44b7c59eb5
On 32-bit the maps are now aligned on a 32-byte boundary in order to encode more maps during compacting GC. The actual size of a map on 32-bit is 28 bytes making this change waste 4 bytes per map. On 64-bit the encoding for compacting GC is now using more than 32-bits and the maps here are still pointer size aligned. The actual size of a map on 64-bit is 48 bytes and this change does not intruduce any waste. My choice of 16 bits for kMapPageIndexBits for 64-bit should give the same maximum number of pages (8K) for map space. As maps on 64-bit are larger than on 32-bit the total number of maps on 64-bit will be smaller than on 32-bit. We could consider raising this to 17 or 18. I moved the kPageSizeBits to globals.h as the calculation of the encoding really depended on this. There are still an #ifdef/#endif in objects.h and this constant could be moved to globaks.h as well, but I kept it together with the related constants. All the tests run in debug mode with additional options --gc-global --always-compact as well (except for a few tests on which also fails before this change when run with --gc-global --always-compact). BUG=http://code.google.com/p/v8/issues/detail?id=524 BUG=http://crbug.com/29428 TEST=test/mjsunit/regress/regress-524.js Review URL: http://codereview.chromium.org/504026 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3481 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1231 lines
42 KiB
C++
1231 lines
42 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "accessors.h"
|
|
#include "api.h"
|
|
#include "execution.h"
|
|
#include "global-handles.h"
|
|
#include "ic-inl.h"
|
|
#include "natives.h"
|
|
#include "platform.h"
|
|
#include "runtime.h"
|
|
#include "serialize.h"
|
|
#include "stub-cache.h"
|
|
#include "v8threads.h"
|
|
#include "top.h"
|
|
#include "bootstrapper.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Mapping objects to their location after deserialization.
|
|
// This is used during building, but not at runtime by V8.
|
|
class SerializationAddressMapper {
|
|
public:
|
|
static bool IsMapped(HeapObject* obj) {
|
|
EnsureMapExists();
|
|
return serialization_map_->Lookup(Key(obj), Hash(obj), false) != NULL;
|
|
}
|
|
|
|
static int MappedTo(HeapObject* obj) {
|
|
ASSERT(IsMapped(obj));
|
|
return static_cast<int>(reinterpret_cast<intptr_t>(
|
|
serialization_map_->Lookup(Key(obj), Hash(obj), false)->value));
|
|
}
|
|
|
|
static void Map(HeapObject* obj, int to) {
|
|
EnsureMapExists();
|
|
ASSERT(!IsMapped(obj));
|
|
HashMap::Entry* entry =
|
|
serialization_map_->Lookup(Key(obj), Hash(obj), true);
|
|
entry->value = Value(to);
|
|
}
|
|
|
|
static void Zap() {
|
|
if (serialization_map_ != NULL) {
|
|
delete serialization_map_;
|
|
}
|
|
serialization_map_ = NULL;
|
|
}
|
|
|
|
private:
|
|
static bool SerializationMatchFun(void* key1, void* key2) {
|
|
return key1 == key2;
|
|
}
|
|
|
|
static uint32_t Hash(HeapObject* obj) {
|
|
return static_cast<int32_t>(reinterpret_cast<intptr_t>(obj->address()));
|
|
}
|
|
|
|
static void* Key(HeapObject* obj) {
|
|
return reinterpret_cast<void*>(obj->address());
|
|
}
|
|
|
|
static void* Value(int v) {
|
|
return reinterpret_cast<void*>(v);
|
|
}
|
|
|
|
static void EnsureMapExists() {
|
|
if (serialization_map_ == NULL) {
|
|
serialization_map_ = new HashMap(&SerializationMatchFun);
|
|
}
|
|
}
|
|
|
|
static HashMap* serialization_map_;
|
|
};
|
|
|
|
|
|
HashMap* SerializationAddressMapper::serialization_map_ = NULL;
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Coding of external references.
|
|
|
|
// The encoding of an external reference. The type is in the high word.
|
|
// The id is in the low word.
|
|
static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
|
|
return static_cast<uint32_t>(type) << 16 | id;
|
|
}
|
|
|
|
|
|
static int* GetInternalPointer(StatsCounter* counter) {
|
|
// All counters refer to dummy_counter, if deserializing happens without
|
|
// setting up counters.
|
|
static int dummy_counter = 0;
|
|
return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
|
|
}
|
|
|
|
|
|
// ExternalReferenceTable is a helper class that defines the relationship
|
|
// between external references and their encodings. It is used to build
|
|
// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
|
|
class ExternalReferenceTable {
|
|
public:
|
|
static ExternalReferenceTable* instance() {
|
|
if (!instance_) instance_ = new ExternalReferenceTable();
|
|
return instance_;
|
|
}
|
|
|
|
int size() const { return refs_.length(); }
|
|
|
|
Address address(int i) { return refs_[i].address; }
|
|
|
|
uint32_t code(int i) { return refs_[i].code; }
|
|
|
|
const char* name(int i) { return refs_[i].name; }
|
|
|
|
int max_id(int code) { return max_id_[code]; }
|
|
|
|
private:
|
|
static ExternalReferenceTable* instance_;
|
|
|
|
ExternalReferenceTable() : refs_(64) { PopulateTable(); }
|
|
~ExternalReferenceTable() { }
|
|
|
|
struct ExternalReferenceEntry {
|
|
Address address;
|
|
uint32_t code;
|
|
const char* name;
|
|
};
|
|
|
|
void PopulateTable();
|
|
|
|
// For a few types of references, we can get their address from their id.
|
|
void AddFromId(TypeCode type, uint16_t id, const char* name);
|
|
|
|
// For other types of references, the caller will figure out the address.
