ac2b8c04f3
Also fixes internal exception handling in several places of the runtime. R=yangguo@chromium.org BUG=v8:1543 Review URL: https://codereview.chromium.org/19384004 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15781 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
8179 lines
275 KiB
C++
8179 lines
275 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "accessors.h"
|
|
#include "api.h"
|
|
#include "bootstrapper.h"
|
|
#include "codegen.h"
|
|
#include "compilation-cache.h"
|
|
#include "cpu-profiler.h"
|
|
#include "debug.h"
|
|
#include "deoptimizer.h"
|
|
#include "global-handles.h"
|
|
#include "heap-profiler.h"
|
|
#include "incremental-marking.h"
|
|
#include "mark-compact.h"
|
|
#include "natives.h"
|
|
#include "objects-visiting.h"
|
|
#include "objects-visiting-inl.h"
|
|
#include "once.h"
|
|
#include "runtime-profiler.h"
|
|
#include "scopeinfo.h"
|
|
#include "snapshot.h"
|
|
#include "store-buffer.h"
|
|
#include "v8threads.h"
|
|
#include "v8utils.h"
|
|
#include "vm-state-inl.h"
|
|
#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
|
|
#include "regexp-macro-assembler.h"
|
|
#include "arm/regexp-macro-assembler-arm.h"
|
|
#endif
|
|
#if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
|
|
#include "regexp-macro-assembler.h"
|
|
#include "mips/regexp-macro-assembler-mips.h"
|
|
#endif
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
Heap::Heap()
|
|
: isolate_(NULL),
|
|
// semispace_size_ should be a power of 2 and old_generation_size_ should be
|
|
// a multiple of Page::kPageSize.
|
|
#if V8_TARGET_ARCH_X64
|
|
#define LUMP_OF_MEMORY (2 * MB)
|
|
code_range_size_(512*MB),
|
|
#else
|
|
#define LUMP_OF_MEMORY MB
|
|
code_range_size_(0),
|
|
#endif
|
|
#if defined(ANDROID) || V8_TARGET_ARCH_MIPS
|
|
reserved_semispace_size_(4 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
|
|
max_semispace_size_(4 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
|
|
initial_semispace_size_(Page::kPageSize),
|
|
max_old_generation_size_(192*MB),
|
|
max_executable_size_(max_old_generation_size_),
|
|
#else
|
|
reserved_semispace_size_(8 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
|
|
max_semispace_size_(8 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
|
|
initial_semispace_size_(Page::kPageSize),
|
|
max_old_generation_size_(700ul * LUMP_OF_MEMORY),
|
|
max_executable_size_(256l * LUMP_OF_MEMORY),
|
|
#endif
|
|
|
|
// Variables set based on semispace_size_ and old_generation_size_ in
|
|
// ConfigureHeap (survived_since_last_expansion_, external_allocation_limit_)
|
|
// Will be 4 * reserved_semispace_size_ to ensure that young
|
|
// generation can be aligned to its size.
|
|
survived_since_last_expansion_(0),
|
|
sweep_generation_(0),
|
|
always_allocate_scope_depth_(0),
|
|
linear_allocation_scope_depth_(0),
|
|
contexts_disposed_(0),
|
|
global_ic_age_(0),
|
|
flush_monomorphic_ics_(false),
|
|
scan_on_scavenge_pages_(0),
|
|
new_space_(this),
|
|
old_pointer_space_(NULL),
|
|
old_data_space_(NULL),
|
|
code_space_(NULL),
|
|
map_space_(NULL),
|
|
cell_space_(NULL),
|
|
property_cell_space_(NULL),
|
|
lo_space_(NULL),
|
|
gc_state_(NOT_IN_GC),
|
|
gc_post_processing_depth_(0),
|
|
ms_count_(0),
|
|
gc_count_(0),
|
|
remembered_unmapped_pages_index_(0),
|
|
unflattened_strings_length_(0),
|
|
#ifdef DEBUG
|
|
allocation_timeout_(0),
|
|
disallow_allocation_failure_(false),
|
|
#endif // DEBUG
|
|
new_space_high_promotion_mode_active_(false),
|
|
old_generation_allocation_limit_(kMinimumOldGenerationAllocationLimit),
|
|
size_of_old_gen_at_last_old_space_gc_(0),
|
|
external_allocation_limit_(0),
|
|
amount_of_external_allocated_memory_(0),
|
|
amount_of_external_allocated_memory_at_last_global_gc_(0),
|
|
old_gen_exhausted_(false),
|
|
store_buffer_rebuilder_(store_buffer()),
|
|
hidden_string_(NULL),
|
|
global_gc_prologue_callback_(NULL),
|
|
global_gc_epilogue_callback_(NULL),
|
|
gc_safe_size_of_old_object_(NULL),
|
|
total_regexp_code_generated_(0),
|
|
tracer_(NULL),
|
|
young_survivors_after_last_gc_(0),
|
|
high_survival_rate_period_length_(0),
|
|
low_survival_rate_period_length_(0),
|
|
survival_rate_(0),
|
|
previous_survival_rate_trend_(Heap::STABLE),
|
|
survival_rate_trend_(Heap::STABLE),
|
|
max_gc_pause_(0.0),
|
|
total_gc_time_ms_(0.0),
|
|
max_alive_after_gc_(0),
|
|
min_in_mutator_(kMaxInt),
|
|
alive_after_last_gc_(0),
|
|
last_gc_end_timestamp_(0.0),
|
|
marking_time_(0.0),
|
|
sweeping_time_(0.0),
|
|
store_buffer_(this),
|
|
marking_(this),
|
|
incremental_marking_(this),
|
|
number_idle_notifications_(0),
|
|
last_idle_notification_gc_count_(0),
|
|
last_idle_notification_gc_count_init_(false),
|
|
mark_sweeps_since_idle_round_started_(0),
|
|
gc_count_at_last_idle_gc_(0),
|
|
scavenges_since_last_idle_round_(kIdleScavengeThreshold),
|
|
gcs_since_last_deopt_(0),
|
|
#ifdef VERIFY_HEAP
|
|
no_weak_embedded_maps_verification_scope_depth_(0),
|
|
#endif
|
|
promotion_queue_(this),
|
|
configured_(false),
|
|
chunks_queued_for_free_(NULL),
|
|
relocation_mutex_(NULL) {
|
|
// Allow build-time customization of the max semispace size. Building
|
|
// V8 with snapshots and a non-default max semispace size is much
|
|
// easier if you can define it as part of the build environment.
|
|
#if defined(V8_MAX_SEMISPACE_SIZE)
|
|
max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
|
|
#endif
|
|
|
|
intptr_t max_virtual = OS::MaxVirtualMemory();
|
|
|
|
if (max_virtual > 0) {
|
|
if (code_range_size_ > 0) {
|
|
// Reserve no more than 1/8 of the memory for the code range.
