v8/test/unittests/wasm/decoder-unittest.cc
ddchen fd2bf837a5 [wasm] improve handling of malformed inputs
When reading malformed input, the length of variable-length types can be very large. Computing operand length with this and adding it to PC will overflow and screw up decode.

This patch switches to unsigned int for arity and lengths, terminates loop analysis on error, adds overflow checking to BranchTableOperand, and adds a unit test.

Review-Url: https://codereview.chromium.org/2052623003
Cr-Commit-Position: refs/heads/master@{#37301}
2016-06-27 20:37:28 +00:00

669 lines
22 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/objects-inl.h"
#include "src/wasm/decoder.h"
#include "src/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
class DecoderTest : public TestWithZone {
public:
DecoderTest() : decoder(nullptr, nullptr) {}
Decoder decoder;
};
#define CHECK_UINT32V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(expected, \
decoder.checked_read_u32v(decoder.start(), 0, &length)); \
EXPECT_EQ(expected_length, length); \
} while (false)
#define CHECK_INT32V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(expected, \
decoder.checked_read_i32v(decoder.start(), 0, &length)); \
EXPECT_EQ(expected_length, length); \
} while (false)
#define CHECK_UINT64V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(expected, \
decoder.checked_read_u64v(decoder.start(), 0, &length)); \
EXPECT_EQ(expected_length, length); \
} while (false)
#define CHECK_INT64V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(expected, \
decoder.checked_read_i64v(decoder.start(), 0, &length)); \
EXPECT_EQ(expected_length, length); \
} while (false)
TEST_F(DecoderTest, ReadU32v_OneByte) {
CHECK_UINT32V_INLINE(0, 1, 0);
CHECK_UINT32V_INLINE(5, 1, 5);
CHECK_UINT32V_INLINE(7, 1, 7);
CHECK_UINT32V_INLINE(9, 1, 9);
CHECK_UINT32V_INLINE(37, 1, 37);
CHECK_UINT32V_INLINE(69, 1, 69);
CHECK_UINT32V_INLINE(110, 1, 110);
CHECK_UINT32V_INLINE(125, 1, 125);
CHECK_UINT32V_INLINE(126, 1, 126);
CHECK_UINT32V_INLINE(127, 1, 127);
}
TEST_F(DecoderTest, ReadU32v_TwoByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0);
CHECK_UINT32V_INLINE(444, 2, U32V_2(444));
CHECK_UINT32V_INLINE(544, 2, U32V_2(544));
CHECK_UINT32V_INLINE(1311, 2, U32V_2(1311));
CHECK_UINT32V_INLINE(2333, 2, U32V_2(2333));
for (uint32_t i = 0; i < 1 << 14; i = i * 13 + 1) {
CHECK_UINT32V_INLINE(i, 2, U32V_2(i));
}
const uint32_t max = (1 << 14) - 1;
CHECK_UINT32V_INLINE(max, 2, U32V_2(max));
}
TEST_F(DecoderTest, ReadU32v_ThreeByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0);
CHECK_UINT32V_INLINE(11, 3, U32V_3(11));
CHECK_UINT32V_INLINE(101, 3, U32V_3(101));
CHECK_UINT32V_INLINE(446, 3, U32V_3(446));
CHECK_UINT32V_INLINE(546, 3, U32V_3(546));
CHECK_UINT32V_INLINE(1319, 3, U32V_3(1319));
CHECK_UINT32V_INLINE(2338, 3, U32V_3(2338));
CHECK_UINT32V_INLINE(8191, 3, U32V_3(8191));
CHECK_UINT32V_INLINE(9999, 3, U32V_3(9999));
CHECK_UINT32V_INLINE(14444, 3, U32V_3(14444));
CHECK_UINT32V_INLINE(314444, 3, U32V_3(314444));