|
|
void Add(Address address, TypeCode type, uint16_t id, const char* name);
|
|
|
|
List<ExternalReferenceEntry> refs_;
|
|
int max_id_[kTypeCodeCount];
|
|
};
|
|
|
|
|
|
ExternalReferenceTable* ExternalReferenceTable::instance_ = NULL;
|
|
|
|
|
|
void ExternalReferenceTable::AddFromId(TypeCode type,
|
|
uint16_t id,
|
|
const char* name) {
|
|
Address address;
|
|
switch (type) {
|
|
case C_BUILTIN: {
|
|
ExternalReference ref(static_cast<Builtins::CFunctionId>(id));
|
|
address = ref.address();
|
|
break;
|
|
}
|
|
case BUILTIN: {
|
|
ExternalReference ref(static_cast<Builtins::Name>(id));
|
|
address = ref.address();
|
|
break;
|
|
}
|
|
case RUNTIME_FUNCTION: {
|
|
ExternalReference ref(static_cast<Runtime::FunctionId>(id));
|
|
address = ref.address();
|
|
break;
|
|
}
|
|
case IC_UTILITY: {
|
|
ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)));
|
|
address = ref.address();
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return;
|
|
}
|
|
Add(address, type, id, name);
|
|
}
|
|
|
|
|
|
void ExternalReferenceTable::Add(Address address,
|
|
TypeCode type,
|
|
uint16_t id,
|
|
const char* name) {
|
|
ASSERT_NE(NULL, address);
|
|
ExternalReferenceEntry entry;
|
|
entry.address = address;
|
|
entry.code = EncodeExternal(type, id);
|
|
entry.name = name;
|
|
ASSERT_NE(0, entry.code);
|
|
refs_.Add(entry);
|
|
if (id > max_id_[type]) max_id_[type] = id;
|
|
}
|
|
|
|
|
|
void ExternalReferenceTable::PopulateTable() {
|
|
for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
|
|
max_id_[type_code] = 0;
|
|
}
|
|
|
|
// The following populates all of the different type of external references
|
|
// into the ExternalReferenceTable.
|
|
//
|
|
// NOTE: This function was originally 100k of code. It has since been
|
|
// rewritten to be mostly table driven, as the callback macro style tends to
|
|
// very easily cause code bloat. Please be careful in the future when adding
|
|
// new references.
|
|
|
|
struct RefTableEntry {
|
|
TypeCode type;
|
|
uint16_t id;
|
|
const char* name;
|
|
};
|
|
|
|
static const RefTableEntry ref_table[] = {
|
|
// Builtins
|
|
#define DEF_ENTRY_C(name) \
|
|
{ C_BUILTIN, \
|
|
Builtins::c_##name, \
|
|
"Builtins::" #name },
|
|
|
|
BUILTIN_LIST_C(DEF_ENTRY_C)
|
|
#undef DEF_ENTRY_C
|
|
|
|
#define DEF_ENTRY_C(name) \
|
|
{ BUILTIN, \
|
|
Builtins::name, \
|
|
"Builtins::" #name },
|
|
#define DEF_ENTRY_A(name, kind, state) DEF_ENTRY_C(name)
|
|
|
|
BUILTIN_LIST_C(DEF_ENTRY_C)
|
|
BUILTIN_LIST_A(DEF_ENTRY_A)
|
|
BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
|
|
#undef DEF_ENTRY_C
|
|
#undef DEF_ENTRY_A
|
|
|
|
// Runtime functions
|
|
#define RUNTIME_ENTRY(name, nargs, ressize) \
|
|
{ RUNTIME_FUNCTION, \
|
|
Runtime::k##name, \
|
|
"Runtime::" #name },
|
|
|
|
RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
|
|
#undef RUNTIME_ENTRY
|
|
|
|
// IC utilities
|
|
#define IC_ENTRY(name) \
|
|
{ IC_UTILITY, \
|
|
IC::k##name, \
|
|
"IC::" #name },
|
|
|
|
IC_UTIL_LIST(IC_ENTRY)
|
|
#undef IC_ENTRY
|
|
}; // end of ref_table[].
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
|
|
AddFromId(ref_table[i].type, ref_table[i].id, ref_table[i].name);
|
|
}
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
// Debug addresses
|
|
Add(Debug_Address(Debug::k_after_break_target_address).address(),
|
|
DEBUG_ADDRESS,
|
|
Debug::k_after_break_target_address << kDebugIdShift,
|
|
"Debug::after_break_target_address()");
|
|
Add(Debug_Address(Debug::k_debug_break_return_address).address(),
|
|
DEBUG_ADDRESS,
|
|
Debug::k_debug_break_return_address << kDebugIdShift,
|
|
"Debug::debug_break_return_address()");
|
|
const char* debug_register_format = "Debug::register_address(%i)";
|
|
int dr_format_length = StrLength(debug_register_format);
|
|
for (int i = 0; i < kNumJSCallerSaved; ++i) {
|
|
Vector<char> name = Vector<char>::New(dr_format_length + 1);
|
|
OS::SNPrintF(name, debug_register_format, i);
|
|
Add(Debug_Address(Debug::k_register_address, i).address(),
|
|
DEBUG_ADDRESS,
|
|
Debug::k_register_address << kDebugIdShift | i,
|
|
name.start());
|
|
}
|
|
#endif
|
|
|
|
// Stat counters
|
|
struct StatsRefTableEntry {
|
|
StatsCounter* counter;
|
|
uint16_t id;
|
|
const char* name;
|
|
};
|
|
|
|
static const StatsRefTableEntry stats_ref_table[] = {
|
|
#define COUNTER_ENTRY(name, caption) \
|
|
{ &Counters::name, \
|
|
Counters::k_##name, \
|
|
"Counters::" #name },
|
|
|
|
STATS_COUNTER_LIST_1(COUNTER_ENTRY)
|
|
STATS_COUNTER_LIST_2(COUNTER_ENTRY)
|
|
#undef COUNTER_ENTRY
|
|
}; // end of stats_ref_table[].
