42ce84134f
Breaks arm build. BUG= TBR=titzer@chromium.org Review URL: https://codereview.chromium.org/24255015 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16903 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
5797 lines
195 KiB
C++
5797 lines
195 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
||
// Redistribution and use in source and binary forms, with or without
|
||
// modification, are permitted provided that the following conditions are
|
||
// met:
|
||
//
|
||
// * Redistributions of source code must retain the above copyright
|
||
// notice, this list of conditions and the following disclaimer.
|
||
// * Redistributions in binary form must reproduce the above
|
||
// copyright notice, this list of conditions and the following
|
||
// disclaimer in the documentation and/or other materials provided
|
||
// with the distribution.
|
||
// * Neither the name of Google Inc. nor the names of its
|
||
// contributors may be used to endorse or promote products derived
|
||
// from this software without specific prior written permission.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
||
#include "v8.h"
|
||
|
||
#include "arm/lithium-codegen-arm.h"
|
||
#include "arm/lithium-gap-resolver-arm.h"
|
||
#include "code-stubs.h"
|
||
#include "stub-cache.h"
|
||
#include "hydrogen-osr.h"
|
||
|
||
namespace v8 {
|
||
namespace internal {
|
||
|
||
|
||
class SafepointGenerator V8_FINAL : public CallWrapper {
|
||
public:
|
||
SafepointGenerator(LCodeGen* codegen,
|
||
LPointerMap* pointers,
|
||
Safepoint::DeoptMode mode)
|
||
: codegen_(codegen),
|
||
pointers_(pointers),
|
||
deopt_mode_(mode) { }
|
||
virtual ~SafepointGenerator() {}
|
||
|
||
virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
|
||
|
||
virtual void AfterCall() const V8_OVERRIDE {
|
||
codegen_->RecordSafepoint(pointers_, deopt_mode_);
|
||
}
|
||
|
||
private:
|
||
LCodeGen* codegen_;
|
||
LPointerMap* pointers_;
|
||
Safepoint::DeoptMode deopt_mode_;
|
||
};
|
||
|
||
|
||
#define __ masm()->
|
||
|
||
bool LCodeGen::GenerateCode() {
|
||
LPhase phase("Z_Code generation", chunk());
|
||
ASSERT(is_unused());
|
||
status_ = GENERATING;
|
||
|
||
// Open a frame scope to indicate that there is a frame on the stack. The
|
||
// NONE indicates that the scope shouldn't actually generate code to set up
|
||
// the frame (that is done in GeneratePrologue).
|
||
FrameScope frame_scope(masm_, StackFrame::NONE);
|
||
|
||
return GeneratePrologue() &&
|
||
GenerateBody() &&
|
||
GenerateDeferredCode() &&
|
||
GenerateDeoptJumpTable() &&
|
||
GenerateSafepointTable();
|
||
}
|
||
|
||
|
||
void LCodeGen::FinishCode(Handle<Code> code) {
|
||
ASSERT(is_done());
|
||
code->set_stack_slots(GetStackSlotCount());
|
||
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
|
||
if (FLAG_weak_embedded_maps_in_optimized_code) {
|
||
RegisterDependentCodeForEmbeddedMaps(code);
|
||
}
|
||
PopulateDeoptimizationData(code);
|
||
info()->CommitDependencies(code);
|
||
}
|
||
|
||
|
||
void LCodeGen::Abort(BailoutReason reason) {
|
||
info()->set_bailout_reason(reason);
|
||
status_ = ABORTED;
|
||
}
|
||
|
||
|
||
void LCodeGen::Comment(const char* format, ...) {
|
||
if (!FLAG_code_comments) return;
|
||
char buffer[4 * KB];
|
||
StringBuilder builder(buffer, ARRAY_SIZE(buffer));
|
||
va_list arguments;
|
||
va_start(arguments, format);
|
||
builder.AddFormattedList(format, arguments);
|
||
va_end(arguments);
|
||
|
||
// Copy the string before recording it in the assembler to avoid
|
||
// issues when the stack allocated buffer goes out of scope.
|
||
size_t length = builder.position();
|
||
Vector<char> copy = Vector<char>::New(length + 1);
|
||
OS::MemCopy(copy.start(), builder.Finalize(), copy.length());
|
||
masm()->RecordComment(copy.start());
|
||
}
|
||
|
||
|
||
bool LCodeGen::GeneratePrologue() {
|
||
ASSERT(is_generating());
|
||
|
||
if (info()->IsOptimizing()) {
|
||
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
|
||
|
||
#ifdef DEBUG
|
||
if (strlen(FLAG_stop_at) > 0 &&
|
||
info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
|
||
__ stop("stop_at");
|
||
}
|
||
#endif
|
||
|
||
// r1: Callee's JS function.
|
||
// cp: Callee's context.
|
||
// fp: Caller's frame pointer.
|
||
// lr: Caller's pc.
|
||
|
||
// Strict mode functions and builtins need to replace the receiver
|
||
// with undefined when called as functions (without an explicit
|
||
// receiver object). r5 is zero for method calls and non-zero for
|
||
// function calls.
|
||
if (!info_->is_classic_mode() || info_->is_native()) {
|
||
Label ok;
|
||
__ cmp(r5, Operand::Zero());
|
||
__ b(eq, &ok);
|
||
int receiver_offset = scope()->num_parameters() * kPointerSize;
|
||
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
|
||
__ str(r2, MemOperand(sp, receiver_offset));
|
||
__ bind(&ok);
|
||
}
|
||
}
|
||
|
||
info()->set_prologue_offset(masm_->pc_offset());
|
||
if (NeedsEagerFrame()) {
|
||
if (info()->IsStub()) {
|
||
__ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
|
||
__ Push(Smi::FromInt(StackFrame::STUB));
|
||
// Adjust FP to point to saved FP.
|
||
__ add(fp, sp, Operand(2 * kPointerSize));
|
||
} else {
|
||
PredictableCodeSizeScope predictible_code_size_scope(
|
||
masm_, kNoCodeAgeSequenceLength * Assembler::kInstrSize);
|
||
// The following three instructions must remain together and unmodified
|
||
// for code aging to work properly.
|
||
__ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit());
|
||
__ nop(ip.code());
|
||
// Adjust FP to point to saved FP.
|
||
__ add(fp, sp, Operand(2 * kPointerSize));
|
||
}
|
||
frame_is_built_ = true;
|
||
info_->AddNoFrameRange(0, masm_->pc_offset());
|
||
}
|
||
|
||
// Reserve space for the stack slots needed by the code.
|
||
int slots = GetStackSlotCount();
|
||
if (slots > 0) {
|
||
if (FLAG_debug_code) {
|
||
__ sub(sp, sp, Operand(slots * kPointerSize));
|
||
__ push(r0);
|
||
__ push(r1);
|
||
__ add(r0, sp, Operand(slots * kPointerSize));
|
||
__ mov(r1, Operand(kSlotsZapValue));
|
||
Label loop;
|
||
__ bind(&loop);
|
||
__ sub(r0, r0, Operand(kPointerSize));
|
||
__ str(r1, MemOperand(r0, 2 * kPointerSize));
|
||
__ cmp(r0, sp);
|
||
__ b(ne, &loop);
|
||
__ pop(r1);
|
||
__ pop(r0);
|
||
} else {
|
||
__ sub(sp, sp, Operand(slots * kPointerSize));
|
||
}
|
||
}
|
||
|
||
if (info()->saves_caller_doubles()) {
|
||
Comment(";;; Save clobbered callee double registers");
|
||
int count = 0;
|
||
BitVector* doubles = chunk()->allocated_double_registers();
|
||
BitVector::Iterator save_iterator(doubles);
|
||
while (!save_iterator.Done()) {
|
||
__ vstr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()),
|
||
MemOperand(sp, count * kDoubleSize));
|
||
save_iterator.Advance();
|
||
count++;
|
||
}
|
||
}
|
||
|
||
// Possibly allocate a local context.
|
||
int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
|
||
if (heap_slots > 0) {
|
||
Comment(";;; Allocate local context");
|
||
// Argument to NewContext is the function, which is in r1.
|
||
__ push(r1);
|
||
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
|
||
FastNewContextStub stub(heap_slots);
|
||
__ CallStub(&stub);
|
||
} else {
|
||
__ CallRuntime(Runtime::kNewFunctionContext, 1);
|
||
}
|
||
RecordSafepoint(Safepoint::kNoLazyDeopt);
|
||
// Context is returned in both r0 and cp. It replaces the context
|
||
// passed to us. It's saved in the stack and kept live in cp.
|
||
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
||
// Copy any necessary parameters into the context.
|
||
int num_parameters = scope()->num_parameters();
|
||
for (int i = 0; i < num_parameters; i++) {
|
||
Variable* var = scope()->parameter(i);
|
||
if (var->IsContextSlot()) {
|
||
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
|
||
(num_parameters - 1 - i) * kPointerSize;
|
||
// Load parameter from stack.
|
||
__ ldr(r0, MemOperand(fp, parameter_offset));
|
||
// Store it in the context.
|
||
MemOperand target = ContextOperand(cp, var->index());
|
||
__ str(r0, target);
|
||
// Update the write barrier. This clobbers r3 and r0.
|
||
__ RecordWriteContextSlot(
|
||
cp,
|
||
target.offset(),
|
||
r0,
|
||
r3,
|
||
GetLinkRegisterState(),
|
||
kSaveFPRegs);
|
||
}
|
||
}
|
||
Comment(";;; End allocate local context");
|
||
}
|
||
|
||
// Trace the call.
|
||
if (FLAG_trace && info()->IsOptimizing()) {
|
||
__ CallRuntime(Runtime::kTraceEnter, 0);
|
||
}
|
||
return !is_aborted();
|
||
}
|
||
|
||
|
||
void LCodeGen::GenerateOsrPrologue() {
|
||
// Generate the OSR entry prologue at the first unknown OSR value, or if there
|
||
// are none, at the OSR entrypoint instruction.
|
||
if (osr_pc_offset_ >= 0) return;
|
||
|
||
osr_pc_offset_ = masm()->pc_offset();
|
||
|
||
// Adjust the frame size, subsuming the unoptimized frame into the
|
||
// optimized frame.
|
||
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
|
||
ASSERT(slots >= 0);
|
||
__ sub(sp, sp, Operand(slots * kPointerSize));
|
||
}
|
||
|
||
|
||
bool LCodeGen::GenerateBody() {
|
||
ASSERT(is_generating());
|
||
bool emit_instructions = true;
|
||
for (current_instruction_ = 0;
|
||
!is_aborted() && current_instruction_ < instructions_->length();
|
||
current_instruction_++) {
|
||
LInstruction* instr = instructions_->at(current_instruction_);
|
||
|
||
// Don't emit code for basic blocks with a replacement.
|
||
if (instr->IsLabel()) {
|
||
emit_instructions = !LLabel::cast(instr)->HasReplacement();
|
||
}
|
||
if (!emit_instructions) continue;
|
||
|
||
if (FLAG_code_comments && instr->HasInterestingComment(this)) {
|
||
Comment(";;; <@%d,#%d> %s",
|
||
current_instruction_,
|
||
instr->hydrogen_value()->id(),
|
||
instr->Mnemonic());
|
||
}
|
||
|
||
RecordAndUpdatePosition(instr->position());
|
||
|
||
instr->CompileToNative(this);
|
||
}
|
||
EnsureSpaceForLazyDeopt();
|
||
last_lazy_deopt_pc_ = masm()->pc_offset();
|
||
return !is_aborted();
|
||
}
|
||
|
||
|
||
bool LCodeGen::GenerateDeferredCode() {
|
||
ASSERT(is_generating());
|
||
if (deferred_.length() > 0) {
|
||
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
|
||
LDeferredCode* code = deferred_[i];
|
||
|
||
int pos = instructions_->at(code->instruction_index())->position();
|
||
RecordAndUpdatePosition(pos);
|
||
|
||
Comment(";;; <@%d,#%d> "
|
||
"-------------------- Deferred %s --------------------",
|
||
code->instruction_index(),
|
||
code->instr()->hydrogen_value()->id(),
|
||
code->instr()->Mnemonic());
|
||
__ bind(code->entry());
|
||
if (NeedsDeferredFrame()) {
|
||
Comment(";;; Build frame");
|
||
ASSERT(!frame_is_built_);
|
||
ASSERT(info()->IsStub());
|
||
frame_is_built_ = true;
|
||
__ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
|
||
__ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
|
||
__ push(scratch0());
|
||
__ add(fp, sp, Operand(2 * kPointerSize));
|
||
Comment(";;; Deferred code");
|
||
}
|
||
code->Generate();
|
||
if (NeedsDeferredFrame()) {
|
||
Comment(";;; Destroy frame");
|
||
ASSERT(frame_is_built_);
|
||
__ pop(ip);
|
||
__ ldm(ia_w, sp, cp.bit() | fp.bit() | lr.bit());
|
||
frame_is_built_ = false;
|
||
}
|
||
__ jmp(code->exit());
|
||
}
|
||
}
|
||
|
||
// Force constant pool emission at the end of the deferred code to make
|
||
// sure that no constant pools are emitted after.
|
||
masm()->CheckConstPool(true, false);
|
||
|
||
return !is_aborted();
|
||
}
|
||
|
||
|
||
bool LCodeGen::GenerateDeoptJumpTable() {
|
||
// Check that the jump table is accessible from everywhere in the function
|
||
// code, i.e. that offsets to the table can be encoded in the 24bit signed
|
||
// immediate of a branch instruction.
|
||
// To simplify we consider the code size from the first instruction to the
|
||
// end of the jump table. We also don't consider the pc load delta.
|
||
// Each entry in the jump table generates one instruction and inlines one
|
||
// 32bit data after it.
|
||
if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
|
||
deopt_jump_table_.length() * 7)) {
|
||
Abort(kGeneratedCodeIsTooLarge);
|
||
}
|
||
|
||
if (deopt_jump_table_.length() > 0) {
|
||
Comment(";;; -------------------- Jump table --------------------");
|
||
}
|
||
Label table_start;
|
||
__ bind(&table_start);
|
||
Label needs_frame;
|
||
for (int i = 0; i < deopt_jump_table_.length(); i++) {
|
||
__ bind(&deopt_jump_table_[i].label);
|
||
Address entry = deopt_jump_table_[i].address;
|
||
Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type;
|
||
int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
|
||
if (id == Deoptimizer::kNotDeoptimizationEntry) {
|
||
Comment(";;; jump table entry %d.", i);
|
||
} else {
|
||
Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
|
||
}
|
||
if (deopt_jump_table_[i].needs_frame) {
|
||
__ mov(ip, Operand(ExternalReference::ForDeoptEntry(entry)));
|
||
if (needs_frame.is_bound()) {
|
||
__ b(&needs_frame);
|
||
} else {
|
||
__ bind(&needs_frame);
|
||
__ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
|
||
// This variant of deopt can only be used with stubs. Since we don't
|
||
// have a function pointer to install in the stack frame that we're
|
||
// building, install a special marker there instead.
|
||
ASSERT(info()->IsStub());
|
||
__ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
|
||
__ push(scratch0());
|
||
__ add(fp, sp, Operand(2 * kPointerSize));
|
||
__ mov(lr, Operand(pc), LeaveCC, al);
|
||
__ mov(pc, ip);
|
||
}
|
||
} else {
|
||
__ mov(lr, Operand(pc), LeaveCC, al);
|
||
__ mov(pc, Operand(ExternalReference::ForDeoptEntry(entry)));
|
||
}
|
||
masm()->CheckConstPool(false, false);
|
||
}
|
||
|
||
// Force constant pool emission at the end of the deopt jump table to make
|
||
// sure that no constant pools are emitted after.
|
||
masm()->CheckConstPool(true, false);
|
||
|
||
// The deoptimization jump table is the last part of the instruction
|
||
// sequence. Mark the generated code as done unless we bailed out.
|
||
if (!is_aborted()) status_ = DONE;
|
||
return !is_aborted();
|
||
}
|
||
|
||
|
||
bool LCodeGen::GenerateSafepointTable() {
|
||
ASSERT(is_done());
|
||
safepoints_.Emit(masm(), GetStackSlotCount());
|
||
return !is_aborted();
|
||
}
|
||
|
||
|
||
Register LCodeGen::ToRegister(int index) const {
|
||
return Register::FromAllocationIndex(index);
|
||
}
|
||
|
||
|
||
DwVfpRegister LCodeGen::ToDoubleRegister(int index) const {
|
||
return DwVfpRegister::FromAllocationIndex(index);
|
||
}
|
||
|
||
|
||
Register LCodeGen::ToRegister(LOperand* op) const {
|
||
ASSERT(op->IsRegister());
|
||
return ToRegister(op->index());
|
||
}
|
||
|
||
|
||
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
|
||
if (op->IsRegister()) {
|
||
return ToRegister(op->index());
|
||
} else if (op->IsConstantOperand()) {
|
||
LConstantOperand* const_op = LConstantOperand::cast(op);
|
||
HConstant* constant = chunk_->LookupConstant(const_op);
|
||
Handle<Object> literal = constant->handle(isolate());
|
||
Representation r = chunk_->LookupLiteralRepresentation(const_op);
|
||
if (r.IsInteger32()) {
|
||
ASSERT(literal->IsNumber());
|
||
__ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
|
||
} else if (r.IsDouble()) {
|
||
Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
|
||
} else {
|
||
ASSERT(r.IsSmiOrTagged());
|
||
__ LoadObject(scratch, literal);
|
||
}
|
||
return scratch;
|
||
} else if (op->IsStackSlot() || op->IsArgument()) {
|
||
__ ldr(scratch, ToMemOperand(op));
|
||
return scratch;
|
||
}
|
||
UNREACHABLE();
|
||
return scratch;
|
||
}
|
||
|
||
|
||
DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
|
||
ASSERT(op->IsDoubleRegister());
|
||
return ToDoubleRegister(op->index());
|
||
}
|
||
|
||
|
||
DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
|
||
SwVfpRegister flt_scratch,
|
||
DwVfpRegister dbl_scratch) {
|
||
if (op->IsDoubleRegister()) {
|
||
return ToDoubleRegister(op->index());
|
||
} else if (op->IsConstantOperand()) {
|
||
LConstantOperand* const_op = LConstantOperand::cast(op);
|
||
HConstant* constant = chunk_->LookupConstant(const_op);
|
||
Handle<Object> literal = constant->handle(isolate());
|
||
Representation r = chunk_->LookupLiteralRepresentation(const_op);
|
||
if (r.IsInteger32()) {
|
||
ASSERT(literal->IsNumber());
|
||
__ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
|
||
__ vmov(flt_scratch, ip);
|
||
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
|
||
return dbl_scratch;
|
||
} else if (r.IsDouble()) {
|
||
Abort(kUnsupportedDoubleImmediate);
|
||
} else if (r.IsTagged()) {
|
||
Abort(kUnsupportedTaggedImmediate);
|
||
}
|
||
} else if (op->IsStackSlot() || op->IsArgument()) {
|
||
// TODO(regis): Why is vldr not taking a MemOperand?
|
||
// __ vldr(dbl_scratch, ToMemOperand(op));
|
||
MemOperand mem_op = ToMemOperand(op);
|
||
__ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
|
||
return dbl_scratch;
|
||
}
|
||
UNREACHABLE();
|
||
return dbl_scratch;
|
||
}
|
||
|
||
|
||
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
|
||
HConstant* constant = chunk_->LookupConstant(op);
|
||
ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
|
||
return constant->handle(isolate());
|
||
}
|
||
|
||
|
||
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
|
||
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
|
||
}
|
||
|
||
|
||
bool LCodeGen::IsSmi(LConstantOperand* op) const {
|
||
return chunk_->LookupLiteralRepresentation(op).IsSmi();
|
||
}
|
||
|
||
|
||
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
|
||
return ToRepresentation(op, Representation::Integer32());
|
||
}
|
||
|
||
|
||
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
|
||
const Representation& r) const {
|
||
HConstant* constant = chunk_->LookupConstant(op);
|
||
int32_t value = constant->Integer32Value();
|
||
if (r.IsInteger32()) return value;
|
||
ASSERT(r.IsSmiOrTagged());
|
||
return reinterpret_cast<int32_t>(Smi::FromInt(value));
|
||
}
|
||
|
||
|
||
Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
|
||
HConstant* constant = chunk_->LookupConstant(op);
|
||
return Smi::FromInt(constant->Integer32Value());
|
||
}
|
||
|
||
|
||
double LCodeGen::ToDouble(LConstantOperand* op) const {
|
||
HConstant* constant = chunk_->LookupConstant(op);
|
||
ASSERT(constant->HasDoubleValue());
|
||
return constant->DoubleValue();
|
||
}
|
||
|
||
|
||
Operand LCodeGen::ToOperand(LOperand* op) {
|
||
if (op->IsConstantOperand()) {
|
||
LConstantOperand* const_op = LConstantOperand::cast(op);
|
||
HConstant* constant = chunk()->LookupConstant(const_op);
|
||
Representation r = chunk_->LookupLiteralRepresentation(const_op);
|
||
if (r.IsSmi()) {
|
||
ASSERT(constant->HasSmiValue());
|
||
return Operand(Smi::FromInt(constant->Integer32Value()));
|
||
} else if (r.IsInteger32()) {
|
||
ASSERT(constant->HasInteger32Value());
|
||
return Operand(constant->Integer32Value());
|
||
} else if (r.IsDouble()) {
|
||
Abort(kToOperandUnsupportedDoubleImmediate);
|
||
}
|
||
ASSERT(r.IsTagged());
|
||
return Operand(constant->handle(isolate()));
|
||
} else if (op->IsRegister()) {
|
||
return Operand(ToRegister(op));
|
||
} else if (op->IsDoubleRegister()) {
|
||
Abort(kToOperandIsDoubleRegisterUnimplemented);
|
||
return Operand::Zero();
|
||
}
|
||
// Stack slots not implemented, use ToMemOperand instead.
|
||
UNREACHABLE();
|
||
return Operand::Zero();
|
||
}
|
||
|
||
|
||
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
|
||
ASSERT(!op->IsRegister());
|
||
ASSERT(!op->IsDoubleRegister());
|
||
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
|
||
return MemOperand(fp, StackSlotOffset(op->index()));
|
||
}
|
||
|
||
|
||
MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
|
||
ASSERT(op->IsDoubleStackSlot());
|
||
return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
|
||
}
|
||
|
||
|
||
void LCodeGen::WriteTranslation(LEnvironment* environment,
|
||
Translation* translation) {
|
||
if (environment == NULL) return;
|
||
|
||
// The translation includes one command per value in the environment.
|
||
int translation_size = environment->translation_size();
|
||
// The output frame height does not include the parameters.
