v8/test/unittests/utils/identity-map-unittest.cc
pthier 733c76b95c Reland "[heap] Transition/Shortcut strings only during GCs without stack"
This is a reland of commit 7bf94d0336

Changes since revert:
- Update string forwarding table with evacuated objects in mark compact.
- Always mark forward objects in string forwarding table.

Original change's description:
> [heap] Transition/Shortcut strings only during GCs without stack
>
> By limiting transitions of (shared) strings and shortcutting of
> Thin/Cons strings to GC withouts stacks, optimizing compilers can rely on
> the invariant that string maps do not change during a GC, allowing them
> to eliminate map checks and enable more aggressive optimizations.
>
> Change-Id: Ic9c9ed7b04b2ceed369484bf048965c083a9a693
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/4030578
> Commit-Queue: Patrick Thier <pthier@chromium.org>
> Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
> Cr-Commit-Position: refs/heads/main@{#84347}

Change-Id: I1ab0965ff421635457a66fbe7f178d951afe4402
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/4035240
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Commit-Queue: Patrick Thier <pthier@chromium.org>
Cr-Commit-Position: refs/heads/main@{#84424}
2022-11-22 16:37:57 +00:00

841 lines
28 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/utils/identity-map.h"
#include <set>
#include "src/execution/isolate.h"
#include "src/heap/factory-inl.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/objects.h"
#include "src/zone/zone.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
// Helper for testing. A "friend" of the IdentityMapBase class, it is able to
// "move" objects to simulate GC for testing the internals of the map.
class IdentityMapTester {
public:
IdentityMap<void*, ZoneAllocationPolicy> map;
IdentityMapTester(Heap* heap, Zone* zone)
: map(heap, ZoneAllocationPolicy(zone)) {}
void TestInsertFind(Handle<Object> key1, void* val1, Handle<Object> key2,
void* val2) {
CHECK_NULL(map.Find(key1));
CHECK_NULL(map.Find(key2));
// Set {key1} the first time.
auto find_result = map.FindOrInsert(key1);
CHECK_NOT_NULL(find_result.entry);
CHECK(!find_result.already_exists);
*find_result.entry = val1;
for (int i = 0; i < 3; i++) { // Get and find {key1} K times.
{
auto new_find_result = map.FindOrInsert(key1);
CHECK(new_find_result.already_exists);
CHECK_EQ(find_result.entry, new_find_result.entry);
CHECK_EQ(val1, *new_find_result.entry);
CHECK_NULL(map.Find(key2));
}
{
void** nentry = map.Find(key1);
CHECK_EQ(find_result.entry, nentry);
CHECK_EQ(val1, *nentry);
CHECK_NULL(map.Find(key2));
}
}
// Set {key2} the first time.
auto find_result2 = map.FindOrInsert(key2);
CHECK_NOT_NULL(find_result2.entry);
CHECK(!find_result2.already_exists);
*find_result2.entry = val2;
for (int i = 0; i < 3; i++) { // Get and find {key1} and {key2} K times.
{
auto new_find_result = map.FindOrInsert(key2);
CHECK_EQ(find_result2.entry, new_find_result.entry);
CHECK_EQ(val2, *new_find_result.entry);
}
{
void** nentry = map.Find(key2);
CHECK_EQ(find_result2.entry, nentry);
CHECK_EQ(val2, *nentry);
}
{
void** nentry = map.Find(key1);
CHECK_EQ(val1, *nentry);
}
}
}
void TestFindDelete(Handle<Object> key1, void* val1, Handle<Object> key2,
void* val2) {
CHECK_NULL(map.Find(key1));
CHECK_NULL(map.Find(key2));
// Set {key1} and {key2} for the first time.
auto find_result1 = map.FindOrInsert(key1);
CHECK(!find_result1.already_exists);
CHECK_NOT_NULL(find_result1.entry);
*find_result1.entry = val1;
auto find_result2 = map.FindOrInsert(key2);
CHECK(!find_result1.already_exists);
CHECK_NOT_NULL(find_result2.entry);
*find_result2.entry = val2;
for (int i = 0; i < 3; i++) { // Find {key1} and {key2} 3 times.