|
|
code_range_size_ = Min(code_range_size_, max_virtual >> 3);
|
|
}
|
|
}
|
|
|
|
memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
|
|
native_contexts_list_ = NULL;
|
|
array_buffers_list_ = Smi::FromInt(0);
|
|
allocation_sites_list_ = Smi::FromInt(0);
|
|
mark_compact_collector_.heap_ = this;
|
|
external_string_table_.heap_ = this;
|
|
// Put a dummy entry in the remembered pages so we can find the list the
|
|
// minidump even if there are no real unmapped pages.
|
|
RememberUnmappedPage(NULL, false);
|
|
|
|
ClearObjectStats(true);
|
|
}
|
|
|
|
|
|
intptr_t Heap::Capacity() {
|
|
if (!HasBeenSetUp()) return 0;
|
|
|
|
return new_space_.Capacity() +
|
|
old_pointer_space_->Capacity() +
|
|
old_data_space_->Capacity() +
|
|
code_space_->Capacity() +
|
|
map_space_->Capacity() +
|
|
cell_space_->Capacity() +
|
|
property_cell_space_->Capacity();
|
|
}
|
|
|
|
|
|
intptr_t Heap::CommittedMemory() {
|
|
if (!HasBeenSetUp()) return 0;
|
|
|
|
return new_space_.CommittedMemory() +
|
|
old_pointer_space_->CommittedMemory() +
|
|
old_data_space_->CommittedMemory() +
|
|
code_space_->CommittedMemory() +
|
|
map_space_->CommittedMemory() +
|
|
cell_space_->CommittedMemory() +
|
|
property_cell_space_->CommittedMemory() +
|
|
lo_space_->Size();
|
|
}
|
|
|
|
|
|
size_t Heap::CommittedPhysicalMemory() {
|
|
if (!HasBeenSetUp()) return 0;
|
|
|
|
return new_space_.CommittedPhysicalMemory() +
|
|
old_pointer_space_->CommittedPhysicalMemory() +
|
|
old_data_space_->CommittedPhysicalMemory() +
|
|
code_space_->CommittedPhysicalMemory() +
|
|
map_space_->CommittedPhysicalMemory() +
|
|
cell_space_->CommittedPhysicalMemory() +
|
|
property_cell_space_->CommittedPhysicalMemory() +
|
|
lo_space_->CommittedPhysicalMemory();
|
|
}
|
|
|
|
|
|
intptr_t Heap::CommittedMemoryExecutable() {
|
|
if (!HasBeenSetUp()) return 0;
|
|
|
|
return isolate()->memory_allocator()->SizeExecutable();
|
|
}
|
|
|
|
|
|
intptr_t Heap::Available() {
|
|
if (!HasBeenSetUp()) return 0;
|
|
|
|
return new_space_.Available() +
|
|
old_pointer_space_->Available() +
|
|
old_data_space_->Available() +
|
|
code_space_->Available() +
|
|
map_space_->Available() +
|
|
cell_space_->Available() +
|
|
property_cell_space_->Available();
|
|
}
|
|
|
|
|
|
bool Heap::HasBeenSetUp() {
|
|
return old_pointer_space_ != NULL &&
|
|
old_data_space_ != NULL &&
|
|
code_space_ != NULL &&
|
|
map_space_ != NULL &&
|
|
cell_space_ != NULL &&
|
|
property_cell_space_ != NULL &&
|
|
lo_space_ != NULL;
|
|
}
|
|
|
|
|
|
int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
|
|
if (IntrusiveMarking::IsMarked(object)) {
|
|
return IntrusiveMarking::SizeOfMarkedObject(object);
|
|
}
|
|
return object->SizeFromMap(object->map());
|
|
}
|
|
|
|
|
|
GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space,
|
|
const char** reason) {
|
|
// Is global GC requested?
|
|
if (space != NEW_SPACE) {
|
|
isolate_->counters()->gc_compactor_caused_by_request()->Increment();
|
|
*reason = "GC in old space requested";
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) {
|
|
*reason = "GC in old space forced by flags";
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
// Is enough data promoted to justify a global GC?
|
|
if (OldGenerationAllocationLimitReached()) {
|
|
isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
|
|
*reason = "promotion limit reached";
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
// Have allocation in OLD and LO failed?
|
|
if (old_gen_exhausted_) {
|
|
isolate_->counters()->
|
|
gc_compactor_caused_by_oldspace_exhaustion()->Increment();
|
|
*reason = "old generations exhausted";
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
// Is there enough space left in OLD to guarantee that a scavenge can
|
|
// succeed?
|
|
//
|
|
// Note that MemoryAllocator->MaxAvailable() undercounts the memory available
|
|
// for object promotion. It counts only the bytes that the memory
|
|
// allocator has not yet allocated from the OS and assigned to any space,
|
|
// and does not count available bytes already in the old space or code
|
|
// space. Undercounting is safe---we may get an unrequested full GC when
|
|
// a scavenge would have succeeded.
|
|
if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
|
|
isolate_->counters()->
|
|
gc_compactor_caused_by_oldspace_exhaustion()->Increment();
|
|
*reason = "scavenge might not succeed";
|
|
return MARK_COMPACTOR;
|
|
}
|
|
|
|
// Default
|
|
*reason = NULL;
|
|
return SCAVENGER;
|
|
}
|
|
|
|
|
|
// TODO(1238405): Combine the infrastructure for --heap-stats and
|
|
// --log-gc to avoid the complicated preprocessor and flag testing.
|
|
void Heap::ReportStatisticsBeforeGC() {
|
|
// Heap::ReportHeapStatistics will also log NewSpace statistics when
|
|
// compiled --log-gc is set. The following logic is used to avoid
|
|
// double logging.