|
||
int height = translation_size - environment->parameter_count();
|
||
|
||
WriteTranslation(environment->outer(), translation);
|
||
bool has_closure_id = !info()->closure().is_null() &&
|
||
!info()->closure().is_identical_to(environment->closure());
|
||
int closure_id = has_closure_id
|
||
? DefineDeoptimizationLiteral(environment->closure())
|
||
: Translation::kSelfLiteralId;
|
||
|
||
switch (environment->frame_type()) {
|
||
case JS_FUNCTION:
|
||
translation->BeginJSFrame(environment->ast_id(), closure_id, height);
|
||
break;
|
||
case JS_CONSTRUCT:
|
||
translation->BeginConstructStubFrame(closure_id, translation_size);
|
||
break;
|
||
case JS_GETTER:
|
||
ASSERT(translation_size == 1);
|
||
ASSERT(height == 0);
|
||
translation->BeginGetterStubFrame(closure_id);
|
||
break;
|
||
case JS_SETTER:
|
||
ASSERT(translation_size == 2);
|
||
ASSERT(height == 0);
|
||
translation->BeginSetterStubFrame(closure_id);
|
||
break;
|
||
case STUB:
|
||
translation->BeginCompiledStubFrame();
|
||
break;
|
||
case ARGUMENTS_ADAPTOR:
|
||
translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
|
||
break;
|
||
}
|
||
|
||
int object_index = 0;
|
||
int dematerialized_index = 0;
|
||
for (int i = 0; i < translation_size; ++i) {
|
||
LOperand* value = environment->values()->at(i);
|
||
AddToTranslation(environment,
|
||
translation,
|
||
value,
|
||
environment->HasTaggedValueAt(i),
|
||
environment->HasUint32ValueAt(i),
|
||
&object_index,
|
||
&dematerialized_index);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::AddToTranslation(LEnvironment* environment,
|
||
Translation* translation,
|
||
LOperand* op,
|
||
bool is_tagged,
|
||
bool is_uint32,
|
||
int* object_index_pointer,
|
||
int* dematerialized_index_pointer) {
|
||
if (op == LEnvironment::materialization_marker()) {
|
||
int object_index = (*object_index_pointer)++;
|
||
if (environment->ObjectIsDuplicateAt(object_index)) {
|
||
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
|
||
translation->DuplicateObject(dupe_of);
|
||
return;
|
||
}
|
||
int object_length = environment->ObjectLengthAt(object_index);
|
||
if (environment->ObjectIsArgumentsAt(object_index)) {
|
||
translation->BeginArgumentsObject(object_length);
|
||
} else {
|
||
translation->BeginCapturedObject(object_length);
|
||
}
|
||
int dematerialized_index = *dematerialized_index_pointer;
|
||
int env_offset = environment->translation_size() + dematerialized_index;
|
||
*dematerialized_index_pointer += object_length;
|
||
for (int i = 0; i < object_length; ++i) {
|
||
LOperand* value = environment->values()->at(env_offset + i);
|
||
AddToTranslation(environment,
|
||
translation,
|
||
value,
|
||
environment->HasTaggedValueAt(env_offset + i),
|
||
environment->HasUint32ValueAt(env_offset + i),
|
||
object_index_pointer,
|
||
dematerialized_index_pointer);
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (op->IsStackSlot()) {
|
||
if (is_tagged) {
|
||
translation->StoreStackSlot(op->index());
|
||
} else if (is_uint32) {
|
||
translation->StoreUint32StackSlot(op->index());
|
||
} else {
|
||
translation->StoreInt32StackSlot(op->index());
|
||
}
|
||
} else if (op->IsDoubleStackSlot()) {
|
||
translation->StoreDoubleStackSlot(op->index());
|
||
} else if (op->IsArgument()) {
|
||
ASSERT(is_tagged);
|
||
int src_index = GetStackSlotCount() + op->index();
|
||
translation->StoreStackSlot(src_index);
|
||
} else if (op->IsRegister()) {
|
||
Register reg = ToRegister(op);
|
||
if (is_tagged) {
|
||
translation->StoreRegister(reg);
|
||
} else if (is_uint32) {
|
||
translation->StoreUint32Register(reg);
|
||
} else {
|
||
translation->StoreInt32Register(reg);
|
||
}
|
||
} else if (op->IsDoubleRegister()) {
|
||
DoubleRegister reg = ToDoubleRegister(op);
|
||
translation->StoreDoubleRegister(reg);
|
||
} else if (op->IsConstantOperand()) {
|
||
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
|
||
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
|
||
translation->StoreLiteral(src_index);
|
||
} else {
|
||
UNREACHABLE();
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::CallCode(Handle<Code> code,
|
||
RelocInfo::Mode mode,
|
||
LInstruction* instr,
|
||
TargetAddressStorageMode storage_mode) {
|
||
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode);
|
||
}
|
||
|
||
|
||
void LCodeGen::CallCodeGeneric(Handle<Code> code,
|
||
RelocInfo::Mode mode,
|
||
LInstruction* instr,
|
||
SafepointMode safepoint_mode,
|
||
TargetAddressStorageMode storage_mode) {
|
||
EnsureSpaceForLazyDeopt();
|
||
ASSERT(instr != NULL);
|
||
// Block literal pool emission to ensure nop indicating no inlined smi code
|
||
// is in the correct position.
|
||
Assembler::BlockConstPoolScope block_const_pool(masm());
|
||
LPointerMap* pointers = instr->pointer_map();
|
||
RecordPosition(pointers->position());
|
||
__ Call(code, mode, TypeFeedbackId::None(), al, storage_mode);
|
||
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
|
||
|
||
// Signal that we don't inline smi code before these stubs in the
|
||
// optimizing code generator.
|
||
if (code->kind() == Code::BINARY_OP_IC ||
|
||
code->kind() == Code::COMPARE_IC) {
|
||
__ nop();
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::CallRuntime(const Runtime::Function* function,
|
||
int num_arguments,
|
||
LInstruction* instr) {
|
||
ASSERT(instr != NULL);
|
||
LPointerMap* pointers = instr->pointer_map();
|
||
ASSERT(pointers != NULL);
|
||
RecordPosition(pointers->position());
|
||
|
||
__ CallRuntime(function, num_arguments);
|
||
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
|
||
}
|
||
|
||
|
||
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
|
||
int argc,
|
||
LInstruction* instr) {
|
||
__ CallRuntimeSaveDoubles(id);
|
||
RecordSafepointWithRegisters(
|
||
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
|
||
}
|
||
|
||
|
||
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
|
||
Safepoint::DeoptMode mode) {
|
||
if (!environment->HasBeenRegistered()) {
|
||
// Physical stack frame layout:
|
||
// -x ............. -4 0 ..................................... y
|
||
// [incoming arguments] [spill slots] [pushed outgoing arguments]
|
||
|
||
// Layout of the environment:
|
||
// 0 ..................................................... size-1
|
||
// [parameters] [locals] [expression stack including arguments]
|
||
|
||
// Layout of the translation:
|
||
// 0 ........................................................ size - 1 + 4
|
||
// [expression stack including arguments] [locals] [4 words] [parameters]
|
||
// |>------------ translation_size ------------<|
|
||
|
||
int frame_count = 0;
|
||
int jsframe_count = 0;
|
||
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
|
||
++frame_count;
|
||
if (e->frame_type() == JS_FUNCTION) {
|
||
++jsframe_count;
|
||
}
|
||
}
|
||
Translation translation(&translations_, frame_count, jsframe_count, zone());
|
||
WriteTranslation(environment, &translation);
|
||
int deoptimization_index = deoptimizations_.length();
|
||
int pc_offset = masm()->pc_offset();
|
||
environment->Register(deoptimization_index,
|
||
translation.index(),
|
||
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
|
||
deoptimizations_.Add(environment, zone());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DeoptimizeIf(Condition condition,
|
||
LEnvironment* environment,
|
||
Deoptimizer::BailoutType bailout_type) {
|
||
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
|
||
ASSERT(environment->HasBeenRegistered());
|
||
int id = environment->deoptimization_index();
|
||
ASSERT(info()->IsOptimizing() || info()->IsStub());
|
||
Address entry =
|
||
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
|
||
if (entry == NULL) {
|
||
Abort(kBailoutWasNotPrepared);
|
||
return;
|
||
}
|
||
|
||
ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on ARM.
|
||
if (FLAG_deopt_every_n_times == 1 &&
|
||
!info()->IsStub() &&
|
||
info()->opt_count() == id) {
|
||
ASSERT(frame_is_built_);
|
||
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
|
||
return;
|
||
}
|
||
|
||
if (info()->ShouldTrapOnDeopt()) {
|
||
__ stop("trap_on_deopt", condition);
|
||
}
|
||
|
||
ASSERT(info()->IsStub() || frame_is_built_);
|
||
if (condition == al && frame_is_built_) {
|
||
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
|
||
} else {
|
||
// We often have several deopts to the same entry, reuse the last
|
||
// jump entry if this is the case.
|
||
if (deopt_jump_table_.is_empty() ||
|
||
(deopt_jump_table_.last().address != entry) ||
|
||
(deopt_jump_table_.last().bailout_type != bailout_type) ||
|
||
(deopt_jump_table_.last().needs_frame != !frame_is_built_)) {
|
||
Deoptimizer::JumpTableEntry table_entry(entry,
|
||
bailout_type,
|
||
!frame_is_built_);
|
||
deopt_jump_table_.Add(table_entry, zone());
|
||
}
|
||
__ b(condition, &deopt_jump_table_.last().label);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DeoptimizeIf(Condition condition,
|
||
LEnvironment* environment) {
|
||
Deoptimizer::BailoutType bailout_type = info()->IsStub()
|
||
? Deoptimizer::LAZY
|
||
: Deoptimizer::EAGER;
|
||
DeoptimizeIf(condition, environment, bailout_type);
|
||
}
|
||
|
||
|
||
void LCodeGen::RegisterDependentCodeForEmbeddedMaps(Handle<Code> code) {
|
||
ZoneList<Handle<Map> > maps(1, zone());
|
||
int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
|
||
for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) {
|
||
RelocInfo::Mode mode = it.rinfo()->rmode();
|
||
if (mode == RelocInfo::EMBEDDED_OBJECT &&
|
||
it.rinfo()->target_object()->IsMap()) {
|
||
Handle<Map> map(Map::cast(it.rinfo()->target_object()));
|
||
if (map->CanTransition()) {
|
||
maps.Add(map, zone());
|
||
}
|
||
}
|
||
}
|
||
#ifdef VERIFY_HEAP
|
||
// This disables verification of weak embedded maps after full GC.
|
||
// AddDependentCode can cause a GC, which would observe the state where
|
||
// this code is not yet in the depended code lists of the embedded maps.
|
||
NoWeakEmbeddedMapsVerificationScope disable_verification_of_embedded_maps;
|
||
#endif
|
||
for (int i = 0; i < maps.length(); i++) {
|
||
maps.at(i)->AddDependentCode(DependentCode::kWeaklyEmbeddedGroup, code);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
|
||
int length = deoptimizations_.length();
|
||
if (length == 0) return;
|
||
Handle<DeoptimizationInputData> data =
|
||
factory()->NewDeoptimizationInputData(length, TENURED);
|
||
|
||
Handle<ByteArray> translations =
|
||
translations_.CreateByteArray(isolate()->factory());
|
||
data->SetTranslationByteArray(*translations);
|
||
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
|
||
|
||
Handle<FixedArray> literals =
|
||
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
|
||
{ AllowDeferredHandleDereference copy_handles;
|
||
for (int i = 0; i < deoptimization_literals_.length(); i++) {
|
||
literals->set(i, *deoptimization_literals_[i]);
|
||
}
|
||
data->SetLiteralArray(*literals);
|
||
}
|
||
|
||
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
|
||
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
|
||
|
||
// Populate the deoptimization entries.
|
||
for (int i = 0; i < length; i++) {
|
||
LEnvironment* env = deoptimizations_[i];
|
||
data->SetAstId(i, env->ast_id());
|
||
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
|
||
data->SetArgumentsStackHeight(i,
|
||
Smi::FromInt(env->arguments_stack_height()));
|
||
data->SetPc(i, Smi::FromInt(env->pc_offset()));
|
||
}
|
||
code->set_deoptimization_data(*data);
|
||
}
|
||
|
||
|
||
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
|
||
int result = deoptimization_literals_.length();
|
||
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
|
||
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
|
||
}
|
||
deoptimization_literals_.Add(literal, zone());
|
||
return result;
|
||
}
|
||
|
||
|
||
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
|
||
ASSERT(deoptimization_literals_.length() == 0);
|
||
|
||
const ZoneList<Handle<JSFunction> >* inlined_closures =
|
||
chunk()->inlined_closures();
|
||
|
||
for (int i = 0, length = inlined_closures->length();
|
||
i < length;
|
||
i++) {
|
||
DefineDeoptimizationLiteral(inlined_closures->at(i));
|
||
}
|
||
|
||
inlined_function_count_ = deoptimization_literals_.length();
|
||
}
|
||
|
||
|
||
void LCodeGen::RecordSafepointWithLazyDeopt(
|
||
LInstruction* instr, SafepointMode safepoint_mode) {
|
||
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
|
||
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
|
||
} else {
|
||
ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
||
RecordSafepointWithRegisters(
|
||
instr->pointer_map(), 0, Safepoint::kLazyDeopt);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::RecordSafepoint(
|
||
LPointerMap* pointers,
|
||
Safepoint::Kind kind,
|
||
int arguments,
|
||
Safepoint::DeoptMode deopt_mode) {
|
||
ASSERT(expected_safepoint_kind_ == kind);
|
||
|
||
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
|
||
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
|
||
kind, arguments, deopt_mode);
|
||
for (int i = 0; i < operands->length(); i++) {
|
||
LOperand* pointer = operands->at(i);
|
||
if (pointer->IsStackSlot()) {
|
||
safepoint.DefinePointerSlot(pointer->index(), zone());
|
||
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
|
||
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
|
||
}
|
||
}
|
||
if (kind & Safepoint::kWithRegisters) {
|
||
// Register cp always contains a pointer to the context.
|
||
safepoint.DefinePointerRegister(cp, zone());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
|
||
Safepoint::DeoptMode deopt_mode) {
|
||
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
|
||
}
|
||
|
||
|
||
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
|
||
LPointerMap empty_pointers(RelocInfo::kNoPosition, zone());
|
||
RecordSafepoint(&empty_pointers, deopt_mode);
|
||
}
|
||
|
||
|
||
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
|
||
int arguments,
|
||
Safepoint::DeoptMode deopt_mode) {
|
||
RecordSafepoint(
|
||
pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
|
||
}
|
||
|
||
|
||
void LCodeGen::RecordSafepointWithRegistersAndDoubles(
|
||
LPointerMap* pointers,
|
||
int arguments,
|
||
Safepoint::DeoptMode deopt_mode) {
|
||
RecordSafepoint(
|
||
pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
|
||
}
|
||
|
||
|
||
void LCodeGen::RecordPosition(int position) {
|
||
if (position == RelocInfo::kNoPosition) return;
|
||
masm()->positions_recorder()->RecordPosition(position);
|
||
}
|
||
|
||
|
||
void LCodeGen::RecordAndUpdatePosition(int position) {
|
||
if (position >= 0 && position != old_position_) {
|
||
masm()->positions_recorder()->RecordPosition(position);
|
||
old_position_ = position;
|
||
}
|
||
}
|
||
|
||
|
||
static const char* LabelType(LLabel* label) {
|
||
if (label->is_loop_header()) return " (loop header)";
|
||
if (label->is_osr_entry()) return " (OSR entry)";
|
||
return "";
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLabel(LLabel* label) {
|
||
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
|
||
current_instruction_,
|
||
label->hydrogen_value()->id(),
|
||
label->block_id(),
|
||
LabelType(label));
|
||
__ bind(label->label());
|
||
current_block_ = label->block_id();
|
||
DoGap(label);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoParallelMove(LParallelMove* move) {
|
||
resolver_.Resolve(move);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoGap(LGap* gap) {
|
||
for (int i = LGap::FIRST_INNER_POSITION;
|
||
i <= LGap::LAST_INNER_POSITION;
|
||
i++) {
|
||
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
|
||
LParallelMove* move = gap->GetParallelMove(inner_pos);
|
||
if (move != NULL) DoParallelMove(move);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
|
||
DoGap(instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoParameter(LParameter* instr) {
|
||
// Nothing to do.
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallStub(LCallStub* instr) {
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
switch (instr->hydrogen()->major_key()) {
|
||
case CodeStub::RegExpConstructResult: {
|
||
RegExpConstructResultStub stub;
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
break;
|
||
}
|
||
case CodeStub::RegExpExec: {
|
||
RegExpExecStub stub;
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
break;
|
||
}
|
||
case CodeStub::SubString: {
|
||
SubStringStub stub;
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
break;
|
||
}
|
||
case CodeStub::NumberToString: {
|
||
NumberToStringStub stub;
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
break;
|
||
}
|
||
case CodeStub::StringCompare: {
|
||
StringCompareStub stub;
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
break;
|
||
}
|
||
case CodeStub::TranscendentalCache: {
|
||
__ ldr(r0, MemOperand(sp, 0));
|
||
TranscendentalCacheStub stub(instr->transcendental_type(),
|
||
TranscendentalCacheStub::TAGGED);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
break;
|
||
}
|
||
default:
|
||
UNREACHABLE();
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
|
||
GenerateOsrPrologue();
|
||
}
|
||
|
||
|
||
void LCodeGen::DoModI(LModI* instr) {
|
||
HMod* hmod = instr->hydrogen();
|
||
HValue* left = hmod->left();
|
||
HValue* right = hmod->right();
|
||
if (hmod->HasPowerOf2Divisor()) {
|
||
// TODO(svenpanne) We should really do the strength reduction on the
|
||
// Hydrogen level.
|
||
Register left_reg = ToRegister(instr->left());
|
||
Register result_reg = ToRegister(instr->result());
|
||
|
||
// Note: The code below even works when right contains kMinInt.
|
||
int32_t divisor = Abs(right->GetInteger32Constant());
|
||
|
||
Label left_is_not_negative, done;
|
||
if (left->CanBeNegative()) {
|
||
__ cmp(left_reg, Operand::Zero());
|
||
__ b(pl, &left_is_not_negative);
|
||
__ rsb(result_reg, left_reg, Operand::Zero());
|
||
__ and_(result_reg, result_reg, Operand(divisor - 1));
|
||
__ rsb(result_reg, result_reg, Operand::Zero(), SetCC);
|
||
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
__ b(&done);
|
||
}
|
||
|
||
__ bind(&left_is_not_negative);
|
||
__ and_(result_reg, left_reg, Operand(divisor - 1));
|
||
__ bind(&done);
|
||
|
||
} else if (hmod->fixed_right_arg().has_value) {
|
||
Register left_reg = ToRegister(instr->left());
|
||
Register right_reg = ToRegister(instr->right());
|
||
Register result_reg = ToRegister(instr->result());
|
||
|
||
int32_t divisor = hmod->fixed_right_arg().value;
|
||
ASSERT(IsPowerOf2(divisor));
|
||
|
||
// Check if our assumption of a fixed right operand still holds.
|
||
__ cmp(right_reg, Operand(divisor));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
|
||
Label left_is_not_negative, done;
|
||
if (left->CanBeNegative()) {
|
||
__ cmp(left_reg, Operand::Zero());
|
||
__ b(pl, &left_is_not_negative);
|
||
__ rsb(result_reg, left_reg, Operand::Zero());
|
||
__ and_(result_reg, result_reg, Operand(divisor - 1));
|
||
__ rsb(result_reg, result_reg, Operand::Zero(), SetCC);
|
||
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
__ b(&done);
|
||
}
|
||
|
||
__ bind(&left_is_not_negative);
|
||
__ and_(result_reg, left_reg, Operand(divisor - 1));
|
||
__ bind(&done);
|
||
|
||
} else if (CpuFeatures::IsSupported(SUDIV)) {
|
||
CpuFeatureScope scope(masm(), SUDIV);
|
||
|
||
Register left_reg = ToRegister(instr->left());
|
||
Register right_reg = ToRegister(instr->right());
|
||
Register result_reg = ToRegister(instr->result());
|
||
|
||
Label done;
|
||
// Check for x % 0, sdiv might signal an exception. We have to deopt in this
|
||
// case because we can't return a NaN.
|
||
if (right->CanBeZero()) {
|
||
__ cmp(right_reg, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
// Check for kMinInt % -1, sdiv will return kMinInt, which is not what we
|
||
// want. We have to deopt if we care about -0, because we can't return that.
|
||
if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
|
||
Label no_overflow_possible;
|
||
__ cmp(left_reg, Operand(kMinInt));
|
||
__ b(ne, &no_overflow_possible);
|
||
__ cmp(right_reg, Operand(-1));
|
||
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
DeoptimizeIf(eq, instr->environment());
|
||
} else {
|
||
__ b(ne, &no_overflow_possible);
|
||
__ mov(result_reg, Operand::Zero());
|
||
__ jmp(&done);
|
||
}
|
||
__ bind(&no_overflow_possible);
|
||
}
|
||
|
||
// For 'r3 = r1 % r2' we can have the following ARM code:
|
||
// sdiv r3, r1, r2
|
||
// mls r3, r3, r2, r1
|
||
|
||
__ sdiv(result_reg, left_reg, right_reg);
|
||
__ mls(result_reg, result_reg, right_reg, left_reg);
|
||
|
||
// If we care about -0, test if the dividend is <0 and the result is 0.
|
||
if (left->CanBeNegative() &&
|
||
hmod->CanBeZero() &&
|
||
hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
__ cmp(result_reg, Operand::Zero());
|
||
__ b(ne, &done);
|
||
__ cmp(left_reg, Operand::Zero());
|
||
DeoptimizeIf(lt, instr->environment());
|
||
}
|
||
__ bind(&done);
|
||
|
||
} else {
|
||
// General case, without any SDIV support.
|
||
Register left_reg = ToRegister(instr->left());
|
||
Register right_reg = ToRegister(instr->right());
|
||
Register result_reg = ToRegister(instr->result());
|
||
Register scratch = scratch0();
|
||
ASSERT(!scratch.is(left_reg));
|
||
ASSERT(!scratch.is(right_reg));
|
||
ASSERT(!scratch.is(result_reg));
|
||
DwVfpRegister dividend = ToDoubleRegister(instr->temp());
|
||
DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
|
||
ASSERT(!divisor.is(dividend));
|
||
LowDwVfpRegister quotient = double_scratch0();
|
||
ASSERT(!quotient.is(dividend));
|
||
ASSERT(!quotient.is(divisor));
|
||
|
||
Label done;
|
||
// Check for x % 0, we have to deopt in this case because we can't return a
|
||
// NaN.
|
||
if (right->CanBeZero()) {
|
||
__ cmp(right_reg, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
__ Move(result_reg, left_reg);
|
||
// Load the arguments in VFP registers. The divisor value is preloaded
|
||
// before. Be careful that 'right_reg' is only live on entry.
|
||
// TODO(svenpanne) The last comments seems to be wrong nowadays.
|
||
__ vmov(double_scratch0().low(), left_reg);
|
||
__ vcvt_f64_s32(dividend, double_scratch0().low());
|
||
__ vmov(double_scratch0().low(), right_reg);
|
||
__ vcvt_f64_s32(divisor, double_scratch0().low());
|
||
|
||
// We do not care about the sign of the divisor. Note that we still handle
|
||
// the kMinInt % -1 case correctly, though.
|
||
__ vabs(divisor, divisor);
|
||
// Compute the quotient and round it to a 32bit integer.
|
||
__ vdiv(quotient, dividend, divisor);
|
||
__ vcvt_s32_f64(quotient.low(), quotient);
|
||
__ vcvt_f64_s32(quotient, quotient.low());
|
||
|
||
// Compute the remainder in result.
|
||
__ vmul(double_scratch0(), divisor, quotient);
|
||
__ vcvt_s32_f64(double_scratch0().low(), double_scratch0());
|
||
__ vmov(scratch, double_scratch0().low());
|
||
__ sub(result_reg, left_reg, scratch, SetCC);
|
||
|
||
// If we care about -0, test if the dividend is <0 and the result is 0.
|
||
if (left->CanBeNegative() &&
|
||
hmod->CanBeZero() &&
|
||
hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
__ b(ne, &done);
|
||
__ cmp(left_reg, Operand::Zero());
|
||
DeoptimizeIf(mi, instr->environment());
|
||
}
|
||
__ bind(&done);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::EmitSignedIntegerDivisionByConstant(
|
||
Register result,
|
||
Register dividend,
|
||
int32_t divisor,
|
||
Register remainder,
|
||
Register scratch,
|
||
LEnvironment* environment) {
|
||
ASSERT(!AreAliased(dividend, scratch, ip));
|
||
ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor));
|
||
|
||
uint32_t divisor_abs = abs(divisor);
|
||
|
||
int32_t power_of_2_factor =
|
||
CompilerIntrinsics::CountTrailingZeros(divisor_abs);
|
||
|
||
switch (divisor_abs) {
|
||
case 0:
|
||
DeoptimizeIf(al, environment);
|
||
return;
|
||
|
||
case 1:
|
||
if (divisor > 0) {
|
||
__ Move(result, dividend);
|
||
} else {
|
||
__ rsb(result, dividend, Operand::Zero(), SetCC);
|
||
DeoptimizeIf(vs, environment);
|
||
}
|
||
// Compute the remainder.
|
||
__ mov(remainder, Operand::Zero());
|
||
return;
|
||
|
||
default:
|
||
if (IsPowerOf2(divisor_abs)) {
|
||
// Branch and condition free code for integer division by a power
|
||
// of two.
|
||
int32_t power = WhichPowerOf2(divisor_abs);
|
||
if (power > 1) {
|
||
__ mov(scratch, Operand(dividend, ASR, power - 1));
|
||
}
|
||
__ add(scratch, dividend, Operand(scratch, LSR, 32 - power));
|
||
__ mov(result, Operand(scratch, ASR, power));
|
||
// Negate if necessary.
|
||
// We don't need to check for overflow because the case '-1' is
|
||
// handled separately.
|
||
if (divisor < 0) {
|
||
ASSERT(divisor != -1);
|
||
__ rsb(result, result, Operand::Zero());
|
||
}
|
||
// Compute the remainder.
|
||
if (divisor > 0) {
|
||
__ sub(remainder, dividend, Operand(result, LSL, power));
|
||
} else {
|
||
__ add(remainder, dividend, Operand(result, LSL, power));
|
||
}
|
||
return;
|
||
} else {
|
||
// Use magic numbers for a few specific divisors.