{
void** nentry = map.Find(key2);
CHECK_EQ(val2, *nentry);
}
{
void** nentry = map.Find(key1);
CHECK_EQ(val1, *nentry);
}
}
// Delete {key1}
void* deleted_entry_1;
CHECK(map.Delete(key1, &deleted_entry_1));
CHECK_NOT_NULL(deleted_entry_1);
deleted_entry_1 = val1;
for (int i = 0; i < 3; i++) { // Find {key1} and not {key2} 3 times.
{
void** nentry = map.Find(key1);
CHECK_NULL(nentry);
}
{
void** nentry = map.Find(key2);
CHECK_EQ(val2, *nentry);
}
}
// Delete {key2}
void* deleted_entry_2;
CHECK(map.Delete(key2, &deleted_entry_2));
CHECK_NOT_NULL(deleted_entry_2);
deleted_entry_2 = val2;
for (int i = 0; i < 3; i++) { // Don't find {key1} and {key2} 3 times.
{
void** nentry = map.Find(key1);
CHECK_NULL(nentry);
}
{
void** nentry = map.Find(key2);
CHECK_NULL(nentry);
}
}
}
void SimulateGCByIncrementingSmisBy(int shift) {
for (int i = 0; i < map.capacity_; i++) {
Address key = map.keys_[i];
if (!Internals::HasHeapObjectTag(key)) {
map.keys_[i] = Internals::IntToSmi(Internals::SmiValue(key) + shift);
}
}
map.gc_counter_ = -1;
}
void CheckFind(Handle<Object> key, void* value) {
void** entry = map.Find(key);
CHECK_NOT_NULL(entry);
CHECK_EQ(value, *entry);
}
void CheckFindOrInsert(Handle<Object> key, void* value) {
auto find_result = map.FindOrInsert(key);
CHECK(find_result.already_exists);
CHECK_NOT_NULL(find_result.entry);
CHECK_EQ(value, *find_result.entry);
}
void CheckDelete(Handle<Object> key, void* value) {
void* entry;
CHECK(map.Delete(key, &entry));
CHECK_NOT_NULL(entry);
CHECK_EQ(value, entry);
}
void PrintMap() {
PrintF("{\n");
for (int i = 0; i < map.capacity_; i++) {
PrintF(" %3d: %p => %p\n", i, reinterpret_cast<void*>(map.keys_[i]),
reinterpret_cast<void*>(map.values_[i]));
}
PrintF("}\n");
}
void Resize() { map.Resize(map.capacity_ * 4); }
void Rehash() { map.Rehash(); }
};
class IdentityMapTest : public TestWithIsolateAndZone {
public:
Handle<Smi> smi(int value) {
return Handle<Smi>(Smi::FromInt(value), isolate());
}
Handle<Object> num(double value) {
return isolate()->factory()->NewNumber(value);
}
void IterateCollisionTest(int stride) {
for (int load = 15; load <= 120; load = load * 2) {
IdentityMapTester t(isolate()->heap(), zone());
{ // Add entries to the map.
HandleScope scope(isolate());
int next = 1;
for (int i = 0; i < load; i++) {
t.map.Insert(smi(next), reinterpret_cast<void*>(next));
t.CheckFind(smi(next), reinterpret_cast<void*>(next));
next = next + stride;
}
}
// Iterate through the map and check we see all elements only once.
std::set<intptr_t> seen;
{
IdentityMap<void*, ZoneAllocationPolicy>::IteratableScope it_scope(
&t.map);
for (auto it = it_scope.begin(); it != it_scope.end(); ++it) {
CHECK(seen.find(reinterpret_cast<intptr_t>(**it)) == seen.end());
seen.insert(reinterpret_cast<intptr_t>(**it));
}
}
// Check get and find on map.
{
HandleScope scope(isolate());
int next = 1;
for (int i = 0; i < load; i++) {
CHECK(seen.find(next) != seen.end());
t.CheckFind(smi(next), reinterpret_cast<void*>(next));
t.CheckFindOrInsert(smi(next), reinterpret_cast<void*>(next));
next = next + stride;
}
}
}
}
void CollisionTest(int stride, bool rehash = false, bool resize = false) {
for (int load = 15; load <= 120; load = load * 2) {
IdentityMapTester t(isolate()->heap(), zone());
{ // Add entries to the map.