CHECK_UINT32V_INLINE(614444, 3, U32V_3(614444));
const uint32_t max = (1 << 21) - 1;
for (uint32_t i = 0; i <= max; i = i * 13 + 3) {
CHECK_UINT32V_INLINE(i, 3, U32V_3(i), 0);
}
CHECK_UINT32V_INLINE(max, 3, U32V_3(max));
}
TEST_F(DecoderTest, ReadU32v_FourByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(13, 4, U32V_4(13));
CHECK_UINT32V_INLINE(107, 4, U32V_4(107));
CHECK_UINT32V_INLINE(449, 4, U32V_4(449));
CHECK_UINT32V_INLINE(541, 4, U32V_4(541));
CHECK_UINT32V_INLINE(1317, 4, U32V_4(1317));
CHECK_UINT32V_INLINE(2334, 4, U32V_4(2334));
CHECK_UINT32V_INLINE(8191, 4, U32V_4(8191));
CHECK_UINT32V_INLINE(9994, 4, U32V_4(9994));
CHECK_UINT32V_INLINE(14442, 4, U32V_4(14442));
CHECK_UINT32V_INLINE(314442, 4, U32V_4(314442));
CHECK_UINT32V_INLINE(614442, 4, U32V_4(614442));
CHECK_UINT32V_INLINE(1614442, 4, U32V_4(1614442));
CHECK_UINT32V_INLINE(5614442, 4, U32V_4(5614442));
CHECK_UINT32V_INLINE(19614442, 4, U32V_4(19614442));
const uint32_t max = (1 << 28) - 1;
for (uint32_t i = 0; i <= max; i = i * 13 + 5) {
CHECK_UINT32V_INLINE(i, 4, U32V_4(i), 0);
}
CHECK_UINT32V_INLINE(max, 4, U32V_4(max));
}
TEST_F(DecoderTest, ReadU32v_FiveByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(13, 5, U32V_5(13));
CHECK_UINT32V_INLINE(107, 5, U32V_5(107));
CHECK_UINT32V_INLINE(449, 5, U32V_5(449));
CHECK_UINT32V_INLINE(541, 5, U32V_5(541));
CHECK_UINT32V_INLINE(1317, 5, U32V_5(1317));
CHECK_UINT32V_INLINE(2334, 5, U32V_5(2334));
CHECK_UINT32V_INLINE(8191, 5, U32V_5(8191));
CHECK_UINT32V_INLINE(9994, 5, U32V_5(9994));
CHECK_UINT32V_INLINE(24442, 5, U32V_5(24442));
CHECK_UINT32V_INLINE(414442, 5, U32V_5(414442));
CHECK_UINT32V_INLINE(714442, 5, U32V_5(714442));
CHECK_UINT32V_INLINE(1614442, 5, U32V_5(1614442));
CHECK_UINT32V_INLINE(6614442, 5, U32V_5(6614442));
CHECK_UINT32V_INLINE(89614442, 5, U32V_5(89614442));
CHECK_UINT32V_INLINE(2219614442u, 5, U32V_5(2219614442u));
CHECK_UINT32V_INLINE(3219614442u, 5, U32V_5(3219614442u));
CHECK_UINT32V_INLINE(4019614442u, 5, U32V_5(4019614442u));
const uint32_t max = 0xFFFFFFFFu;
for (uint32_t i = 1; i < 32; i++) {
uint32_t val = 0x983489aau << i;
CHECK_UINT32V_INLINE(val, 5, U32V_5(val), 0);
}
CHECK_UINT32V_INLINE(max, 5, U32V_5(max));
}
TEST_F(DecoderTest, ReadU32v_various) {
for (int i = 0; i < 10; i++) {
uint32_t x = 0xCCCCCCCCu * i;
for (int width = 0; width < 32; width++) {
uint32_t val = x >> width;
CHECK_UINT32V_INLINE(val & MASK_7, 1, U32V_1(val));
CHECK_UINT32V_INLINE(val & MASK_14, 2, U32V_2(val));
CHECK_UINT32V_INLINE(val & MASK_21, 3, U32V_3(val));
CHECK_UINT32V_INLINE(val & MASK_28, 4, U32V_4(val));
CHECK_UINT32V_INLINE(val, 5, U32V_5(val));
}
}
}
TEST_F(DecoderTest, ReadI32v_OneByte) {
CHECK_INT32V_INLINE(0, 1, 0);
CHECK_INT32V_INLINE(4, 1, 4);
CHECK_INT32V_INLINE(6, 1, 6);
CHECK_INT32V_INLINE(9, 1, 9);
CHECK_INT32V_INLINE(33, 1, 33);
CHECK_INT32V_INLINE(61, 1, 61);
CHECK_INT32V_INLINE(63, 1, 63);
CHECK_INT32V_INLINE(-1, 1, 127);
CHECK_INT32V_INLINE(-2, 1, 126);
CHECK_INT32V_INLINE(-11, 1, 117);
CHECK_INT32V_INLINE(-62, 1, 66);
