v8/src/value-serializer.h
Georg Neis 40ac6b187a Introduce MutableHeapNumber class.
V8 knows heap numbers and mutable heap numbers. They have
difference instance types, but in C++ code we've used the
same class for both (HeapNumber). Confusingly, however,
IsHeapNumber would return false for mutable heap numbers,
while HeapNumber::cast would succeed.

This CL adds a separate class MutableHeapNumber and
eliminates the confusing behavior.

TBR=bmeurer@chromium.org

Change-Id: Id894d177c7fe8cc3f451be80c273b50daee91378
Reviewed-on: https://chromium-review.googlesource.com/1113544
Commit-Queue: Georg Neis <neis@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
Cr-Commit-Position: refs/heads/master@{#54012}
2018-06-26 06:25:50 +00:00

320 lines
11 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_VALUE_SERIALIZER_H_
#define V8_VALUE_SERIALIZER_H_
#include <cstdint>
#include <vector>
#include "include/v8.h"
#include "src/base/compiler-specific.h"
#include "src/base/macros.h"
#include "src/identity-map.h"
#include "src/messages.h"
#include "src/vector.h"
#include "src/zone/zone.h"
namespace v8 {
namespace internal {
class BigInt;
class HeapNumber;
class Isolate;
class JSArrayBuffer;
class JSArrayBufferView;
class JSDate;
class JSMap;
class JSRegExp;
class JSSet;
class JSValue;
class MutableHeapNumber;
class Object;
class Oddball;
class Smi;
class WasmMemoryObject;
class WasmModuleObject;
enum class SerializationTag : uint8_t;
/**
* Writes V8 objects in a binary format that allows the objects to be cloned
* according to the HTML structured clone algorithm.
*
* Format is based on Blink's previous serialization logic.
*/
class ValueSerializer {
public:
ValueSerializer(Isolate* isolate, v8::ValueSerializer::Delegate* delegate);
~ValueSerializer();
/*
* Writes out a header, which includes the format version.
*/
void WriteHeader();
/*
* Serializes a V8 object into the buffer.
*/
Maybe<bool> WriteObject(Handle<Object> object) V8_WARN_UNUSED_RESULT;
/*
* Returns the stored data. This serializer should not be used once the buffer
* is released. The contents are undefined if a previous write has failed.
*/
std::vector<uint8_t> ReleaseBuffer();
/*
* Returns the buffer, allocated via the delegate, and its size.
* Caller assumes ownership of the buffer.
*/
std::pair<uint8_t*, size_t> Release();
/*
* Marks an ArrayBuffer as havings its contents transferred out of band.
* Pass the corresponding JSArrayBuffer in the deserializing context to
* ValueDeserializer::TransferArrayBuffer.
*/
void TransferArrayBuffer(uint32_t transfer_id,
Handle<JSArrayBuffer> array_buffer);
/*
* Publicly exposed wire format writing methods.
* These are intended for use within the delegate's WriteHostObject method.
*/
void WriteUint32(uint32_t value);
void WriteUint64(uint64_t value);
void WriteRawBytes(const void* source, size_t length);
void WriteDouble(double value);
/*
* Indicate whether to treat ArrayBufferView objects as host objects,
* i.e. pass them to Delegate::WriteHostObject. This should not be
* called when no Delegate was passed.
*
* The default is not to treat ArrayBufferViews as host objects.
*/
void SetTreatArrayBufferViewsAsHostObjects(bool mode);
private:
// Managing allocations of the internal buffer.
Maybe<bool> ExpandBuffer(size_t required_capacity);
// Writing the wire format.
void WriteTag(SerializationTag tag);
template <typename T>
void WriteVarint(T value);
template <typename T>
void WriteZigZag(T value);
void WriteOneByteString(Vector<const uint8_t> chars);
void WriteTwoByteString(Vector<const uc16> chars);
void WriteBigIntContents(BigInt* bigint);
Maybe<uint8_t*> ReserveRawBytes(size_t bytes);
// Writing V8 objects of various kinds.