HandleScope scope(isolate());
int next = 1;
for (int i = 0; i < load; i++) {
t.map.Insert(smi(next), reinterpret_cast<void*>(next));
t.CheckFind(smi(next), reinterpret_cast<void*>(next));
next = next + stride;
}
}
if (resize) t.Resize(); // Explicit resize (internal method).
if (rehash) t.Rehash(); // Explicit rehash (internal method).
{ // Check find and get.
HandleScope scope(isolate());
int next = 1;
for (int i = 0; i < load; i++) {
t.CheckFind(smi(next), reinterpret_cast<void*>(next));
t.CheckFindOrInsert(smi(next), reinterpret_cast<void*>(next));
next = next + stride;
}
}
}
}
};
TEST_F(IdentityMapTest, Find_smi_not_found) {
IdentityMapTester t(isolate()->heap(), zone());
for (int i = 0; i < 100; i++) {
CHECK_NULL(t.map.Find(smi(i)));
}
}
TEST_F(IdentityMapTest, Find_num_not_found) {
IdentityMapTester t(isolate()->heap(), zone());
for (int i = 0; i < 100; i++) {
CHECK_NULL(t.map.Find(num(i + 0.2)));
}
}
TEST_F(IdentityMapTest, Delete_smi_not_found) {
IdentityMapTester t(isolate()->heap(), zone());
for (int i = 0; i < 100; i++) {
void* deleted_value = &t;
CHECK(!t.map.Delete(smi(i), &deleted_value));
CHECK_EQ(&t, deleted_value);
}
}
TEST_F(IdentityMapTest, Delete_num_not_found) {
IdentityMapTester t(isolate()->heap(), zone());
for (int i = 0; i < 100; i++) {
void* deleted_value = &t;
CHECK(!t.map.Delete(num(i + 0.2), &deleted_value));
CHECK_EQ(&t, deleted_value);
}
}
TEST_F(IdentityMapTest, GetFind_smi_0) {
IdentityMapTester t(isolate()->heap(), zone());
t.TestInsertFind(smi(0), isolate(), smi(1), isolate()->heap());
}
TEST_F(IdentityMapTest, GetFind_smi_13) {
IdentityMapTester t(isolate()->heap(), zone());
t.TestInsertFind(smi(13), isolate(), smi(17), isolate()->heap());
}
TEST_F(IdentityMapTest, GetFind_num_13) {
IdentityMapTester t(isolate()->heap(), zone());
t.TestInsertFind(num(13.1), isolate(), num(17.1), isolate()->heap());
}
TEST_F(IdentityMapTest, Delete_smi_13) {
IdentityMapTester t(isolate()->heap(), zone());
t.TestFindDelete(smi(13), isolate(), smi(17), isolate()->heap());
CHECK(t.map.empty());
}
TEST_F(IdentityMapTest, Delete_num_13) {
IdentityMapTester t(isolate()->heap(), zone());
t.TestFindDelete(num(13.1), isolate(), num(17.1), isolate()->heap());
CHECK(t.map.empty());
}
TEST_F(IdentityMapTest, GetFind_smi_17m) {
const int kInterval = 17;
const int kShift = 1099;
IdentityMapTester t(isolate()->heap(), zone());
for (int i = 1; i < 100; i += kInterval) {
t.map.Insert(smi(i), reinterpret_cast<void*>(i + kShift));
}
for (int i = 1; i < 100; i += kInterval) {
t.CheckFind(smi(i), reinterpret_cast<void*>(i + kShift));
}
for (int i = 1; i < 100; i += kInterval) {
t.CheckFindOrInsert(smi(i), reinterpret_cast<void*>(i + kShift));
}
for (int i = 1; i < 100; i++) {
void** entry = t.map.Find(smi(i));
if ((i % kInterval) != 1) {
CHECK_NULL(entry);
} else {
CHECK_NOT_NULL(entry);
CHECK_EQ(reinterpret_cast<void*>(i + kShift), *entry);
}
}
}
TEST_F(IdentityMapTest, Delete_smi_17m) {
const int kInterval = 17;
const int kShift = 1099;
IdentityMapTester t(isolate()->heap(), zone());
for (int i = 1; i < 100; i += kInterval) {
t.map.Insert(smi(i), reinterpret_cast<void*>(i + kShift));