CHECK_INT32V_INLINE(-63, 1, 65);
CHECK_INT32V_INLINE(-64, 1, 64);
}
TEST_F(DecoderTest, ReadI32v_TwoByte) {
CHECK_INT32V_INLINE(0, 2, U32V_2(0));
CHECK_INT32V_INLINE(9, 2, U32V_2(9));
CHECK_INT32V_INLINE(61, 2, U32V_2(61));
CHECK_INT32V_INLINE(63, 2, U32V_2(63));
CHECK_INT32V_INLINE(-1, 2, U32V_2(-1));
CHECK_INT32V_INLINE(-2, 2, U32V_2(-2));
CHECK_INT32V_INLINE(-63, 2, U32V_2(-63));
CHECK_INT32V_INLINE(-64, 2, U32V_2(-64));
CHECK_INT32V_INLINE(-200, 2, U32V_2(-200));
CHECK_INT32V_INLINE(-1002, 2, U32V_2(-1002));
CHECK_INT32V_INLINE(-2004, 2, U32V_2(-2004));
CHECK_INT32V_INLINE(-4077, 2, U32V_2(-4077));
CHECK_INT32V_INLINE(207, 2, U32V_2(207));
CHECK_INT32V_INLINE(1009, 2, U32V_2(1009));
CHECK_INT32V_INLINE(2003, 2, U32V_2(2003));
CHECK_INT32V_INLINE(4072, 2, U32V_2(4072));
const int32_t min = 0 - (1 << 13);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 2, U32V_2(i));
}
const int32_t max = (1 << 13) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 2, U32V_2(i));
}
}
TEST_F(DecoderTest, ReadI32v_ThreeByte) {
CHECK_INT32V_INLINE(0, 3, U32V_3(0));
CHECK_INT32V_INLINE(9, 3, U32V_3(9));
CHECK_INT32V_INLINE(61, 3, U32V_3(61));
CHECK_INT32V_INLINE(63, 3, U32V_3(63));
CHECK_INT32V_INLINE(-1, 3, U32V_3(-1));
CHECK_INT32V_INLINE(-2, 3, U32V_3(-2));
CHECK_INT32V_INLINE(-63, 3, U32V_3(-63));
CHECK_INT32V_INLINE(-64, 3, U32V_3(-64));
CHECK_INT32V_INLINE(-207, 3, U32V_3(-207));
CHECK_INT32V_INLINE(-1012, 3, U32V_3(-1012));
CHECK_INT32V_INLINE(-4067, 3, U32V_3(-4067));
CHECK_INT32V_INLINE(-14067, 3, U32V_3(-14067));
CHECK_INT32V_INLINE(-234061, 3, U32V_3(-234061));
CHECK_INT32V_INLINE(237, 3, U32V_3(237));
CHECK_INT32V_INLINE(1309, 3, U32V_3(1309));
CHECK_INT32V_INLINE(4372, 3, U32V_3(4372));
CHECK_INT32V_INLINE(64372, 3, U32V_3(64372));
CHECK_INT32V_INLINE(374372, 3, U32V_3(374372));
const int32_t min = 0 - (1 << 20);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 3, U32V_3(i));
}
const int32_t max = (1 << 20) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 3, U32V_3(i));
}
}
TEST_F(DecoderTest, ReadI32v_FourByte) {
CHECK_INT32V_INLINE(0, 4, U32V_4(0));
CHECK_INT32V_INLINE(9, 4, U32V_4(9));
CHECK_INT32V_INLINE(61, 4, U32V_4(61));
CHECK_INT32V_INLINE(63, 4, U32V_4(63));
CHECK_INT32V_INLINE(-1, 4, U32V_4(-1));
CHECK_INT32V_INLINE(-2, 4, U32V_4(-2));
CHECK_INT32V_INLINE(-63, 4, U32V_4(-63));
CHECK_INT32V_INLINE(-64, 4, U32V_4(-64));
CHECK_INT32V_INLINE(-267, 4, U32V_4(-267));
CHECK_INT32V_INLINE(-1612, 4, U32V_4(-1612));
CHECK_INT32V_INLINE(-4667, 4, U32V_4(-4667));
CHECK_INT32V_INLINE(-16067, 4, U32V_4(-16067));
CHECK_INT32V_INLINE(-264061, 4, U32V_4(-264061));
CHECK_INT32V_INLINE(-1264061, 4, U32V_4(-1264061));
CHECK_INT32V_INLINE(-6264061, 4, U32V_4(-6264061));
CHECK_INT32V_INLINE(-8264061, 4, U32V_4(-8264061));
CHECK_INT32V_INLINE(277, 4, U32V_4(277));
CHECK_INT32V_INLINE(1709, 4, U32V_4(1709));
CHECK_INT32V_INLINE(4772, 4, U32V_4(4772));
CHECK_INT32V_INLINE(67372, 4, U32V_4(67372));
CHECK_INT32V_INLINE(374372, 4, U32V_4(374372));
