, node_min_match);
|
|
int node_max_match = node->max_match();
|
|
max_match_ = IncreaseBy(max_match_, node_max_match);
|
|
}
|
|
}
|
|
|
|
|
|
CaseClause::CaseClause(Zone* zone,
|
|
Expression* label,
|
|
ZoneList<Statement*>* statements,
|
|
int pos)
|
|
: Expression(zone, pos),
|
|
label_(label),
|
|
statements_(statements),
|
|
compare_type_(Type::None(zone)),
|
|
compare_id_(AstNode::GetNextId(zone)),
|
|
entry_id_(AstNode::GetNextId(zone)) {
|
|
}
|
|
|
|
|
|
#define REGULAR_NODE(NodeType) \
|
|
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
|
|
increase_node_count(); \
|
|
}
|
|
#define REGULAR_NODE_WITH_FEEDBACK_SLOTS(NodeType) \
|
|
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
|
|
increase_node_count(); \
|
|
add_slot_node(node); \
|
|
}
|
|
#define DONT_OPTIMIZE_NODE(NodeType) \
|
|
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
|
|
increase_node_count(); \
|
|
set_dont_optimize_reason(k##NodeType); \
|
|
add_flag(kDontInline); \
|
|
add_flag(kDontSelfOptimize); \
|
|
}
|
|
#define DONT_SELFOPTIMIZE_NODE(NodeType) \
|
|
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
|
|
increase_node_count(); \
|
|
add_flag(kDontSelfOptimize); \
|
|
}
|
|
#define DONT_SELFOPTIMIZE_NODE_WITH_FEEDBACK_SLOTS(NodeType) \
|
|
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
|
|
increase_node_count(); \
|
|
add_slot_node(node); \
|
|
add_flag(kDontSelfOptimize); \
|
|
}
|
|
#define DONT_CACHE_NODE(NodeType) \
|
|
void AstConstructionVisitor::Visit##NodeType(NodeType* node) { \
|
|
increase_node_count(); \
|
|
set_dont_optimize_reason(k##NodeType); \
|
|
add_flag(kDontInline); \
|
|
add_flag(kDontSelfOptimize); \
|
|
add_flag(kDontCache); \
|
|
}
|
|
|
|
REGULAR_NODE(VariableDeclaration)
|
|
REGULAR_NODE(FunctionDeclaration)
|
|
REGULAR_NODE(Block)
|
|
REGULAR_NODE(ExpressionStatement)
|
|
REGULAR_NODE(EmptyStatement)
|
|
REGULAR_NODE(IfStatement)
|
|
REGULAR_NODE(ContinueStatement)
|
|
REGULAR_NODE(BreakStatement)
|
|
REGULAR_NODE(ReturnStatement)
|
|
REGULAR_NODE(SwitchStatement)
|
|
REGULAR_NODE(CaseClause)
|
|
REGULAR_NODE(Conditional)
|
|
REGULAR_NODE(Literal)
|
|
REGULAR_NODE(ArrayLiteral)
|
|
REGULAR_NODE(ObjectLiteral)
|
|
REGULAR_NODE(RegExpLiteral)
|
|
REGULAR_NODE(FunctionLiteral)
|
|
REGULAR_NODE(Assignment)
|
|
REGULAR_NODE(Throw)
|
|
REGULAR_NODE(Property)
|
|
REGULAR_NODE(UnaryOperation)
|
|
REGULAR_NODE(CountOperation)
|
|
REGULAR_NODE(BinaryOperation)
|
|
REGULAR_NODE(CompareOperation)
|
|
REGULAR_NODE(ThisFunction)
|
|
REGULAR_NODE_WITH_FEEDBACK_SLOTS(Call)
|
|
REGULAR_NODE_WITH_FEEDBACK_SLOTS(CallNew)
|
|
// In theory, for VariableProxy we'd have to add:
|
|
// if (node->var()->IsLookupSlot()) add_flag(kDontInline);
|
|
// But node->var() is usually not bound yet at VariableProxy creation time, and
|
|
// LOOKUP variables only result from constructs that cannot be inlined anyway.
|
|
REGULAR_NODE(VariableProxy)
|
|
|
|
// We currently do not optimize any modules.
|
|
DONT_OPTIMIZE_NODE(ModuleDeclaration)
|
|
DONT_OPTIMIZE_NODE(ImportDeclaration)
|
|
DONT_OPTIMIZE_NODE(ExportDeclaration)
|
|
DONT_OPTIMIZE_NODE(ModuleVariable)
|
|
DONT_OPTIMIZE_NODE(ModulePath)
|
|
DONT_OPTIMIZE_NODE(ModuleUrl)
|
|
DONT_OPTIMIZE_NODE(ModuleStatement)
|
|
DONT_OPTIMIZE_NODE(Yield)
|
|
DONT_OPTIMIZE_NODE(WithStatement)
|
|
DONT_OPTIMIZE_NODE(TryCatchStatement)
|
|
DONT_OPTIMIZE_NODE(TryFinallyStatement)
|
|
DONT_OPTIMIZE_NODE(DebuggerStatement)
|
|
DONT_OPTIMIZE_NODE(NativeFunctionLiteral)
|
|
|
|
DONT_SELFOPTIMIZE_NODE(DoWhileStatement)
|
|
DONT_SELFOPTIMIZE_NODE(WhileStatement)
|
|
DONT_SELFOPTIMIZE_NODE(ForStatement)
|
|
DONT_SELFOPTIMIZE_NODE_WITH_FEEDBACK_SLOTS(ForInStatement)
|
|
DONT_SELFOPTIMIZE_NODE(ForOfStatement)
|
|
|
|
DONT_CACHE_NODE(ModuleLiteral)
|
|
|
|
|
|
void AstConstructionVisitor::VisitCallRuntime(CallRuntime* node) {
|
|
increase_node_count();
|
|
if (node->is_jsruntime()) {
|
|
// Don't try to inline JS runtime calls because we don't (currently) even
|
|
// optimize them.
|
|
add_flag(kDontInline);
|
|
} else if (node->function()->intrinsic_type == Runtime::INLINE &&
|
|
(node->name()->IsOneByteEqualTo(
|
|
STATIC_ASCII_VECTOR("_ArgumentsLength")) ||
|
|
node->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_Arguments")))) {
|
|
// Don't inline the %_ArgumentsLength or %_Arguments because their
|
|
// implementation will not work. There is no stack frame to get them
|
|
// from.
|
|
add_flag(kDontInline);
|
|
}
|
|
}
|
|
|
|
#undef REGULAR_NODE
|
|
#undef DONT_OPTIMIZE_NODE
|
|
#undef DONT_SELFOPTIMIZE_NODE
|
|
#undef DONT_CACHE_NODE
|
|
|
|
|
|
Handle<String> Literal::ToString() {
|
|
if (value_->IsString()) return Handle<String>::cast(value_);
|
|
ASSERT(value_->IsNumber());
|
|
char arr[100];
|
|
Vector<char> buffer(arr, ARRAY_SIZE(arr));
|
|
const char* str;
|
|
if (value_->IsSmi()) {
|
|
// Optimization only, the heap number case would subsume this.
|
|
OS::SNPrintF(buffer, "%d", Smi::cast(*value_)->value());
|
|
str = arr;
|
|
} else {
|
|
str = DoubleToCString(value_->Number(), buffer);
|
|
}
|
|
return isolate_->factory()->NewStringFromAscii(CStrVector(str));
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|