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
|
|
Add(reinterpret_cast<Address>(
|
|
GetInternalPointer(stats_ref_table[i].counter)),
|
|
STATS_COUNTER,
|
|
stats_ref_table[i].id,
|
|
stats_ref_table[i].name);
|
|
}
|
|
|
|
// Top addresses
|
|
const char* top_address_format = "Top::%s";
|
|
|
|
const char* AddressNames[] = {
|
|
#define C(name) #name,
|
|
TOP_ADDRESS_LIST(C)
|
|
TOP_ADDRESS_LIST_PROF(C)
|
|
NULL
|
|
#undef C
|
|
};
|
|
|
|
int top_format_length = StrLength(top_address_format) - 2;
|
|
for (uint16_t i = 0; i < Top::k_top_address_count; ++i) {
|
|
const char* address_name = AddressNames[i];
|
|
Vector<char> name =
|
|
Vector<char>::New(top_format_length + StrLength(address_name) + 1);
|
|
const char* chars = name.start();
|
|
OS::SNPrintF(name, top_address_format, address_name);
|
|
Add(Top::get_address_from_id((Top::AddressId)i), TOP_ADDRESS, i, chars);
|
|
}
|
|
|
|
// Extensions
|
|
Add(FUNCTION_ADDR(GCExtension::GC), EXTENSION, 1,
|
|
"GCExtension::GC");
|
|
|
|
// Accessors
|
|
#define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
|
|
Add((Address)&Accessors::name, \
|
|
ACCESSOR, \
|
|
Accessors::k##name, \
|
|
"Accessors::" #name);
|
|
|
|
ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
|
|
#undef ACCESSOR_DESCRIPTOR_DECLARATION
|
|
|
|
// Stub cache tables
|
|
Add(SCTableReference::keyReference(StubCache::kPrimary).address(),
|
|
STUB_CACHE_TABLE,
|
|
1,
|
|
"StubCache::primary_->key");
|
|
Add(SCTableReference::valueReference(StubCache::kPrimary).address(),
|
|
STUB_CACHE_TABLE,
|
|
2,
|
|
"StubCache::primary_->value");
|
|
Add(SCTableReference::keyReference(StubCache::kSecondary).address(),
|
|
STUB_CACHE_TABLE,
|
|
3,
|
|
"StubCache::secondary_->key");
|
|
Add(SCTableReference::valueReference(StubCache::kSecondary).address(),
|
|
STUB_CACHE_TABLE,
|
|
4,
|
|
"StubCache::secondary_->value");
|
|
|
|
// Runtime entries
|
|
Add(ExternalReference::perform_gc_function().address(),
|
|
RUNTIME_ENTRY,
|
|
1,
|
|
"Runtime::PerformGC");
|
|
Add(ExternalReference::random_positive_smi_function().address(),
|
|
RUNTIME_ENTRY,
|
|
2,
|
|
"V8::RandomPositiveSmi");
|
|
|
|
// Miscellaneous
|
|
Add(ExternalReference::builtin_passed_function().address(),
|
|
UNCLASSIFIED,
|
|
1,
|
|
"Builtins::builtin_passed_function");
|
|
Add(ExternalReference::the_hole_value_location().address(),
|
|
UNCLASSIFIED,
|
|
2,
|
|
"Factory::the_hole_value().location()");
|
|
Add(ExternalReference::roots_address().address(),
|
|
UNCLASSIFIED,
|
|
3,
|
|
"Heap::roots_address()");
|
|
Add(ExternalReference::address_of_stack_limit().address(),
|
|
UNCLASSIFIED,
|
|
4,
|
|
"StackGuard::address_of_jslimit()");
|
|
Add(ExternalReference::address_of_real_stack_limit().address(),
|
|
UNCLASSIFIED,
|
|
5,
|
|
"StackGuard::address_of_real_jslimit()");
|
|
Add(ExternalReference::address_of_regexp_stack_limit().address(),
|
|
UNCLASSIFIED,
|
|
6,
|
|
"RegExpStack::limit_address()");
|
|
Add(ExternalReference::new_space_start().address(),
|
|
UNCLASSIFIED,
|
|
7,
|
|
"Heap::NewSpaceStart()");
|
|
Add(ExternalReference::heap_always_allocate_scope_depth().address(),
|
|
UNCLASSIFIED,
|
|
8,
|
|
"Heap::always_allocate_scope_depth()");
|
|
Add(ExternalReference::new_space_allocation_limit_address().address(),
|
|
UNCLASSIFIED,
|
|
9,
|
|
"Heap::NewSpaceAllocationLimitAddress()");
|
|
Add(ExternalReference::new_space_allocation_top_address().address(),
|
|
UNCLASSIFIED,
|
|
10,
|
|
"Heap::NewSpaceAllocationTopAddress()");
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
Add(ExternalReference::debug_break().address(),
|
|
UNCLASSIFIED,
|
|
11,
|
|
"Debug::Break()");
|
|
Add(ExternalReference::debug_step_in_fp_address().address(),
|
|
UNCLASSIFIED,
|
|
12,
|
|
"Debug::step_in_fp_addr()");
|
|
#endif
|
|
Add(ExternalReference::double_fp_operation(Token::ADD).address(),
|
|
UNCLASSIFIED,
|
|
13,
|
|
"add_two_doubles");
|
|
Add(ExternalReference::double_fp_operation(Token::SUB).address(),
|
|
UNCLASSIFIED,
|
|
14,
|
|
"sub_two_doubles");
|
|
Add(ExternalReference::double_fp_operation(Token::MUL).address(),
|
|
UNCLASSIFIED,
|
|
15,
|
|
"mul_two_doubles");
|
|
Add(ExternalReference::double_fp_operation(Token::DIV).address(),
|
|
UNCLASSIFIED,
|
|
16,
|
|
"div_two_doubles");
|
|
Add(ExternalReference::double_fp_operation(Token::MOD).address(),
|
|
UNCLASSIFIED,
|
|
17,
|
|
"mod_two_doubles");
|
|
Add(ExternalReference::compare_doubles().address(),
|
|
UNCLASSIFIED,
|
|
18,
|
|
"compare_doubles");
|
|
#ifdef V8_NATIVE_REGEXP
|
|
Add(ExternalReference::re_case_insensitive_compare_uc16().address(),
|
|
UNCLASSIFIED,
|
|
19,
|
|
"NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
|
|
Add(ExternalReference::re_check_stack_guard_state().address(),
|
|
UNCLASSIFIED,
|
|
20,
|
|
"RegExpMacroAssembler*::CheckStackGuardState()");
|
|
Add(ExternalReference::re_grow_stack().address(),
|
|
UNCLASSIFIED,
|
|
21,
|
|
"NativeRegExpMacroAssembler::GrowStack()");
|
|
#endif
|
|
// Keyed lookup cache.