|
||
// Details and proofs can be found in:
|
||
// - Hacker's Delight, Henry S. Warren, Jr.
|
||
// - The PowerPC Compiler Writer’s Guide
|
||
// and probably many others.
|
||
//
|
||
// We handle
|
||
// <divisor with magic numbers> * <power of 2>
|
||
// but not
|
||
// <divisor with magic numbers> * <other divisor with magic numbers>
|
||
DivMagicNumbers magic_numbers =
|
||
DivMagicNumberFor(divisor_abs >> power_of_2_factor);
|
||
// Branch and condition free code for integer division by a power
|
||
// of two.
|
||
const int32_t M = magic_numbers.M;
|
||
const int32_t s = magic_numbers.s + power_of_2_factor;
|
||
|
||
__ mov(ip, Operand(M));
|
||
__ smull(ip, scratch, dividend, ip);
|
||
if (M < 0) {
|
||
__ add(scratch, scratch, Operand(dividend));
|
||
}
|
||
if (s > 0) {
|
||
__ mov(scratch, Operand(scratch, ASR, s));
|
||
}
|
||
__ add(result, scratch, Operand(dividend, LSR, 31));
|
||
if (divisor < 0) __ rsb(result, result, Operand::Zero());
|
||
// Compute the remainder.
|
||
__ mov(ip, Operand(divisor));
|
||
// This sequence could be replaced with 'mls' when
|
||
// it gets implemented.
|
||
__ mul(scratch, result, ip);
|
||
__ sub(remainder, dividend, scratch);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDivI(LDivI* instr) {
|
||
if (instr->hydrogen()->HasPowerOf2Divisor()) {
|
||
const Register dividend = ToRegister(instr->left());
|
||
const Register result = ToRegister(instr->result());
|
||
int32_t divisor = instr->hydrogen()->right()->GetInteger32Constant();
|
||
int32_t test_value = 0;
|
||
int32_t power = 0;
|
||
|
||
if (divisor > 0) {
|
||
test_value = divisor - 1;
|
||
power = WhichPowerOf2(divisor);
|
||
} else {
|
||
// Check for (0 / -x) that will produce negative zero.
|
||
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
__ cmp(dividend, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
// Check for (kMinInt / -1).
|
||
if (divisor == -1 && instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
|
||
__ cmp(dividend, Operand(kMinInt));
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
test_value = - divisor - 1;
|
||
power = WhichPowerOf2(-divisor);
|
||
}
|
||
|
||
if (test_value != 0) {
|
||
if (instr->hydrogen()->CheckFlag(
|
||
HInstruction::kAllUsesTruncatingToInt32)) {
|
||
__ sub(result, dividend, Operand::Zero(), SetCC);
|
||
__ rsb(result, result, Operand::Zero(), LeaveCC, lt);
|
||
__ mov(result, Operand(result, ASR, power));
|
||
if (divisor > 0) __ rsb(result, result, Operand::Zero(), LeaveCC, lt);
|
||
if (divisor < 0) __ rsb(result, result, Operand::Zero(), LeaveCC, gt);
|
||
return; // Don't fall through to "__ rsb" below.
|
||
} else {
|
||
// Deoptimize if remainder is not 0.
|
||
__ tst(dividend, Operand(test_value));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
__ mov(result, Operand(dividend, ASR, power));
|
||
if (divisor < 0) __ rsb(result, result, Operand(0));
|
||
}
|
||
} else {
|
||
if (divisor < 0) {
|
||
__ rsb(result, dividend, Operand(0));
|
||
} else {
|
||
__ Move(result, dividend);
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
const Register left = ToRegister(instr->left());
|
||
const Register right = ToRegister(instr->right());
|
||
const Register result = ToRegister(instr->result());
|
||
|
||
// Check for x / 0.
|
||
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
|
||
__ cmp(right, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
// Check for (0 / -x) that will produce negative zero.
|
||
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
Label positive;
|
||
if (!instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
|
||
// Do the test only if it hadn't be done above.
|
||
__ cmp(right, Operand::Zero());
|
||
}
|
||
__ b(pl, &positive);
|
||
__ cmp(left, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
__ bind(&positive);
|
||
}
|
||
|
||
// Check for (kMinInt / -1).
|
||
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
|
||
Label left_not_min_int;
|
||
__ cmp(left, Operand(kMinInt));
|
||
__ b(ne, &left_not_min_int);
|
||
__ cmp(right, Operand(-1));
|
||
DeoptimizeIf(eq, instr->environment());
|
||
__ bind(&left_not_min_int);
|
||
}
|
||
|
||
if (CpuFeatures::IsSupported(SUDIV)) {
|
||
CpuFeatureScope scope(masm(), SUDIV);
|
||
__ sdiv(result, left, right);
|
||
|
||
if (!instr->hydrogen()->CheckFlag(
|
||
HInstruction::kAllUsesTruncatingToInt32)) {
|
||
// Compute remainder and deopt if it's not zero.
|
||
const Register remainder = scratch0();
|
||
__ mls(remainder, result, right, left);
|
||
__ cmp(remainder, Operand::Zero());
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
} else {
|
||
const DoubleRegister vleft = ToDoubleRegister(instr->temp());
|
||
const DoubleRegister vright = double_scratch0();
|
||
__ vmov(double_scratch0().low(), left);
|
||
__ vcvt_f64_s32(vleft, double_scratch0().low());
|
||
__ vmov(double_scratch0().low(), right);
|
||
__ vcvt_f64_s32(vright, double_scratch0().low());
|
||
__ vdiv(vleft, vleft, vright); // vleft now contains the result.
|
||
__ vcvt_s32_f64(double_scratch0().low(), vleft);
|
||
__ vmov(result, double_scratch0().low());
|
||
|
||
if (!instr->hydrogen()->CheckFlag(
|
||
HInstruction::kAllUsesTruncatingToInt32)) {
|
||
// Deopt if exact conversion to integer was not possible.
|
||
// Use vright as scratch register.
|
||
__ vcvt_f64_s32(double_scratch0(), double_scratch0().low());
|
||
__ VFPCompareAndSetFlags(vleft, double_scratch0());
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
|
||
DwVfpRegister addend = ToDoubleRegister(instr->addend());
|
||
DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
|
||
DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
|
||
|
||
// This is computed in-place.
|
||
ASSERT(addend.is(ToDoubleRegister(instr->result())));
|
||
|
||
__ vmla(addend, multiplier, multiplicand);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
|
||
DwVfpRegister minuend = ToDoubleRegister(instr->minuend());
|
||
DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
|
||
DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
|
||
|
||
// This is computed in-place.
|
||
ASSERT(minuend.is(ToDoubleRegister(instr->result())));
|
||
|
||
__ vmls(minuend, multiplier, multiplicand);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
|
||
const Register result = ToRegister(instr->result());
|
||
const Register left = ToRegister(instr->left());
|
||
const Register remainder = ToRegister(instr->temp());
|
||
const Register scratch = scratch0();
|
||
|
||
if (!CpuFeatures::IsSupported(SUDIV)) {
|
||
// If the CPU doesn't support sdiv instruction, we only optimize when we
|
||
// have magic numbers for the divisor. The standard integer division routine
|
||
// is usually slower than transitionning to VFP.
|
||
ASSERT(instr->right()->IsConstantOperand());
|
||
int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
|
||
ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor));
|
||
if (divisor < 0) {
|
||
__ cmp(left, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
EmitSignedIntegerDivisionByConstant(result,
|
||
left,
|
||
divisor,
|
||
remainder,
|
||
scratch,
|
||
instr->environment());
|
||
// We performed a truncating division. Correct the result if necessary.
|
||
__ cmp(remainder, Operand::Zero());
|
||
__ teq(remainder, Operand(divisor), ne);
|
||
__ sub(result, result, Operand(1), LeaveCC, mi);
|
||
} else {
|
||
CpuFeatureScope scope(masm(), SUDIV);
|
||
const Register right = ToRegister(instr->right());
|
||
|
||
// Check for x / 0.
|
||
__ cmp(right, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
|
||
// Check for (kMinInt / -1).
|
||
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
|
||
Label left_not_min_int;
|
||
__ cmp(left, Operand(kMinInt));
|
||
__ b(ne, &left_not_min_int);
|
||
__ cmp(right, Operand(-1));
|
||
DeoptimizeIf(eq, instr->environment());
|
||
__ bind(&left_not_min_int);
|
||
}
|
||
|
||
// Check for (0 / -x) that will produce negative zero.
|
||
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
__ cmp(right, Operand::Zero());
|
||
__ cmp(left, Operand::Zero(), mi);
|
||
// "right" can't be null because the code would have already been
|
||
// deoptimized. The Z flag is set only if (right < 0) and (left == 0).
|
||
// In this case we need to deoptimize to produce a -0.
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
Label done;
|
||
__ sdiv(result, left, right);
|
||
// If both operands have the same sign then we are done.
|
||
__ eor(remainder, left, Operand(right), SetCC);
|
||
__ b(pl, &done);
|
||
|
||
// Check if the result needs to be corrected.
|
||
__ mls(remainder, result, right, left);
|
||
__ cmp(remainder, Operand::Zero());
|
||
__ sub(result, result, Operand(1), LeaveCC, ne);
|
||
|
||
__ bind(&done);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMulI(LMulI* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
// Note that result may alias left.
|
||
Register left = ToRegister(instr->left());
|
||
LOperand* right_op = instr->right();
|
||
|
||
bool bailout_on_minus_zero =
|
||
instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
|
||
bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
||
|
||
if (right_op->IsConstantOperand()) {
|
||
int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
|
||
|
||
if (bailout_on_minus_zero && (constant < 0)) {
|
||
// The case of a null constant will be handled separately.
|
||
// If constant is negative and left is null, the result should be -0.
|
||
__ cmp(left, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
switch (constant) {
|
||
case -1:
|
||
if (overflow) {
|
||
__ rsb(result, left, Operand::Zero(), SetCC);
|
||
DeoptimizeIf(vs, instr->environment());
|
||
} else {
|
||
__ rsb(result, left, Operand::Zero());
|
||
}
|
||
break;
|
||
case 0:
|
||
if (bailout_on_minus_zero) {
|
||
// If left is strictly negative and the constant is null, the
|
||
// result is -0. Deoptimize if required, otherwise return 0.
|
||
__ cmp(left, Operand::Zero());
|
||
DeoptimizeIf(mi, instr->environment());
|
||
}
|
||
__ mov(result, Operand::Zero());
|
||
break;
|
||
case 1:
|
||
__ Move(result, left);
|
||
break;
|
||
default:
|
||
// Multiplying by powers of two and powers of two plus or minus
|
||
// one can be done faster with shifted operands.
|
||
// For other constants we emit standard code.
|
||
int32_t mask = constant >> 31;
|
||
uint32_t constant_abs = (constant + mask) ^ mask;
|
||
|
||
if (IsPowerOf2(constant_abs)) {
|
||
int32_t shift = WhichPowerOf2(constant_abs);
|
||
__ mov(result, Operand(left, LSL, shift));
|
||
// Correct the sign of the result is the constant is negative.
|
||
if (constant < 0) __ rsb(result, result, Operand::Zero());
|
||
} else if (IsPowerOf2(constant_abs - 1)) {
|
||
int32_t shift = WhichPowerOf2(constant_abs - 1);
|
||
__ add(result, left, Operand(left, LSL, shift));
|
||
// Correct the sign of the result is the constant is negative.
|
||
if (constant < 0) __ rsb(result, result, Operand::Zero());
|
||
} else if (IsPowerOf2(constant_abs + 1)) {
|
||
int32_t shift = WhichPowerOf2(constant_abs + 1);
|
||
__ rsb(result, left, Operand(left, LSL, shift));
|
||
// Correct the sign of the result is the constant is negative.
|
||
if (constant < 0) __ rsb(result, result, Operand::Zero());
|
||
} else {
|
||
// Generate standard code.
|
||
__ mov(ip, Operand(constant));
|
||
__ mul(result, left, ip);
|
||
}
|
||
}
|
||
|
||
} else {
|
||
ASSERT(right_op->IsRegister());
|
||
Register right = ToRegister(right_op);
|
||
|
||
if (overflow) {
|
||
Register scratch = scratch0();
|
||
// scratch:result = left * right.
|
||
if (instr->hydrogen()->representation().IsSmi()) {
|
||
__ SmiUntag(result, left);
|
||
__ smull(result, scratch, result, right);
|
||
} else {
|
||
__ smull(result, scratch, left, right);
|
||
}
|
||
__ cmp(scratch, Operand(result, ASR, 31));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
} else {
|
||
if (instr->hydrogen()->representation().IsSmi()) {
|
||
__ SmiUntag(result, left);
|
||
__ mul(result, result, right);
|
||
} else {
|
||
__ mul(result, left, right);
|
||
}
|
||
}
|
||
|
||
if (bailout_on_minus_zero) {
|
||
Label done;
|
||
__ teq(left, Operand(right));
|
||
__ b(pl, &done);
|
||
// Bail out if the result is minus zero.
|
||
__ cmp(result, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
__ bind(&done);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoBitI(LBitI* instr) {
|
||
LOperand* left_op = instr->left();
|
||
LOperand* right_op = instr->right();
|
||
ASSERT(left_op->IsRegister());
|
||
Register left = ToRegister(left_op);
|
||
Register result = ToRegister(instr->result());
|
||
Operand right(no_reg);
|
||
|
||
if (right_op->IsStackSlot() || right_op->IsArgument()) {
|
||
right = Operand(EmitLoadRegister(right_op, ip));
|
||
} else {
|
||
ASSERT(right_op->IsRegister() || right_op->IsConstantOperand());
|
||
right = ToOperand(right_op);
|
||
}
|
||
|
||
switch (instr->op()) {
|
||
case Token::BIT_AND:
|
||
__ and_(result, left, right);
|
||
break;
|
||
case Token::BIT_OR:
|
||
__ orr(result, left, right);
|
||
break;
|
||
case Token::BIT_XOR:
|
||
if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
|
||
__ mvn(result, Operand(left));
|
||
} else {
|
||
__ eor(result, left, right);
|
||
}
|
||
break;
|
||
default:
|
||
UNREACHABLE();
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoShiftI(LShiftI* instr) {
|
||
// Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
|
||
// result may alias either of them.
|
||
LOperand* right_op = instr->right();
|
||
Register left = ToRegister(instr->left());
|
||
Register result = ToRegister(instr->result());
|
||
Register scratch = scratch0();
|
||
if (right_op->IsRegister()) {
|
||
// Mask the right_op operand.
|
||
__ and_(scratch, ToRegister(right_op), Operand(0x1F));
|
||
switch (instr->op()) {
|
||
case Token::ROR:
|
||
__ mov(result, Operand(left, ROR, scratch));
|
||
break;
|
||
case Token::SAR:
|
||
__ mov(result, Operand(left, ASR, scratch));
|
||
break;
|
||
case Token::SHR:
|
||
if (instr->can_deopt()) {
|
||
__ mov(result, Operand(left, LSR, scratch), SetCC);
|
||
DeoptimizeIf(mi, instr->environment());
|
||
} else {
|
||
__ mov(result, Operand(left, LSR, scratch));
|
||
}
|
||
break;
|
||
case Token::SHL:
|
||
__ mov(result, Operand(left, LSL, scratch));
|
||
break;
|
||
default:
|
||
UNREACHABLE();
|
||
break;
|
||
}
|
||
} else {
|
||
// Mask the right_op operand.
|
||
int value = ToInteger32(LConstantOperand::cast(right_op));
|
||
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
|
||
switch (instr->op()) {
|
||
case Token::ROR:
|
||
if (shift_count != 0) {
|
||
__ mov(result, Operand(left, ROR, shift_count));
|
||
} else {
|
||
__ Move(result, left);
|
||
}
|
||
break;
|
||
case Token::SAR:
|
||
if (shift_count != 0) {
|
||
__ mov(result, Operand(left, ASR, shift_count));
|
||
} else {
|
||
__ Move(result, left);
|
||
}
|
||
break;
|
||
case Token::SHR:
|
||
if (shift_count != 0) {
|
||
__ mov(result, Operand(left, LSR, shift_count));
|
||
} else {
|
||
if (instr->can_deopt()) {
|
||
__ tst(left, Operand(0x80000000));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
__ Move(result, left);
|
||
}
|
||
break;
|
||
case Token::SHL:
|
||
if (shift_count != 0) {
|
||
if (instr->hydrogen_value()->representation().IsSmi() &&
|
||
instr->can_deopt()) {
|
||
if (shift_count != 1) {
|
||
__ mov(result, Operand(left, LSL, shift_count - 1));
|
||
__ SmiTag(result, result, SetCC);
|
||
} else {
|
||
__ SmiTag(result, left, SetCC);
|
||
}
|
||
DeoptimizeIf(vs, instr->environment());
|
||
} else {
|
||
__ mov(result, Operand(left, LSL, shift_count));
|
||
}
|
||
} else {
|
||
__ Move(result, left);
|
||
}
|
||
break;
|
||
default:
|
||
UNREACHABLE();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoSubI(LSubI* instr) {
|
||
LOperand* left = instr->left();
|
||
LOperand* right = instr->right();
|
||
LOperand* result = instr->result();
|
||
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
||
SBit set_cond = can_overflow ? SetCC : LeaveCC;
|
||
|
||
if (right->IsStackSlot() || right->IsArgument()) {
|
||
Register right_reg = EmitLoadRegister(right, ip);
|
||
__ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
|
||
} else {
|
||
ASSERT(right->IsRegister() || right->IsConstantOperand());
|
||
__ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
|
||
}
|
||
|
||
if (can_overflow) {
|
||
DeoptimizeIf(vs, instr->environment());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoRSubI(LRSubI* instr) {
|
||
LOperand* left = instr->left();
|
||
LOperand* right = instr->right();
|
||
LOperand* result = instr->result();
|
||
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
||
SBit set_cond = can_overflow ? SetCC : LeaveCC;
|
||
|
||
if (right->IsStackSlot() || right->IsArgument()) {
|
||
Register right_reg = EmitLoadRegister(right, ip);
|
||
__ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
|
||
} else {
|
||
ASSERT(right->IsRegister() || right->IsConstantOperand());
|
||
__ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
|
||
}
|
||
|
||
if (can_overflow) {
|
||
DeoptimizeIf(vs, instr->environment());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoConstantI(LConstantI* instr) {
|
||
__ mov(ToRegister(instr->result()), Operand(instr->value()));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoConstantS(LConstantS* instr) {
|
||
__ mov(ToRegister(instr->result()), Operand(instr->value()));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoConstantD(LConstantD* instr) {
|
||
ASSERT(instr->result()->IsDoubleRegister());
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
double v = instr->value();
|
||
__ Vmov(result, v, scratch0());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoConstantE(LConstantE* instr) {
|
||
__ mov(ToRegister(instr->result()), Operand(instr->value()));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoConstantT(LConstantT* instr) {
|
||
Handle<Object> value = instr->value(isolate());
|
||
AllowDeferredHandleDereference smi_check;
|
||
__ LoadObject(ToRegister(instr->result()), value);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
Register map = ToRegister(instr->value());
|
||
__ EnumLength(result, map);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoElementsKind(LElementsKind* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
Register input = ToRegister(instr->value());
|
||
|
||
// Load map into |result|.
|
||
__ ldr(result, FieldMemOperand(input, HeapObject::kMapOffset));
|
||
// Load the map's "bit field 2" into |result|. We only need the first byte,
|
||
// but the following bit field extraction takes care of that anyway.
|
||
__ ldr(result, FieldMemOperand(result, Map::kBitField2Offset));
|
||
// Retrieve elements_kind from bit field 2.
|
||
__ ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoValueOf(LValueOf* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register result = ToRegister(instr->result());
|
||
Register map = ToRegister(instr->temp());
|
||
Label done;
|
||
|
||
if (!instr->hydrogen()->value()->IsHeapObject()) {
|
||
// If the object is a smi return the object.
|
||
__ SmiTst(input);
|
||
__ Move(result, input, eq);
|
||
__ b(eq, &done);
|
||
}
|
||
|
||
// If the object is not a value type, return the object.
|
||
__ CompareObjectType(input, map, map, JS_VALUE_TYPE);
|
||
__ Move(result, input, ne);
|
||
__ b(ne, &done);
|
||
__ ldr(result, FieldMemOperand(input, JSValue::kValueOffset));
|
||
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDateField(LDateField* instr) {
|
||
Register object = ToRegister(instr->date());
|
||
Register result = ToRegister(instr->result());
|
||
Register scratch = ToRegister(instr->temp());
|
||
Smi* index = instr->index();
|
||
Label runtime, done;
|
||
ASSERT(object.is(result));
|
||
ASSERT(object.is(r0));
|
||
ASSERT(!scratch.is(scratch0()));
|
||
ASSERT(!scratch.is(object));
|
||
|
||
__ SmiTst(object);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
__ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE);
|
||
DeoptimizeIf(ne, instr->environment());
|
||
|
||
if (index->value() == 0) {
|
||
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
|
||
} else {
|
||
if (index->value() < JSDate::kFirstUncachedField) {
|
||
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
|
||
__ mov(scratch, Operand(stamp));
|
||
__ ldr(scratch, MemOperand(scratch));
|
||
__ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
|
||
__ cmp(scratch, scratch0());
|
||
__ b(ne, &runtime);
|
||
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
|
||
kPointerSize * index->value()));
|
||
__ jmp(&done);
|
||
}
|
||
__ bind(&runtime);
|
||
__ PrepareCallCFunction(2, scratch);
|
||
__ mov(r1, Operand(index));
|
||
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
|
||
__ bind(&done);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
|
||
Register string = ToRegister(instr->string());
|
||
LOperand* index_op = instr->index();
|
||
Register value = ToRegister(instr->value());
|
||
Register scratch = scratch0();
|
||
String::Encoding encoding = instr->encoding();
|
||
|
||
if (FLAG_debug_code) {
|
||
__ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
|
||
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
|
||
|
||
__ and_(scratch, scratch,
|
||
Operand(kStringRepresentationMask | kStringEncodingMask));
|
||
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
|
||
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
|
||
__ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING
|
||
? one_byte_seq_type : two_byte_seq_type));
|
||
__ Check(eq, kUnexpectedStringType);
|
||
}
|
||
|
||
if (index_op->IsConstantOperand()) {
|
||
int constant_index = ToInteger32(LConstantOperand::cast(index_op));
|
||
if (encoding == String::ONE_BYTE_ENCODING) {
|
||
__ strb(value,
|
||
FieldMemOperand(string, SeqString::kHeaderSize + constant_index));
|
||
} else {
|
||
__ strh(value,
|
||
FieldMemOperand(string, SeqString::kHeaderSize + constant_index * 2));
|
||
}
|
||
} else {
|
||
Register index = ToRegister(index_op);
|
||
if (encoding == String::ONE_BYTE_ENCODING) {
|
||
__ add(scratch, string, Operand(index));
|
||
__ strb(value, FieldMemOperand(scratch, SeqString::kHeaderSize));
|
||
} else {
|
||
__ add(scratch, string, Operand(index, LSL, 1));
|
||
__ strh(value, FieldMemOperand(scratch, SeqString::kHeaderSize));
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoThrow(LThrow* instr) {
|
||
Register input_reg = EmitLoadRegister(instr->value(), ip);
|
||
__ push(input_reg);
|
||
CallRuntime(Runtime::kThrow, 1, instr);
|
||
|
||
if (FLAG_debug_code) {
|
||
__ stop("Unreachable code.");
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoAddI(LAddI* instr) {
|
||
LOperand* left = instr->left();
|
||
LOperand* right = instr->right();
|
||
LOperand* result = instr->result();
|
||
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
||
SBit set_cond = can_overflow ? SetCC : LeaveCC;
|
||
|
||
if (right->IsStackSlot() || right->IsArgument()) {
|
||
Register right_reg = EmitLoadRegister(right, ip);
|
||
__ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
|
||
} else {
|
||
ASSERT(right->IsRegister() || right->IsConstantOperand());
|
||
__ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
|
||
}
|
||
|
||
if (can_overflow) {
|
||
DeoptimizeIf(vs, instr->environment());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
|
||
LOperand* left = instr->left();
|
||
LOperand* right = instr->right();
|
||
HMathMinMax::Operation operation = instr->hydrogen()->operation();
|
||
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
|
||
Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
|
||
Register left_reg = ToRegister(left);
|
||
Operand right_op = (right->IsRegister() || right->IsConstantOperand())
|
||
? ToOperand(right)
|
||
: Operand(EmitLoadRegister(right, ip));
|
||
Register result_reg = ToRegister(instr->result());
|
||
__ cmp(left_reg, right_op);
|
||
__ Move(result_reg, left_reg, condition);
|
||
__ mov(result_reg, right_op, LeaveCC, NegateCondition(condition));
|
||
} else {
|
||
ASSERT(instr->hydrogen()->representation().IsDouble());
|
||
DwVfpRegister left_reg = ToDoubleRegister(left);
|
||
DwVfpRegister right_reg = ToDoubleRegister(right);
|
||
DwVfpRegister result_reg = ToDoubleRegister(instr->result());
|
||
Label result_is_nan, return_left, return_right, check_zero, done;
|
||
__ VFPCompareAndSetFlags(left_reg, right_reg);
|
||
if (operation == HMathMinMax::kMathMin) {
|
||
__ b(mi, &return_left);
|
||
__ b(gt, &return_right);
|
||
} else {
|
||
__ b(mi, &return_right);
|
||
__ b(gt, &return_left);
|
||
}
|
||
__ b(vs, &result_is_nan);
|
||
// Left equals right => check for -0.