}
for (int i = 1; i < 100; i += kInterval) {
t.CheckFind(smi(i), reinterpret_cast<void*>(i + kShift));
}
for (int i = 1; i < 100; i += kInterval) {
t.CheckDelete(smi(i), reinterpret_cast<void*>(i + kShift));
for (int j = 1; j < 100; j += kInterval) {
auto entry = t.map.Find(smi(j));
if (j <= i) {
CHECK_NULL(entry);
} else {
CHECK_NOT_NULL(entry);
CHECK_EQ(reinterpret_cast<void*>(j + kShift), *entry);
}
}
}
}
TEST_F(IdentityMapTest, GetFind_num_1000) {
const int kPrime = 137;
IdentityMapTester t(isolate()->heap(), zone());
int val1;
int val2;
for (int i = 0; i < 1000; i++) {
t.TestInsertFind(smi(i * kPrime), &val1, smi(i * kPrime + 1), &val2);
}
}
TEST_F(IdentityMapTest, Delete_num_1000) {
const int kPrime = 137;
IdentityMapTester t(isolate()->heap(), zone());
for (int i = 0; i < 1000; i++) {
t.map.Insert(smi(i * kPrime), reinterpret_cast<void*>(i * kPrime));
}
// Delete every second value in reverse.
for (int i = 999; i >= 0; i -= 2) {
void* entry;
CHECK(t.map.Delete(smi(i * kPrime), &entry));
CHECK_EQ(reinterpret_cast<void*>(i * kPrime), entry);
}
for (int i = 0; i < 1000; i++) {
auto entry = t.map.Find(smi(i * kPrime));
if (i % 2) {
CHECK_NULL(entry);
} else {
CHECK_NOT_NULL(entry);
CHECK_EQ(reinterpret_cast<void*>(i * kPrime), *entry);
}
}
// Delete the rest.
for (int i = 0; i < 1000; i += 2) {
void* entry;
CHECK(t.map.Delete(smi(i * kPrime), &entry));
CHECK_EQ(reinterpret_cast<void*>(i * kPrime), entry);
}
for (int i = 0; i < 1000; i++) {
auto entry = t.map.Find(smi(i * kPrime));
CHECK_NULL(entry);
}
}
TEST_F(IdentityMapTest, GetFind_smi_gc) {
const int kKey = 33;
const int kShift = 1211;
IdentityMapTester t(isolate()->heap(), zone());
t.map.Insert(smi(kKey), &t);
t.SimulateGCByIncrementingSmisBy(kShift);
t.CheckFind(smi(kKey + kShift), &t);
t.CheckFindOrInsert(smi(kKey + kShift), &t);
}
TEST_F(IdentityMapTest, Delete_smi_gc) {
const int kKey = 33;
const int kShift = 1211;
IdentityMapTester t(isolate()->heap(), zone());
t.map.Insert(smi(kKey), &t);
t.SimulateGCByIncrementingSmisBy(kShift);
t.CheckDelete(smi(kKey + kShift), &t);
}
TEST_F(IdentityMapTest, GetFind_smi_gc2) {
int kKey1 = 1;
int kKey2 = 33;
const int kShift = 1211;
IdentityMapTester t(isolate()->heap(), zone());
t.map.Insert(smi(kKey1), &kKey1);
t.map.Insert(smi(kKey2), &kKey2);
t.SimulateGCByIncrementingSmisBy(kShift);
t.CheckFind(smi(kKey1 + kShift), &kKey1);
t.CheckFindOrInsert(smi(kKey1 + kShift), &kKey1);
t.CheckFind(smi(kKey2 + kShift), &kKey2);
t.CheckFindOrInsert(smi(kKey2 + kShift), &kKey2);
}
TEST_F(IdentityMapTest, Delete_smi_gc2) {
int kKey1 = 1;
int kKey2 = 33;
const int kShift = 1211;
IdentityMapTester t(isolate()->heap(), zone());
t.map.Insert(smi(kKey1), &kKey1);
t.map.Insert(smi(kKey2), &kKey2);
t.SimulateGCByIncrementingSmisBy(kShift);
t.CheckDelete(smi(kKey1 + kShift), &kKey1);
t.CheckDelete(smi(kKey2 + kShift), &kKey2);
}
TEST_F(IdentityMapTest, GetFind_smi_gc_n) {
const int kShift = 12011;
IdentityMapTester t(isolate()->heap(), zone());
int keys[12] = {1, 2, 7, 8, 15, 23,
1 + 32, 2 + 32, 7 + 32, 8 + 32, 15 + 32, 23 + 32};
// Initialize the map first.