CHECK_INT32V_INLINE(2374372, 4, U32V_4(2374372));
CHECK_INT32V_INLINE(7374372, 4, U32V_4(7374372));
CHECK_INT32V_INLINE(9374372, 4, U32V_4(9374372));
const int32_t min = 0 - (1 << 27);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 4, U32V_4(i));
}
const int32_t max = (1 << 27) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 4, U32V_4(i));
}
}
TEST_F(DecoderTest, ReadI32v_FiveByte) {
CHECK_INT32V_INLINE(0, 5, U32V_5(0));
CHECK_INT32V_INLINE(16, 5, U32V_5(16));
CHECK_INT32V_INLINE(94, 5, U32V_5(94));
CHECK_INT32V_INLINE(127, 5, U32V_5(127));
CHECK_INT32V_INLINE(-1, 5, U32V_5(-1));
CHECK_INT32V_INLINE(-2, 5, U32V_5(-2));
CHECK_INT32V_INLINE(-63, 5, U32V_5(-63));
CHECK_INT32V_INLINE(-64, 5, U32V_5(-64));
CHECK_INT32V_INLINE(-257, 5, U32V_5(-257));
CHECK_INT32V_INLINE(-1512, 5, U32V_5(-1512));
CHECK_INT32V_INLINE(-4567, 5, U32V_5(-4567));
CHECK_INT32V_INLINE(-15067, 5, U32V_5(-15067));
CHECK_INT32V_INLINE(-254061, 5, U32V_5(-254061));
CHECK_INT32V_INLINE(-1364061, 5, U32V_5(-1364061));
CHECK_INT32V_INLINE(-6364061, 5, U32V_5(-6364061));
CHECK_INT32V_INLINE(-8364061, 5, U32V_5(-8364061));
CHECK_INT32V_INLINE(-28364061, 5, U32V_5(-28364061));
CHECK_INT32V_INLINE(-228364061, 5, U32V_5(-228364061));
CHECK_INT32V_INLINE(227, 5, U32V_5(227));
CHECK_INT32V_INLINE(1209, 5, U32V_5(1209));
CHECK_INT32V_INLINE(4272, 5, U32V_5(4272));
CHECK_INT32V_INLINE(62372, 5, U32V_5(62372));
CHECK_INT32V_INLINE(324372, 5, U32V_5(324372));
CHECK_INT32V_INLINE(2274372, 5, U32V_5(2274372));
CHECK_INT32V_INLINE(7274372, 5, U32V_5(7274372));
CHECK_INT32V_INLINE(9274372, 5, U32V_5(9274372));
CHECK_INT32V_INLINE(42374372, 5, U32V_5(42374372));
CHECK_INT32V_INLINE(429374372, 5, U32V_5(429374372));
const int32_t min = kMinInt;
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 5, U32V_5(i));
}
const int32_t max = kMaxInt;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 5, U32V_5(i));
}
}
TEST_F(DecoderTest, ReadU32v_off_end1) {
static const byte data[] = {U32V_1(11)};
unsigned length = 0;
decoder.Reset(data, data);
decoder.checked_read_u32v(decoder.start(), 0, &length);
EXPECT_EQ(0, length);
EXPECT_FALSE(decoder.ok());
}
TEST_F(DecoderTest, ReadU32v_off_end2) {
static const byte data[] = {U32V_2(1111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.checked_read_u32v(decoder.start(), 0, &length);
EXPECT_EQ(i, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end3) {
static const byte data[] = {U32V_3(111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.checked_read_u32v(decoder.start(), 0, &length);
EXPECT_EQ(i, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end4) {
static const byte data[] = {U32V_4(11111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.checked_read_u32v(decoder.start(), 0, &length);
EXPECT_EQ(i, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end5) {
static const byte data[] = {U32V_5(111111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.checked_read_u32v(decoder.start(), 0, &length);
EXPECT_EQ(i, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_extra_bits) {