|
|
#ifdef DEBUG
|
|
if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
|
|
if (FLAG_heap_stats) {
|
|
ReportHeapStatistics("Before GC");
|
|
} else if (FLAG_log_gc) {
|
|
new_space_.ReportStatistics();
|
|
}
|
|
if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
|
|
#else
|
|
if (FLAG_log_gc) {
|
|
new_space_.CollectStatistics();
|
|
new_space_.ReportStatistics();
|
|
new_space_.ClearHistograms();
|
|
}
|
|
#endif // DEBUG
|
|
}
|
|
|
|
|
|
void Heap::PrintShortHeapStatistics() {
|
|
if (!FLAG_trace_gc_verbose) return;
|
|
PrintPID("Memory allocator, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB\n",
|
|
isolate_->memory_allocator()->Size() / KB,
|
|
isolate_->memory_allocator()->Available() / KB);
|
|
PrintPID("New space, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
new_space_.Size() / KB,
|
|
new_space_.Available() / KB,
|
|
new_space_.CommittedMemory() / KB);
|
|
PrintPID("Old pointers, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
old_pointer_space_->SizeOfObjects() / KB,
|
|
old_pointer_space_->Available() / KB,
|
|
old_pointer_space_->CommittedMemory() / KB);
|
|
PrintPID("Old data space, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
old_data_space_->SizeOfObjects() / KB,
|
|
old_data_space_->Available() / KB,
|
|
old_data_space_->CommittedMemory() / KB);
|
|
PrintPID("Code space, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
code_space_->SizeOfObjects() / KB,
|
|
code_space_->Available() / KB,
|
|
code_space_->CommittedMemory() / KB);
|
|
PrintPID("Map space, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
map_space_->SizeOfObjects() / KB,
|
|
map_space_->Available() / KB,
|
|
map_space_->CommittedMemory() / KB);
|
|
PrintPID("Cell space, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
cell_space_->SizeOfObjects() / KB,
|
|
cell_space_->Available() / KB,
|
|
cell_space_->CommittedMemory() / KB);
|
|
PrintPID("PropertyCell space, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
property_cell_space_->SizeOfObjects() / KB,
|
|
property_cell_space_->Available() / KB,
|
|
property_cell_space_->CommittedMemory() / KB);
|
|
PrintPID("Large object space, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
lo_space_->SizeOfObjects() / KB,
|
|
lo_space_->Available() / KB,
|
|
lo_space_->CommittedMemory() / KB);
|
|
PrintPID("All spaces, used: %6" V8_PTR_PREFIX "d KB"
|
|
", available: %6" V8_PTR_PREFIX "d KB"
|
|
", committed: %6" V8_PTR_PREFIX "d KB\n",
|
|
this->SizeOfObjects() / KB,
|
|
this->Available() / KB,
|
|
this->CommittedMemory() / KB);
|
|
PrintPID("External memory reported: %6" V8_PTR_PREFIX "d KB\n",
|
|
amount_of_external_allocated_memory_ / KB);
|
|
PrintPID("Total time spent in GC : %.1f ms\n", total_gc_time_ms_);
|
|
}
|
|
|
|
|
|
// TODO(1238405): Combine the infrastructure for --heap-stats and
|
|
// --log-gc to avoid the complicated preprocessor and flag testing.
|
|
void Heap::ReportStatisticsAfterGC() {
|
|
// Similar to the before GC, we use some complicated logic to ensure that
|
|
// NewSpace statistics are logged exactly once when --log-gc is turned on.
|
|
#if defined(DEBUG)
|
|
if (FLAG_heap_stats) {
|
|
new_space_.CollectStatistics();
|
|
ReportHeapStatistics("After GC");
|
|
} else if (FLAG_log_gc) {
|
|
new_space_.ReportStatistics();
|
|
}
|
|
#else
|
|
if (FLAG_log_gc) new_space_.ReportStatistics();
|
|
#endif // DEBUG
|
|
}
|
|
|
|
|
|
void Heap::GarbageCollectionPrologue() {
|
|
{ AllowHeapAllocation for_the_first_part_of_prologue;
|
|
isolate_->transcendental_cache()->Clear();
|
|
ClearJSFunctionResultCaches();
|
|
gc_count_++;
|
|
unflattened_strings_length_ = 0;
|
|
|
|
if (FLAG_flush_code && FLAG_flush_code_incrementally) {
|
|
mark_compact_collector()->EnableCodeFlushing(true);
|
|
}
|
|
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
Verify();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
ASSERT(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC);
|
|
|
|
if (FLAG_gc_verbose) Print();
|
|
|
|
ReportStatisticsBeforeGC();
|
|
#endif // DEBUG
|
|
|
|
store_buffer()->GCPrologue();
|
|
}
|
|
|
|
|
|
intptr_t Heap::SizeOfObjects() {
|
|
intptr_t total = 0;
|
|
AllSpaces spaces(this);
|
|
for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
|
|
total += space->SizeOfObjects();
|
|
}
|
|
return total;
|
|
}
|
|
|
|
|
|
void Heap::RepairFreeListsAfterBoot() {
|
|
PagedSpaces spaces(this);
|
|
for (PagedSpace* space = spaces.next();
|
|
space != NULL;
|
|
space = spaces.next()) {
|
|
space->RepairFreeListsAfterBoot();
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::GarbageCollectionEpilogue() {
|
|
store_buffer()->GCEpilogue();
|
|
|
|
// In release mode, we only zap the from space under heap verification.
|
|
if (Heap::ShouldZapGarbage()) {
|
|
ZapFromSpace();
|
|
}
|
|
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
Verify();
|
|
}
|
|
#endif
|
|
|
|
AllowHeapAllocation for_the_rest_of_the_epilogue;
|
|
|
|
#ifdef DEBUG
|
|
if (FLAG_print_global_handles) isolate_->global_handles()->Print();
|
|
if (FLAG_print_handles) PrintHandles();
|
|
if (FLAG_gc_verbose) Print();
|
|
if (FLAG_code_stats) ReportCodeStatistics("After GC");
|
|
#endif
|
|
if (FLAG_deopt_every_n_garbage_collections > 0) {
|
|
if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) {
|
|
Deoptimizer::DeoptimizeAll(isolate());
|
|
gcs_since_last_deopt_ = 0;
|
|
}
|
|
}
|
|
|
|
isolate_->counters()->alive_after_last_gc()->Set(
|
|
static_cast<int>(SizeOfObjects()));
|
|
|
|
isolate_->counters()->string_table_capacity()->Set(
|
|
string_table()->Capacity());
|
|
isolate_->counters()->number_of_symbols()->Set(
|
|
string_table()->NumberOfElements());
|
|
|
|
if (CommittedMemory() > 0) {
|
|
isolate_->counters()->external_fragmentation_total()->AddSample(
|
|
static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory()));
|
|
|
|
isolate_->counters()->heap_fraction_map_space()->AddSample(
|
|
static_cast<int>(
|
|
(map_space()->CommittedMemory() * 100.0) / CommittedMemory()));
|
|
isolate_->counters()->heap_fraction_cell_space()->AddSample(
|
|
static_cast<int>(
|
|
(cell_space()->CommittedMemory() * 100.0) / CommittedMemory()));
|
|
isolate_->counters()->heap_fraction_property_cell_space()->
|
|
AddSample(static_cast<int>(
|
|
(property_cell_space()->CommittedMemory() * 100.0) /
|
|
CommittedMemory()));
|
|
|
|
isolate_->counters()->heap_sample_total_committed()->AddSample(
|
|
static_cast<int>(CommittedMemory() / KB));
|
|
isolate_->counters()->heap_sample_total_used()->AddSample(
|
|
static_cast<int>(SizeOfObjects() / KB));
|
|
isolate_->counters()->heap_sample_map_space_committed()->AddSample(
|
|
static_cast<int>(map_space()->CommittedMemory() / KB));
|
|
isolate_->counters()->heap_sample_cell_space_committed()->AddSample(
|
|
static_cast<int>(cell_space()->CommittedMemory() / KB));
|
|
isolate_->counters()->
|
|
heap_sample_property_cell_space_committed()->
|
|
AddSample(static_cast<int>(
|
|
property_cell_space()->CommittedMemory() / KB));
|
|
}
|
|
|
|
#define UPDATE_COUNTERS_FOR_SPACE(space) \
|
|
isolate_->counters()->space##_bytes_available()->Set( \
|
|
static_cast<int>(space()->Available())); \
|
|
isolate_->counters()->space##_bytes_committed()->Set( \
|
|
static_cast<int>(space()->CommittedMemory())); \
|
|
isolate_->counters()->space##_bytes_used()->Set( \
|
|
static_cast<int>(space()->SizeOfObjects()));
|
|
#define UPDATE_FRAGMENTATION_FOR_SPACE(space) \
|
|
if (space()->CommittedMemory() > 0) { \
|
|
isolate_->counters()->external_fragmentation_##space()->AddSample( \
|
|
static_cast<int>(100 - \
|
|
(space()->SizeOfObjects() * 100.0) / space()->CommittedMemory())); \
|
|
}
|
|
#define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \
|
|
UPDATE_COUNTERS_FOR_SPACE(space) \
|
|
UPDATE_FRAGMENTATION_FOR_SPACE(space)
|
|
|
|
UPDATE_COUNTERS_FOR_SPACE(new_space)
|
|
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_pointer_space)
|
|
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_data_space)
|
|
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space)
|
|
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space)
|
|
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(cell_space)
|
|
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(property_cell_space)
|
|
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space)
|
|
#undef UPDATE_COUNTERS_FOR_SPACE
|
|
#undef UPDATE_FRAGMENTATION_FOR_SPACE
|
|
#undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE
|
|
|
|
#if defined(DEBUG)
|
|
ReportStatisticsAfterGC();
|
|
#endif // DEBUG
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
isolate_->debug()->AfterGarbageCollection();
|
|
#endif // ENABLE_DEBUGGER_SUPPORT
|
|
|
|
error_object_list_.DeferredFormatStackTrace(isolate());
|
|
}
|
|
|
|
|
|
void Heap::CollectAllGarbage(int flags, const char* gc_reason) {
|
|
// Since we are ignoring the return value, the exact choice of space does
|
|
// not matter, so long as we do not specify NEW_SPACE, which would not
|
|
// cause a full GC.