|
||
__ VFPCompareAndSetFlags(left_reg, 0.0);
|
||
if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
|
||
__ b(ne, &done); // left == right != 0.
|
||
} else {
|
||
__ b(ne, &return_left); // left == right != 0.
|
||
}
|
||
// At this point, both left and right are either 0 or -0.
|
||
if (operation == HMathMinMax::kMathMin) {
|
||
// We could use a single 'vorr' instruction here if we had NEON support.
|
||
__ vneg(left_reg, left_reg);
|
||
__ vsub(result_reg, left_reg, right_reg);
|
||
__ vneg(result_reg, result_reg);
|
||
} else {
|
||
// Since we operate on +0 and/or -0, vadd and vand have the same effect;
|
||
// the decision for vadd is easy because vand is a NEON instruction.
|
||
__ vadd(result_reg, left_reg, right_reg);
|
||
}
|
||
__ b(&done);
|
||
|
||
__ bind(&result_is_nan);
|
||
__ vadd(result_reg, left_reg, right_reg);
|
||
__ b(&done);
|
||
|
||
__ bind(&return_right);
|
||
__ Move(result_reg, right_reg);
|
||
if (!left_reg.is(result_reg)) {
|
||
__ b(&done);
|
||
}
|
||
|
||
__ bind(&return_left);
|
||
__ Move(result_reg, left_reg);
|
||
|
||
__ bind(&done);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
|
||
DwVfpRegister left = ToDoubleRegister(instr->left());
|
||
DwVfpRegister right = ToDoubleRegister(instr->right());
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
switch (instr->op()) {
|
||
case Token::ADD:
|
||
__ vadd(result, left, right);
|
||
break;
|
||
case Token::SUB:
|
||
__ vsub(result, left, right);
|
||
break;
|
||
case Token::MUL:
|
||
__ vmul(result, left, right);
|
||
break;
|
||
case Token::DIV:
|
||
__ vdiv(result, left, right);
|
||
break;
|
||
case Token::MOD: {
|
||
// Save r0-r3 on the stack.
|
||
__ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit());
|
||
|
||
__ PrepareCallCFunction(0, 2, scratch0());
|
||
__ SetCallCDoubleArguments(left, right);
|
||
__ CallCFunction(
|
||
ExternalReference::double_fp_operation(Token::MOD, isolate()),
|
||
0, 2);
|
||
// Move the result in the double result register.
|
||
__ GetCFunctionDoubleResult(result);
|
||
|
||
// Restore r0-r3.
|
||
__ ldm(ia_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit());
|
||
break;
|
||
}
|
||
default:
|
||
UNREACHABLE();
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
|
||
ASSERT(ToRegister(instr->left()).is(r1));
|
||
ASSERT(ToRegister(instr->right()).is(r0));
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
BinaryOpStub stub(instr->op(), NO_OVERWRITE);
|
||
// Block literal pool emission to ensure nop indicating no inlined smi code
|
||
// is in the correct position.
|
||
Assembler::BlockConstPoolScope block_const_pool(masm());
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
__ nop(); // Signals no inlined code.
|
||
}
|
||
|
||
|
||
int LCodeGen::GetNextEmittedBlock() const {
|
||
for (int i = current_block_ + 1; i < graph()->blocks()->length(); ++i) {
|
||
if (!chunk_->GetLabel(i)->HasReplacement()) return i;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
template<class InstrType>
|
||
void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
|
||
int left_block = instr->TrueDestination(chunk_);
|
||
int right_block = instr->FalseDestination(chunk_);
|
||
|
||
int next_block = GetNextEmittedBlock();
|
||
|
||
if (right_block == left_block || condition == al) {
|
||
EmitGoto(left_block);
|
||
} else if (left_block == next_block) {
|
||
__ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block));
|
||
} else if (right_block == next_block) {
|
||
__ b(condition, chunk_->GetAssemblyLabel(left_block));
|
||
} else {
|
||
__ b(condition, chunk_->GetAssemblyLabel(left_block));
|
||
__ b(chunk_->GetAssemblyLabel(right_block));
|
||
}
|
||
}
|
||
|
||
|
||
template<class InstrType>
|
||
void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) {
|
||
int false_block = instr->FalseDestination(chunk_);
|
||
__ b(condition, chunk_->GetAssemblyLabel(false_block));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
|
||
__ stop("LBreak");
|
||
}
|
||
|
||
|
||
void LCodeGen::DoBranch(LBranch* instr) {
|
||
Representation r = instr->hydrogen()->value()->representation();
|
||
if (r.IsInteger32() || r.IsSmi()) {
|
||
ASSERT(!info()->IsStub());
|
||
Register reg = ToRegister(instr->value());
|
||
__ cmp(reg, Operand::Zero());
|
||
EmitBranch(instr, ne);
|
||
} else if (r.IsDouble()) {
|
||
ASSERT(!info()->IsStub());
|
||
DwVfpRegister reg = ToDoubleRegister(instr->value());
|
||
// Test the double value. Zero and NaN are false.
|
||
__ VFPCompareAndSetFlags(reg, 0.0);
|
||
__ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN -> false)
|
||
EmitBranch(instr, ne);
|
||
} else {
|
||
ASSERT(r.IsTagged());
|
||
Register reg = ToRegister(instr->value());
|
||
HType type = instr->hydrogen()->value()->type();
|
||
if (type.IsBoolean()) {
|
||
ASSERT(!info()->IsStub());
|
||
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
|
||
EmitBranch(instr, eq);
|
||
} else if (type.IsSmi()) {
|
||
ASSERT(!info()->IsStub());
|
||
__ cmp(reg, Operand::Zero());
|
||
EmitBranch(instr, ne);
|
||
} else if (type.IsJSArray()) {
|
||
ASSERT(!info()->IsStub());
|
||
EmitBranch(instr, al);
|
||
} else if (type.IsHeapNumber()) {
|
||
ASSERT(!info()->IsStub());
|
||
DwVfpRegister dbl_scratch = double_scratch0();
|
||
__ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
|
||
// Test the double value. Zero and NaN are false.
|
||
__ VFPCompareAndSetFlags(dbl_scratch, 0.0);
|
||
__ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN)
|
||
EmitBranch(instr, ne);
|
||
} else if (type.IsString()) {
|
||
ASSERT(!info()->IsStub());
|
||
__ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
|
||
__ cmp(ip, Operand::Zero());
|
||
EmitBranch(instr, ne);
|
||
} else {
|
||
ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
|
||
// Avoid deopts in the case where we've never executed this path before.
|
||
if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
|
||
|
||
if (expected.Contains(ToBooleanStub::UNDEFINED)) {
|
||
// undefined -> false.
|
||
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
|
||
__ b(eq, instr->FalseLabel(chunk_));
|
||
}
|
||
if (expected.Contains(ToBooleanStub::BOOLEAN)) {
|
||
// Boolean -> its value.
|
||
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
|
||
__ b(eq, instr->TrueLabel(chunk_));
|
||
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
|
||
__ b(eq, instr->FalseLabel(chunk_));
|
||
}
|
||
if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
|
||
// 'null' -> false.
|
||
__ CompareRoot(reg, Heap::kNullValueRootIndex);
|
||
__ b(eq, instr->FalseLabel(chunk_));
|
||
}
|
||
|
||
if (expected.Contains(ToBooleanStub::SMI)) {
|
||
// Smis: 0 -> false, all other -> true.
|
||
__ cmp(reg, Operand::Zero());
|
||
__ b(eq, instr->FalseLabel(chunk_));
|
||
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
|
||
} else if (expected.NeedsMap()) {
|
||
// If we need a map later and have a Smi -> deopt.
|
||
__ SmiTst(reg);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
const Register map = scratch0();
|
||
if (expected.NeedsMap()) {
|
||
__ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
|
||
|
||
if (expected.CanBeUndetectable()) {
|
||
// Undetectable -> false.
|
||
__ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
|
||
__ tst(ip, Operand(1 << Map::kIsUndetectable));
|
||
__ b(ne, instr->FalseLabel(chunk_));
|
||
}
|
||
}
|
||
|
||
if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
|
||
// spec object -> true.
|
||
__ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
|
||
__ b(ge, instr->TrueLabel(chunk_));
|
||
}
|
||
|
||
if (expected.Contains(ToBooleanStub::STRING)) {
|
||
// String value -> false iff empty.
|
||
Label not_string;
|
||
__ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
|
||
__ b(ge, ¬_string);
|
||
__ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
|
||
__ cmp(ip, Operand::Zero());
|
||
__ b(ne, instr->TrueLabel(chunk_));
|
||
__ b(instr->FalseLabel(chunk_));
|
||
__ bind(¬_string);
|
||
}
|
||
|
||
if (expected.Contains(ToBooleanStub::SYMBOL)) {
|
||
// Symbol value -> true.
|
||
__ CompareInstanceType(map, ip, SYMBOL_TYPE);
|
||
__ b(eq, instr->TrueLabel(chunk_));
|
||
}
|
||
|
||
if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
|
||
// heap number -> false iff +0, -0, or NaN.
|
||
DwVfpRegister dbl_scratch = double_scratch0();
|
||
Label not_heap_number;
|
||
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
|
||
__ b(ne, ¬_heap_number);
|
||
__ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
|
||
__ VFPCompareAndSetFlags(dbl_scratch, 0.0);
|
||
__ cmp(r0, r0, vs); // NaN -> false.
|
||
__ b(eq, instr->FalseLabel(chunk_)); // +0, -0 -> false.
|
||
__ b(instr->TrueLabel(chunk_));
|
||
__ bind(¬_heap_number);
|
||
}
|
||
|
||
if (!expected.IsGeneric()) {
|
||
// We've seen something for the first time -> deopt.
|
||
// This can only happen if we are not generic already.
|
||
DeoptimizeIf(al, instr->environment());
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::EmitGoto(int block) {
|
||
if (!IsNextEmittedBlock(block)) {
|
||
__ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoGoto(LGoto* instr) {
|
||
EmitGoto(instr->block_id());
|
||
}
|
||
|
||
|
||
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
|
||
Condition cond = kNoCondition;
|
||
switch (op) {
|
||
case Token::EQ:
|
||
case Token::EQ_STRICT:
|
||
cond = eq;
|
||
break;
|
||
case Token::LT:
|
||
cond = is_unsigned ? lo : lt;
|
||
break;
|
||
case Token::GT:
|
||
cond = is_unsigned ? hi : gt;
|
||
break;
|
||
case Token::LTE:
|
||
cond = is_unsigned ? ls : le;
|
||
break;
|
||
case Token::GTE:
|
||
cond = is_unsigned ? hs : ge;
|
||
break;
|
||
case Token::IN:
|
||
case Token::INSTANCEOF:
|
||
default:
|
||
UNREACHABLE();
|
||
}
|
||
return cond;
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
|
||
LOperand* left = instr->left();
|
||
LOperand* right = instr->right();
|
||
Condition cond = TokenToCondition(instr->op(), false);
|
||
|
||
if (left->IsConstantOperand() && right->IsConstantOperand()) {
|
||
// We can statically evaluate the comparison.
|
||
double left_val = ToDouble(LConstantOperand::cast(left));
|
||
double right_val = ToDouble(LConstantOperand::cast(right));
|
||
int next_block = EvalComparison(instr->op(), left_val, right_val) ?
|
||
instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
|
||
EmitGoto(next_block);
|
||
} else {
|
||
if (instr->is_double()) {
|
||
// Compare left and right operands as doubles and load the
|
||
// resulting flags into the normal status register.
|
||
__ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
|
||
// If a NaN is involved, i.e. the result is unordered (V set),
|
||
// jump to false block label.
|
||
__ b(vs, instr->FalseLabel(chunk_));
|
||
} else {
|
||
if (right->IsConstantOperand()) {
|
||
int32_t value = ToInteger32(LConstantOperand::cast(right));
|
||
if (instr->hydrogen_value()->representation().IsSmi()) {
|
||
__ cmp(ToRegister(left), Operand(Smi::FromInt(value)));
|
||
} else {
|
||
__ cmp(ToRegister(left), Operand(value));
|
||
}
|
||
} else if (left->IsConstantOperand()) {
|
||
int32_t value = ToInteger32(LConstantOperand::cast(left));
|
||
if (instr->hydrogen_value()->representation().IsSmi()) {
|
||
__ cmp(ToRegister(right), Operand(Smi::FromInt(value)));
|
||
} else {
|
||
__ cmp(ToRegister(right), Operand(value));
|
||
}
|
||
// We transposed the operands. Reverse the condition.
|
||
cond = ReverseCondition(cond);
|
||
} else {
|
||
__ cmp(ToRegister(left), ToRegister(right));
|
||
}
|
||
}
|
||
EmitBranch(instr, cond);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
|
||
Register left = ToRegister(instr->left());
|
||
Register right = ToRegister(instr->right());
|
||
|
||
__ cmp(left, Operand(right));
|
||
EmitBranch(instr, eq);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
|
||
if (instr->hydrogen()->representation().IsTagged()) {
|
||
Register input_reg = ToRegister(instr->object());
|
||
__ mov(ip, Operand(factory()->the_hole_value()));
|
||
__ cmp(input_reg, ip);
|
||
EmitBranch(instr, eq);
|
||
return;
|
||
}
|
||
|
||
DwVfpRegister input_reg = ToDoubleRegister(instr->object());
|
||
__ VFPCompareAndSetFlags(input_reg, input_reg);
|
||
EmitFalseBranch(instr, vc);
|
||
|
||
Register scratch = scratch0();
|
||
__ VmovHigh(scratch, input_reg);
|
||
__ cmp(scratch, Operand(kHoleNanUpper32));
|
||
EmitBranch(instr, eq);
|
||
}
|
||
|
||
|
||
Condition LCodeGen::EmitIsObject(Register input,
|
||
Register temp1,
|
||
Label* is_not_object,
|
||
Label* is_object) {
|
||
Register temp2 = scratch0();
|
||
__ JumpIfSmi(input, is_not_object);
|
||
|
||
__ LoadRoot(temp2, Heap::kNullValueRootIndex);
|
||
__ cmp(input, temp2);
|
||
__ b(eq, is_object);
|
||
|
||
// Load map.
|
||
__ ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
|
||
// Undetectable objects behave like undefined.
|
||
__ ldrb(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
|
||
__ tst(temp2, Operand(1 << Map::kIsUndetectable));
|
||
__ b(ne, is_not_object);
|
||
|
||
// Load instance type and check that it is in object type range.
|
||
__ ldrb(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
|
||
__ cmp(temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
||
__ b(lt, is_not_object);
|
||
__ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
||
return le;
|
||
}
|
||
|
||
|
||
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
|
||
Register reg = ToRegister(instr->value());
|
||
Register temp1 = ToRegister(instr->temp());
|
||
|
||
Condition true_cond =
|
||
EmitIsObject(reg, temp1,
|
||
instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
|
||
|
||
EmitBranch(instr, true_cond);
|
||
}
|
||
|
||
|
||
Condition LCodeGen::EmitIsString(Register input,
|
||
Register temp1,
|
||
Label* is_not_string,
|
||
SmiCheck check_needed = INLINE_SMI_CHECK) {
|
||
if (check_needed == INLINE_SMI_CHECK) {
|
||
__ JumpIfSmi(input, is_not_string);
|
||
}
|
||
__ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
|
||
|
||
return lt;
|
||
}
|
||
|
||
|
||
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
|
||
Register reg = ToRegister(instr->value());
|
||
Register temp1 = ToRegister(instr->temp());
|
||
|
||
SmiCheck check_needed =
|
||
instr->hydrogen()->value()->IsHeapObject()
|
||
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
||
Condition true_cond =
|
||
EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
|
||
|
||
EmitBranch(instr, true_cond);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
|
||
Register input_reg = EmitLoadRegister(instr->value(), ip);
|
||
__ SmiTst(input_reg);
|
||
EmitBranch(instr, eq);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register temp = ToRegister(instr->temp());
|
||
|
||
if (!instr->hydrogen()->value()->IsHeapObject()) {
|
||
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
|
||
}
|
||
__ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
|
||
__ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
|
||
__ tst(temp, Operand(1 << Map::kIsUndetectable));
|
||
EmitBranch(instr, ne);
|
||
}
|
||
|
||
|
||
static Condition ComputeCompareCondition(Token::Value op) {
|
||
switch (op) {
|
||
case Token::EQ_STRICT:
|
||
case Token::EQ:
|
||
return eq;
|
||
case Token::LT:
|
||
return lt;
|
||
case Token::GT:
|
||
return gt;
|
||
case Token::LTE:
|
||
return le;
|
||
case Token::GTE:
|
||
return ge;
|
||
default:
|
||
UNREACHABLE();
|
||
return kNoCondition;
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
|
||
Token::Value op = instr->op();
|
||
|
||
Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
|
||
CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
||
// This instruction also signals no smi code inlined.
|
||
__ cmp(r0, Operand::Zero());
|
||
|
||
Condition condition = ComputeCompareCondition(op);
|
||
|
||
EmitBranch(instr, condition);
|
||
}
|
||
|
||
|
||
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
|
||
InstanceType from = instr->from();
|
||
InstanceType to = instr->to();
|
||
if (from == FIRST_TYPE) return to;
|
||
ASSERT(from == to || to == LAST_TYPE);
|
||
return from;
|
||
}
|
||
|
||
|
||
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
|
||
InstanceType from = instr->from();
|
||
InstanceType to = instr->to();
|
||
if (from == to) return eq;
|
||
if (to == LAST_TYPE) return hs;
|
||
if (from == FIRST_TYPE) return ls;
|
||
UNREACHABLE();
|
||
return eq;
|
||
}
|
||
|
||
|
||
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
|
||
Register scratch = scratch0();
|
||
Register input = ToRegister(instr->value());
|
||
|
||
if (!instr->hydrogen()->value()->IsHeapObject()) {
|
||
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
|
||
}
|
||
|
||
__ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
|
||
EmitBranch(instr, BranchCondition(instr->hydrogen()));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register result = ToRegister(instr->result());
|
||
|
||
__ AssertString(input);
|
||
|
||
__ ldr(result, FieldMemOperand(input, String::kHashFieldOffset));
|
||
__ IndexFromHash(result, result);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoHasCachedArrayIndexAndBranch(
|
||
LHasCachedArrayIndexAndBranch* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register scratch = scratch0();
|
||
|
||
__ ldr(scratch,
|
||
FieldMemOperand(input, String::kHashFieldOffset));
|
||
__ tst(scratch, Operand(String::kContainsCachedArrayIndexMask));
|
||
EmitBranch(instr, eq);
|
||
}
|
||
|
||
|
||
// Branches to a label or falls through with the answer in flags. Trashes
|
||
// the temp registers, but not the input.
|
||
void LCodeGen::EmitClassOfTest(Label* is_true,
|
||
Label* is_false,
|
||
Handle<String>class_name,
|
||
Register input,
|
||
Register temp,
|
||
Register temp2) {
|
||
ASSERT(!input.is(temp));
|
||
ASSERT(!input.is(temp2));
|
||
ASSERT(!temp.is(temp2));
|
||
|
||
__ JumpIfSmi(input, is_false);
|
||
|
||
if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Function"))) {
|
||
// Assuming the following assertions, we can use the same compares to test
|
||
// for both being a function type and being in the object type range.
|
||
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
|
||
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
|
||
FIRST_SPEC_OBJECT_TYPE + 1);
|
||
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
|
||
LAST_SPEC_OBJECT_TYPE - 1);
|
||
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
|
||
__ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE);
|
||
__ b(lt, is_false);
|
||
__ b(eq, is_true);
|
||
__ cmp(temp2, Operand(LAST_SPEC_OBJECT_TYPE));
|
||
__ b(eq, is_true);
|
||
} else {
|
||
// Faster code path to avoid two compares: subtract lower bound from the
|
||
// actual type and do a signed compare with the width of the type range.
|
||
__ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
|
||
__ ldrb(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset));
|
||
__ sub(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
||
__ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
|
||
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
||
__ b(gt, is_false);
|
||
}
|
||
|
||
// Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
|
||
// Check if the constructor in the map is a function.
|
||
__ ldr(temp, FieldMemOperand(temp, Map::kConstructorOffset));
|
||
|
||
// Objects with a non-function constructor have class 'Object'.
|
||
__ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE);
|
||
if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) {
|
||
__ b(ne, is_true);
|
||
} else {
|
||
__ b(ne, is_false);
|
||
}
|
||
|
||
// temp now contains the constructor function. Grab the
|
||
// instance class name from there.
|
||
__ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
|
||
__ ldr(temp, FieldMemOperand(temp,
|
||
SharedFunctionInfo::kInstanceClassNameOffset));
|
||
// The class name we are testing against is internalized since it's a literal.
|
||
// The name in the constructor is internalized because of the way the context
|
||
// is booted. This routine isn't expected to work for random API-created
|
||
// classes and it doesn't have to because you can't access it with natives
|
||
// syntax. Since both sides are internalized it is sufficient to use an
|
||
// identity comparison.
|
||
__ cmp(temp, Operand(class_name));
|
||
// End with the answer in flags.
|
||
}
|
||
|
||
|
||
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register temp = scratch0();
|
||
Register temp2 = ToRegister(instr->temp());
|
||
Handle<String> class_name = instr->hydrogen()->class_name();
|
||
|
||
EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
|
||
class_name, input, temp, temp2);
|
||
|
||
EmitBranch(instr, eq);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
|
||
Register reg = ToRegister(instr->value());
|
||
Register temp = ToRegister(instr->temp());
|
||
|
||
__ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
|
||
__ cmp(temp, Operand(instr->map()));
|
||
EmitBranch(instr, eq);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
|
||
ASSERT(ToRegister(instr->left()).is(r0)); // Object is in r0.
|
||
ASSERT(ToRegister(instr->right()).is(r1)); // Function is in r1.
|
||
|
||
InstanceofStub stub(InstanceofStub::kArgsInRegisters);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
|
||
__ cmp(r0, Operand::Zero());
|
||
__ mov(r0, Operand(factory()->false_value()), LeaveCC, ne);
|
||
__ mov(r0, Operand(factory()->true_value()), LeaveCC, eq);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
|
||
class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
|
||
LInstanceOfKnownGlobal* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
Label* map_check() { return &map_check_; }
|
||
private:
|
||
LInstanceOfKnownGlobal* instr_;
|
||
Label map_check_;
|
||
};
|
||
|
||
DeferredInstanceOfKnownGlobal* deferred;
|
||
deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
|
||
|
||
Label done, false_result;
|
||
Register object = ToRegister(instr->value());
|
||
Register temp = ToRegister(instr->temp());
|
||
Register result = ToRegister(instr->result());
|
||
|
||
ASSERT(object.is(r0));
|
||
ASSERT(result.is(r0));
|
||
|
||
// A Smi is not instance of anything.
|
||
__ JumpIfSmi(object, &false_result);
|
||
|
||
// This is the inlined call site instanceof cache. The two occurences of the
|
||
// hole value will be patched to the last map/result pair generated by the
|
||
// instanceof stub.
|
||
Label cache_miss;
|
||
Register map = temp;
|
||
__ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
|
||
{
|
||
// Block constant pool emission to ensure the positions of instructions are
|
||
// as expected by the patcher. See InstanceofStub::Generate().
|
||
Assembler::BlockConstPoolScope block_const_pool(masm());
|
||
__ bind(deferred->map_check()); // Label for calculating code patching.
|
||
// We use Factory::the_hole_value() on purpose instead of loading from the
|
||
// root array to force relocation to be able to later patch with
|
||
// the cached map.