|
|
Add(ExternalReference::keyed_lookup_cache_keys().address(),
|
|
UNCLASSIFIED,
|
|
22,
|
|
"KeyedLookupCache::keys()");
|
|
Add(ExternalReference::keyed_lookup_cache_field_offsets().address(),
|
|
UNCLASSIFIED,
|
|
23,
|
|
"KeyedLookupCache::field_offsets()");
|
|
}
|
|
|
|
|
|
ExternalReferenceEncoder::ExternalReferenceEncoder()
|
|
: encodings_(Match) {
|
|
ExternalReferenceTable* external_references =
|
|
ExternalReferenceTable::instance();
|
|
for (int i = 0; i < external_references->size(); ++i) {
|
|
Put(external_references->address(i), i);
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t ExternalReferenceEncoder::Encode(Address key) const {
|
|
int index = IndexOf(key);
|
|
return index >=0 ? ExternalReferenceTable::instance()->code(index) : 0;
|
|
}
|
|
|
|
|
|
const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
|
|
int index = IndexOf(key);
|
|
return index >=0 ? ExternalReferenceTable::instance()->name(index) : NULL;
|
|
}
|
|
|
|
|
|
int ExternalReferenceEncoder::IndexOf(Address key) const {
|
|
if (key == NULL) return -1;
|
|
HashMap::Entry* entry =
|
|
const_cast<HashMap &>(encodings_).Lookup(key, Hash(key), false);
|
|
return entry == NULL
|
|
? -1
|
|
: static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
|
|
}
|
|
|
|
|
|
void ExternalReferenceEncoder::Put(Address key, int index) {
|
|
HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
|
|
entry->value = reinterpret_cast<void *>(index);
|
|
}
|
|
|
|
|
|
ExternalReferenceDecoder::ExternalReferenceDecoder()
|
|
: encodings_(NewArray<Address*>(kTypeCodeCount)) {
|
|
ExternalReferenceTable* external_references =
|
|
ExternalReferenceTable::instance();
|
|
for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
|
|
int max = external_references->max_id(type) + 1;
|
|
encodings_[type] = NewArray<Address>(max + 1);
|
|
}
|
|
for (int i = 0; i < external_references->size(); ++i) {
|
|
Put(external_references->code(i), external_references->address(i));
|
|
}
|
|
}
|
|
|
|
|
|
ExternalReferenceDecoder::~ExternalReferenceDecoder() {
|
|
for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
|
|
DeleteArray(encodings_[type]);
|
|
}
|
|
DeleteArray(encodings_);
|
|
}
|
|
|
|
|
|
bool Serializer::serialization_enabled_ = false;
|
|
bool Serializer::too_late_to_enable_now_ = false;
|
|
|
|
|
|
Deserializer::Deserializer(SnapshotByteSource* source)
|
|
: source_(source),
|
|
external_reference_decoder_(NULL) {
|
|
}
|
|
|
|
|
|
// This routine both allocates a new object, and also keeps
|
|
// track of where objects have been allocated so that we can
|
|
// fix back references when deserializing.
|
|
Address Deserializer::Allocate(int space_index, Space* space, int size) {
|
|
Address address;
|
|
if (!SpaceIsLarge(space_index)) {
|
|
ASSERT(!SpaceIsPaged(space_index) ||
|
|
size <= Page::kPageSize - Page::kObjectStartOffset);
|
|
Object* new_allocation;
|
|
if (space_index == NEW_SPACE) {
|
|
new_allocation = reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
|
|
} else {
|
|
new_allocation = reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
|
|
}
|
|
HeapObject* new_object = HeapObject::cast(new_allocation);
|
|
ASSERT(!new_object->IsFailure());
|
|
address = new_object->address();
|
|
high_water_[space_index] = address + size;
|
|
} else {
|
|
ASSERT(SpaceIsLarge(space_index));
|
|
ASSERT(size > Page::kPageSize - Page::kObjectStartOffset);
|
|
LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
|
|
Object* new_allocation;
|
|
if (space_index == kLargeData) {
|
|
new_allocation = lo_space->AllocateRaw(size);
|
|
} else if (space_index == kLargeFixedArray) {
|
|
new_allocation = lo_space->AllocateRawFixedArray(size);
|
|
} else {
|
|
ASSERT_EQ(kLargeCode, space_index);
|
|
new_allocation = lo_space->AllocateRawCode(size);
|
|
}
|
|
ASSERT(!new_allocation->IsFailure());
|
|
HeapObject* new_object = HeapObject::cast(new_allocation);
|
|
// Record all large objects in the same space.
|
|
address = new_object->address();
|
|
high_water_[LO_SPACE] = address + size;
|
|
}
|
|
last_object_address_ = address;
|
|
return address;
|
|
}
|
|
|
|
|
|
// This returns the address of an object that has been described in the
|
|
// snapshot as being offset bytes back in a particular space.
|
|
HeapObject* Deserializer::GetAddressFromEnd(int space) {
|
|
int offset = source_->GetInt();
|
|
ASSERT(!SpaceIsLarge(space));
|
|
offset <<= kObjectAlignmentBits;
|
|
return HeapObject::FromAddress(high_water_[space] - offset);
|
|
}
|
|
|
|
|
|
// This returns the address of an object that has been described in the
|
|
// snapshot as being offset bytes into a particular space.
|
|
HeapObject* Deserializer::GetAddressFromStart(int space) {
|
|
int offset = source_->GetInt();
|
|
if (SpaceIsLarge(space)) {
|
|
// Large spaces have one object per 'page'.
|
|
return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
|
|
}
|
|
offset <<= kObjectAlignmentBits;
|
|
if (space == NEW_SPACE) {
|
|
// New space has only one space - numbered 0.
|
|
return HeapObject::FromAddress(pages_[space][0] + offset);
|
|
}
|
|
ASSERT(SpaceIsPaged(space));
|
|
int page_of_pointee = offset >> kPageSizeBits;
|
|
Address object_address = pages_[space][page_of_pointee] +
|
|
(offset & Page::kPageAlignmentMask);
|
|
return HeapObject::FromAddress(object_address);
|
|
}
|
|
|
|
|
|
void Deserializer::Deserialize() {
|
|
// Don't GC while deserializing - just expand the heap.
|
|
AlwaysAllocateScope always_allocate;
|
|
// Don't use the free lists while deserializing.
|
|
LinearAllocationScope allocate_linearly;
|
|
// No active threads.
|
|
ASSERT_EQ(NULL, ThreadState::FirstInUse());
|
|
// No active handles.