|
|
mark_compact_collector_.SetFlags(flags);
|
|
CollectGarbage(OLD_POINTER_SPACE, gc_reason);
|
|
mark_compact_collector_.SetFlags(kNoGCFlags);
|
|
}
|
|
|
|
|
|
void Heap::CollectAllAvailableGarbage(const char* gc_reason) {
|
|
// Since we are ignoring the return value, the exact choice of space does
|
|
// not matter, so long as we do not specify NEW_SPACE, which would not
|
|
// cause a full GC.
|
|
// Major GC would invoke weak handle callbacks on weakly reachable
|
|
// handles, but won't collect weakly reachable objects until next
|
|
// major GC. Therefore if we collect aggressively and weak handle callback
|
|
// has been invoked, we rerun major GC to release objects which become
|
|
// garbage.
|
|
// Note: as weak callbacks can execute arbitrary code, we cannot
|
|
// hope that eventually there will be no weak callbacks invocations.
|
|
// Therefore stop recollecting after several attempts.
|
|
mark_compact_collector()->SetFlags(kMakeHeapIterableMask |
|
|
kReduceMemoryFootprintMask);
|
|
isolate_->compilation_cache()->Clear();
|
|
const int kMaxNumberOfAttempts = 7;
|
|
const int kMinNumberOfAttempts = 2;
|
|
for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
|
|
if (!CollectGarbage(OLD_POINTER_SPACE, MARK_COMPACTOR, gc_reason, NULL) &&
|
|
attempt + 1 >= kMinNumberOfAttempts) {
|
|
break;
|
|
}
|
|
}
|
|
mark_compact_collector()->SetFlags(kNoGCFlags);
|
|
new_space_.Shrink();
|
|
UncommitFromSpace();
|
|
incremental_marking()->UncommitMarkingDeque();
|
|
}
|
|
|
|
|
|
bool Heap::CollectGarbage(AllocationSpace space,
|
|
GarbageCollector collector,
|
|
const char* gc_reason,
|
|
const char* collector_reason) {
|
|
// The VM is in the GC state until exiting this function.
|
|
VMState<GC> state(isolate_);
|
|
|
|
#ifdef DEBUG
|
|
// Reset the allocation timeout to the GC interval, but make sure to
|
|
// allow at least a few allocations after a collection. The reason
|
|
// for this is that we have a lot of allocation sequences and we
|
|
// assume that a garbage collection will allow the subsequent
|
|
// allocation attempts to go through.
|
|
allocation_timeout_ = Max(6, FLAG_gc_interval);
|
|
#endif
|
|
|
|
if (collector == SCAVENGER && !incremental_marking()->IsStopped()) {
|
|
if (FLAG_trace_incremental_marking) {
|
|
PrintF("[IncrementalMarking] Scavenge during marking.\n");
|
|
}
|
|
}
|
|
|
|
if (collector == MARK_COMPACTOR &&
|
|
!mark_compact_collector()->abort_incremental_marking() &&
|
|
!incremental_marking()->IsStopped() &&
|
|
!incremental_marking()->should_hurry() &&
|
|
FLAG_incremental_marking_steps) {
|
|
// Make progress in incremental marking.
|
|
const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB;
|
|
incremental_marking()->Step(kStepSizeWhenDelayedByScavenge,
|
|
IncrementalMarking::NO_GC_VIA_STACK_GUARD);
|
|
if (!incremental_marking()->IsComplete()) {
|
|
if (FLAG_trace_incremental_marking) {
|
|
PrintF("[IncrementalMarking] Delaying MarkSweep.\n");
|
|
}
|
|
collector = SCAVENGER;
|
|
collector_reason = "incremental marking delaying mark-sweep";
|
|
}
|
|
}
|
|
|
|
bool next_gc_likely_to_collect_more = false;
|
|
|
|
{ GCTracer tracer(this, gc_reason, collector_reason);
|
|
ASSERT(AllowHeapAllocation::IsAllowed());
|
|
DisallowHeapAllocation no_allocation_during_gc;
|
|
GarbageCollectionPrologue();
|
|
// The GC count was incremented in the prologue. Tell the tracer about
|
|
// it.
|
|
tracer.set_gc_count(gc_count_);
|
|
|
|
// Tell the tracer which collector we've selected.
|
|
tracer.set_collector(collector);
|
|
|
|
{
|
|
HistogramTimerScope histogram_timer_scope(
|
|
(collector == SCAVENGER) ? isolate_->counters()->gc_scavenger()
|
|
: isolate_->counters()->gc_compactor());
|
|
next_gc_likely_to_collect_more =
|
|
PerformGarbageCollection(collector, &tracer);
|
|
}
|
|
|
|
GarbageCollectionEpilogue();
|
|
}
|
|
|
|
// Start incremental marking for the next cycle. The heap snapshot
|
|
// generator needs incremental marking to stay off after it aborted.