|
||
PredictableCodeSizeScope predictable(masm_, 5 * Assembler::kInstrSize);
|
||
Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
|
||
__ mov(ip, Operand(Handle<Object>(cell)));
|
||
__ ldr(ip, FieldMemOperand(ip, PropertyCell::kValueOffset));
|
||
__ cmp(map, Operand(ip));
|
||
__ b(ne, &cache_miss);
|
||
// We use Factory::the_hole_value() on purpose instead of loading from the
|
||
// root array to force relocation to be able to later patch
|
||
// with true or false.
|
||
__ mov(result, Operand(factory()->the_hole_value()));
|
||
}
|
||
__ b(&done);
|
||
|
||
// The inlined call site cache did not match. Check null and string before
|
||
// calling the deferred code.
|
||
__ bind(&cache_miss);
|
||
// Null is not instance of anything.
|
||
__ LoadRoot(ip, Heap::kNullValueRootIndex);
|
||
__ cmp(object, Operand(ip));
|
||
__ b(eq, &false_result);
|
||
|
||
// String values is not instance of anything.
|
||
Condition is_string = masm_->IsObjectStringType(object, temp);
|
||
__ b(is_string, &false_result);
|
||
|
||
// Go to the deferred code.
|
||
__ b(deferred->entry());
|
||
|
||
__ bind(&false_result);
|
||
__ LoadRoot(result, Heap::kFalseValueRootIndex);
|
||
|
||
// Here result has either true or false. Deferred code also produces true or
|
||
// false object.
|
||
__ bind(deferred->exit());
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
|
||
Label* map_check) {
|
||
Register result = ToRegister(instr->result());
|
||
ASSERT(result.is(r0));
|
||
|
||
InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
|
||
flags = static_cast<InstanceofStub::Flags>(
|
||
flags | InstanceofStub::kArgsInRegisters);
|
||
flags = static_cast<InstanceofStub::Flags>(
|
||
flags | InstanceofStub::kCallSiteInlineCheck);
|
||
flags = static_cast<InstanceofStub::Flags>(
|
||
flags | InstanceofStub::kReturnTrueFalseObject);
|
||
InstanceofStub stub(flags);
|
||
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
|
||
// Get the temp register reserved by the instruction. This needs to be r4 as
|
||
// its slot of the pushing of safepoint registers is used to communicate the
|
||
// offset to the location of the map check.
|
||
Register temp = ToRegister(instr->temp());
|
||
ASSERT(temp.is(r4));
|
||
__ LoadHeapObject(InstanceofStub::right(), instr->function());
|
||
static const int kAdditionalDelta = 5;
|
||
// Make sure that code size is predicable, since we use specific constants
|
||
// offsets in the code to find embedded values..
|
||
PredictableCodeSizeScope predictable(masm_, 6 * Assembler::kInstrSize);
|
||
int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
|
||
Label before_push_delta;
|
||
__ bind(&before_push_delta);
|
||
__ BlockConstPoolFor(kAdditionalDelta);
|
||
__ mov(temp, Operand(delta * kPointerSize));
|
||
// The mov above can generate one or two instructions. The delta was computed
|
||
// for two instructions, so we need to pad here in case of one instruction.
|
||
if (masm_->InstructionsGeneratedSince(&before_push_delta) != 2) {
|
||
ASSERT_EQ(1, masm_->InstructionsGeneratedSince(&before_push_delta));
|
||
__ nop();
|
||
}
|
||
__ StoreToSafepointRegisterSlot(temp, temp);
|
||
CallCodeGeneric(stub.GetCode(isolate()),
|
||
RelocInfo::CODE_TARGET,
|
||
instr,
|
||
RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
||
LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
|
||
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
|
||
// Put the result value into the result register slot and
|
||
// restore all registers.
|
||
__ StoreToSafepointRegisterSlot(result, result);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoInstanceSize(LInstanceSize* instr) {
|
||
Register object = ToRegister(instr->object());
|
||
Register result = ToRegister(instr->result());
|
||
__ ldr(result, FieldMemOperand(object, HeapObject::kMapOffset));
|
||
__ ldrb(result, FieldMemOperand(result, Map::kInstanceSizeOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCmpT(LCmpT* instr) {
|
||
Token::Value op = instr->op();
|
||
|
||
Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
|
||
CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
||
// This instruction also signals no smi code inlined.
|
||
__ cmp(r0, Operand::Zero());
|
||
|
||
Condition condition = ComputeCompareCondition(op);
|
||
__ LoadRoot(ToRegister(instr->result()),
|
||
Heap::kTrueValueRootIndex,
|
||
condition);
|
||
__ LoadRoot(ToRegister(instr->result()),
|
||
Heap::kFalseValueRootIndex,
|
||
NegateCondition(condition));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoReturn(LReturn* instr) {
|
||
if (FLAG_trace && info()->IsOptimizing()) {
|
||
// Push the return value on the stack as the parameter.
|
||
// Runtime::TraceExit returns its parameter in r0.
|
||
__ push(r0);
|
||
__ CallRuntime(Runtime::kTraceExit, 1);
|
||
}
|
||
if (info()->saves_caller_doubles()) {
|
||
ASSERT(NeedsEagerFrame());
|
||
BitVector* doubles = chunk()->allocated_double_registers();
|
||
BitVector::Iterator save_iterator(doubles);
|
||
int count = 0;
|
||
while (!save_iterator.Done()) {
|
||
__ vldr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()),
|
||
MemOperand(sp, count * kDoubleSize));
|
||
save_iterator.Advance();
|
||
count++;
|
||
}
|
||
}
|
||
int no_frame_start = -1;
|
||
if (NeedsEagerFrame()) {
|
||
__ mov(sp, fp);
|
||
no_frame_start = masm_->pc_offset();
|
||
__ ldm(ia_w, sp, fp.bit() | lr.bit());
|
||
}
|
||
if (instr->has_constant_parameter_count()) {
|
||
int parameter_count = ToInteger32(instr->constant_parameter_count());
|
||
int32_t sp_delta = (parameter_count + 1) * kPointerSize;
|
||
if (sp_delta != 0) {
|
||
__ add(sp, sp, Operand(sp_delta));
|
||
}
|
||
} else {
|
||
Register reg = ToRegister(instr->parameter_count());
|
||
// The argument count parameter is a smi
|
||
__ SmiUntag(reg);
|
||
__ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2));
|
||
}
|
||
|
||
__ Jump(lr);
|
||
|
||
if (no_frame_start != -1) {
|
||
info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
__ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
|
||
__ ldr(result, FieldMemOperand(ip, Cell::kValueOffset));
|
||
if (instr->hydrogen()->RequiresHoleCheck()) {
|
||
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
|
||
__ cmp(result, ip);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
|
||
ASSERT(ToRegister(instr->global_object()).is(r0));
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
__ mov(r2, Operand(instr->name()));
|
||
RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET
|
||
: RelocInfo::CODE_TARGET_CONTEXT;
|
||
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
|
||
CallCode(ic, mode, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
|
||
Register value = ToRegister(instr->value());
|
||
Register cell = scratch0();
|
||
|
||
// Load the cell.
|
||
__ mov(cell, Operand(instr->hydrogen()->cell().handle()));
|
||
|
||
// If the cell we are storing to contains the hole it could have
|
||
// been deleted from the property dictionary. In that case, we need
|
||
// to update the property details in the property dictionary to mark
|
||
// it as no longer deleted.
|
||
if (instr->hydrogen()->RequiresHoleCheck()) {
|
||
// We use a temp to check the payload (CompareRoot might clobber ip).
|
||
Register payload = ToRegister(instr->temp());
|
||
__ ldr(payload, FieldMemOperand(cell, Cell::kValueOffset));
|
||
__ CompareRoot(payload, Heap::kTheHoleValueRootIndex);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
// Store the value.
|
||
__ str(value, FieldMemOperand(cell, Cell::kValueOffset));
|
||
// Cells are always rescanned, so no write barrier here.
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
|
||
ASSERT(ToRegister(instr->global_object()).is(r1));
|
||
ASSERT(ToRegister(instr->value()).is(r0));
|
||
|
||
__ mov(r2, Operand(instr->name()));
|
||
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
|
||
? isolate()->builtins()->StoreIC_Initialize_Strict()
|
||
: isolate()->builtins()->StoreIC_Initialize();
|
||
CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
|
||
Register context = ToRegister(instr->context());
|
||
Register result = ToRegister(instr->result());
|
||
__ ldr(result, ContextOperand(context, instr->slot_index()));
|
||
if (instr->hydrogen()->RequiresHoleCheck()) {
|
||
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
|
||
__ cmp(result, ip);
|
||
if (instr->hydrogen()->DeoptimizesOnHole()) {
|
||
DeoptimizeIf(eq, instr->environment());
|
||
} else {
|
||
__ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
|
||
Register context = ToRegister(instr->context());
|
||
Register value = ToRegister(instr->value());
|
||
Register scratch = scratch0();
|
||
MemOperand target = ContextOperand(context, instr->slot_index());
|
||
|
||
Label skip_assignment;
|
||
|
||
if (instr->hydrogen()->RequiresHoleCheck()) {
|
||
__ ldr(scratch, target);
|
||
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
|
||
__ cmp(scratch, ip);
|
||
if (instr->hydrogen()->DeoptimizesOnHole()) {
|
||
DeoptimizeIf(eq, instr->environment());
|
||
} else {
|
||
__ b(ne, &skip_assignment);
|
||
}
|
||
}
|
||
|
||
__ str(value, target);
|
||
if (instr->hydrogen()->NeedsWriteBarrier()) {
|
||
SmiCheck check_needed =
|
||
instr->hydrogen()->value()->IsHeapObject()
|
||
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
||
__ RecordWriteContextSlot(context,
|
||
target.offset(),
|
||
value,
|
||
scratch,
|
||
GetLinkRegisterState(),
|
||
kSaveFPRegs,
|
||
EMIT_REMEMBERED_SET,
|
||
check_needed);
|
||
}
|
||
|
||
__ bind(&skip_assignment);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
|
||
HObjectAccess access = instr->hydrogen()->access();
|
||
int offset = access.offset();
|
||
Register object = ToRegister(instr->object());
|
||
|
||
if (access.IsExternalMemory()) {
|
||
Register result = ToRegister(instr->result());
|
||
__ ldr(result, MemOperand(object, offset));
|
||
return;
|
||
}
|
||
|
||
if (instr->hydrogen()->representation().IsDouble()) {
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
__ vldr(result, FieldMemOperand(object, offset));
|
||
return;
|
||
}
|
||
|
||
Register result = ToRegister(instr->result());
|
||
if (access.IsInobject()) {
|
||
__ ldr(result, FieldMemOperand(object, offset));
|
||
} else {
|
||
__ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
||
__ ldr(result, FieldMemOperand(result, offset));
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
|
||
ASSERT(ToRegister(instr->object()).is(r0));
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
// Name is always in r2.
|
||
__ mov(r2, Operand(instr->name()));
|
||
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
|
||
CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
|
||
Register scratch = scratch0();
|
||
Register function = ToRegister(instr->function());
|
||
Register result = ToRegister(instr->result());
|
||
|
||
// Check that the function really is a function. Load map into the
|
||
// result register.
|
||
__ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
|
||
DeoptimizeIf(ne, instr->environment());
|
||
|
||
// Make sure that the function has an instance prototype.
|
||
Label non_instance;
|
||
__ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
|
||
__ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
|
||
__ b(ne, &non_instance);
|
||
|
||
// Get the prototype or initial map from the function.
|
||
__ ldr(result,
|
||
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
||
|
||
// Check that the function has a prototype or an initial map.
|
||
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
|
||
__ cmp(result, ip);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
|
||
// If the function does not have an initial map, we're done.
|
||
Label done;
|
||
__ CompareObjectType(result, scratch, scratch, MAP_TYPE);
|
||
__ b(ne, &done);
|
||
|
||
// Get the prototype from the initial map.
|
||
__ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
|
||
__ jmp(&done);
|
||
|
||
// Non-instance prototype: Fetch prototype from constructor field
|
||
// in initial map.
|
||
__ bind(&non_instance);
|
||
__ ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
|
||
|
||
// All done.
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
__ LoadRoot(result, instr->index());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadExternalArrayPointer(
|
||
LLoadExternalArrayPointer* instr) {
|
||
Register to_reg = ToRegister(instr->result());
|
||
Register from_reg = ToRegister(instr->object());
|
||
__ ldr(to_reg, FieldMemOperand(from_reg,
|
||
ExternalArray::kExternalPointerOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
|
||
Register arguments = ToRegister(instr->arguments());
|
||
Register result = ToRegister(instr->result());
|
||
if (instr->length()->IsConstantOperand() &&
|
||
instr->index()->IsConstantOperand()) {
|
||
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
|
||
int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
|
||
int index = (const_length - const_index) + 1;
|
||
__ ldr(result, MemOperand(arguments, index * kPointerSize));
|
||
} else {
|
||
Register length = ToRegister(instr->length());
|
||
Register index = ToRegister(instr->index());
|
||
// There are two words between the frame pointer and the last argument.
|
||
// Subtracting from length accounts for one of them add one more.
|
||
__ sub(length, length, index);
|
||
__ add(length, length, Operand(1));
|
||
__ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
|
||
Register external_pointer = ToRegister(instr->elements());
|
||
Register key = no_reg;
|
||
ElementsKind elements_kind = instr->elements_kind();
|
||
bool key_is_constant = instr->key()->IsConstantOperand();
|
||
int constant_key = 0;
|
||
if (key_is_constant) {
|
||
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
||
if (constant_key & 0xF0000000) {
|
||
Abort(kArrayIndexConstantValueTooBig);
|
||
}
|
||
} else {
|
||
key = ToRegister(instr->key());
|
||
}
|
||
int element_size_shift = ElementsKindToShiftSize(elements_kind);
|
||
int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
|
||
? (element_size_shift - kSmiTagSize) : element_size_shift;
|
||
int additional_offset = instr->additional_index() << element_size_shift;
|
||
|
||
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
|
||
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
Operand operand = key_is_constant
|
||
? Operand(constant_key << element_size_shift)
|
||
: Operand(key, LSL, shift_size);
|
||
__ add(scratch0(), external_pointer, operand);
|
||
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
|
||
__ vldr(double_scratch0().low(), scratch0(), additional_offset);
|
||
__ vcvt_f64_f32(result, double_scratch0().low());
|
||
} else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
|
||
__ vldr(result, scratch0(), additional_offset);
|
||
}
|
||
} else {
|
||
Register result = ToRegister(instr->result());
|
||
MemOperand mem_operand = PrepareKeyedOperand(
|
||
key, external_pointer, key_is_constant, constant_key,
|
||
element_size_shift, shift_size,
|
||
instr->additional_index(), additional_offset);
|
||
switch (elements_kind) {
|
||
case EXTERNAL_BYTE_ELEMENTS:
|
||
__ ldrsb(result, mem_operand);
|
||
break;
|
||
case EXTERNAL_PIXEL_ELEMENTS:
|
||
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
||
__ ldrb(result, mem_operand);
|
||
break;
|
||
case EXTERNAL_SHORT_ELEMENTS:
|
||
__ ldrsh(result, mem_operand);
|
||
break;
|
||
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
||
__ ldrh(result, mem_operand);
|
||
break;
|
||
case EXTERNAL_INT_ELEMENTS:
|
||
__ ldr(result, mem_operand);
|
||
break;
|
||
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
||
__ ldr(result, mem_operand);
|
||
if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
|
||
__ cmp(result, Operand(0x80000000));
|
||
DeoptimizeIf(cs, instr->environment());
|
||
}
|
||
break;
|
||
case EXTERNAL_FLOAT_ELEMENTS:
|
||
case EXTERNAL_DOUBLE_ELEMENTS:
|
||
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
||
case FAST_HOLEY_ELEMENTS:
|
||
case FAST_HOLEY_SMI_ELEMENTS:
|
||
case FAST_DOUBLE_ELEMENTS:
|
||
case FAST_ELEMENTS:
|
||
case FAST_SMI_ELEMENTS:
|
||
case DICTIONARY_ELEMENTS:
|
||
case NON_STRICT_ARGUMENTS_ELEMENTS:
|
||
UNREACHABLE();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
|
||
Register elements = ToRegister(instr->elements());
|
||
bool key_is_constant = instr->key()->IsConstantOperand();
|
||
Register key = no_reg;
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
Register scratch = scratch0();
|
||
|
||
int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
|
||
int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
|
||
? (element_size_shift - kSmiTagSize) : element_size_shift;
|
||
int constant_key = 0;
|
||
if (key_is_constant) {
|
||
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
||
if (constant_key & 0xF0000000) {
|
||
Abort(kArrayIndexConstantValueTooBig);
|
||
}
|
||
} else {
|
||
key = ToRegister(instr->key());
|
||
}
|
||
|
||
int base_offset = (FixedDoubleArray::kHeaderSize - kHeapObjectTag) +
|
||
((constant_key + instr->additional_index()) << element_size_shift);
|
||
if (!key_is_constant) {
|
||
__ add(elements, elements, Operand(key, LSL, shift_size));
|
||
}
|
||
__ add(elements, elements, Operand(base_offset));
|
||
__ vldr(result, elements, 0);
|
||
if (instr->hydrogen()->RequiresHoleCheck()) {
|
||
__ ldr(scratch, MemOperand(elements, sizeof(kHoleNanLower32)));
|
||
__ cmp(scratch, Operand(kHoleNanUpper32));
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
|
||
Register elements = ToRegister(instr->elements());
|
||
Register result = ToRegister(instr->result());
|
||
Register scratch = scratch0();
|
||
Register store_base = scratch;
|
||
int offset = 0;
|
||
|
||
if (instr->key()->IsConstantOperand()) {
|
||
LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
|
||
offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) +
|
||
instr->additional_index());
|
||
store_base = elements;
|
||
} else {
|
||
Register key = EmitLoadRegister(instr->key(), scratch0());
|
||
// Even though the HLoadKeyed instruction forces the input
|
||
// representation for the key to be an integer, the input gets replaced
|
||
// during bound check elimination with the index argument to the bounds
|
||
// check, which can be tagged, so that case must be handled here, too.
|
||
if (instr->hydrogen()->key()->representation().IsSmi()) {
|
||
__ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
|
||
} else {
|
||
__ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
|
||
}
|
||
offset = FixedArray::OffsetOfElementAt(instr->additional_index());
|
||
}
|
||
__ ldr(result, FieldMemOperand(store_base, offset));
|
||
|
||
// Check for the hole value.
|
||
if (instr->hydrogen()->RequiresHoleCheck()) {
|
||
if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
|
||
__ SmiTst(result);
|
||
DeoptimizeIf(ne, instr->environment());
|
||
} else {
|
||
__ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
|
||
__ cmp(result, scratch);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
|
||
if (instr->is_external()) {
|
||
DoLoadKeyedExternalArray(instr);
|
||
} else if (instr->hydrogen()->representation().IsDouble()) {
|
||
DoLoadKeyedFixedDoubleArray(instr);
|
||
} else {
|
||
DoLoadKeyedFixedArray(instr);
|
||
}
|
||
}
|
||
|
||
|
||
MemOperand LCodeGen::PrepareKeyedOperand(Register key,
|
||
Register base,
|
||
bool key_is_constant,
|
||
int constant_key,
|
||
int element_size,
|
||
int shift_size,
|
||
int additional_index,
|
||
int additional_offset) {
|
||
if (additional_index != 0 && !key_is_constant) {
|
||
additional_index *= 1 << (element_size - shift_size);
|
||
__ add(scratch0(), key, Operand(additional_index));
|
||
}
|
||
|
||
if (key_is_constant) {
|
||
return MemOperand(base,
|
||
(constant_key << element_size) + additional_offset);
|
||
}
|
||
|
||
if (additional_index == 0) {
|
||
if (shift_size >= 0) {
|
||
return MemOperand(base, key, LSL, shift_size);
|
||
} else {
|
||
ASSERT_EQ(-1, shift_size);
|
||
return MemOperand(base, key, LSR, 1);
|
||
}
|
||
}
|
||
|
||
if (shift_size >= 0) {
|
||
return MemOperand(base, scratch0(), LSL, shift_size);
|
||
} else {
|
||
ASSERT_EQ(-1, shift_size);
|
||
return MemOperand(base, scratch0(), LSR, 1);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
|
||
ASSERT(ToRegister(instr->object()).is(r1));
|
||
ASSERT(ToRegister(instr->key()).is(r0));
|
||
|
||
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
|
||
CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
|
||
Register scratch = scratch0();
|
||
Register result = ToRegister(instr->result());
|
||
|
||
if (instr->hydrogen()->from_inlined()) {
|
||
__ sub(result, sp, Operand(2 * kPointerSize));
|
||
} else {
|
||
// Check if the calling frame is an arguments adaptor frame.
|
||
Label done, adapted;
|
||
__ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
||
__ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
|
||
__ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
||
|
||
// Result is the frame pointer for the frame if not adapted and for the real
|
||
// frame below the adaptor frame if adapted.
|
||
__ mov(result, fp, LeaveCC, ne);
|
||
__ mov(result, scratch, LeaveCC, eq);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
|
||
Register elem = ToRegister(instr->elements());
|
||
Register result = ToRegister(instr->result());
|
||
|
||
Label done;
|
||
|
||
// If no arguments adaptor frame the number of arguments is fixed.
|
||
__ cmp(fp, elem);
|
||
__ mov(result, Operand(scope()->num_parameters()));
|
||
__ b(eq, &done);
|
||
|
||
// Arguments adaptor frame present. Get argument length from there.
|
||
__ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
||
__ ldr(result,
|
||
MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
||
__ SmiUntag(result);
|
||
|
||
// Argument length is in result register.
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
|
||
Register receiver = ToRegister(instr->receiver());
|
||
Register function = ToRegister(instr->function());
|
||
Register scratch = scratch0();
|
||
|
||
// If the receiver is null or undefined, we have to pass the global
|
||
// object as a receiver to normal functions. Values have to be
|
||
// passed unchanged to builtins and strict-mode functions.
|
||
Label global_object, receiver_ok;
|
||
|
||
// Do not transform the receiver to object for strict mode
|
||
// functions.
|
||
__ ldr(scratch,
|
||
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
||
__ ldr(scratch,
|
||
FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
|
||
__ tst(scratch,
|
||
Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize)));
|
||
__ b(ne, &receiver_ok);
|
||
|
||
// Do not transform the receiver to object for builtins.
|
||
__ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
|
||
__ b(ne, &receiver_ok);
|
||
|
||
// Normal function. Replace undefined or null with global receiver.
|
||
__ LoadRoot(scratch, Heap::kNullValueRootIndex);
|
||
__ cmp(receiver, scratch);
|
||
__ b(eq, &global_object);
|
||
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
|
||
__ cmp(receiver, scratch);
|
||
__ b(eq, &global_object);
|
||
|
||
// Deoptimize if the receiver is not a JS object.
|
||
__ SmiTst(receiver);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
__ CompareObjectType(receiver, scratch, scratch, FIRST_SPEC_OBJECT_TYPE);
|
||
DeoptimizeIf(lt, instr->environment());
|
||
__ jmp(&receiver_ok);
|
||
|
||
__ bind(&global_object);
|
||
__ ldr(receiver, GlobalObjectOperand());
|
||
__ ldr(receiver,
|
||
FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
|
||
__ bind(&receiver_ok);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
|
||
Register receiver = ToRegister(instr->receiver());
|
||
Register function = ToRegister(instr->function());
|
||
Register length = ToRegister(instr->length());
|
||
Register elements = ToRegister(instr->elements());
|
||
Register scratch = scratch0();
|
||
ASSERT(receiver.is(r0)); // Used for parameter count.
|
||
ASSERT(function.is(r1)); // Required by InvokeFunction.