void WriteOddball(Oddball* oddball);
void WriteSmi(Smi* smi);
void WriteHeapNumber(HeapNumber* number);
void WriteMutableHeapNumber(MutableHeapNumber* number);
void WriteBigInt(BigInt* bigint);
void WriteString(Handle<String> string);
Maybe<bool> WriteJSReceiver(Handle<JSReceiver> receiver)
V8_WARN_UNUSED_RESULT;
Maybe<bool> WriteJSObject(Handle<JSObject> object) V8_WARN_UNUSED_RESULT;
Maybe<bool> WriteJSObjectSlow(Handle<JSObject> object) V8_WARN_UNUSED_RESULT;
Maybe<bool> WriteJSArray(Handle<JSArray> array) V8_WARN_UNUSED_RESULT;
void WriteJSDate(JSDate* date);
Maybe<bool> WriteJSValue(Handle<JSValue> value) V8_WARN_UNUSED_RESULT;
void WriteJSRegExp(JSRegExp* regexp);
Maybe<bool> WriteJSMap(Handle<JSMap> map) V8_WARN_UNUSED_RESULT;
Maybe<bool> WriteJSSet(Handle<JSSet> map) V8_WARN_UNUSED_RESULT;
Maybe<bool> WriteJSArrayBuffer(Handle<JSArrayBuffer> array_buffer)
V8_WARN_UNUSED_RESULT;
Maybe<bool> WriteJSArrayBufferView(JSArrayBufferView* array_buffer);
Maybe<bool> WriteWasmModule(Handle<WasmModuleObject> object)
V8_WARN_UNUSED_RESULT;
Maybe<bool> WriteWasmMemory(Handle<WasmMemoryObject> object)
V8_WARN_UNUSED_RESULT;
Maybe<bool> WriteHostObject(Handle<JSObject> object) V8_WARN_UNUSED_RESULT;
/*
* Reads the specified keys from the object and writes key-value pairs to the
* buffer. Returns the number of keys actually written, which may be smaller
* if some keys are not own properties when accessed.
*/
Maybe<uint32_t> WriteJSObjectPropertiesSlow(
Handle<JSObject> object, Handle<FixedArray> keys) V8_WARN_UNUSED_RESULT;
/*
* Asks the delegate to handle an error that occurred during data cloning, by
* throwing an exception appropriate for the host.
*/
void ThrowDataCloneError(MessageTemplate::Template template_index);
V8_NOINLINE void ThrowDataCloneError(MessageTemplate::Template template_index,
Handle<Object> arg0);
Maybe<bool> ThrowIfOutOfMemory();
Isolate* const isolate_;
v8::ValueSerializer::Delegate* const delegate_;
bool treat_array_buffer_views_as_host_objects_ = false;
uint8_t* buffer_ = nullptr;
size_t buffer_size_ = 0;
size_t buffer_capacity_ = 0;
bool out_of_memory_ = false;
Zone zone_;
// To avoid extra lookups in the identity map, ID+1 is actually stored in the
// map (checking if the used identity is zero is the fast way of checking if
// the entry is new).
IdentityMap<uint32_t, ZoneAllocationPolicy> id_map_;
uint32_t next_id_ = 0;
// A similar map, for transferred array buffers.
IdentityMap<uint32_t, ZoneAllocationPolicy> array_buffer_transfer_map_;
DISALLOW_COPY_AND_ASSIGN(ValueSerializer);
};
/*
* Deserializes values from data written with ValueSerializer, or a compatible
* implementation.
*/
class ValueDeserializer {
public:
ValueDeserializer(Isolate* isolate, Vector<const uint8_t> data,
v8::ValueDeserializer::Delegate* delegate);
~ValueDeserializer();
/*
* Runs version detection logic, which may fail if the format is invalid.
*/
Maybe<bool> ReadHeader() V8_WARN_UNUSED_RESULT;
/*
* Reads the underlying wire format version. Likely mostly to be useful to
* legacy code reading old wire format versions. Must be called after
* ReadHeader.
*/
uint32_t GetWireFormatVersion() const { return version_; }
/*
* Deserializes a V8 object from the buffer.
*/
MaybeHandle<Object> ReadObject() V8_WARN_UNUSED_RESULT;
/*
* Reads an object, consuming the entire buffer.
*
* This is required for the legacy "version 0" format, which did not allow
* reference deduplication, and instead relied on a "stack" model for
* deserializing, with the contents of objects and arrays provided first.
*/
MaybeHandle<Object> ReadObjectUsingEntireBufferForLegacyFormat()
V8_WARN_UNUSED_RESULT;
/*
* Accepts the array buffer corresponding to the one passed previously to
* ValueSerializer::TransferArrayBuffer.
*/
void TransferArrayBuffer(uint32_t transfer_id,
Handle<JSArrayBuffer> array_buffer);
/*
* Publicly exposed wire format writing methods.
* These are intended for use within the delegate's WriteHostObject method.