|
|
if (!mark_compact_collector()->abort_incremental_marking() &&
|
|
incremental_marking()->IsStopped() &&
|
|
incremental_marking()->WorthActivating() &&
|
|
NextGCIsLikelyToBeFull()) {
|
|
incremental_marking()->Start();
|
|
}
|
|
|
|
return next_gc_likely_to_collect_more;
|
|
}
|
|
|
|
|
|
void Heap::PerformScavenge() {
|
|
GCTracer tracer(this, NULL, NULL);
|
|
if (incremental_marking()->IsStopped()) {
|
|
PerformGarbageCollection(SCAVENGER, &tracer);
|
|
} else {
|
|
PerformGarbageCollection(MARK_COMPACTOR, &tracer);
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::MoveElements(FixedArray* array,
|
|
int dst_index,
|
|
int src_index,
|
|
int len) {
|
|
if (len == 0) return;
|
|
|
|
ASSERT(array->map() != HEAP->fixed_cow_array_map());
|
|
Object** dst_objects = array->data_start() + dst_index;
|
|
OS::MemMove(dst_objects,
|
|
array->data_start() + src_index,
|
|
len * kPointerSize);
|
|
if (!InNewSpace(array)) {
|
|
for (int i = 0; i < len; i++) {
|
|
// TODO(hpayer): check store buffer for entries
|
|
if (InNewSpace(dst_objects[i])) {
|
|
RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i));
|
|
}
|
|
}
|
|
}
|
|
incremental_marking()->RecordWrites(array);
|
|
}
|
|
|
|
|
|
#ifdef VERIFY_HEAP
|
|
// Helper class for verifying the string table.
|
|
class StringTableVerifier : public ObjectVisitor {
|
|
public:
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Visit all HeapObject pointers in [start, end).
|
|
for (Object** p = start; p < end; p++) {
|
|
if ((*p)->IsHeapObject()) {
|
|
// Check that the string is actually internalized.
|
|
CHECK((*p)->IsTheHole() || (*p)->IsUndefined() ||
|
|
(*p)->IsInternalizedString());
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
static void VerifyStringTable() {
|
|
StringTableVerifier verifier;
|
|
HEAP->string_table()->IterateElements(&verifier);
|
|
}
|
|
#endif // VERIFY_HEAP
|
|
|
|
|
|
static bool AbortIncrementalMarkingAndCollectGarbage(
|
|
Heap* heap,
|
|
AllocationSpace space,
|
|
const char* gc_reason = NULL) {
|
|
heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask);
|
|
bool result = heap->CollectGarbage(space, gc_reason);
|
|
heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags);
|
|
return result;
|
|
}
|
|
|
|
|
|
void Heap::ReserveSpace(
|
|
int *sizes,
|
|
Address *locations_out) {
|
|
bool gc_performed = true;
|
|
int counter = 0;
|
|
static const int kThreshold = 20;
|
|
while (gc_performed && counter++ < kThreshold) {
|
|
gc_performed = false;
|
|
ASSERT(NEW_SPACE == FIRST_PAGED_SPACE - 1);
|
|
for (int space = NEW_SPACE; space <= LAST_PAGED_SPACE; space++) {
|
|
if (sizes[space] != 0) {
|
|
MaybeObject* allocation;
|
|
if (space == NEW_SPACE) {
|
|
allocation = new_space()->AllocateRaw(sizes[space]);
|
|
} else {
|
|
allocation = paged_space(space)->AllocateRaw(sizes[space]);
|
|
}
|
|
FreeListNode* node;
|
|
if (!allocation->To<FreeListNode>(&node)) {
|
|
if (space == NEW_SPACE) {
|
|
Heap::CollectGarbage(NEW_SPACE,
|
|
"failed to reserve space in the new space");
|
|
} else {
|
|
AbortIncrementalMarkingAndCollectGarbage(
|
|
this,
|
|
static_cast<AllocationSpace>(space),
|
|
"failed to reserve space in paged space");
|
|
}
|
|
gc_performed = true;
|
|
break;
|
|
} else {
|
|
// Mark with a free list node, in case we have a GC before
|
|
// deserializing.
|
|
node->set_size(this, sizes[space]);
|
|
locations_out[space] = node->address();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (gc_performed) {
|
|
// Failed to reserve the space after several attempts.
|
|
V8::FatalProcessOutOfMemory("Heap::ReserveSpace");
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::EnsureFromSpaceIsCommitted() {
|
|
if (new_space_.CommitFromSpaceIfNeeded()) return;
|
|
|
|
// Committing memory to from space failed.
|
|
// Memory is exhausted and we will die.
|
|
V8::FatalProcessOutOfMemory("Committing semi space failed.");
|
|
}
|
|
|
|
|
|
void Heap::ClearJSFunctionResultCaches() {
|
|
if (isolate_->bootstrapper()->IsActive()) return;
|
|
|
|
Object* context = native_contexts_list_;
|
|
while (!context->IsUndefined()) {
|
|
// Get the caches for this context. GC can happen when the context
|
|
// is not fully initialized, so the caches can be undefined.
|
|
Object* caches_or_undefined =
|
|
Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX);
|
|
if (!caches_or_undefined->IsUndefined()) {
|
|
FixedArray* caches = FixedArray::cast(caches_or_undefined);
|
|
// Clear the caches:
|
|
int length = caches->length();
|
|
for (int i = 0; i < length; i++) {
|
|
JSFunctionResultCache::cast(caches->get(i))->Clear();
|
|
}
|
|
}
|
|
// Get the next context:
|
|
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::ClearNormalizedMapCaches() {
|
|
if (isolate_->bootstrapper()->IsActive() &&
|
|
!incremental_marking()->IsMarking()) {
|
|
return;
|
|
}
|
|
|
|
Object* context = native_contexts_list_;
|
|
while (!context->IsUndefined()) {
|
|
// GC can happen when the context is not fully initialized,
|
|
// so the cache can be undefined.
|
|
Object* cache =
|
|
Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX);
|
|
if (!cache->IsUndefined()) {
|
|
NormalizedMapCache::cast(cache)->Clear();
|
|
}
|
|
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::UpdateSurvivalRateTrend(int start_new_space_size) {
|
|
double survival_rate =
|
|
(static_cast<double>(young_survivors_after_last_gc_) * 100) /
|
|
start_new_space_size;
|
|
|
|
if (survival_rate > kYoungSurvivalRateHighThreshold) {
|
|
high_survival_rate_period_length_++;
|
|
} else {
|
|
high_survival_rate_period_length_ = 0;
|
|
}
|
|
|
|
if (survival_rate < kYoungSurvivalRateLowThreshold) {
|
|
low_survival_rate_period_length_++;
|
|
} else {
|
|
low_survival_rate_period_length_ = 0;
|
|
}
|
|
|
|
double survival_rate_diff = survival_rate_ - survival_rate;
|
|
|
|
if (survival_rate_diff > kYoungSurvivalRateAllowedDeviation) {
|
|
set_survival_rate_trend(DECREASING);
|
|
} else if (survival_rate_diff < -kYoungSurvivalRateAllowedDeviation) {
|
|
set_survival_rate_trend(INCREASING);
|
|
} else {
|
|
set_survival_rate_trend(STABLE);
|
|
}
|
|
|
|
survival_rate_ = survival_rate;
|
|
}
|
|
|
|
bool Heap::PerformGarbageCollection(GarbageCollector collector,
|
|
GCTracer* tracer) {
|
|
bool next_gc_likely_to_collect_more = false;
|
|
|
|
if (collector != SCAVENGER) {
|
|
PROFILE(isolate_, CodeMovingGCEvent());
|
|
}
|
|
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
VerifyStringTable();
|
|
}
|
|
#endif
|
|
|
|
GCType gc_type =
|
|
collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
|
|
|
|
{
|
|
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
|
|
VMState<EXTERNAL> state(isolate_);
|
|
CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags);
|
|
}
|
|
|
|
EnsureFromSpaceIsCommitted();
|
|
|
|
int start_new_space_size = Heap::new_space()->SizeAsInt();
|
|
|
|
if (IsHighSurvivalRate()) {
|
|
// We speed up the incremental marker if it is running so that it
|
|
// does not fall behind the rate of promotion, which would cause a
|
|
// constantly growing old space.