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
// Copy the arguments to this function possibly from the
|
||
// adaptor frame below it.
|
||
const uint32_t kArgumentsLimit = 1 * KB;
|
||
__ cmp(length, Operand(kArgumentsLimit));
|
||
DeoptimizeIf(hi, instr->environment());
|
||
|
||
// Push the receiver and use the register to keep the original
|
||
// number of arguments.
|
||
__ push(receiver);
|
||
__ mov(receiver, length);
|
||
// The arguments are at a one pointer size offset from elements.
|
||
__ add(elements, elements, Operand(1 * kPointerSize));
|
||
|
||
// Loop through the arguments pushing them onto the execution
|
||
// stack.
|
||
Label invoke, loop;
|
||
// length is a small non-negative integer, due to the test above.
|
||
__ cmp(length, Operand::Zero());
|
||
__ b(eq, &invoke);
|
||
__ bind(&loop);
|
||
__ ldr(scratch, MemOperand(elements, length, LSL, 2));
|
||
__ push(scratch);
|
||
__ sub(length, length, Operand(1), SetCC);
|
||
__ b(ne, &loop);
|
||
|
||
__ bind(&invoke);
|
||
ASSERT(instr->HasPointerMap());
|
||
LPointerMap* pointers = instr->pointer_map();
|
||
RecordPosition(pointers->position());
|
||
SafepointGenerator safepoint_generator(
|
||
this, pointers, Safepoint::kLazyDeopt);
|
||
// The number of arguments is stored in receiver which is r0, as expected
|
||
// by InvokeFunction.
|
||
ParameterCount actual(receiver);
|
||
__ InvokeFunction(function, actual, CALL_FUNCTION,
|
||
safepoint_generator, CALL_AS_METHOD);
|
||
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoPushArgument(LPushArgument* instr) {
|
||
LOperand* argument = instr->value();
|
||
if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
|
||
Abort(kDoPushArgumentNotImplementedForDoubleType);
|
||
} else {
|
||
Register argument_reg = EmitLoadRegister(argument, ip);
|
||
__ push(argument_reg);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDrop(LDrop* instr) {
|
||
__ Drop(instr->count());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoThisFunction(LThisFunction* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
__ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoContext(LContext* instr) {
|
||
// If there is a non-return use, the context must be moved to a register.
|
||
Register result = ToRegister(instr->result());
|
||
for (HUseIterator it(instr->hydrogen()->uses()); !it.Done(); it.Advance()) {
|
||
if (!it.value()->IsReturn()) {
|
||
__ mov(result, cp);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoOuterContext(LOuterContext* instr) {
|
||
Register context = ToRegister(instr->context());
|
||
Register result = ToRegister(instr->result());
|
||
__ ldr(result,
|
||
MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
|
||
__ push(cp); // The context is the first argument.
|
||
__ LoadHeapObject(scratch0(), instr->hydrogen()->pairs());
|
||
__ push(scratch0());
|
||
__ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
|
||
__ push(scratch0());
|
||
CallRuntime(Runtime::kDeclareGlobals, 3, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
__ ldr(result, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
|
||
Register global = ToRegister(instr->global_object());
|
||
Register result = ToRegister(instr->result());
|
||
__ ldr(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
|
||
int formal_parameter_count,
|
||
int arity,
|
||
LInstruction* instr,
|
||
CallKind call_kind,
|
||
R1State r1_state) {
|
||
bool dont_adapt_arguments =
|
||
formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
|
||
bool can_invoke_directly =
|
||
dont_adapt_arguments || formal_parameter_count == arity;
|
||
|
||
LPointerMap* pointers = instr->pointer_map();
|
||
RecordPosition(pointers->position());
|
||
|
||
if (can_invoke_directly) {
|
||
if (r1_state == R1_UNINITIALIZED) {
|
||
__ LoadHeapObject(r1, function);
|
||
}
|
||
|
||
// Change context.
|
||
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
|
||
|
||
// Set r0 to arguments count if adaption is not needed. Assumes that r0
|
||
// is available to write to at this point.
|
||
if (dont_adapt_arguments) {
|
||
__ mov(r0, Operand(arity));
|
||
}
|
||
|
||
// Invoke function.
|
||
__ SetCallKind(r5, call_kind);
|
||
__ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
|
||
__ Call(ip);
|
||
|
||
// Set up deoptimization.
|
||
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
|
||
} else {
|
||
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
|
||
ParameterCount count(arity);
|
||
ParameterCount expected(formal_parameter_count);
|
||
__ InvokeFunction(
|
||
function, expected, count, CALL_FUNCTION, generator, call_kind);
|
||
}
|
||
|
||
// Restore context.
|
||
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
CallKnownFunction(instr->hydrogen()->function(),
|
||
instr->hydrogen()->formal_parameter_count(),
|
||
instr->arity(),
|
||
instr,
|
||
CALL_AS_METHOD,
|
||
R1_UNINITIALIZED);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register result = ToRegister(instr->result());
|
||
Register scratch = scratch0();
|
||
|
||
// Deoptimize if not a heap number.
|
||
__ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
|
||
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
|
||
__ cmp(scratch, Operand(ip));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
|
||
Label done;
|
||
Register exponent = scratch0();
|
||
scratch = no_reg;
|
||
__ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
|
||
// Check the sign of the argument. If the argument is positive, just
|
||
// return it.
|
||
__ tst(exponent, Operand(HeapNumber::kSignMask));
|
||
// Move the input to the result if necessary.
|
||
__ Move(result, input);
|
||
__ b(eq, &done);
|
||
|
||
// Input is negative. Reverse its sign.
|
||
// Preserve the value of all registers.
|
||
{
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
|
||
// Registers were saved at the safepoint, so we can use
|
||
// many scratch registers.
|
||
Register tmp1 = input.is(r1) ? r0 : r1;
|
||
Register tmp2 = input.is(r2) ? r0 : r2;
|
||
Register tmp3 = input.is(r3) ? r0 : r3;
|
||
Register tmp4 = input.is(r4) ? r0 : r4;
|
||
|
||
// exponent: floating point exponent value.
|
||
|
||
Label allocated, slow;
|
||
__ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
|
||
__ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
|
||
__ b(&allocated);
|
||
|
||
// Slow case: Call the runtime system to do the number allocation.
|
||
__ bind(&slow);
|
||
|
||
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
|
||
// Set the pointer to the new heap number in tmp.
|
||
if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0));
|
||
// Restore input_reg after call to runtime.
|
||
__ LoadFromSafepointRegisterSlot(input, input);
|
||
__ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
|
||
|
||
__ bind(&allocated);
|
||
// exponent: floating point exponent value.
|
||
// tmp1: allocated heap number.
|
||
__ bic(exponent, exponent, Operand(HeapNumber::kSignMask));
|
||
__ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
|
||
__ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
|
||
__ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
|
||
|
||
__ StoreToSafepointRegisterSlot(tmp1, result);
|
||
}
|
||
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register result = ToRegister(instr->result());
|
||
__ cmp(input, Operand::Zero());
|
||
__ Move(result, input, pl);
|
||
// We can make rsb conditional because the previous cmp instruction
|
||
// will clear the V (overflow) flag and rsb won't set this flag
|
||
// if input is positive.
|
||
__ rsb(result, input, Operand::Zero(), SetCC, mi);
|
||
// Deoptimize on overflow.
|
||
DeoptimizeIf(vs, instr->environment());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathAbs(LMathAbs* instr) {
|
||
// Class for deferred case.
|
||
class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LMathAbs* instr_;
|
||
};
|
||
|
||
Representation r = instr->hydrogen()->value()->representation();
|
||
if (r.IsDouble()) {
|
||
DwVfpRegister input = ToDoubleRegister(instr->value());
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
__ vabs(result, input);
|
||
} else if (r.IsSmiOrInteger32()) {
|
||
EmitIntegerMathAbs(instr);
|
||
} else {
|
||
// Representation is tagged.
|
||
DeferredMathAbsTaggedHeapNumber* deferred =
|
||
new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
|
||
Register input = ToRegister(instr->value());
|
||
// Smi check.
|
||
__ JumpIfNotSmi(input, deferred->entry());
|
||
// If smi, handle it directly.
|
||
EmitIntegerMathAbs(instr);
|
||
__ bind(deferred->exit());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathFloor(LMathFloor* instr) {
|
||
DwVfpRegister input = ToDoubleRegister(instr->value());
|
||
Register result = ToRegister(instr->result());
|
||
Register input_high = scratch0();
|
||
Label done, exact;
|
||
|
||
__ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact);
|
||
DeoptimizeIf(al, instr->environment());
|
||
|
||
__ bind(&exact);
|
||
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
// Test for -0.
|
||
__ cmp(result, Operand::Zero());
|
||
__ b(ne, &done);
|
||
__ cmp(input_high, Operand::Zero());
|
||
DeoptimizeIf(mi, instr->environment());
|
||
}
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathRound(LMathRound* instr) {
|
||
DwVfpRegister input = ToDoubleRegister(instr->value());
|
||
Register result = ToRegister(instr->result());
|
||
DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp());
|
||
DwVfpRegister input_plus_dot_five = double_scratch1;
|
||
Register input_high = scratch0();
|
||
DwVfpRegister dot_five = double_scratch0();
|
||
Label convert, done;
|
||
|
||
__ Vmov(dot_five, 0.5, scratch0());
|
||
__ vabs(double_scratch1, input);
|
||
__ VFPCompareAndSetFlags(double_scratch1, dot_five);
|
||
// If input is in [-0.5, -0], the result is -0.
|
||
// If input is in [+0, +0.5[, the result is +0.
|
||
// If the input is +0.5, the result is 1.
|
||
__ b(hi, &convert); // Out of [-0.5, +0.5].
|
||
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
__ VmovHigh(input_high, input);
|
||
__ cmp(input_high, Operand::Zero());
|
||
DeoptimizeIf(mi, instr->environment()); // [-0.5, -0].
|
||
}
|
||
__ VFPCompareAndSetFlags(input, dot_five);
|
||
__ mov(result, Operand(1), LeaveCC, eq); // +0.5.
|
||
// Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
|
||
// flag kBailoutOnMinusZero.
|
||
__ mov(result, Operand::Zero(), LeaveCC, ne);
|
||
__ b(&done);
|
||
|
||
__ bind(&convert);
|
||
__ vadd(input_plus_dot_five, input, dot_five);
|
||
// Reuse dot_five (double_scratch0) as we no longer need this value.
|
||
__ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(),
|
||
&done, &done);
|
||
DeoptimizeIf(al, instr->environment());
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
|
||
DwVfpRegister input = ToDoubleRegister(instr->value());
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
__ vsqrt(result, input);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
|
||
DwVfpRegister input = ToDoubleRegister(instr->value());
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
DwVfpRegister temp = ToDoubleRegister(instr->temp());
|
||
|
||
// Note that according to ECMA-262 15.8.2.13:
|
||
// Math.pow(-Infinity, 0.5) == Infinity
|
||
// Math.sqrt(-Infinity) == NaN
|
||
Label done;
|
||
__ vmov(temp, -V8_INFINITY, scratch0());
|
||
__ VFPCompareAndSetFlags(input, temp);
|
||
__ vneg(result, temp, eq);
|
||
__ b(&done, eq);
|
||
|
||
// Add +0 to convert -0 to +0.
|
||
__ vadd(result, input, kDoubleRegZero);
|
||
__ vsqrt(result, result);
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoPower(LPower* instr) {
|
||
Representation exponent_type = instr->hydrogen()->right()->representation();
|
||
// Having marked this as a call, we can use any registers.
|
||
// Just make sure that the input/output registers are the expected ones.
|
||
ASSERT(!instr->right()->IsDoubleRegister() ||
|
||
ToDoubleRegister(instr->right()).is(d2));
|
||
ASSERT(!instr->right()->IsRegister() ||
|
||
ToRegister(instr->right()).is(r2));
|
||
ASSERT(ToDoubleRegister(instr->left()).is(d1));
|
||
ASSERT(ToDoubleRegister(instr->result()).is(d3));
|
||
|
||
if (exponent_type.IsSmi()) {
|
||
MathPowStub stub(MathPowStub::TAGGED);
|
||
__ CallStub(&stub);
|
||
} else if (exponent_type.IsTagged()) {
|
||
Label no_deopt;
|
||
__ JumpIfSmi(r2, &no_deopt);
|
||
__ ldr(r6, FieldMemOperand(r2, HeapObject::kMapOffset));
|
||
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
|
||
__ cmp(r6, Operand(ip));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
__ bind(&no_deopt);
|
||
MathPowStub stub(MathPowStub::TAGGED);
|
||
__ CallStub(&stub);
|
||
} else if (exponent_type.IsInteger32()) {
|
||
MathPowStub stub(MathPowStub::INTEGER);
|
||
__ CallStub(&stub);
|
||
} else {
|
||
ASSERT(exponent_type.IsDouble());
|
||
MathPowStub stub(MathPowStub::DOUBLE);
|
||
__ CallStub(&stub);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoRandom(LRandom* instr) {
|
||
// Assert that the register size is indeed the size of each seed.
|
||
static const int kSeedSize = sizeof(uint32_t);
|
||
STATIC_ASSERT(kPointerSize == kSeedSize);
|
||
|
||
// Load native context
|
||
Register global_object = ToRegister(instr->global_object());
|
||
Register native_context = global_object;
|
||
__ ldr(native_context, FieldMemOperand(
|
||
global_object, GlobalObject::kNativeContextOffset));
|
||
|
||
// Load state (FixedArray of the native context's random seeds)
|
||
static const int kRandomSeedOffset =
|
||
FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize;
|
||
Register state = native_context;
|
||
__ ldr(state, FieldMemOperand(native_context, kRandomSeedOffset));
|
||
|
||
// Load state[0].
|
||
Register state0 = ToRegister(instr->scratch());
|
||
__ ldr(state0, FieldMemOperand(state, ByteArray::kHeaderSize));
|
||
// Load state[1].
|
||
Register state1 = ToRegister(instr->scratch2());
|
||
__ ldr(state1, FieldMemOperand(state, ByteArray::kHeaderSize + kSeedSize));
|
||
|
||
// state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16)
|
||
Register scratch3 = ToRegister(instr->scratch3());
|
||
Register scratch4 = scratch0();
|
||
__ and_(scratch3, state0, Operand(0xFFFF));
|
||
__ mov(scratch4, Operand(18273));
|
||
__ mul(scratch3, scratch3, scratch4);
|
||
__ add(state0, scratch3, Operand(state0, LSR, 16));
|
||
// Save state[0].
|
||
__ str(state0, FieldMemOperand(state, ByteArray::kHeaderSize));
|
||
|
||
// state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16)
|
||
__ and_(scratch3, state1, Operand(0xFFFF));
|
||
__ mov(scratch4, Operand(36969));
|
||
__ mul(scratch3, scratch3, scratch4);
|
||
__ add(state1, scratch3, Operand(state1, LSR, 16));
|
||
// Save state[1].
|
||
__ str(state1, FieldMemOperand(state, ByteArray::kHeaderSize + kSeedSize));
|
||
|
||
// Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF)
|
||
Register random = scratch4;
|
||
__ and_(random, state1, Operand(0x3FFFF));
|
||
__ add(random, random, Operand(state0, LSL, 14));
|
||
|
||
// 0x41300000 is the top half of 1.0 x 2^20 as a double.
|
||
// Create this constant using mov/orr to avoid PC relative load.
|
||
__ mov(scratch3, Operand(0x41000000));
|
||
__ orr(scratch3, scratch3, Operand(0x300000));
|
||
// Move 0x41300000xxxxxxxx (x = random bits) to VFP.
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
__ vmov(result, random, scratch3);
|
||
// Move 0x4130000000000000 to VFP.
|
||
__ mov(scratch4, Operand::Zero());
|
||
DwVfpRegister scratch5 = double_scratch0();
|
||
__ vmov(scratch5, scratch4, scratch3);
|
||
__ vsub(result, result, scratch5);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathExp(LMathExp* instr) {
|
||
DwVfpRegister input = ToDoubleRegister(instr->value());
|
||
DwVfpRegister result = ToDoubleRegister(instr->result());
|
||
DwVfpRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
|
||
DwVfpRegister double_scratch2 = double_scratch0();
|
||
Register temp1 = ToRegister(instr->temp1());
|
||
Register temp2 = ToRegister(instr->temp2());
|
||
|
||
MathExpGenerator::EmitMathExp(
|
||
masm(), input, result, double_scratch1, double_scratch2,
|
||
temp1, temp2, scratch0());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathLog(LMathLog* instr) {
|
||
ASSERT(ToDoubleRegister(instr->result()).is(d2));
|
||
TranscendentalCacheStub stub(TranscendentalCache::LOG,
|
||
TranscendentalCacheStub::UNTAGGED);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathTan(LMathTan* instr) {
|
||
ASSERT(ToDoubleRegister(instr->result()).is(d2));
|
||
TranscendentalCacheStub stub(TranscendentalCache::TAN,
|
||
TranscendentalCacheStub::UNTAGGED);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathCos(LMathCos* instr) {
|
||
ASSERT(ToDoubleRegister(instr->result()).is(d2));
|
||
TranscendentalCacheStub stub(TranscendentalCache::COS,
|
||
TranscendentalCacheStub::UNTAGGED);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoMathSin(LMathSin* instr) {
|
||
ASSERT(ToDoubleRegister(instr->result()).is(d2));
|
||
TranscendentalCacheStub stub(TranscendentalCache::SIN,
|
||
TranscendentalCacheStub::UNTAGGED);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
|
||
ASSERT(ToRegister(instr->function()).is(r1));
|
||
ASSERT(instr->HasPointerMap());
|
||
|
||
Handle<JSFunction> known_function = instr->hydrogen()->known_function();
|
||
if (known_function.is_null()) {
|
||
LPointerMap* pointers = instr->pointer_map();
|
||
RecordPosition(pointers->position());
|
||
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
|
||
ParameterCount count(instr->arity());
|
||
__ InvokeFunction(r1, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
|
||
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
||
} else {
|
||
CallKnownFunction(known_function,
|
||
instr->hydrogen()->formal_parameter_count(),
|
||
instr->arity(),
|
||
instr,
|
||
CALL_AS_METHOD,
|
||
R1_CONTAINS_TARGET);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
int arity = instr->arity();
|
||
Handle<Code> ic =
|
||
isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
|
||
CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
|
||
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallNamed(LCallNamed* instr) {
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
int arity = instr->arity();
|
||
RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
|
||
Handle<Code> ic =
|
||
isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
|
||
__ mov(r2, Operand(instr->name()));
|
||
CallCode(ic, mode, instr, NEVER_INLINE_TARGET_ADDRESS);
|
||
// Restore context register.
|
||
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallFunction(LCallFunction* instr) {
|
||
ASSERT(ToRegister(instr->function()).is(r1));
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
int arity = instr->arity();
|
||
CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
int arity = instr->arity();
|
||
RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
|
||
Handle<Code> ic =
|
||
isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
|
||
__ mov(r2, Operand(instr->name()));
|
||
CallCode(ic, mode, instr, NEVER_INLINE_TARGET_ADDRESS);
|
||
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
CallKnownFunction(instr->hydrogen()->target(),
|
||
instr->hydrogen()->formal_parameter_count(),
|
||
instr->arity(),
|
||
instr,
|
||
CALL_AS_FUNCTION,
|
||
R1_UNINITIALIZED);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallNew(LCallNew* instr) {
|
||
ASSERT(ToRegister(instr->constructor()).is(r1));
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
__ mov(r0, Operand(instr->arity()));
|
||
// No cell in r2 for construct type feedback in optimized code
|
||
Handle<Object> undefined_value(isolate()->factory()->undefined_value());
|
||
__ mov(r2, Operand(undefined_value));
|
||
CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
|
||
ASSERT(ToRegister(instr->constructor()).is(r1));
|
||
ASSERT(ToRegister(instr->result()).is(r0));
|
||
|
||
__ mov(r0, Operand(instr->arity()));
|
||
__ mov(r2, Operand(instr->hydrogen()->property_cell()));
|
||
ElementsKind kind = instr->hydrogen()->elements_kind();
|
||
AllocationSiteOverrideMode override_mode =
|
||
(AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
|
||
? DISABLE_ALLOCATION_SITES
|
||
: DONT_OVERRIDE;
|
||
ContextCheckMode context_mode = CONTEXT_CHECK_NOT_REQUIRED;
|
||
|
||
if (instr->arity() == 0) {
|
||
ArrayNoArgumentConstructorStub stub(kind, context_mode, override_mode);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
||
} else if (instr->arity() == 1) {
|
||
Label done;
|
||
if (IsFastPackedElementsKind(kind)) {
|
||
Label packed_case;
|
||
// We might need a change here
|
||
// look at the first argument
|
||
__ ldr(r5, MemOperand(sp, 0));
|
||
__ cmp(r5, Operand::Zero());
|
||
__ b(eq, &packed_case);
|
||
|
||
ElementsKind holey_kind = GetHoleyElementsKind(kind);
|
||
ArraySingleArgumentConstructorStub stub(holey_kind, context_mode,
|
||
override_mode);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
||
__ jmp(&done);
|
||
__ bind(&packed_case);
|
||
}
|
||
|
||
ArraySingleArgumentConstructorStub stub(kind, context_mode, override_mode);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
||
__ bind(&done);
|
||
} else {
|
||
ArrayNArgumentsConstructorStub stub(kind, context_mode, override_mode);
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
|
||
CallRuntime(instr->function(), instr->arity(), instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
|
||
Register function = ToRegister(instr->function());
|
||
Register code_object = ToRegister(instr->code_object());
|
||
__ add(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag));
|
||
__ str(code_object,
|
||
FieldMemOperand(function, JSFunction::kCodeEntryOffset));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
Register base = ToRegister(instr->base_object());
|
||
__ add(result, base, Operand(instr->offset()));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
|
||
Representation representation = instr->representation();
|
||
|
||
Register object = ToRegister(instr->object());
|
||
Register scratch = scratch0();
|
||
HObjectAccess access = instr->hydrogen()->access();
|
||
int offset = access.offset();
|
||
|
||
if (access.IsExternalMemory()) {
|
||
Register value = ToRegister(instr->value());
|
||
__ str(value, MemOperand(object, offset));
|
||
return;
|
||
}
|
||
|
||
Handle<Map> transition = instr->transition();
|
||
|
||
if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
|
||
Register value = ToRegister(instr->value());
|
||
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
|
||
__ SmiTst(value);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
} else if (FLAG_track_double_fields && representation.IsDouble()) {
|
||
ASSERT(transition.is_null());
|
||
ASSERT(access.IsInobject());
|
||
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
|
||
DwVfpRegister value = ToDoubleRegister(instr->value());
|
||
__ vstr(value, FieldMemOperand(object, offset));
|
||
return;
|
||
}
|
||
|
||
if (!transition.is_null()) {
|
||
__ mov(scratch, Operand(transition));
|
||
__ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
|
||
if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
|
||
Register temp = ToRegister(instr->temp());
|
||
// Update the write barrier for the map field.
|
||
__ RecordWriteField(object,
|
||
HeapObject::kMapOffset,
|
||
scratch,
|
||
temp,
|
||
GetLinkRegisterState(),
|
||
kSaveFPRegs,
|
||
OMIT_REMEMBERED_SET,
|
||
OMIT_SMI_CHECK);
|
||
}
|
||
}
|
||
|
||
// Do the store.
|
||
Register value = ToRegister(instr->value());
|
||
ASSERT(!object.is(value));
|
||
SmiCheck check_needed =
|
||
instr->hydrogen()->value()->IsHeapObject()
|
||
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
||
if (access.IsInobject()) {
|
||
__ str(value, FieldMemOperand(object, offset));
|
||
if (instr->hydrogen()->NeedsWriteBarrier()) {
|
||
// Update the write barrier for the object for in-object properties.
|
||
__ RecordWriteField(object,
|
||
offset,
|
||
value,
|
||
scratch,
|
||
GetLinkRegisterState(),
|
||
kSaveFPRegs,
|
||
EMIT_REMEMBERED_SET,
|
||
check_needed);
|
||
}
|
||
} else {
|
||
__ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
||
__ str(value, FieldMemOperand(scratch, offset));
|
||
if (instr->hydrogen()->NeedsWriteBarrier()) {
|
||
// Update the write barrier for the properties array.
|
||
// object is used as a scratch register.
|
||
__ RecordWriteField(scratch,
|
||
offset,
|
||
value,
|
||
object,
|
||
GetLinkRegisterState(),
|
||
kSaveFPRegs,
|
||
EMIT_REMEMBERED_SET,
|
||
check_needed);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
|
||
ASSERT(ToRegister(instr->object()).is(r1));
|
||
ASSERT(ToRegister(instr->value()).is(r0));
|
||
|
||
// Name is always in r2.