|
|
ASSERT(HandleScopeImplementer::instance()->blocks()->is_empty());
|
|
ASSERT_EQ(NULL, external_reference_decoder_);
|
|
external_reference_decoder_ = new ExternalReferenceDecoder();
|
|
Heap::IterateRoots(this, VISIT_ONLY_STRONG);
|
|
ASSERT(source_->AtEOF());
|
|
delete external_reference_decoder_;
|
|
external_reference_decoder_ = NULL;
|
|
}
|
|
|
|
|
|
// This is called on the roots. It is the driver of the deserialization
|
|
// process. It is also called on the body of each function.
|
|
void Deserializer::VisitPointers(Object** start, Object** end) {
|
|
// The space must be new space. Any other space would cause ReadChunk to try
|
|
// to update the remembered using NULL as the address.
|
|
ReadChunk(start, end, NEW_SPACE, NULL);
|
|
}
|
|
|
|
|
|
// This routine writes the new object into the pointer provided and then
|
|
// returns true if the new object was in young space and false otherwise.
|
|
// The reason for this strange interface is that otherwise the object is
|
|
// written very late, which means the ByteArray map is not set up by the
|
|
// time we need to use it to mark the space at the end of a page free (by
|
|
// making it into a byte array).
|
|
void Deserializer::ReadObject(int space_number,
|
|
Space* space,
|
|
Object** write_back) {
|
|
int size = source_->GetInt() << kObjectAlignmentBits;
|
|
Address address = Allocate(space_number, space, size);
|
|
*write_back = HeapObject::FromAddress(address);
|
|
Object** current = reinterpret_cast<Object**>(address);
|
|
Object** limit = current + (size >> kPointerSizeLog2);
|
|
ReadChunk(current, limit, space_number, address);
|
|
}
|
|
|
|
|
|
#define ONE_CASE_PER_SPACE(base_tag) \
|
|
case (base_tag) + NEW_SPACE: /* NOLINT */ \
|
|
case (base_tag) + OLD_POINTER_SPACE: /* NOLINT */ \
|
|
case (base_tag) + OLD_DATA_SPACE: /* NOLINT */ \
|
|
case (base_tag) + CODE_SPACE: /* NOLINT */ \
|
|
case (base_tag) + MAP_SPACE: /* NOLINT */ \
|
|
case (base_tag) + CELL_SPACE: /* NOLINT */ \
|
|
case (base_tag) + kLargeData: /* NOLINT */ \
|
|
case (base_tag) + kLargeCode: /* NOLINT */ \
|
|
case (base_tag) + kLargeFixedArray: /* NOLINT */
|
|
|
|
|
|
void Deserializer::ReadChunk(Object** current,
|
|
Object** limit,
|
|
int space,
|
|
Address address) {
|
|
while (current < limit) {
|
|
int data = source_->Get();
|
|
switch (data) {
|
|
#define RAW_CASE(index, size) \
|
|
case RAW_DATA_SERIALIZATION + index: { \
|
|
byte* raw_data_out = reinterpret_cast<byte*>(current); \
|
|
source_->CopyRaw(raw_data_out, size); \
|
|
current = reinterpret_cast<Object**>(raw_data_out + size); \
|
|
break; \
|
|
}
|
|
COMMON_RAW_LENGTHS(RAW_CASE)
|
|
#undef RAW_CASE
|
|
case RAW_DATA_SERIALIZATION: {
|
|
int size = source_->GetInt();
|
|
byte* raw_data_out = reinterpret_cast<byte*>(current);
|
|
source_->CopyRaw(raw_data_out, size);
|
|
current = reinterpret_cast<Object**>(raw_data_out + size);
|
|
break;
|
|
}
|
|
case OBJECT_SERIALIZATION + NEW_SPACE: {
|
|
ReadObject(NEW_SPACE, Heap::new_space(), current);
|
|
if (space != NEW_SPACE) {
|
|
Heap::RecordWrite(address, static_cast<int>(
|
|
reinterpret_cast<Address>(current) - address));
|
|
}
|
|
current++;
|
|
break;
|
|
}
|
|
case OBJECT_SERIALIZATION + OLD_DATA_SPACE:
|
|
ReadObject(OLD_DATA_SPACE, Heap::old_data_space(), current++);
|
|
break;
|
|
case OBJECT_SERIALIZATION + OLD_POINTER_SPACE:
|
|
ReadObject(OLD_POINTER_SPACE, Heap::old_pointer_space(), current++);
|
|
break;
|
|
case OBJECT_SERIALIZATION + MAP_SPACE:
|
|
ReadObject(MAP_SPACE, Heap::map_space(), current++);
|
|
break;
|
|
case OBJECT_SERIALIZATION + CODE_SPACE:
|
|
ReadObject(CODE_SPACE, Heap::code_space(), current++);
|
|
LOG(LogCodeObject(current[-1]));
|
|
break;
|
|
case OBJECT_SERIALIZATION + CELL_SPACE:
|
|
ReadObject(CELL_SPACE, Heap::cell_space(), current++);
|
|
break;
|
|
case OBJECT_SERIALIZATION + kLargeData:
|
|
ReadObject(kLargeData, Heap::lo_space(), current++);
|
|
break;
|
|
case OBJECT_SERIALIZATION + kLargeCode:
|
|
ReadObject(kLargeCode, Heap::lo_space(), current++);
|
|
LOG(LogCodeObject(current[-1]));
|
|
break;
|
|
case OBJECT_SERIALIZATION + kLargeFixedArray:
|
|
ReadObject(kLargeFixedArray, Heap::lo_space(), current++);
|
|
break;
|
|
case CODE_OBJECT_SERIALIZATION + kLargeCode: {
|
|
Object* new_code_object = NULL;
|
|
ReadObject(kLargeCode, Heap::lo_space(), &new_code_object);
|
|
Code* code_object = reinterpret_cast<Code*>(new_code_object);
|
|
LOG(LogCodeObject(code_object));
|
|
// Setting a branch/call to another code object from code.