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x00};
for (int i = 1; i < 16; i++) {
data[4] = static_cast<byte>(i << 4);
unsigned length = 0;
decoder.Reset(data, data + sizeof(data));
decoder.checked_read_u32v(decoder.start(), 0, &length);
EXPECT_EQ(5, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadI32v_extra_bits_negative) {
// OK for negative signed values to have extra ones.
unsigned length = 0;
byte data[] = {0xff, 0xff, 0xff, 0xff, 0x7f};
decoder.Reset(data, data + sizeof(data));
decoder.checked_read_i32v(decoder.start(), 0, &length);
EXPECT_EQ(5, length);
EXPECT_TRUE(decoder.ok());
}
TEST_F(DecoderTest, ReadI32v_extra_bits_positive) {
// Not OK for positive signed values to have extra ones.
unsigned length = 0;
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x77};
decoder.Reset(data, data + sizeof(data));
decoder.checked_read_i32v(decoder.start(), 0, &length);
EXPECT_EQ(5, length);
EXPECT_FALSE(decoder.ok());
}
TEST_F(DecoderTest, ReadU32v_Bits) {
// A more exhaustive test.
const int kMaxSize = 5;
const uint32_t kVals[] = {
0xaabbccdd, 0x11223344, 0x33445566, 0xffeeddcc, 0xF0F0F0F0, 0x0F0F0F0F,
0xEEEEEEEE, 0xAAAAAAAA, 0x12345678, 0x9abcdef0, 0x80309488, 0x729ed997,
0xc4a0cf81, 0x16c6eb85, 0x4206db8e, 0xf3b089d5, 0xaa2e223e, 0xf99e29c8,
0x4a4357d8, 0x1890b1c1, 0x8d80a085, 0xacb6ae4c, 0x1b827e10, 0xeb5c7bd9,
0xbb1bc146, 0xdf57a33l};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...32
for (int i = 1; i <= 32; i++) {
uint32_t val = kVals[v];
if (i < 32) val &= ((1 << i) - 1);
int length = 1 + i / 7;
for (int j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (int j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...5
for (int limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
uint32_t result = decoder.checked_read_u32v(data, 0, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadU64v_OneByte) {
CHECK_UINT64V_INLINE(0, 1, 0);
CHECK_UINT64V_INLINE(6, 1, 6);
CHECK_UINT64V_INLINE(8, 1, 8);
CHECK_UINT64V_INLINE(12, 1, 12);
CHECK_UINT64V_INLINE(33, 1, 33);
CHECK_UINT64V_INLINE(59, 1, 59);
CHECK_UINT64V_INLINE(110, 1, 110);
CHECK_UINT64V_INLINE(125, 1, 125);
CHECK_UINT64V_INLINE(126, 1, 126);
CHECK_UINT64V_INLINE(127, 1, 127);
}
TEST_F(DecoderTest, ReadI64v_OneByte) {
CHECK_INT64V_INLINE(0, 1, 0);
CHECK_INT64V_INLINE(4, 1, 4);
CHECK_INT64V_INLINE(6, 1, 6);
CHECK_INT64V_INLINE(9, 1, 9);
CHECK_INT64V_INLINE(33, 1, 33);
CHECK_INT64V_INLINE(61, 1, 61);
CHECK_INT64V_INLINE(63, 1, 63);
CHECK_INT64V_INLINE(-1, 1, 127);
CHECK_INT64V_INLINE(-2, 1, 126);
CHECK_INT64V_INLINE(-11, 1, 117);
CHECK_INT64V_INLINE(-62, 1, 66);
CHECK_INT64V_INLINE(-63, 1, 65);
CHECK_INT64V_INLINE(-64, 1, 64);
}
TEST_F(DecoderTest, ReadU64v_PowerOf2) {
const int kMaxSize = 10;
byte data[kMaxSize];
for (int i = 0; i < 64; i++) {
const uint64_t val = 1ull << i;
int index = i / 7;
data[index] = 1 << (i % 7);
memset(data, 0x80, index);
for (int limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned length;
uint64_t result = decoder.checked_read_u64v(data, 0, &length);