|
||
__ mov(r2, Operand(instr->name()));
|
||
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
|
||
? isolate()->builtins()->StoreIC_Initialize_Strict()
|
||
: isolate()->builtins()->StoreIC_Initialize();
|
||
CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
|
||
}
|
||
|
||
|
||
void LCodeGen::ApplyCheckIf(Condition condition, LBoundsCheck* check) {
|
||
if (FLAG_debug_code && check->hydrogen()->skip_check()) {
|
||
Label done;
|
||
__ b(NegateCondition(condition), &done);
|
||
__ stop("eliminated bounds check failed");
|
||
__ bind(&done);
|
||
} else {
|
||
DeoptimizeIf(condition, check->environment());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
|
||
if (instr->hydrogen()->skip_check()) return;
|
||
|
||
if (instr->index()->IsConstantOperand()) {
|
||
int constant_index =
|
||
ToInteger32(LConstantOperand::cast(instr->index()));
|
||
if (instr->hydrogen()->length()->representation().IsSmi()) {
|
||
__ mov(ip, Operand(Smi::FromInt(constant_index)));
|
||
} else {
|
||
__ mov(ip, Operand(constant_index));
|
||
}
|
||
__ cmp(ip, ToRegister(instr->length()));
|
||
} else {
|
||
__ cmp(ToRegister(instr->index()), ToRegister(instr->length()));
|
||
}
|
||
Condition condition = instr->hydrogen()->allow_equality() ? hi : hs;
|
||
ApplyCheckIf(condition, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
|
||
Register external_pointer = ToRegister(instr->elements());
|
||
Register key = no_reg;
|
||
ElementsKind elements_kind = instr->elements_kind();
|
||
bool key_is_constant = instr->key()->IsConstantOperand();
|
||
int constant_key = 0;
|
||
if (key_is_constant) {
|
||
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
||
if (constant_key & 0xF0000000) {
|
||
Abort(kArrayIndexConstantValueTooBig);
|
||
}
|
||
} else {
|
||
key = ToRegister(instr->key());
|
||
}
|
||
int element_size_shift = ElementsKindToShiftSize(elements_kind);
|
||
int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
|
||
? (element_size_shift - kSmiTagSize) : element_size_shift;
|
||
int additional_offset = instr->additional_index() << element_size_shift;
|
||
|
||
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
|
||
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
|
||
Register address = scratch0();
|
||
DwVfpRegister value(ToDoubleRegister(instr->value()));
|
||
if (key_is_constant) {
|
||
if (constant_key != 0) {
|
||
__ add(address, external_pointer,
|
||
Operand(constant_key << element_size_shift));
|
||
} else {
|
||
address = external_pointer;
|
||
}
|
||
} else {
|
||
__ add(address, external_pointer, Operand(key, LSL, shift_size));
|
||
}
|
||
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
|
||
__ vcvt_f32_f64(double_scratch0().low(), value);
|
||
__ vstr(double_scratch0().low(), address, additional_offset);
|
||
} else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
|
||
__ vstr(value, address, additional_offset);
|
||
}
|
||
} else {
|
||
Register value(ToRegister(instr->value()));
|
||
MemOperand mem_operand = PrepareKeyedOperand(
|
||
key, external_pointer, key_is_constant, constant_key,
|
||
element_size_shift, shift_size,
|
||
instr->additional_index(), additional_offset);
|
||
switch (elements_kind) {
|
||
case EXTERNAL_PIXEL_ELEMENTS:
|
||
case EXTERNAL_BYTE_ELEMENTS:
|
||
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
||
__ strb(value, mem_operand);
|
||
break;
|
||
case EXTERNAL_SHORT_ELEMENTS:
|
||
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
||
__ strh(value, mem_operand);
|
||
break;
|
||
case EXTERNAL_INT_ELEMENTS:
|
||
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
||
__ str(value, mem_operand);
|
||
break;
|
||
case EXTERNAL_FLOAT_ELEMENTS:
|
||
case EXTERNAL_DOUBLE_ELEMENTS:
|
||
case FAST_DOUBLE_ELEMENTS:
|
||
case FAST_ELEMENTS:
|
||
case FAST_SMI_ELEMENTS:
|
||
case FAST_HOLEY_DOUBLE_ELEMENTS:
|
||
case FAST_HOLEY_ELEMENTS:
|
||
case FAST_HOLEY_SMI_ELEMENTS:
|
||
case DICTIONARY_ELEMENTS:
|
||
case NON_STRICT_ARGUMENTS_ELEMENTS:
|
||
UNREACHABLE();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
|
||
DwVfpRegister value = ToDoubleRegister(instr->value());
|
||
Register elements = ToRegister(instr->elements());
|
||
Register scratch = scratch0();
|
||
DwVfpRegister double_scratch = double_scratch0();
|
||
bool key_is_constant = instr->key()->IsConstantOperand();
|
||
|
||
// Calculate the effective address of the slot in the array to store the
|
||
// double value.
|
||
int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
|
||
if (key_is_constant) {
|
||
int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
||
if (constant_key & 0xF0000000) {
|
||
Abort(kArrayIndexConstantValueTooBig);
|
||
}
|
||
__ add(scratch, elements,
|
||
Operand((constant_key << element_size_shift) +
|
||
FixedDoubleArray::kHeaderSize - kHeapObjectTag));
|
||
} else {
|
||
int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
|
||
? (element_size_shift - kSmiTagSize) : element_size_shift;
|
||
__ add(scratch, elements,
|
||
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
|
||
__ add(scratch, scratch,
|
||
Operand(ToRegister(instr->key()), LSL, shift_size));
|
||
}
|
||
|
||
if (instr->NeedsCanonicalization()) {
|
||
// Force a canonical NaN.
|
||
if (masm()->emit_debug_code()) {
|
||
__ vmrs(ip);
|
||
__ tst(ip, Operand(kVFPDefaultNaNModeControlBit));
|
||
__ Assert(ne, kDefaultNaNModeNotSet);
|
||
}
|
||
__ VFPCanonicalizeNaN(double_scratch, value);
|
||
__ vstr(double_scratch, scratch,
|
||
instr->additional_index() << element_size_shift);
|
||
} else {
|
||
__ vstr(value, scratch, instr->additional_index() << element_size_shift);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
|
||
Register value = ToRegister(instr->value());
|
||
Register elements = ToRegister(instr->elements());
|
||
Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
|
||
: no_reg;
|
||
Register scratch = scratch0();
|
||
Register store_base = scratch;
|
||
int offset = 0;
|
||
|
||
// Do the store.
|
||
if (instr->key()->IsConstantOperand()) {
|
||
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
|
||
LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
|
||
offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) +
|
||
instr->additional_index());
|
||
store_base = elements;
|
||
} else {
|
||
// Even though the HLoadKeyed instruction forces the input
|
||
// representation for the key to be an integer, the input gets replaced
|
||
// during bound check elimination with the index argument to the bounds
|
||
// check, which can be tagged, so that case must be handled here, too.
|
||
if (instr->hydrogen()->key()->representation().IsSmi()) {
|
||
__ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
|
||
} else {
|
||
__ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
|
||
}
|
||
offset = FixedArray::OffsetOfElementAt(instr->additional_index());
|
||
}
|
||
__ str(value, FieldMemOperand(store_base, offset));
|
||
|
||
if (instr->hydrogen()->NeedsWriteBarrier()) {
|
||
SmiCheck check_needed =
|
||
instr->hydrogen()->value()->IsHeapObject()
|
||
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
||
// Compute address of modified element and store it into key register.
|
||
__ add(key, store_base, Operand(offset - kHeapObjectTag));
|
||
__ RecordWrite(elements,
|
||
key,
|
||
value,
|
||
GetLinkRegisterState(),
|
||
kSaveFPRegs,
|
||
EMIT_REMEMBERED_SET,
|
||
check_needed);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
|
||
// By cases: external, fast double
|
||
if (instr->is_external()) {
|
||
DoStoreKeyedExternalArray(instr);
|
||
} else if (instr->hydrogen()->value()->representation().IsDouble()) {
|
||
DoStoreKeyedFixedDoubleArray(instr);
|
||
} else {
|
||
DoStoreKeyedFixedArray(instr);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
|
||
ASSERT(ToRegister(instr->object()).is(r2));
|
||
ASSERT(ToRegister(instr->key()).is(r1));
|
||
ASSERT(ToRegister(instr->value()).is(r0));
|
||
|
||
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
|
||
? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
|
||
: isolate()->builtins()->KeyedStoreIC_Initialize();
|
||
CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
|
||
Register object_reg = ToRegister(instr->object());
|
||
Register scratch = scratch0();
|
||
|
||
Handle<Map> from_map = instr->original_map();
|
||
Handle<Map> to_map = instr->transitioned_map();
|
||
ElementsKind from_kind = instr->from_kind();
|
||
ElementsKind to_kind = instr->to_kind();
|
||
|
||
Label not_applicable;
|
||
__ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
|
||
__ cmp(scratch, Operand(from_map));
|
||
__ b(ne, ¬_applicable);
|
||
|
||
if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
|
||
Register new_map_reg = ToRegister(instr->new_map_temp());
|
||
__ mov(new_map_reg, Operand(to_map));
|
||
__ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
|
||
// Write barrier.
|
||
__ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg,
|
||
scratch, GetLinkRegisterState(), kDontSaveFPRegs);
|
||
} else {
|
||
PushSafepointRegistersScope scope(
|
||
this, Safepoint::kWithRegistersAndDoubles);
|
||
__ Move(r0, object_reg);
|
||
__ Move(r1, to_map);
|
||
TransitionElementsKindStub stub(from_kind, to_kind);
|
||
__ CallStub(&stub);
|
||
RecordSafepointWithRegistersAndDoubles(
|
||
instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
|
||
}
|
||
__ bind(¬_applicable);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
|
||
Register object = ToRegister(instr->object());
|
||
Register temp = ToRegister(instr->temp());
|
||
__ TestJSArrayForAllocationMemento(object, temp);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStringAdd(LStringAdd* instr) {
|
||
__ push(ToRegister(instr->left()));
|
||
__ push(ToRegister(instr->right()));
|
||
StringAddStub stub(instr->hydrogen()->flags());
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
|
||
class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredStringCharCodeAt(instr_);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LStringCharCodeAt* instr_;
|
||
};
|
||
|
||
DeferredStringCharCodeAt* deferred =
|
||
new(zone()) DeferredStringCharCodeAt(this, instr);
|
||
|
||
StringCharLoadGenerator::Generate(masm(),
|
||
ToRegister(instr->string()),
|
||
ToRegister(instr->index()),
|
||
ToRegister(instr->result()),
|
||
deferred->entry());
|
||
__ bind(deferred->exit());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
|
||
Register string = ToRegister(instr->string());
|
||
Register result = ToRegister(instr->result());
|
||
Register scratch = scratch0();
|
||
|
||
// TODO(3095996): Get rid of this. For now, we need to make the
|
||
// result register contain a valid pointer because it is already
|
||
// contained in the register pointer map.
|
||
__ mov(result, Operand::Zero());
|
||
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
__ push(string);
|
||
// Push the index as a smi. This is safe because of the checks in
|
||
// DoStringCharCodeAt above.
|
||
if (instr->index()->IsConstantOperand()) {
|
||
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
|
||
__ mov(scratch, Operand(Smi::FromInt(const_index)));
|
||
__ push(scratch);
|
||
} else {
|
||
Register index = ToRegister(instr->index());
|
||
__ SmiTag(index);
|
||
__ push(index);
|
||
}
|
||
CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
|
||
__ AssertSmi(r0);
|
||
__ SmiUntag(r0);
|
||
__ StoreToSafepointRegisterSlot(r0, result);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
|
||
class DeferredStringCharFromCode V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredStringCharFromCode(instr_);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LStringCharFromCode* instr_;
|
||
};
|
||
|
||
DeferredStringCharFromCode* deferred =
|
||
new(zone()) DeferredStringCharFromCode(this, instr);
|
||
|
||
ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
|
||
Register char_code = ToRegister(instr->char_code());
|
||
Register result = ToRegister(instr->result());
|
||
ASSERT(!char_code.is(result));
|
||
|
||
__ cmp(char_code, Operand(String::kMaxOneByteCharCode));
|
||
__ b(hi, deferred->entry());
|
||
__ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
|
||
__ add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
|
||
__ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
|
||
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
||
__ cmp(result, ip);
|
||
__ b(eq, deferred->entry());
|
||
__ bind(deferred->exit());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
|
||
Register char_code = ToRegister(instr->char_code());
|
||
Register result = ToRegister(instr->result());
|
||
|
||
// TODO(3095996): Get rid of this. For now, we need to make the
|
||
// result register contain a valid pointer because it is already
|
||
// contained in the register pointer map.
|
||
__ mov(result, Operand::Zero());
|
||
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
__ SmiTag(char_code);
|
||
__ push(char_code);
|
||
CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
|
||
__ StoreToSafepointRegisterSlot(r0, result);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
|
||
LOperand* input = instr->value();
|
||
ASSERT(input->IsRegister() || input->IsStackSlot());
|
||
LOperand* output = instr->result();
|
||
ASSERT(output->IsDoubleRegister());
|
||
SwVfpRegister single_scratch = double_scratch0().low();
|
||
if (input->IsStackSlot()) {
|
||
Register scratch = scratch0();
|
||
__ ldr(scratch, ToMemOperand(input));
|
||
__ vmov(single_scratch, scratch);
|
||
} else {
|
||
__ vmov(single_scratch, ToRegister(input));
|
||
}
|
||
__ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoInteger32ToSmi(LInteger32ToSmi* instr) {
|
||
LOperand* input = instr->value();
|
||
ASSERT(input->IsRegister());
|
||
LOperand* output = instr->result();
|
||
ASSERT(output->IsRegister());
|
||
__ SmiTag(ToRegister(output), ToRegister(input), SetCC);
|
||
if (!instr->hydrogen()->value()->HasRange() ||
|
||
!instr->hydrogen()->value()->range()->IsInSmiRange()) {
|
||
DeoptimizeIf(vs, instr->environment());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
|
||
LOperand* input = instr->value();
|
||
LOperand* output = instr->result();
|
||
|
||
SwVfpRegister flt_scratch = double_scratch0().low();
|
||
__ vmov(flt_scratch, ToRegister(input));
|
||
__ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
|
||
class DeferredNumberTagI V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredNumberTagI(instr_,
|
||
instr_->value(),
|
||
SIGNED_INT32);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LNumberTagI* instr_;
|
||
};
|
||
|
||
Register src = ToRegister(instr->value());
|
||
Register dst = ToRegister(instr->result());
|
||
|
||
DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
|
||
__ SmiTag(dst, src, SetCC);
|
||
__ b(vs, deferred->entry());
|
||
__ bind(deferred->exit());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
|
||
class DeferredNumberTagU V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredNumberTagI(instr_,
|
||
instr_->value(),
|
||
UNSIGNED_INT32);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LNumberTagU* instr_;
|
||
};
|
||
|
||
LOperand* input = instr->value();
|
||
ASSERT(input->IsRegister() && input->Equals(instr->result()));
|
||
Register reg = ToRegister(input);
|
||
|
||
DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
|
||
__ cmp(reg, Operand(Smi::kMaxValue));
|
||
__ b(hi, deferred->entry());
|
||
__ SmiTag(reg, reg);
|
||
__ bind(deferred->exit());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredNumberTagI(LInstruction* instr,
|
||
LOperand* value,
|
||
IntegerSignedness signedness) {
|
||
Label slow;
|
||
Register src = ToRegister(value);
|
||
Register dst = ToRegister(instr->result());
|
||
LowDwVfpRegister dbl_scratch = double_scratch0();
|
||
|
||
// Preserve the value of all registers.
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
|
||
Label done;
|
||
if (signedness == SIGNED_INT32) {
|
||
// There was overflow, so bits 30 and 31 of the original integer
|
||
// disagree. Try to allocate a heap number in new space and store
|
||
// the value in there. If that fails, call the runtime system.
|
||
if (dst.is(src)) {
|
||
__ SmiUntag(src, dst);
|
||
__ eor(src, src, Operand(0x80000000));
|
||
}
|
||
__ vmov(dbl_scratch.low(), src);
|
||
__ vcvt_f64_s32(dbl_scratch, dbl_scratch.low());
|
||
} else {
|
||
__ vmov(dbl_scratch.low(), src);
|
||
__ vcvt_f64_u32(dbl_scratch, dbl_scratch.low());
|
||
}
|
||
|
||
if (FLAG_inline_new) {
|
||
__ LoadRoot(scratch0(), Heap::kHeapNumberMapRootIndex);
|
||
__ AllocateHeapNumber(r5, r3, r4, scratch0(), &slow, DONT_TAG_RESULT);
|
||
__ Move(dst, r5);
|
||
__ b(&done);
|
||
}
|
||
|
||
// Slow case: Call the runtime system to do the number allocation.
|
||
__ bind(&slow);
|
||
|
||
// TODO(3095996): Put a valid pointer value in the stack slot where the result
|
||
// register is stored, as this register is in the pointer map, but contains an
|
||
// integer value.
|
||
__ mov(ip, Operand::Zero());
|
||
__ StoreToSafepointRegisterSlot(ip, dst);
|
||
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
|
||
__ Move(dst, r0);
|
||
__ sub(dst, dst, Operand(kHeapObjectTag));
|
||
|
||
// Done. Put the value in dbl_scratch into the value of the allocated heap
|
||
// number.
|
||
__ bind(&done);
|
||
__ vstr(dbl_scratch, dst, HeapNumber::kValueOffset);
|
||
__ add(dst, dst, Operand(kHeapObjectTag));
|
||
__ StoreToSafepointRegisterSlot(dst, dst);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
|
||
class DeferredNumberTagD V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredNumberTagD(instr_);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LNumberTagD* instr_;
|
||
};
|
||
|
||
DwVfpRegister input_reg = ToDoubleRegister(instr->value());
|
||
Register scratch = scratch0();
|
||
Register reg = ToRegister(instr->result());
|
||
Register temp1 = ToRegister(instr->temp());
|
||
Register temp2 = ToRegister(instr->temp2());
|
||
|
||
DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
|
||
if (FLAG_inline_new) {
|
||
__ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
|
||
// We want the untagged address first for performance
|
||
__ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
|
||
DONT_TAG_RESULT);
|
||
} else {
|
||
__ jmp(deferred->entry());
|
||
}
|
||
__ bind(deferred->exit());
|
||
__ vstr(input_reg, reg, HeapNumber::kValueOffset);
|
||
// Now that we have finished with the object's real address tag it
|
||
__ add(reg, reg, Operand(kHeapObjectTag));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
|
||
// TODO(3095996): Get rid of this. For now, we need to make the
|
||
// result register contain a valid pointer because it is already
|
||
// contained in the register pointer map.
|
||
Register reg = ToRegister(instr->result());
|
||
__ mov(reg, Operand::Zero());
|
||
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
|
||
__ sub(r0, r0, Operand(kHeapObjectTag));
|
||
__ StoreToSafepointRegisterSlot(r0, reg);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoSmiTag(LSmiTag* instr) {
|
||
ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
|
||
__ SmiTag(ToRegister(instr->result()), ToRegister(instr->value()));
|
||
}
|
||
|
||
|
||
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register result = ToRegister(instr->result());
|
||
if (instr->needs_check()) {
|
||
STATIC_ASSERT(kHeapObjectTag == 1);
|
||
// If the input is a HeapObject, SmiUntag will set the carry flag.
|
||
__ SmiUntag(result, input, SetCC);
|
||
DeoptimizeIf(cs, instr->environment());
|
||
} else {
|
||
__ SmiUntag(result, input);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::EmitNumberUntagD(Register input_reg,
|
||
DwVfpRegister result_reg,
|
||
bool can_convert_undefined_to_nan,
|
||
bool deoptimize_on_minus_zero,
|
||
LEnvironment* env,
|
||
NumberUntagDMode mode) {
|
||
Register scratch = scratch0();
|
||
SwVfpRegister flt_scratch = double_scratch0().low();
|
||
ASSERT(!result_reg.is(double_scratch0()));
|
||
Label convert, load_smi, done;
|
||
if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
|
||
// Smi check.
|
||
__ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
|
||
// Heap number map check.
|
||
__ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
|
||
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
|
||
__ cmp(scratch, Operand(ip));
|
||
if (can_convert_undefined_to_nan) {
|
||
__ b(ne, &convert);
|
||
} else {
|
||
DeoptimizeIf(ne, env);
|
||
}
|
||
// load heap number
|
||
__ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag);
|
||
if (deoptimize_on_minus_zero) {
|
||
__ VmovLow(scratch, result_reg);
|
||
__ cmp(scratch, Operand::Zero());
|
||
__ b(ne, &done);
|
||
__ VmovHigh(scratch, result_reg);
|
||
__ cmp(scratch, Operand(HeapNumber::kSignMask));
|
||
DeoptimizeIf(eq, env);
|
||
}
|
||
__ jmp(&done);
|
||
if (can_convert_undefined_to_nan) {
|
||
__ bind(&convert);
|
||
// Convert undefined (and hole) to NaN.
|
||
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
||
__ cmp(input_reg, Operand(ip));
|
||
DeoptimizeIf(ne, env);
|
||
__ LoadRoot(scratch, Heap::kNanValueRootIndex);
|
||
__ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag);
|
||
__ jmp(&done);
|
||
}
|
||
} else {
|
||
__ SmiUntag(scratch, input_reg);
|
||
ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
|
||
}
|
||
// Smi to double register conversion
|
||
__ bind(&load_smi);
|
||
// scratch: untagged value of input_reg
|
||
__ vmov(flt_scratch, scratch);
|
||
__ vcvt_f64_s32(result_reg, flt_scratch);
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
|
||
Register input_reg = ToRegister(instr->value());
|
||
Register scratch1 = scratch0();
|
||
Register scratch2 = ToRegister(instr->temp());
|
||
LowDwVfpRegister double_scratch = double_scratch0();
|
||
DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp2());
|
||
|
||
ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2));
|
||
ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1));
|
||
|
||
Label done;
|
||
|
||
// The input was optimistically untagged; revert it.
|
||
// The carry flag is set when we reach this deferred code as we just executed
|
||
// SmiUntag(heap_object, SetCC)
|
||
STATIC_ASSERT(kHeapObjectTag == 1);
|
||
__ adc(scratch2, input_reg, Operand(input_reg));
|
||
|
||
// Heap number map check.
|
||
__ ldr(scratch1, FieldMemOperand(scratch2, HeapObject::kMapOffset));
|
||
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
|
||
__ cmp(scratch1, Operand(ip));
|
||
|
||
if (instr->truncating()) {
|
||
// Performs a truncating conversion of a floating point number as used by
|
||
// the JS bitwise operations.
|
||
Label heap_number;
|
||
__ b(eq, &heap_number);
|
||
// Check for undefined. Undefined is converted to zero for truncating
|
||
// conversions.
|
||
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
||
__ cmp(scratch2, Operand(ip));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
__ mov(input_reg, Operand::Zero());
|
||
__ b(&done);
|
||
|
||
__ bind(&heap_number);
|
||
__ TruncateHeapNumberToI(input_reg, scratch2);
|
||
} else {
|
||
// Deoptimize if we don't have a heap number.
|
||
DeoptimizeIf(ne, instr->environment());
|
||
|
||
__ sub(ip, scratch2, Operand(kHeapObjectTag));
|
||
__ vldr(double_scratch2, ip, HeapNumber::kValueOffset);
|
||
__ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch);
|
||
DeoptimizeIf(ne, instr->environment());
|
||
|
||
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
__ cmp(input_reg, Operand::Zero());
|
||
__ b(ne, &done);
|
||
__ VmovHigh(scratch1, double_scratch2);
|
||
__ tst(scratch1, Operand(HeapNumber::kSignMask));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
}
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
|
||
class DeferredTaggedToI V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredTaggedToI(instr_);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LTaggedToI* instr_;
|
||
};
|
||
|
||
LOperand* input = instr->value();
|
||
ASSERT(input->IsRegister());
|
||
ASSERT(input->Equals(instr->result()));
|
||
|
||
Register input_reg = ToRegister(input);
|
||
|
||
if (instr->hydrogen()->value()->representation().IsSmi()) {
|
||
__ SmiUntag(input_reg);
|
||
} else {
|
||
DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
|
||
|
||
// Optimistically untag the input.
|
||
// If the input is a HeapObject, SmiUntag will set the carry flag.
|
||
__ SmiUntag(input_reg, SetCC);
|
||
// Branch to deferred code if the input was tagged.
|
||
// The deferred code will take care of restoring the tag.
|
||
__ b(cs, deferred->entry());
|
||
__ bind(deferred->exit());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
|
||
LOperand* input = instr->value();
|
||
ASSERT(input->IsRegister());
|
||
LOperand* result = instr->result();
|
||
ASSERT(result->IsDoubleRegister());
|
||
|
||
Register input_reg = ToRegister(input);
|
||
DwVfpRegister result_reg = ToDoubleRegister(result);
|
||
|
||
HValue* value = instr->hydrogen()->value();
|
||
NumberUntagDMode mode = value->representation().IsSmi()
|
||
? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
|
||
|
||
EmitNumberUntagD(input_reg, result_reg,
|
||
instr->hydrogen()->can_convert_undefined_to_nan(),
|
||
instr->hydrogen()->deoptimize_on_minus_zero(),
|
||
instr->environment(),
|
||
mode);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
|
||
Register result_reg = ToRegister(instr->result());
|
||
Register scratch1 = scratch0();
|
||
DwVfpRegister double_input = ToDoubleRegister(instr->value());
|
||
LowDwVfpRegister double_scratch = double_scratch0();
|
||
|
||
if (instr->truncating()) {
|
||
__ TruncateDoubleToI(result_reg, double_input);
|
||
} else {
|
||
__ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
|
||
// Deoptimize if the input wasn't a int32 (inside a double).