|
|
Address location_of_branch_data = reinterpret_cast<Address>(current);
|
|
Assembler::set_target_at(location_of_branch_data,
|
|
code_object->instruction_start());
|
|
location_of_branch_data += Assembler::kCallTargetSize;
|
|
current = reinterpret_cast<Object**>(location_of_branch_data);
|
|
break;
|
|
}
|
|
case CODE_OBJECT_SERIALIZATION + CODE_SPACE: {
|
|
Object* new_code_object = NULL;
|
|
ReadObject(CODE_SPACE, Heap::code_space(), &new_code_object);
|
|
Code* code_object = reinterpret_cast<Code*>(new_code_object);
|
|
LOG(LogCodeObject(code_object));
|
|
// Setting a branch/call to another code object from code.
|
|
Address location_of_branch_data = reinterpret_cast<Address>(current);
|
|
Assembler::set_target_at(location_of_branch_data,
|
|
code_object->instruction_start());
|
|
location_of_branch_data += Assembler::kCallTargetSize;
|
|
current = reinterpret_cast<Object**>(location_of_branch_data);
|
|
break;
|
|
}
|
|
ONE_CASE_PER_SPACE(BACKREF_SERIALIZATION) {
|
|
// Write a backreference to an object we unpacked earlier.
|
|
int backref_space = (data & kSpaceMask);
|
|
if (backref_space == NEW_SPACE && space != NEW_SPACE) {
|
|
Heap::RecordWrite(address, static_cast<int>(
|
|
reinterpret_cast<Address>(current) - address));
|
|
}
|
|
*current++ = GetAddressFromEnd(backref_space);
|
|
break;
|
|
}
|
|
ONE_CASE_PER_SPACE(REFERENCE_SERIALIZATION) {
|
|
// Write a reference to an object we unpacked earlier.
|
|
int reference_space = (data & kSpaceMask);
|
|
if (reference_space == NEW_SPACE && space != NEW_SPACE) {
|
|
Heap::RecordWrite(address, static_cast<int>(
|
|
reinterpret_cast<Address>(current) - address));
|
|
}
|
|
*current++ = GetAddressFromStart(reference_space);
|
|
break;
|
|
}
|
|
#define COMMON_REFS_CASE(index, reference_space, address) \
|
|
case REFERENCE_SERIALIZATION + index: { \
|
|
ASSERT(SpaceIsPaged(reference_space)); \
|
|
Address object_address = \
|
|
pages_[reference_space][0] + (address << kObjectAlignmentBits); \
|
|
*current++ = HeapObject::FromAddress(object_address); \
|
|
break; \
|
|
}
|
|
COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
|
|
#undef COMMON_REFS_CASE
|
|
ONE_CASE_PER_SPACE(CODE_BACKREF_SERIALIZATION) {
|
|
int backref_space = (data & kSpaceMask);
|
|
// Can't use Code::cast because heap is not set up yet and assertions
|
|
// will fail.
|
|
Code* code_object =
|
|
reinterpret_cast<Code*>(GetAddressFromEnd(backref_space));
|
|
// Setting a branch/call to previously decoded code object from code.
|
|
Address location_of_branch_data = reinterpret_cast<Address>(current);
|
|
Assembler::set_target_at(location_of_branch_data,
|
|
code_object->instruction_start());
|
|
location_of_branch_data += Assembler::kCallTargetSize;
|
|
current = reinterpret_cast<Object**>(location_of_branch_data);
|
|
break;
|
|
}
|
|
ONE_CASE_PER_SPACE(CODE_REFERENCE_SERIALIZATION) {
|
|
int backref_space = (data & kSpaceMask);
|
|
// Can't use Code::cast because heap is not set up yet and assertions
|
|
// will fail.
|
|
Code* code_object =
|
|
reinterpret_cast<Code*>(GetAddressFromStart(backref_space));
|
|
// Setting a branch/call to previously decoded code object from code.
|
|
Address location_of_branch_data = reinterpret_cast<Address>(current);
|
|
Assembler::set_target_at(location_of_branch_data,
|
|
code_object->instruction_start());
|
|
location_of_branch_data += Assembler::kCallTargetSize;
|
|
current = reinterpret_cast<Object**>(location_of_branch_data);
|
|
break;
|
|
}
|
|
case EXTERNAL_REFERENCE_SERIALIZATION: {
|
|
int reference_id = source_->GetInt();
|
|
Address address = external_reference_decoder_->Decode(reference_id);
|
|
*current++ = reinterpret_cast<Object*>(address);
|
|
break;
|
|
}
|
|
case EXTERNAL_BRANCH_TARGET_SERIALIZATION: {
|
|
int reference_id = source_->GetInt();
|
|
Address address = external_reference_decoder_->Decode(reference_id);
|
|
Address location_of_branch_data = reinterpret_cast<Address>(current);
|
|
Assembler::set_external_target_at(location_of_branch_data, address);
|
|
location_of_branch_data += Assembler::kExternalTargetSize;
|
|
current = reinterpret_cast<Object**>(location_of_branch_data);
|
|
break;
|
|
}
|
|
case START_NEW_PAGE_SERIALIZATION: {
|
|
int space = source_->Get();
|
|
pages_[space].Add(last_object_address_);
|
|
break;
|
|
}
|
|
case NATIVES_STRING_RESOURCE: {
|
|
int index = source_->Get();
|
|
Vector<const char> source_vector = Natives::GetScriptSource(index);
|
|
NativesExternalStringResource* resource =
|
|
new NativesExternalStringResource(source_vector.start());
|
|
*current++ = reinterpret_cast<Object*>(resource);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
ASSERT_EQ(current, limit);
|
|
}
|
|
|
|
|
|
void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
|
|
const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
|
|
for (int shift = max_shift; shift > 0; shift -= 7) {
|
|
if (integer >= static_cast<uintptr_t>(1u) << shift) {
|
|
Put(((integer >> shift) & 0x7f) | 0x80, "IntPart");
|
|
}
|
|
}
|
|
PutSection(integer & 0x7f, "IntLastPart");
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
|
|
void Deserializer::Synchronize(const char* tag) {
|
|
int data = source_->Get();
|
|
// If this assert fails then that indicates that you have a mismatch between
|
|
// the number of GC roots when serializing and deserializing.