for (size_t i = 0; i < arraysize(keys); i += 2) {
t.TestInsertFind(smi(keys[i]), &keys[i], smi(keys[i + 1]), &keys[i + 1]);
}
// Check the above initialization.
for (size_t i = 0; i < arraysize(keys); i++) {
t.CheckFind(smi(keys[i]), &keys[i]);
}
// Simulate a GC by "moving" the smis in the internal keys array.
t.SimulateGCByIncrementingSmisBy(kShift);
// Check that searching for the incremented smis finds the same values.
for (size_t i = 0; i < arraysize(keys); i++) {
t.CheckFind(smi(keys[i] + kShift), &keys[i]);
}
// Check that searching for the incremented smis gets the same values.
for (size_t i = 0; i < arraysize(keys); i++) {
t.CheckFindOrInsert(smi(keys[i] + kShift), &keys[i]);
}
}
TEST_F(IdentityMapTest, Delete_smi_gc_n) {
const int kShift = 12011;
IdentityMapTester t(isolate()->heap(), zone());
int keys[12] = {1, 2, 7, 8, 15, 23,
1 + 32, 2 + 32, 7 + 32, 8 + 32, 15 + 32, 23 + 32};
// Initialize the map first.
for (size_t i = 0; i < arraysize(keys); i++) {
t.map.Insert(smi(keys[i]), &keys[i]);
}
// Simulate a GC by "moving" the smis in the internal keys array.
t.SimulateGCByIncrementingSmisBy(kShift);
// Check that deleting for the incremented smis finds the same values.
for (size_t i = 0; i < arraysize(keys); i++) {
t.CheckDelete(smi(keys[i] + kShift), &keys[i]);
}
}
TEST_F(IdentityMapTest, GetFind_smi_num_gc_n) {
const int kShift = 12019;
IdentityMapTester t(isolate()->heap(), zone());
int smi_keys[] = {1, 2, 7, 15, 23};
Handle<Object> num_keys[] = {num(1.1), num(2.2), num(3.3), num(4.4),
num(5.5), num(6.6), num(7.7), num(8.8),
num(9.9), num(10.1)};
// Initialize the map first.
for (size_t i = 0; i < arraysize(smi_keys); i++) {
t.map.Insert(smi(smi_keys[i]), &smi_keys[i]);
}
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.map.Insert(num_keys[i], &num_keys[i]);
}
// Check the above initialization.
for (size_t i = 0; i < arraysize(smi_keys); i++) {
t.CheckFind(smi(smi_keys[i]), &smi_keys[i]);
}
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.CheckFind(num_keys[i], &num_keys[i]);
}
// Simulate a GC by moving SMIs.
// Ironically the SMIs "move", but the heap numbers don't!
t.SimulateGCByIncrementingSmisBy(kShift);
// Check that searching for the incremented smis finds the same values.
for (size_t i = 0; i < arraysize(smi_keys); i++) {
t.CheckFind(smi(smi_keys[i] + kShift), &smi_keys[i]);
t.CheckFindOrInsert(smi(smi_keys[i] + kShift), &smi_keys[i]);
}
// Check that searching for the numbers finds the same values.