|
||
DeoptimizeIf(ne, instr->environment());
|
||
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
Label done;
|
||
__ cmp(result_reg, Operand::Zero());
|
||
__ b(ne, &done);
|
||
__ VmovHigh(scratch1, double_input);
|
||
__ tst(scratch1, Operand(HeapNumber::kSignMask));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
__ bind(&done);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
|
||
Register result_reg = ToRegister(instr->result());
|
||
Register scratch1 = scratch0();
|
||
DwVfpRegister double_input = ToDoubleRegister(instr->value());
|
||
LowDwVfpRegister double_scratch = double_scratch0();
|
||
|
||
if (instr->truncating()) {
|
||
__ TruncateDoubleToI(result_reg, double_input);
|
||
} else {
|
||
__ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
|
||
// Deoptimize if the input wasn't a int32 (inside a double).
|
||
DeoptimizeIf(ne, instr->environment());
|
||
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
||
Label done;
|
||
__ cmp(result_reg, Operand::Zero());
|
||
__ b(ne, &done);
|
||
__ VmovHigh(scratch1, double_input);
|
||
__ tst(scratch1, Operand(HeapNumber::kSignMask));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
__ bind(&done);
|
||
}
|
||
}
|
||
__ SmiTag(result_reg, SetCC);
|
||
DeoptimizeIf(vs, instr->environment());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
|
||
LOperand* input = instr->value();
|
||
__ SmiTst(ToRegister(input));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
|
||
if (!instr->hydrogen()->value()->IsHeapObject()) {
|
||
LOperand* input = instr->value();
|
||
__ SmiTst(ToRegister(input));
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
Register scratch = scratch0();
|
||
|
||
__ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
|
||
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
|
||
|
||
if (instr->hydrogen()->is_interval_check()) {
|
||
InstanceType first;
|
||
InstanceType last;
|
||
instr->hydrogen()->GetCheckInterval(&first, &last);
|
||
|
||
__ cmp(scratch, Operand(first));
|
||
|
||
// If there is only one type in the interval check for equality.
|
||
if (first == last) {
|
||
DeoptimizeIf(ne, instr->environment());
|
||
} else {
|
||
DeoptimizeIf(lo, instr->environment());
|
||
// Omit check for the last type.
|
||
if (last != LAST_TYPE) {
|
||
__ cmp(scratch, Operand(last));
|
||
DeoptimizeIf(hi, instr->environment());
|
||
}
|
||
}
|
||
} else {
|
||
uint8_t mask;
|
||
uint8_t tag;
|
||
instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
|
||
|
||
if (IsPowerOf2(mask)) {
|
||
ASSERT(tag == 0 || IsPowerOf2(tag));
|
||
__ tst(scratch, Operand(mask));
|
||
DeoptimizeIf(tag == 0 ? ne : eq, instr->environment());
|
||
} else {
|
||
__ and_(scratch, scratch, Operand(mask));
|
||
__ cmp(scratch, Operand(tag));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCheckValue(LCheckValue* instr) {
|
||
Register reg = ToRegister(instr->value());
|
||
Handle<HeapObject> object = instr->hydrogen()->object().handle();
|
||
AllowDeferredHandleDereference smi_check;
|
||
if (isolate()->heap()->InNewSpace(*object)) {
|
||
Register reg = ToRegister(instr->value());
|
||
Handle<Cell> cell = isolate()->factory()->NewCell(object);
|
||
__ mov(ip, Operand(Handle<Object>(cell)));
|
||
__ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset));
|
||
__ cmp(reg, ip);
|
||
} else {
|
||
__ cmp(reg, Operand(object));
|
||
}
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
|
||
{
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
__ push(object);
|
||
CallRuntimeFromDeferred(Runtime::kMigrateInstance, 1, instr);
|
||
__ StoreToSafepointRegisterSlot(r0, scratch0());
|
||
}
|
||
__ tst(scratch0(), Operand(kSmiTagMask));
|
||
DeoptimizeIf(eq, instr->environment());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
|
||
class DeferredCheckMaps V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
|
||
: LDeferredCode(codegen), instr_(instr), object_(object) {
|
||
SetExit(check_maps());
|
||
}
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredInstanceMigration(instr_, object_);
|
||
}
|
||
Label* check_maps() { return &check_maps_; }
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LCheckMaps* instr_;
|
||
Label check_maps_;
|
||
Register object_;
|
||
};
|
||
|
||
if (instr->hydrogen()->CanOmitMapChecks()) return;
|
||
Register map_reg = scratch0();
|
||
|
||
LOperand* input = instr->value();
|
||
ASSERT(input->IsRegister());
|
||
Register reg = ToRegister(input);
|
||
|
||
__ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
|
||
|
||
DeferredCheckMaps* deferred = NULL;
|
||
if (instr->hydrogen()->has_migration_target()) {
|
||
deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
|
||
__ bind(deferred->check_maps());
|
||
}
|
||
|
||
UniqueSet<Map> map_set = instr->hydrogen()->map_set();
|
||
Label success;
|
||
for (int i = 0; i < map_set.size() - 1; i++) {
|
||
Handle<Map> map = map_set.at(i).handle();
|
||
__ CompareMap(map_reg, map, &success);
|
||
__ b(eq, &success);
|
||
}
|
||
|
||
Handle<Map> map = map_set.at(map_set.size() - 1).handle();
|
||
__ CompareMap(map_reg, map, &success);
|
||
if (instr->hydrogen()->has_migration_target()) {
|
||
__ b(ne, deferred->entry());
|
||
} else {
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
|
||
__ bind(&success);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
|
||
DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped());
|
||
Register result_reg = ToRegister(instr->result());
|
||
__ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
|
||
Register unclamped_reg = ToRegister(instr->unclamped());
|
||
Register result_reg = ToRegister(instr->result());
|
||
__ ClampUint8(result_reg, unclamped_reg);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
|
||
Register scratch = scratch0();
|
||
Register input_reg = ToRegister(instr->unclamped());
|
||
Register result_reg = ToRegister(instr->result());
|
||
DwVfpRegister temp_reg = ToDoubleRegister(instr->temp());
|
||
Label is_smi, done, heap_number;
|
||
|
||
// Both smi and heap number cases are handled.
|
||
__ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
|
||
|
||
// Check for heap number
|
||
__ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
|
||
__ cmp(scratch, Operand(factory()->heap_number_map()));
|
||
__ b(eq, &heap_number);
|
||
|
||
// Check for undefined. Undefined is converted to zero for clamping
|
||
// conversions.
|
||
__ cmp(input_reg, Operand(factory()->undefined_value()));
|
||
DeoptimizeIf(ne, instr->environment());
|
||
__ mov(result_reg, Operand::Zero());
|
||
__ jmp(&done);
|
||
|
||
// Heap number
|
||
__ bind(&heap_number);
|
||
__ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
|
||
__ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
|
||
__ jmp(&done);
|
||
|
||
// smi
|
||
__ bind(&is_smi);
|
||
__ ClampUint8(result_reg, result_reg);
|
||
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoAllocate(LAllocate* instr) {
|
||
class DeferredAllocate V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredAllocate(instr_);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LAllocate* instr_;
|
||
};
|
||
|
||
DeferredAllocate* deferred =
|
||
new(zone()) DeferredAllocate(this, instr);
|
||
|
||
Register result = ToRegister(instr->result());
|
||
Register scratch = ToRegister(instr->temp1());
|
||
Register scratch2 = ToRegister(instr->temp2());
|
||
|
||
// Allocate memory for the object.
|
||
AllocationFlags flags = TAG_OBJECT;
|
||
if (instr->hydrogen()->MustAllocateDoubleAligned()) {
|
||
flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
|
||
}
|
||
if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
|
||
ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
|
||
ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
|
||
flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
|
||
} else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
|
||
ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
|
||
flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
|
||
}
|
||
|
||
if (instr->size()->IsConstantOperand()) {
|
||
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
|
||
__ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
|
||
} else {
|
||
Register size = ToRegister(instr->size());
|
||
__ Allocate(size,
|
||
result,
|
||
scratch,
|
||
scratch2,
|
||
deferred->entry(),
|
||
flags);
|
||
}
|
||
|
||
__ bind(deferred->exit());
|
||
|
||
if (instr->hydrogen()->MustPrefillWithFiller()) {
|
||
if (instr->size()->IsConstantOperand()) {
|
||
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
|
||
__ mov(scratch, Operand(size));
|
||
} else {
|
||
scratch = ToRegister(instr->size());
|
||
}
|
||
__ sub(scratch, scratch, Operand(kPointerSize));
|
||
__ sub(result, result, Operand(kHeapObjectTag));
|
||
Label loop;
|
||
__ bind(&loop);
|
||
__ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
|
||
__ str(scratch2, MemOperand(result, scratch));
|
||
__ sub(scratch, scratch, Operand(kPointerSize));
|
||
__ cmp(scratch, Operand(0));
|
||
__ b(ge, &loop);
|
||
__ add(result, result, Operand(kHeapObjectTag));
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
|
||
Register result = ToRegister(instr->result());
|
||
|
||
// TODO(3095996): Get rid of this. For now, we need to make the
|
||
// result register contain a valid pointer because it is already
|
||
// contained in the register pointer map.
|
||
__ mov(result, Operand(Smi::FromInt(0)));
|
||
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
if (instr->size()->IsRegister()) {
|
||
Register size = ToRegister(instr->size());
|
||
ASSERT(!size.is(result));
|
||
__ SmiTag(size);
|
||
__ push(size);
|
||
} else {
|
||
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
|
||
__ Push(Smi::FromInt(size));
|
||
}
|
||
|
||
if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
|
||
ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
|
||
ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
|
||
CallRuntimeFromDeferred(Runtime::kAllocateInOldPointerSpace, 1, instr);
|
||
} else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
|
||
ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
|
||
CallRuntimeFromDeferred(Runtime::kAllocateInOldDataSpace, 1, instr);
|
||
} else {
|
||
CallRuntimeFromDeferred(Runtime::kAllocateInNewSpace, 1, instr);
|
||
}
|
||
__ StoreToSafepointRegisterSlot(r0, result);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
|
||
ASSERT(ToRegister(instr->value()).is(r0));
|
||
__ push(r0);
|
||
CallRuntime(Runtime::kToFastProperties, 1, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
|
||
Label materialized;
|
||
// Registers will be used as follows:
|
||
// r6 = literals array.
|
||
// r1 = regexp literal.
|
||
// r0 = regexp literal clone.
|
||
// r2-5 are used as temporaries.
|
||
int literal_offset =
|
||
FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
|
||
__ LoadHeapObject(r6, instr->hydrogen()->literals());
|
||
__ ldr(r1, FieldMemOperand(r6, literal_offset));
|
||
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
||
__ cmp(r1, ip);
|
||
__ b(ne, &materialized);
|
||
|
||
// Create regexp literal using runtime function
|
||
// Result will be in r0.
|
||
__ mov(r5, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
|
||
__ mov(r4, Operand(instr->hydrogen()->pattern()));
|
||
__ mov(r3, Operand(instr->hydrogen()->flags()));
|
||
__ Push(r6, r5, r4, r3);
|
||
CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
|
||
__ mov(r1, r0);
|
||
|
||
__ bind(&materialized);
|
||
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
|
||
Label allocated, runtime_allocate;
|
||
|
||
__ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
|
||
__ jmp(&allocated);
|
||
|
||
__ bind(&runtime_allocate);
|
||
__ mov(r0, Operand(Smi::FromInt(size)));
|
||
__ Push(r1, r0);
|
||
CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
|
||
__ pop(r1);
|
||
|
||
__ bind(&allocated);
|
||
// Copy the content into the newly allocated memory.
|
||
__ CopyFields(r0, r1, double_scratch0(), size / kPointerSize);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
|
||
// Use the fast case closure allocation code that allocates in new
|
||
// space for nested functions that don't need literals cloning.
|
||
bool pretenure = instr->hydrogen()->pretenure();
|
||
if (!pretenure && instr->hydrogen()->has_no_literals()) {
|
||
FastNewClosureStub stub(instr->hydrogen()->language_mode(),
|
||
instr->hydrogen()->is_generator());
|
||
__ mov(r2, Operand(instr->hydrogen()->shared_info()));
|
||
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
||
} else {
|
||
__ mov(r2, Operand(instr->hydrogen()->shared_info()));
|
||
__ mov(r1, Operand(pretenure ? factory()->true_value()
|
||
: factory()->false_value()));
|
||
__ Push(cp, r2, r1);
|
||
CallRuntime(Runtime::kNewClosure, 3, instr);
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoTypeof(LTypeof* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
__ push(input);
|
||
CallRuntime(Runtime::kTypeof, 1, instr);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
|
||
Register input = ToRegister(instr->value());
|
||
|
||
Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
|
||
instr->FalseLabel(chunk_),
|
||
input,
|
||
instr->type_literal());
|
||
if (final_branch_condition != kNoCondition) {
|
||
EmitBranch(instr, final_branch_condition);
|
||
}
|
||
}
|
||
|
||
|
||
Condition LCodeGen::EmitTypeofIs(Label* true_label,
|
||
Label* false_label,
|
||
Register input,
|
||
Handle<String> type_name) {
|
||
Condition final_branch_condition = kNoCondition;
|
||
Register scratch = scratch0();
|
||
if (type_name->Equals(heap()->number_string())) {
|
||
__ JumpIfSmi(input, true_label);
|
||
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
|
||
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
|
||
__ cmp(input, Operand(ip));
|
||
final_branch_condition = eq;
|
||
|
||
} else if (type_name->Equals(heap()->string_string())) {
|
||
__ JumpIfSmi(input, false_label);
|
||
__ CompareObjectType(input, input, scratch, FIRST_NONSTRING_TYPE);
|
||
__ b(ge, false_label);
|
||
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
|
||
__ tst(ip, Operand(1 << Map::kIsUndetectable));
|
||
final_branch_condition = eq;
|
||
|
||
} else if (type_name->Equals(heap()->symbol_string())) {
|
||
__ JumpIfSmi(input, false_label);
|
||
__ CompareObjectType(input, input, scratch, SYMBOL_TYPE);
|
||
final_branch_condition = eq;
|
||
|
||
} else if (type_name->Equals(heap()->boolean_string())) {
|
||
__ CompareRoot(input, Heap::kTrueValueRootIndex);
|
||
__ b(eq, true_label);
|
||
__ CompareRoot(input, Heap::kFalseValueRootIndex);
|
||
final_branch_condition = eq;
|
||
|
||
} else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_string())) {
|
||
__ CompareRoot(input, Heap::kNullValueRootIndex);
|
||
final_branch_condition = eq;
|
||
|
||
} else if (type_name->Equals(heap()->undefined_string())) {
|
||
__ CompareRoot(input, Heap::kUndefinedValueRootIndex);
|
||
__ b(eq, true_label);
|
||
__ JumpIfSmi(input, false_label);
|
||
// Check for undetectable objects => true.
|
||
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
|
||
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
|
||
__ tst(ip, Operand(1 << Map::kIsUndetectable));
|
||
final_branch_condition = ne;
|
||
|
||
} else if (type_name->Equals(heap()->function_string())) {
|
||
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
|
||
__ JumpIfSmi(input, false_label);
|
||
__ CompareObjectType(input, scratch, input, JS_FUNCTION_TYPE);
|
||
__ b(eq, true_label);
|
||
__ cmp(input, Operand(JS_FUNCTION_PROXY_TYPE));
|
||
final_branch_condition = eq;
|
||
|
||
} else if (type_name->Equals(heap()->object_string())) {
|
||
__ JumpIfSmi(input, false_label);
|
||
if (!FLAG_harmony_typeof) {
|
||
__ CompareRoot(input, Heap::kNullValueRootIndex);
|
||
__ b(eq, true_label);
|
||
}
|
||
__ CompareObjectType(input, input, scratch,
|
||
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
|
||
__ b(lt, false_label);
|
||
__ CompareInstanceType(input, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
|
||
__ b(gt, false_label);
|
||
// Check for undetectable objects => false.
|
||
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
|
||
__ tst(ip, Operand(1 << Map::kIsUndetectable));
|
||
final_branch_condition = eq;
|
||
|
||
} else {
|
||
__ b(false_label);
|
||
}
|
||
|
||
return final_branch_condition;
|
||
}
|
||
|
||
|
||
void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
|
||
Register temp1 = ToRegister(instr->temp());
|
||
|
||
EmitIsConstructCall(temp1, scratch0());
|
||
EmitBranch(instr, eq);
|
||
}
|
||
|
||
|
||
void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
|
||
ASSERT(!temp1.is(temp2));
|
||
// Get the frame pointer for the calling frame.
|
||
__ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
||
|
||
// Skip the arguments adaptor frame if it exists.
|
||
Label check_frame_marker;
|
||
__ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
|
||
__ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
||
__ b(ne, &check_frame_marker);
|
||
__ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
|
||
|
||
// Check the marker in the calling frame.
|
||
__ bind(&check_frame_marker);
|
||
__ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
|
||
__ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
|
||
}
|
||
|
||
|
||
void LCodeGen::EnsureSpaceForLazyDeopt() {
|
||
if (info()->IsStub()) return;
|
||
// Ensure that we have enough space after the previous lazy-bailout
|
||
// instruction for patching the code here.
|
||
int current_pc = masm()->pc_offset();
|
||
int patch_size = Deoptimizer::patch_size();
|
||
if (current_pc < last_lazy_deopt_pc_ + patch_size) {
|
||
// Block literal pool emission for duration of padding.
|
||
Assembler::BlockConstPoolScope block_const_pool(masm());
|
||
int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc;
|
||
ASSERT_EQ(0, padding_size % Assembler::kInstrSize);
|
||
while (padding_size > 0) {
|
||
__ nop();
|
||
padding_size -= Assembler::kInstrSize;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
|
||
EnsureSpaceForLazyDeopt();
|
||
last_lazy_deopt_pc_ = masm()->pc_offset();
|
||
ASSERT(instr->HasEnvironment());
|
||
LEnvironment* env = instr->environment();
|
||
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
|
||
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
|
||
Deoptimizer::BailoutType type = instr->hydrogen()->type();
|
||
// TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
|
||
// needed return address), even though the implementation of LAZY and EAGER is
|
||
// now identical. When LAZY is eventually completely folded into EAGER, remove
|
||
// the special case below.
|
||
if (info()->IsStub() && type == Deoptimizer::EAGER) {
|
||
type = Deoptimizer::LAZY;
|
||
}
|
||
|
||
Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
|
||
DeoptimizeIf(al, instr->environment(), type);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDummyUse(LDummyUse* instr) {
|
||
// Nothing to see here, move on!
|
||
}
|
||
|
||
|
||
void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
|
||
PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
||
__ CallRuntimeSaveDoubles(Runtime::kStackGuard);
|
||
RecordSafepointWithLazyDeopt(
|
||
instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
||
ASSERT(instr->HasEnvironment());
|
||
LEnvironment* env = instr->environment();
|
||
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoStackCheck(LStackCheck* instr) {
|
||
class DeferredStackCheck V8_FINAL : public LDeferredCode {
|
||
public:
|
||
DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
|
||
: LDeferredCode(codegen), instr_(instr) { }
|
||
virtual void Generate() V8_OVERRIDE {
|
||
codegen()->DoDeferredStackCheck(instr_);
|
||
}
|
||
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
|
||
private:
|
||
LStackCheck* instr_;
|
||
};
|
||
|
||
ASSERT(instr->HasEnvironment());
|
||
LEnvironment* env = instr->environment();
|
||
// There is no LLazyBailout instruction for stack-checks. We have to
|
||
// prepare for lazy deoptimization explicitly here.
|
||
if (instr->hydrogen()->is_function_entry()) {
|
||
// Perform stack overflow check.
|
||
Label done;
|
||
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
|
||
__ cmp(sp, Operand(ip));
|
||
__ b(hs, &done);
|
||
PredictableCodeSizeScope predictable(masm_, 2 * Assembler::kInstrSize);
|
||
CallCode(isolate()->builtins()->StackCheck(),
|
||
RelocInfo::CODE_TARGET,
|
||
instr);
|
||
EnsureSpaceForLazyDeopt();
|
||
last_lazy_deopt_pc_ = masm()->pc_offset();
|
||
__ bind(&done);
|
||
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
|
||
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
|
||
} else {
|
||
ASSERT(instr->hydrogen()->is_backwards_branch());
|
||
// Perform stack overflow check if this goto needs it before jumping.
|
||
DeferredStackCheck* deferred_stack_check =
|
||
new(zone()) DeferredStackCheck(this, instr);
|
||
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
|
||
__ cmp(sp, Operand(ip));
|
||
__ b(lo, deferred_stack_check->entry());
|
||
EnsureSpaceForLazyDeopt();
|
||
last_lazy_deopt_pc_ = masm()->pc_offset();
|
||
__ bind(instr->done_label());
|
||
deferred_stack_check->SetExit(instr->done_label());
|
||
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
|
||
// Don't record a deoptimization index for the safepoint here.
|
||
// This will be done explicitly when emitting call and the safepoint in
|
||
// the deferred code.
|
||
}
|
||
}
|
||
|
||
|
||
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
|
||
// This is a pseudo-instruction that ensures that the environment here is
|
||
// properly registered for deoptimization and records the assembler's PC
|
||
// offset.
|
||
LEnvironment* environment = instr->environment();
|
||
|
||
// If the environment were already registered, we would have no way of
|
||
// backpatching it with the spill slot operands.
|
||
ASSERT(!environment->HasBeenRegistered());
|
||
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
|
||
|
||
GenerateOsrPrologue();
|
||
}
|
||
|
||
|
||
void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
|
||
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
||
__ cmp(r0, ip);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
|
||
Register null_value = r5;
|
||
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
|
||
__ cmp(r0, null_value);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
|
||
__ SmiTst(r0);
|
||
DeoptimizeIf(eq, instr->environment());
|
||
|
||
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
|
||
__ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE);
|
||
DeoptimizeIf(le, instr->environment());
|
||
|
||
Label use_cache, call_runtime;
|
||
__ CheckEnumCache(null_value, &call_runtime);
|
||
|
||
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
|
||
__ b(&use_cache);
|
||
|
||
// Get the set of properties to enumerate.
|
||
__ bind(&call_runtime);
|
||
__ push(r0);
|
||
CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
|
||
|
||
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
||
__ LoadRoot(ip, Heap::kMetaMapRootIndex);
|
||
__ cmp(r1, ip);
|
||
DeoptimizeIf(ne, instr->environment());
|
||
__ bind(&use_cache);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
|
||
Register map = ToRegister(instr->map());
|
||
Register result = ToRegister(instr->result());
|
||
Label load_cache, done;
|
||
__ EnumLength(result, map);
|
||
__ cmp(result, Operand(Smi::FromInt(0)));
|
||
__ b(ne, &load_cache);
|
||
__ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
|
||
__ jmp(&done);
|
||
|
||
__ bind(&load_cache);
|
||
__ LoadInstanceDescriptors(map, result);
|
||
__ ldr(result,
|
||
FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
|
||
__ ldr(result,
|
||
FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
|
||
__ cmp(result, Operand::Zero());
|
||
DeoptimizeIf(eq, instr->environment());
|
||
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
|
||
Register object = ToRegister(instr->value());
|
||
Register map = ToRegister(instr->map());
|
||
__ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
|
||
__ cmp(map, scratch0());
|
||
DeoptimizeIf(ne, instr->environment());
|
||
}
|
||
|
||
|
||
void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
|
||
Register object = ToRegister(instr->object());
|
||
Register index = ToRegister(instr->index());
|
||
Register result = ToRegister(instr->result());
|
||
Register scratch = scratch0();
|
||
|
||
Label out_of_object, done;
|
||
__ cmp(index, Operand::Zero());
|
||
__ b(lt, &out_of_object);
|
||
|
||
__ add(scratch, object, Operand::PointerOffsetFromSmiKey(index));
|
||
__ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
|
||
|
||
__ b(&done);
|
||
|
||
__ bind(&out_of_object);
|
||
__ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
||
// Index is equal to negated out of object property index plus 1.
|
||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
|
||
__ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index));
|
||
__ ldr(result, FieldMemOperand(scratch,
|
||
FixedArray::kHeaderSize - kPointerSize));
|
||
__ bind(&done);
|
||
}
|
||
|
||
|
||
#undef __
|
||
|
||
} } // namespace v8::internal
|