if (limit <= index) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(index + 1, length);
}
}
}
}
TEST_F(DecoderTest, ReadU64v_Bits) {
const int kMaxSize = 10;
const uint64_t kVals[] = {
0xaabbccdd11223344ull, 0x33445566ffeeddccull, 0xF0F0F0F0F0F0F0F0ull,
0x0F0F0F0F0F0F0F0Full, 0xEEEEEEEEEEEEEEEEull, 0xAAAAAAAAAAAAAAAAull,
0x123456789abcdef0ull, 0x80309488729ed997ull, 0xc4a0cf8116c6eb85ull,
0x4206db8ef3b089d5ull, 0xaa2e223ef99e29c8ull, 0x4a4357d81890b1c1ull,
0x8d80a085acb6ae4cull, 0x1b827e10eb5c7bd9ull, 0xbb1bc146df57a338ull};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...64
for (int i = 1; i <= 64; i++) {
uint64_t val = kVals[v];
if (i < 64) val &= ((1ull << i) - 1);
int length = 1 + i / 7;
for (int j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (int j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...10
for (int limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
uint64_t result = decoder.checked_read_u64v(data, 0, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadI64v_Bits) {
const int kMaxSize = 10;
// Exhaustive signedness test.
const uint64_t kVals[] = {
0xaabbccdd11223344ull, 0x33445566ffeeddccull, 0xF0F0F0F0F0F0F0F0ull,
0x0F0F0F0F0F0F0F0Full, 0xEEEEEEEEEEEEEEEEull, 0xAAAAAAAAAAAAAAAAull,
0x123456789abcdef0ull, 0x80309488729ed997ull, 0xc4a0cf8116c6eb85ull,
0x4206db8ef3b089d5ull, 0xaa2e223ef99e29c8ull, 0x4a4357d81890b1c1ull,
0x8d80a085acb6ae4cull, 0x1b827e10eb5c7bd9ull, 0xbb1bc146df57a338ull};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...64
for (int i = 1; i <= 64; i++) {
const int64_t val = bit_cast<int64_t>(kVals[v] << (64 - i)) >> (64 - i);
int length = 1 + i / 7;
for (int j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (int j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...10
for (int limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
int64_t result = decoder.checked_read_i64v(data, 0, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadU64v_extra_bits) {
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00};
for (int i = 1; i < 128; i++) {
data[9] = static_cast<byte>(i << 1);
unsigned length = 0;
decoder.Reset(data, data + sizeof(data));
decoder.checked_read_u64v(decoder.start(), 0, &length);
EXPECT_EQ(10, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadI64v_extra_bits_negative) {
// OK for negative signed values to have extra ones.
unsigned length = 0;
byte data[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f};
decoder.Reset(data, data + sizeof(data));
decoder.checked_read_i64v(decoder.start(), 0, &length);
EXPECT_EQ(10, length);
EXPECT_TRUE(decoder.ok());
}
TEST_F(DecoderTest, ReadI64v_extra_bits_positive) {
// Not OK for positive signed values to have extra ones.
unsigned length = 0;
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x77};
decoder.Reset(data, data + sizeof(data));
decoder.checked_read_i64v(decoder.start(), 0, &length);
EXPECT_EQ(10, length);
EXPECT_FALSE(decoder.ok());
}
} // namespace wasm
} // namespace internal
} // namespace v8