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.CheckFind(num_keys[i], &num_keys[i]);
t.CheckFindOrInsert(num_keys[i], &num_keys[i]);
}
}
TEST_F(IdentityMapTest, Delete_smi_num_gc_n) {
const int kShift = 12019;
IdentityMapTester t(isolate()->heap(), zone());
int smi_keys[] = {1, 2, 7, 15, 23};
Handle<Object> num_keys[] = {num(1.1), num(2.2), num(3.3), num(4.4),
num(5.5), num(6.6), num(7.7), num(8.8),
num(9.9), num(10.1)};
// Initialize the map first.
for (size_t i = 0; i < arraysize(smi_keys); i++) {
t.map.Insert(smi(smi_keys[i]), &smi_keys[i]);
}
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.map.Insert(num_keys[i], &num_keys[i]);
}
// Simulate a GC by moving SMIs.
// Ironically the SMIs "move", but the heap numbers don't!
t.SimulateGCByIncrementingSmisBy(kShift);
// Check that deleting for the incremented smis finds the same values.
for (size_t i = 0; i < arraysize(smi_keys); i++) {
t.CheckDelete(smi(smi_keys[i] + kShift), &smi_keys[i]);
}
// Check that deleting the numbers finds the same values.
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.CheckDelete(num_keys[i], &num_keys[i]);
}
}
TEST_F(IdentityMapTest, Delete_smi_resizes) {
const int kKeyCount = 1024;
const int kValueOffset = 27;
IdentityMapTester t(isolate()->heap(), zone());
// Insert one element to initialize map.
t.map.Insert(smi(0), reinterpret_cast<void*>(kValueOffset));
int initial_capacity = t.map.capacity();
CHECK_LT(initial_capacity, kKeyCount);
// Insert another kKeyCount - 1 keys.
for (int i = 1; i < kKeyCount; i++) {
t.map.Insert(smi(i), reinterpret_cast<void*>(i + kValueOffset));
}
// Check capacity increased.
CHECK_GT(t.map.capacity(), initial_capacity);
CHECK_GE(t.map.capacity(), kKeyCount);
// Delete all the keys.
for (int i = 0; i < kKeyCount; i++) {
t.CheckDelete(smi(i), reinterpret_cast<void*>(i + kValueOffset));
}
// Should resize back to initial capacity.
CHECK_EQ(t.map.capacity(), initial_capacity);
}
TEST_F(IdentityMapTest, Iterator_smi_num) {
IdentityMapTester t(isolate()->heap(), zone());
int smi_keys[] = {1, 2, 7, 15, 23};
Handle<Object> num_keys[] = {num(1.1), num(2.2), num(3.3), num(4.4),
num(5.5), num(6.6), num(7.7), num(8.8),
num(9.9), num(10.1)};
// Initialize the map.
for (size_t i = 0; i < arraysize(smi_keys); i++) {
t.map.Insert(smi(smi_keys[i]), reinterpret_cast<void*>(i));
}
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.map.Insert(num_keys[i], reinterpret_cast<void*>(i + 5));
}
// Check iterator sees all values once.
std::set<intptr_t> seen;
{
IdentityMap<void*, ZoneAllocationPolicy>::IteratableScope it_scope(&t.map);
for (auto it = it_scope.begin(); it != it_scope.end(); ++it) {
CHECK(seen.find(reinterpret_cast<intptr_t>(**it)) == seen.end());
seen.insert(reinterpret_cast<intptr_t>(**it));
}
}
for (intptr_t i = 0; i < 15; i++) {
CHECK(seen.find(i) != seen.end());
}
}
TEST_F(IdentityMapTest, Iterator_smi_num_gc) {
const int kShift = 16039;
IdentityMapTester t(isolate()->heap(), zone());
int smi_keys[] = {1, 2, 7, 15, 23};
Handle<Object> num_keys[] = {num(1.1), num(2.2), num(3.3), num(4.4),
num(5.5), num(6.6), num(7.7), num(8.8),
num(9.9), num(10.1)};
// Initialize the map.
for (size_t i = 0; i < arraysize(smi_keys); i++) {
t.map.Insert(smi(smi_keys[i]), reinterpret_cast<void*>(i));
}
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.map.Insert(num_keys[i], reinterpret_cast<void*>(i + 5));
}
// Simulate GC by moving the SMIs.