|
|
incremental_marking()->NotifyOfHighPromotionRate();
|
|
}
|
|
|
|
if (collector == MARK_COMPACTOR) {
|
|
// Perform mark-sweep with optional compaction.
|
|
MarkCompact(tracer);
|
|
sweep_generation_++;
|
|
|
|
UpdateSurvivalRateTrend(start_new_space_size);
|
|
|
|
size_of_old_gen_at_last_old_space_gc_ = PromotedSpaceSizeOfObjects();
|
|
|
|
old_generation_allocation_limit_ =
|
|
OldGenerationAllocationLimit(size_of_old_gen_at_last_old_space_gc_);
|
|
|
|
old_gen_exhausted_ = false;
|
|
} else {
|
|
tracer_ = tracer;
|
|
Scavenge();
|
|
tracer_ = NULL;
|
|
|
|
UpdateSurvivalRateTrend(start_new_space_size);
|
|
}
|
|
|
|
if (!new_space_high_promotion_mode_active_ &&
|
|
new_space_.Capacity() == new_space_.MaximumCapacity() &&
|
|
IsStableOrIncreasingSurvivalTrend() &&
|
|
IsHighSurvivalRate()) {
|
|
// Stable high survival rates even though young generation is at
|
|
// maximum capacity indicates that most objects will be promoted.
|
|
// To decrease scavenger pauses and final mark-sweep pauses, we
|
|
// have to limit maximal capacity of the young generation.
|
|
SetNewSpaceHighPromotionModeActive(true);
|
|
if (FLAG_trace_gc) {
|
|
PrintPID("Limited new space size due to high promotion rate: %d MB\n",
|
|
new_space_.InitialCapacity() / MB);
|
|
}
|
|
// Support for global pre-tenuring uses the high promotion mode as a
|
|
// heuristic indicator of whether to pretenure or not, we trigger
|
|
// deoptimization here to take advantage of pre-tenuring as soon as
|
|
// possible.
|
|
if (FLAG_pretenuring) {
|
|
isolate_->stack_guard()->FullDeopt();
|
|
}
|
|
} else if (new_space_high_promotion_mode_active_ &&
|
|
IsStableOrDecreasingSurvivalTrend() &&
|
|
IsLowSurvivalRate()) {
|
|
// Decreasing low survival rates might indicate that the above high
|
|
// promotion mode is over and we should allow the young generation
|
|
// to grow again.
|
|
SetNewSpaceHighPromotionModeActive(false);
|
|
if (FLAG_trace_gc) {
|
|
PrintPID("Unlimited new space size due to low promotion rate: %d MB\n",
|
|
new_space_.MaximumCapacity() / MB);
|
|
}
|
|
// Trigger deoptimization here to turn off pre-tenuring as soon as
|
|
// possible.
|
|
if (FLAG_pretenuring) {
|
|
isolate_->stack_guard()->FullDeopt();
|
|
}
|
|
}
|
|
|
|
if (new_space_high_promotion_mode_active_ &&
|
|
new_space_.Capacity() > new_space_.InitialCapacity()) {
|
|
new_space_.Shrink();
|
|
}
|
|
|
|
isolate_->counters()->objs_since_last_young()->Set(0);
|
|
|
|
// Callbacks that fire after this point might trigger nested GCs and
|
|
// restart incremental marking, the assertion can't be moved down.
|
|
ASSERT(collector == SCAVENGER || incremental_marking()->IsStopped());
|
|
|
|
gc_post_processing_depth_++;
|
|
{ AllowHeapAllocation allow_allocation;
|
|
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
|
|
next_gc_likely_to_collect_more =
|
|
isolate_->global_handles()->PostGarbageCollectionProcessing(
|
|
collector, tracer);
|
|
}
|
|
gc_post_processing_depth_--;
|
|
|
|
// Update relocatables.
|
|
Relocatable::PostGarbageCollectionProcessing();
|
|
|
|
if (collector == MARK_COMPACTOR) {
|
|
// Register the amount of external allocated memory.
|
|
amount_of_external_allocated_memory_at_last_global_gc_ =
|
|
amount_of_external_allocated_memory_;
|
|
}
|
|
|
|
{
|
|
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
|
|
VMState<EXTERNAL> state(isolate_);
|
|
CallGCEpilogueCallbacks(gc_type);
|
|
}
|
|
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
VerifyStringTable();
|
|
}
|
|
#endif
|
|
|
|
return next_gc_likely_to_collect_more;
|
|
}
|
|
|
|
|
|
void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) {
|
|
if (gc_type == kGCTypeMarkSweepCompact && global_gc_prologue_callback_) {
|
|
global_gc_prologue_callback_();
|
|
}
|
|
for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
|
|
if (gc_type & gc_prologue_callbacks_[i].gc_type) {
|
|
gc_prologue_callbacks_[i].callback(gc_type, flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::CallGCEpilogueCallbacks(GCType gc_type) {
|
|
for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
|
|
if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
|
|
gc_epilogue_callbacks_[i].callback(gc_type, kNoGCCallbackFlags);
|
|
}
|
|
}
|
|
if (gc_type == kGCTypeMarkSweepCompact && global_gc_epilogue_callback_) {
|
|
global_gc_epilogue_callback_();
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::MarkCompact(GCTracer* tracer) {
|
|
gc_state_ = MARK_COMPACT;
|
|
LOG(isolate_, ResourceEvent("markcompact", "begin"));
|
|
|
|
mark_compact_collector_.Prepare(tracer);
|
|
|
|
ms_count_++;
|
|
tracer->set_full_gc_count(ms_count_);
|
|
|
|
MarkCompactPrologue();
|
|
|
|
mark_compact_collector_.CollectGarbage();
|
|
|
|
LOG(isolate_, ResourceEvent("markcompact", "end"));
|
|
|
|
gc_state_ = NOT_IN_GC;
|
|
|
|
isolate_->counters()->objs_since_last_full()->Set(0);
|
|
|
|
contexts_disposed_ = 0;
|
|
|
|
flush_monomorphic_ics_ = false;
|
|
}
|
|
|
|
|
|
void Heap::MarkCompactPrologue() {
|
|
// At any old GC clear the keyed lookup cache to enable collection of unused
|
|
// maps.