|
|
ASSERT_EQ(SYNCHRONIZE, data);
|
|
do {
|
|
int character = source_->Get();
|
|
if (character == 0) break;
|
|
if (FLAG_debug_serialization) {
|
|
PrintF("%c", character);
|
|
}
|
|
} while (true);
|
|
if (FLAG_debug_serialization) {
|
|
PrintF("\n");
|
|
}
|
|
}
|
|
|
|
|
|
void Serializer::Synchronize(const char* tag) {
|
|
sink_->Put(SYNCHRONIZE, tag);
|
|
int character;
|
|
do {
|
|
character = *tag++;
|
|
sink_->PutSection(character, "TagCharacter");
|
|
} while (character != 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
Serializer::Serializer(SnapshotByteSink* sink)
|
|
: sink_(sink),
|
|
current_root_index_(0),
|
|
external_reference_encoder_(NULL) {
|
|
for (int i = 0; i <= LAST_SPACE; i++) {
|
|
fullness_[i] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
void Serializer::Serialize() {
|
|
// No active threads.
|
|
CHECK_EQ(NULL, ThreadState::FirstInUse());
|
|
// No active or weak handles.
|
|
CHECK(HandleScopeImplementer::instance()->blocks()->is_empty());
|
|
CHECK_EQ(0, GlobalHandles::NumberOfWeakHandles());
|
|
CHECK_EQ(NULL, external_reference_encoder_);
|
|
// We don't support serializing installed extensions.
|
|
for (RegisteredExtension* ext = RegisteredExtension::first_extension();
|
|
ext != NULL;
|
|
ext = ext->next()) {
|
|
CHECK_NE(v8::INSTALLED, ext->state());
|
|
}
|
|
external_reference_encoder_ = new ExternalReferenceEncoder();
|
|
Heap::IterateRoots(this, VISIT_ONLY_STRONG);
|
|
delete external_reference_encoder_;
|
|
external_reference_encoder_ = NULL;
|
|
SerializationAddressMapper::Zap();
|
|
}
|
|
|
|
|
|
void Serializer::VisitPointers(Object** start, Object** end) {
|
|
for (Object** current = start; current < end; current++) {
|
|
if ((*current)->IsSmi()) {
|
|
sink_->Put(RAW_DATA_SERIALIZATION, "RawData");
|
|
sink_->PutInt(kPointerSize, "length");
|
|
for (int i = 0; i < kPointerSize; i++) {
|
|
sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
|
|
}
|
|
} else {
|
|
SerializeObject(*current, TAGGED_REPRESENTATION);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Serializer::SerializeObject(
|
|
Object* o,
|
|
ReferenceRepresentation reference_representation) {
|
|
CHECK(o->IsHeapObject());
|
|
HeapObject* heap_object = HeapObject::cast(o);
|
|
if (SerializationAddressMapper::IsMapped(heap_object)) {
|
|
int space = SpaceOfAlreadySerializedObject(heap_object);
|
|
int address = SerializationAddressMapper::MappedTo(heap_object);
|
|
int offset = CurrentAllocationAddress(space) - address;
|
|
bool from_start = true;
|
|
if (SpaceIsPaged(space)) {
|
|
if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
|
|
(address >> kPageSizeBits)) {
|
|
from_start = false;
|
|
address = offset;
|
|
}
|
|
} else if (space == NEW_SPACE) {
|
|
if (offset < address) {
|
|
from_start = false;
|
|
address = offset;
|
|
}
|
|
}
|
|
// If we are actually dealing with real offsets (and not a numbering of
|
|
// all objects) then we should shift out the bits that are always 0.
|
|
if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
|
|
if (reference_representation == CODE_TARGET_REPRESENTATION) {
|
|
if (from_start) {
|
|
sink_->Put(CODE_REFERENCE_SERIALIZATION + space, "RefCodeSer");
|
|
sink_->PutInt(address, "address");
|
|
} else {
|
|
sink_->Put(CODE_BACKREF_SERIALIZATION + space, "BackRefCodeSer");
|
|
sink_->PutInt(address, "address");
|
|
}
|
|
} else {
|
|
CHECK_EQ(TAGGED_REPRESENTATION, reference_representation);
|
|
if (from_start) {
|
|
#define COMMON_REFS_CASE(tag, common_space, common_offset) \
|
|
if (space == common_space && address == common_offset) { \
|
|
sink_->PutSection(tag + REFERENCE_SERIALIZATION, "RefSer"); \
|
|
} else /* NOLINT */
|
|
COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
|
|
#undef COMMON_REFS_CASE
|
|
{ /* NOLINT */
|
|
sink_->Put(REFERENCE_SERIALIZATION + space, "RefSer");
|
|
sink_->PutInt(address, "address");
|
|
}
|
|
} else {
|
|
sink_->Put(BACKREF_SERIALIZATION + space, "BackRefSer");
|
|
sink_->PutInt(address, "address");
|
|
}
|
|
}
|
|
} else {
|
|
// Object has not yet been serialized. Serialize it here.
|
|
ObjectSerializer serializer(this,
|
|
heap_object,
|
|
sink_,
|
|
reference_representation);
|
|
serializer.Serialize();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Serializer::ObjectSerializer::Serialize() {
|
|
int space = Serializer::SpaceOfObject(object_);
|
|
int size = object_->Size();
|
|
|
|
if (reference_representation_ == TAGGED_REPRESENTATION) {
|
|
sink_->Put(OBJECT_SERIALIZATION + space, "ObjectSerialization");
|
|
} else {
|
|
CHECK_EQ(CODE_TARGET_REPRESENTATION, reference_representation_);
|
|
sink_->Put(CODE_OBJECT_SERIALIZATION + space, "ObjectSerialization");
|
|
}
|
|
sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
|
|
|
|
// Mark this object as already serialized.
|
|
bool start_new_page;
|
|
SerializationAddressMapper::Map(
|
|
object_,
|
|
serializer_->Allocate(space, size, &start_new_page));
|
|
if (start_new_page) {
|
|
sink_->Put(START_NEW_PAGE_SERIALIZATION, "NewPage");
|
|
sink_->PutSection(space, "NewPageSpace");
|
|
}
|
|
|
|
// Serialize the map (first word of the object).
|
|
serializer_->SerializeObject(object_->map(), TAGGED_REPRESENTATION);
|
|
|
|
// Serialize the rest of the object.