t.SimulateGCByIncrementingSmisBy(kShift);
// Check iterator sees all values.
std::set<intptr_t> seen;
{
IdentityMap<void*, ZoneAllocationPolicy>::IteratableScope it_scope(&t.map);
for (auto it = it_scope.begin(); it != it_scope.end(); ++it) {
CHECK(seen.find(reinterpret_cast<intptr_t>(**it)) == seen.end());
seen.insert(reinterpret_cast<intptr_t>(**it));
}
}
for (intptr_t i = 0; i < 15; i++) {
CHECK(seen.find(i) != seen.end());
}
}
TEST_F(IdentityMapTest, IterateCollisions_1) { IterateCollisionTest(1); }
TEST_F(IdentityMapTest, IterateCollisions_2) { IterateCollisionTest(2); }
TEST_F(IdentityMapTest, IterateCollisions_3) { IterateCollisionTest(3); }
TEST_F(IdentityMapTest, IterateCollisions_5) { IterateCollisionTest(5); }
TEST_F(IdentityMapTest, IterateCollisions_7) { IterateCollisionTest(7); }
TEST_F(IdentityMapTest, Collisions_1) { CollisionTest(1); }
TEST_F(IdentityMapTest, Collisions_2) { CollisionTest(2); }
TEST_F(IdentityMapTest, Collisions_3) { CollisionTest(3); }
TEST_F(IdentityMapTest, Collisions_5) { CollisionTest(5); }
TEST_F(IdentityMapTest, Collisions_7) { CollisionTest(7); }
TEST_F(IdentityMapTest, Resize) { CollisionTest(9, false, true); }
TEST_F(IdentityMapTest, Rehash) { CollisionTest(11, true, false); }
TEST_F(IdentityMapTest, ExplicitGC) {
IdentityMapTester t(isolate()->heap(), zone());
Handle<Object> num_keys[] = {num(2.1), num(2.4), num(3.3), num(4.3),
num(7.5), num(6.4), num(7.3), num(8.3),
num(8.9), num(10.4)};
// Insert some objects that should be in new space.
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.map.Insert(num_keys[i], &num_keys[i]);
}
// Do an explicit, real GC.
CollectGarbage(i::NEW_SPACE);
// Check that searching for the numbers finds the same values.
for (size_t i = 0; i < arraysize(num_keys); i++) {
t.CheckFind(num_keys[i], &num_keys[i]);
t.CheckFindOrInsert(num_keys[i], &num_keys[i]);
}
}
TEST_F(IdentityMapTest, CanonicalHandleScope) {
HandleScope outer(isolate());
CanonicalHandleScope outer_canonical(isolate());
// Deduplicate smi handles.
std::vector<Handle<Object>> smi_handles;
for (int i = 0; i < 100; i++) {
smi_handles.push_back(Handle<Object>(Smi::FromInt(i), isolate()));
}
Address* next_handle = isolate()->handle_scope_data()->next;
for (int i = 0; i < 100; i++) {
Handle<Object> new_smi = Handle<Object>(Smi::FromInt(i), isolate());
Handle<Object> old_smi = smi_handles[i];
CHECK_EQ(new_smi.location(), old_smi.location());
}
// Check that no new handles have been allocated.
CHECK_EQ(next_handle, isolate()->handle_scope_data()->next);
// Deduplicate root list items.
Handle<String> empty_string(ReadOnlyRoots(isolate()->heap()).empty_string(),
isolate());
Handle<Map> free_space_map(ReadOnlyRoots(isolate()->heap()).free_space_map(),
isolate());
Handle<Symbol> uninitialized_symbol(
ReadOnlyRoots(isolate()->heap()).uninitialized_symbol(), isolate());
CHECK_EQ(isolate()->factory()->empty_string().location(),
empty_string.location());
CHECK_EQ(isolate()->factory()->free_space_map().location(),
free_space_map.location());
CHECK_EQ(isolate()->factory()->uninitialized_symbol().location(),
uninitialized_symbol.location());
// Check that no new handles have been allocated.
CHECK_EQ(next_handle, isolate()->handle_scope_data()->next);
// Test ordinary heap objects.