|
|
isolate_->keyed_lookup_cache()->Clear();
|
|
isolate_->context_slot_cache()->Clear();
|
|
isolate_->descriptor_lookup_cache()->Clear();
|
|
RegExpResultsCache::Clear(string_split_cache());
|
|
RegExpResultsCache::Clear(regexp_multiple_cache());
|
|
|
|
isolate_->compilation_cache()->MarkCompactPrologue();
|
|
|
|
CompletelyClearInstanceofCache();
|
|
|
|
FlushNumberStringCache();
|
|
if (FLAG_cleanup_code_caches_at_gc) {
|
|
polymorphic_code_cache()->set_cache(undefined_value());
|
|
}
|
|
|
|
ClearNormalizedMapCaches();
|
|
}
|
|
|
|
|
|
// Helper class for copying HeapObjects
|
|
class ScavengeVisitor: public ObjectVisitor {
|
|
public:
|
|
explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
|
|
|
|
void VisitPointer(Object** p) { ScavengePointer(p); }
|
|
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Copy all HeapObject pointers in [start, end)
|
|
for (Object** p = start; p < end; p++) ScavengePointer(p);
|
|
}
|
|
|
|
private:
|
|
void ScavengePointer(Object** p) {
|
|
Object* object = *p;
|
|
if (!heap_->InNewSpace(object)) return;
|
|
Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
|
|
reinterpret_cast<HeapObject*>(object));
|
|
}
|
|
|
|
Heap* heap_;
|
|
};
|
|
|
|
|
|
#ifdef VERIFY_HEAP
|
|
// Visitor class to verify pointers in code or data space do not point into
|
|
// new space.
|
|
class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
|
|
public:
|
|
void VisitPointers(Object** start, Object**end) {
|
|
for (Object** current = start; current < end; current++) {
|
|
if ((*current)->IsHeapObject()) {
|
|
CHECK(!HEAP->InNewSpace(HeapObject::cast(*current)));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
static void VerifyNonPointerSpacePointers() {
|
|
// Verify that there are no pointers to new space in spaces where we
|
|
// do not expect them.
|
|
VerifyNonPointerSpacePointersVisitor v;
|
|
HeapObjectIterator code_it(HEAP->code_space());
|
|
for (HeapObject* object = code_it.Next();
|
|
object != NULL; object = code_it.Next())
|
|
object->Iterate(&v);
|
|
|
|
// The old data space was normally swept conservatively so that the iterator
|
|
// doesn't work, so we normally skip the next bit.
|
|
if (!HEAP->old_data_space()->was_swept_conservatively()) {
|
|
HeapObjectIterator data_it(HEAP->old_data_space());
|
|
for (HeapObject* object = data_it.Next();
|
|
object != NULL; object = data_it.Next())
|
|
object->Iterate(&v);
|
|
}
|
|
}
|
|
#endif // VERIFY_HEAP
|
|
|
|
|
|
void Heap::CheckNewSpaceExpansionCriteria() {
|
|
if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
|
|
survived_since_last_expansion_ > new_space_.Capacity() &&
|
|
!new_space_high_promotion_mode_active_) {
|
|
// Grow the size of new space if there is room to grow, enough data
|
|
// has survived scavenge since the last expansion and we are not in
|
|
// high promotion mode.
|
|
new_space_.Grow();
|
|
survived_since_last_expansion_ = 0;
|
|
}
|
|
}
|
|
|
|
|
|
static bool IsUnscavengedHeapObject(Heap* heap, Object** p) {
|
|
return heap->InNewSpace(*p) &&
|
|
!HeapObject::cast(*p)->map_word().IsForwardingAddress();
|
|
}
|
|
|
|
|
|
void Heap::ScavengeStoreBufferCallback(
|
|
Heap* heap,
|
|
MemoryChunk* page,
|
|
StoreBufferEvent event) {
|
|
heap->store_buffer_rebuilder_.Callback(page, event);
|
|
}
|
|
|
|
|
|
void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) {
|
|
if (event == kStoreBufferStartScanningPagesEvent) {
|
|
start_of_current_page_ = NULL;
|
|
current_page_ = NULL;
|
|
} else if (event == kStoreBufferScanningPageEvent) {
|
|
if (current_page_ != NULL) {
|
|
// If this page already overflowed the store buffer during this iteration.
|
|
if (current_page_->scan_on_scavenge()) {
|
|
// Then we should wipe out the entries that have been added for it.
|
|
store_buffer_->SetTop(start_of_current_page_);
|
|
} else if (store_buffer_->Top() - start_of_current_page_ >=
|
|
(store_buffer_->Limit() - store_buffer_->Top()) >> 2) {
|
|
// Did we find too many pointers in the previous page? The heuristic is
|
|
// that no page can take more then 1/5 the remaining slots in the store
|
|
// buffer.
|
|
current_page_->set_scan_on_scavenge(true);
|
|
store_buffer_->SetTop(start_of_current_page_);
|
|
} else {
|
|
// In this case the page we scanned took a reasonable number of slots in
|
|
// the store buffer. It has now been rehabilitated and is no longer
|
|
// marked scan_on_scavenge.
|
|
ASSERT(!current_page_->scan_on_scavenge());
|
|
}
|
|
}
|
|
start_of_current_page_ = store_buffer_->Top();
|
|
current_page_ = page;
|
|
} else if (event == kStoreBufferFullEvent) {
|
|
// The current page overflowed the store buffer again. Wipe out its entries
|
|
// in the store buffer and mark it scan-on-scavenge again. This may happen
|
|
// several times while scanning.
|
|
if (current_page_ == NULL) {
|
|
// Store Buffer overflowed while scanning promoted objects. These are not
|
|
// in any particular page, though they are likely to be clustered by the
|
|
// allocation routines.
|
|
store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2);
|
|
} else {
|
|
// Store Buffer overflowed while scanning a particular old space page for
|
|
// pointers to new space.
|
|
ASSERT(current_page_ == page);
|
|
ASSERT(page != NULL);
|
|
current_page_->set_scan_on_scavenge(true);
|
|
ASSERT(start_of_current_page_ != store_buffer_->Top());
|
|
store_buffer_->SetTop(start_of_current_page_);
|
|
}
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void PromotionQueue::Initialize() {
|
|
// Assumes that a NewSpacePage exactly fits a number of promotion queue
|
|
// entries (where each is a pair of intptr_t). This allows us to simplify
|
|
// the test fpr when to switch pages.