*/
bool ReadUint32(uint32_t* value) V8_WARN_UNUSED_RESULT;
bool ReadUint64(uint64_t* value) V8_WARN_UNUSED_RESULT;
bool ReadDouble(double* value) V8_WARN_UNUSED_RESULT;
bool ReadRawBytes(size_t length, const void** data) V8_WARN_UNUSED_RESULT;
void set_expect_inline_wasm(bool expect_inline_wasm) {
expect_inline_wasm_ = expect_inline_wasm;
}
private:
// Reading the wire format.
Maybe<SerializationTag> PeekTag() const V8_WARN_UNUSED_RESULT;
void ConsumeTag(SerializationTag peeked_tag);
Maybe<SerializationTag> ReadTag() V8_WARN_UNUSED_RESULT;
template <typename T>
Maybe<T> ReadVarint() V8_WARN_UNUSED_RESULT;
template <typename T>
Maybe<T> ReadZigZag() V8_WARN_UNUSED_RESULT;
Maybe<double> ReadDouble() V8_WARN_UNUSED_RESULT;
Maybe<Vector<const uint8_t>> ReadRawBytes(int size) V8_WARN_UNUSED_RESULT;
bool expect_inline_wasm() const { return expect_inline_wasm_; }
// Reads a string if it matches the one provided.
// Returns true if this was the case. Otherwise, nothing is consumed.
bool ReadExpectedString(Handle<String> expected) V8_WARN_UNUSED_RESULT;
// Like ReadObject, but skips logic for special cases in simulating the
// "stack machine".
MaybeHandle<Object> ReadObjectInternal() V8_WARN_UNUSED_RESULT;
// Reads a string intended to be part of a more complicated object.
// Before v12, these are UTF-8 strings. After, they can be any encoding
// permissible for a string (with the relevant tag).
MaybeHandle<String> ReadString() V8_WARN_UNUSED_RESULT;
// Reading V8 objects of specific kinds.
// The tag is assumed to have already been read.
MaybeHandle<BigInt> ReadBigInt() V8_WARN_UNUSED_RESULT;
MaybeHandle<String> ReadUtf8String() V8_WARN_UNUSED_RESULT;
MaybeHandle<String> ReadOneByteString() V8_WARN_UNUSED_RESULT;
MaybeHandle<String> ReadTwoByteString() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSObject> ReadJSObject() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSArray> ReadSparseJSArray() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSArray> ReadDenseJSArray() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSDate> ReadJSDate() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSValue> ReadJSValue(SerializationTag tag) V8_WARN_UNUSED_RESULT;
MaybeHandle<JSRegExp> ReadJSRegExp() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSMap> ReadJSMap() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSSet> ReadJSSet() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSArrayBuffer> ReadJSArrayBuffer(bool is_shared)
V8_WARN_UNUSED_RESULT;
MaybeHandle<JSArrayBuffer> ReadTransferredJSArrayBuffer()
V8_WARN_UNUSED_RESULT;
MaybeHandle<JSArrayBufferView> ReadJSArrayBufferView(
Handle<JSArrayBuffer> buffer) V8_WARN_UNUSED_RESULT;
MaybeHandle<JSObject> ReadWasmModule() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSObject> ReadWasmModuleTransfer() V8_WARN_UNUSED_RESULT;
MaybeHandle<WasmMemoryObject> ReadWasmMemory() V8_WARN_UNUSED_RESULT;
MaybeHandle<JSObject> ReadHostObject() V8_WARN_UNUSED_RESULT;
/*
* Reads key-value pairs into the object until the specified end tag is
* encountered. If successful, returns the number of properties read.
*/
Maybe<uint32_t> ReadJSObjectProperties(Handle<JSObject> object,
SerializationTag end_tag,
bool can_use_transitions);
// Manipulating the map from IDs to reified objects.
bool HasObjectWithID(uint32_t id);
MaybeHandle<JSReceiver> GetObjectWithID(uint32_t id);
void AddObjectWithID(uint32_t id, Handle<JSReceiver> object);
Isolate* const isolate_;
v8::ValueDeserializer::Delegate* const delegate_;
const uint8_t* position_;
const uint8_t* const end_;
PretenureFlag pretenure_;
uint32_t version_ = 0;
uint32_t next_id_ = 0;
bool expect_inline_wasm_ = false;
// Always global handles.
Handle<FixedArray> id_map_;
MaybeHandle<SimpleNumberDictionary> array_buffer_transfer_map_;
DISALLOW_COPY_AND_ASSIGN(ValueDeserializer);
};
} // namespace internal
} // namespace v8
#endif // V8_VALUE_SERIALIZER_H_