Handle<HeapNumber> number1 = isolate()->factory()->NewHeapNumber(3.3);
Handle<String> string1 =
isolate()->factory()->NewStringFromAsciiChecked("test");
next_handle = isolate()->handle_scope_data()->next;
Handle<HeapNumber> number2(*number1, isolate());
Handle<String> string2(*string1, isolate());
CHECK_EQ(number1.location(), number2.location());
CHECK_EQ(string1.location(), string2.location());
CollectAllGarbage();
Handle<HeapNumber> number3(*number2, isolate());
Handle<String> string3(*string2, isolate());
CHECK_EQ(number1.location(), number3.location());
CHECK_EQ(string1.location(), string3.location());
// Check that no new handles have been allocated.
CHECK_EQ(next_handle, isolate()->handle_scope_data()->next);
// Inner handle scope do not create canonical handles.
{
HandleScope inner(isolate());
Handle<HeapNumber> number4(*number1, isolate());
Handle<String> string4(*string1, isolate());
CHECK_NE(number1.location(), number4.location());
CHECK_NE(string1.location(), string4.location());
// Nested canonical scope does not conflict with outer canonical scope,
// but does not canonicalize across scopes.
CanonicalHandleScope inner_canonical(isolate());
Handle<HeapNumber> number5(*number4, isolate());
Handle<String> string5(*string4, isolate());
CHECK_NE(number4.location(), number5.location());
CHECK_NE(string4.location(), string5.location());
CHECK_NE(number1.location(), number5.location());
CHECK_NE(string1.location(), string5.location());
Handle<HeapNumber> number6(*number1, isolate());
Handle<String> string6(*string1, isolate());
CHECK_NE(number4.location(), number6.location());
CHECK_NE(string4.location(), string6.location());
CHECK_NE(number1.location(), number6.location());
CHECK_NE(string1.location(), string6.location());
CHECK_EQ(number5.location(), number6.location());
CHECK_EQ(string5.location(), string6.location());
}
}
TEST_F(IdentityMapTest, GCShortCutting) {
if (v8_flags.single_generation) return;
// We don't create ThinStrings immediately when using the forwarding table.
if (v8_flags.always_use_string_forwarding_table) return;
v8_flags.shortcut_strings_with_stack = true;
ManualGCScope manual_gc_scope(isolate());
IdentityMapTester t(isolate()->heap(), zone());
Factory* factory = isolate()->factory();
const int kDummyValue = 0;
for (int i = 0; i < 16; i++) {
// Insert a varying number of Smis as padding to ensure some tests straddle
// a boundary where the thin string short cutting will cause size_ to be
// greater to capacity_ if not corrected by IdentityMap
// (see crbug.com/704132).
for (int j = 0; j < i; j++) {
t.map.Insert(smi(j), reinterpret_cast<void*>(kDummyValue));
}
Handle<String> thin_string =
factory->NewStringFromAsciiChecked("thin_string");
Handle<String> internalized_string =
factory->InternalizeString(thin_string);
DCHECK(thin_string->IsThinString());
DCHECK_NE(*thin_string, *internalized_string);
// Insert both keys into the map.
t.map.Insert(thin_string, &thin_string);
t.map.Insert(internalized_string, &internalized_string);
// Do an explicit, real GC, this should short-cut the thin string to point
// to the internalized string (this is not implemented for MinorMC).
CollectGarbage(i::NEW_SPACE);
DCHECK_IMPLIES(!v8_flags.minor_mc && !v8_flags.optimize_for_size,
*thin_string == *internalized_string);
// Check that getting the object points to one of the handles.
void** thin_string_entry = t.map.Find(thin_string);
CHECK(*thin_string_entry == &thin_string ||
*thin_string_entry == &internalized_string);
void** internalized_string_entry = t.map.Find(internalized_string);
CHECK(*internalized_string_entry == &thin_string ||
*internalized_string_entry == &internalized_string);
// Trigger resize.
for (int j = 0; j < 16; j++) {
t.map.Insert(smi(j + 16), reinterpret_cast<void*>(kDummyValue));
}
t.map.Clear();
}
}
} // namespace internal
} // namespace v8