|
|
CHECK_EQ(0, bytes_processed_so_far_);
|
|
bytes_processed_so_far_ = kPointerSize;
|
|
object_->IterateBody(object_->map()->instance_type(), size, this);
|
|
OutputRawData(object_->address() + size);
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitPointers(Object** start,
|
|
Object** end) {
|
|
Object** current = start;
|
|
while (current < end) {
|
|
while (current < end && (*current)->IsSmi()) current++;
|
|
if (current < end) OutputRawData(reinterpret_cast<Address>(current));
|
|
|
|
while (current < end && !(*current)->IsSmi()) {
|
|
serializer_->SerializeObject(*current, TAGGED_REPRESENTATION);
|
|
bytes_processed_so_far_ += kPointerSize;
|
|
current++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
|
|
Address* end) {
|
|
Address references_start = reinterpret_cast<Address>(start);
|
|
OutputRawData(references_start);
|
|
|
|
for (Address* current = start; current < end; current++) {
|
|
sink_->Put(EXTERNAL_REFERENCE_SERIALIZATION, "ExternalReference");
|
|
int reference_id = serializer_->EncodeExternalReference(*current);
|
|
sink_->PutInt(reference_id, "reference id");
|
|
}
|
|
bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
|
|
Address target_start = rinfo->target_address_address();
|
|
OutputRawData(target_start);
|
|
Address target = rinfo->target_address();
|
|
uint32_t encoding = serializer_->EncodeExternalReference(target);
|
|
CHECK(target == NULL ? encoding == 0 : encoding != 0);
|
|
sink_->Put(EXTERNAL_BRANCH_TARGET_SERIALIZATION, "ExternalReference");
|
|
sink_->PutInt(encoding, "reference id");
|
|
bytes_processed_so_far_ += Assembler::kExternalTargetSize;
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
|
|
CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
|
|
Address target_start = rinfo->target_address_address();
|
|
OutputRawData(target_start);
|
|
Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
|
|
serializer_->SerializeObject(target, CODE_TARGET_REPRESENTATION);
|
|
bytes_processed_so_far_ += Assembler::kCallTargetSize;
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::VisitExternalAsciiString(
|
|
v8::String::ExternalAsciiStringResource** resource_pointer) {
|
|
Address references_start = reinterpret_cast<Address>(resource_pointer);
|
|
OutputRawData(references_start);
|
|
for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
|
|
Object* source = Heap::natives_source_cache()->get(i);
|
|
if (!source->IsUndefined()) {
|
|
ExternalAsciiString* string = ExternalAsciiString::cast(source);
|
|
typedef v8::String::ExternalAsciiStringResource Resource;
|
|
Resource* resource = string->resource();
|
|
if (resource == *resource_pointer) {
|
|
sink_->Put(NATIVES_STRING_RESOURCE, "NativesStringResource");
|
|
sink_->PutSection(i, "NativesStringResourceEnd");
|
|
bytes_processed_so_far_ += sizeof(resource);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
// One of the strings in the natives cache should match the resource. We
|
|
// can't serialize any other kinds of external strings.
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
|
|
Address object_start = object_->address();
|
|
int up_to_offset = static_cast<int>(up_to - object_start);
|
|
int skipped = up_to_offset - bytes_processed_so_far_;
|
|
// This assert will fail if the reloc info gives us the target_address_address
|
|
// locations in a non-ascending order. Luckily that doesn't happen.
|
|
ASSERT(skipped >= 0);
|
|
if (skipped != 0) {
|
|
Address base = object_start + bytes_processed_so_far_;
|
|
#define RAW_CASE(index, length) \
|
|
if (skipped == length) { \
|
|
sink_->PutSection(RAW_DATA_SERIALIZATION + index, "RawDataFixed"); \
|
|
} else /* NOLINT */
|
|
COMMON_RAW_LENGTHS(RAW_CASE)
|
|
#undef RAW_CASE
|
|
{ /* NOLINT */
|
|
sink_->Put(RAW_DATA_SERIALIZATION, "RawData");
|
|
sink_->PutInt(skipped, "length");
|
|
}
|
|
for (int i = 0; i < skipped; i++) {
|
|
unsigned int data = base[i];
|
|
sink_->PutSection(data, "Byte");
|
|
}
|
|
bytes_processed_so_far_ += skipped;
|
|
}
|
|
}
|
|
|
|
|
|
int Serializer::SpaceOfObject(HeapObject* object) {
|
|
for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
|
|
AllocationSpace s = static_cast<AllocationSpace>(i);
|
|
if (Heap::InSpace(object, s)) {
|
|
if (i == LO_SPACE) {
|
|
if (object->IsCode()) {
|
|
return kLargeCode;
|
|
} else if (object->IsFixedArray()) {
|
|
return kLargeFixedArray;
|
|
} else {
|
|
return kLargeData;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
|
|
for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
|
|
AllocationSpace s = static_cast<AllocationSpace>(i);
|
|
if (Heap::InSpace(object, s)) {
|
|
return i;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
int Serializer::Allocate(int space, int size, bool* new_page) {
|
|
CHECK(space >= 0 && space < kNumberOfSpaces);
|
|
if (SpaceIsLarge(space)) {
|
|
// In large object space we merely number the objects instead of trying to
|
|
// determine some sort of address.
|
|
*new_page = true;
|
|
return fullness_[LO_SPACE]++;
|
|
}
|
|
*new_page = false;
|
|
if (fullness_[space] == 0) {
|
|
*new_page = true;
|
|
}
|
|
if (SpaceIsPaged(space)) {
|
|
// Paged spaces are a little special. We encode their addresses as if the
|
|
// pages were all contiguous and each page were filled up in the range
|
|
// 0 - Page::kObjectAreaSize. In practice the pages may not be contiguous
|
|
// and allocation does not start at offset 0 in the page, but this scheme
|
|
// means the deserializer can get the page number quickly by shifting the
|
|
// serialized address.
|
|
CHECK(IsPowerOf2(Page::kPageSize));
|
|
int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
|
|
CHECK(size <= Page::kObjectAreaSize);
|
|
if (used_in_this_page + size > Page::kObjectAreaSize) {
|
|
*new_page = true;
|
|
fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
|
|
}
|
|
}
|
|
int allocation_address = fullness_[space];
|
|
fullness_[space] = allocation_address + size;
|
|
return allocation_address;
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|