|
|
ASSERT((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize)
|
|
== 0);
|
|
limit_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceStart());
|
|
front_ = rear_ =
|
|
reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd());
|
|
emergency_stack_ = NULL;
|
|
guard_ = false;
|
|
}
|
|
|
|
|
|
void PromotionQueue::RelocateQueueHead() {
|
|
ASSERT(emergency_stack_ == NULL);
|
|
|
|
Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
|
|
intptr_t* head_start = rear_;
|
|
intptr_t* head_end =
|
|
Min(front_, reinterpret_cast<intptr_t*>(p->area_end()));
|
|
|
|
int entries_count =
|
|
static_cast<int>(head_end - head_start) / kEntrySizeInWords;
|
|
|
|
emergency_stack_ = new List<Entry>(2 * entries_count);
|
|
|
|
while (head_start != head_end) {
|
|
int size = static_cast<int>(*(head_start++));
|
|
HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++));
|
|
emergency_stack_->Add(Entry(obj, size));
|
|
}
|
|
rear_ = head_end;
|
|
}
|
|
|
|
|
|
class ScavengeWeakObjectRetainer : public WeakObjectRetainer {
|
|
public:
|
|
explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) { }
|
|
|
|
virtual Object* RetainAs(Object* object) {
|
|
if (!heap_->InFromSpace(object)) {
|
|
return object;
|
|
}
|
|
|
|
MapWord map_word = HeapObject::cast(object)->map_word();
|
|
if (map_word.IsForwardingAddress()) {
|
|
return map_word.ToForwardingAddress();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
private:
|
|
Heap* heap_;
|
|
};
|
|
|
|
|
|
void Heap::Scavenge() {
|
|
RelocationLock relocation_lock(this);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) VerifyNonPointerSpacePointers();
|
|
#endif
|
|
|
|
gc_state_ = SCAVENGE;
|
|
|
|
// Implements Cheney's copying algorithm
|
|
LOG(isolate_, ResourceEvent("scavenge", "begin"));
|
|
|
|
// Clear descriptor cache.
|
|
isolate_->descriptor_lookup_cache()->Clear();
|
|
|
|
// Used for updating survived_since_last_expansion_ at function end.
|
|
intptr_t survived_watermark = PromotedSpaceSizeOfObjects();
|
|
|
|
CheckNewSpaceExpansionCriteria();
|
|
|
|
SelectScavengingVisitorsTable();
|
|
|
|
incremental_marking()->PrepareForScavenge();
|
|
|
|
paged_space(OLD_DATA_SPACE)->EnsureSweeperProgress(new_space_.Size());
|
|
paged_space(OLD_POINTER_SPACE)->EnsureSweeperProgress(new_space_.Size());
|
|
|
|
// Flip the semispaces. After flipping, to space is empty, from space has
|
|
// live objects.
|
|
new_space_.Flip();
|
|
new_space_.ResetAllocationInfo();
|
|
|
|
// We need to sweep newly copied objects which can be either in the
|
|
// to space or promoted to the old generation. For to-space
|
|
// objects, we treat the bottom of the to space as a queue. Newly
|
|
// copied and unswept objects lie between a 'front' mark and the
|
|
// allocation pointer.
|
|
//
|
|
// Promoted objects can go into various old-generation spaces, and
|
|
// can be allocated internally in the spaces (from the free list).
|
|
// We treat the top of the to space as a queue of addresses of
|
|
// promoted objects. The addresses of newly promoted and unswept
|
|
// objects lie between a 'front' mark and a 'rear' mark that is
|
|
// updated as a side effect of promoting an object.
|
|
//
|
|
// There is guaranteed to be enough room at the top of the to space
|
|
// for the addresses of promoted objects: every object promoted
|
|
// frees up its size in bytes from the top of the new space, and
|
|
// objects are at least one pointer in size.
|
|
Address new_space_front = new_space_.ToSpaceStart();
|
|
promotion_queue_.Initialize();
|
|
|
|
#ifdef DEBUG
|
|
store_buffer()->Clean();
|
|
#endif
|
|
|
|
ScavengeVisitor scavenge_visitor(this);
|
|
// Copy roots.
|
|
IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
|
|
|
|
// Copy objects reachable from the old generation.
|
|
{
|
|
StoreBufferRebuildScope scope(this,
|
|
store_buffer(),
|
|
&ScavengeStoreBufferCallback);
|
|
store_buffer()->IteratePointersToNewSpace(&ScavengeObject);
|
|
}
|
|
|
|
// Copy objects reachable from simple cells by scavenging cell values
|
|
// directly.
|
|
HeapObjectIterator cell_iterator(cell_space_);
|
|
for (HeapObject* heap_object = cell_iterator.Next();
|
|
heap_object != NULL;
|
|
heap_object = cell_iterator.Next()) {
|
|
if (heap_object->IsCell()) {
|
|
Cell* cell = Cell::cast(heap_object);
|
|
Address value_address = cell->ValueAddress();
|
|
scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
|
|
}
|
|
}
|
|
|
|
// Copy objects reachable from global property cells by scavenging global
|
|
// property cell values directly.
|
|
HeapObjectIterator js_global_property_cell_iterator(property_cell_space_);
|
|
for (HeapObject* heap_object = js_global_property_cell_iterator.Next();
|
|
heap_object != NULL;
|
|
heap_object = js_global_property_cell_iterator.Next()) {
|
|
if (heap_object->IsPropertyCell()) {
|
|
PropertyCell* cell = PropertyCell::cast(heap_object);
|
|
Address value_address = cell->ValueAddress();
|
|
scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
|
|
Address type_address = cell->TypeAddress();
|
|
scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(type_address));
|
|
}
|
|
}
|
|
|
|
// Copy objects reachable from the code flushing candidates list.
|
|
MarkCompactCollector* collector = mark_compact_collector();
|
|
if (collector->is_code_flushing_enabled()) {
|
|
collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor);
|
|
}
|
|
|
|
// Scavenge object reachable from the native contexts list directly.
|
|
scavenge_visitor.VisitPointer(BitCast<Object**>(&native_contexts_list_));
|
|
|
|
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
|
|
|
|
while (isolate()->global_handles()->IterateObjectGroups(
|
|
&scavenge_visitor, &IsUnscavengedHeapObject)) {
|
|
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
|
|
}
|
|
isolate()->global_handles()->RemoveObjectGroups();
|
|
isolate()->global_handles()->RemoveImplicitRefGroups();
|
|
|
|
isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles(
|
|
&IsUnscavengedHeapObject);
|
|
isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots(
|
|
&scavenge_visitor);
|
|
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
|
|
|
|
UpdateNewSpaceReferencesInExternalStringTable(
|
|
&UpdateNewSpaceReferenceInExternalStringTableEntry);
|
|
|
|
error_object_list_.UpdateReferencesInNewSpace(this);
|
|
|
|
promotion_queue_.Destroy();
|
|
|
|
if (!FLAG_watch_ic_patching) {
|
|
isolate()->runtime_profiler()->UpdateSamplesAfterScavenge();
|
|
}
|
|
incremental_marking()->UpdateMarkingDequeAfterScavenge();
|
|
|
|
ScavengeWeakObjectRetainer weak_object_retainer(this);
|
|
ProcessWeakReferences(&weak_object_retainer);
|
|
|
|
ASSERT(new_space_front == new_space_.top());
|
|
|
|
// Set age mark.
|
|
new_space_.set_age_mark(new_space_.top());
|
|
|
|
new_space_.LowerInlineAllocationLimit(
|
|
new_space_.inline_allocation_limit_step());
|
|
|
|
// Update how much has survived scavenge.
|
|
IncrementYoungSurvivorsCounter(static_cast<int>(
|
|
(PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size()));
|
|
|
|
LOG(isolate_, ResourceEvent("scavenge", "end"));
|
|
|
|
gc_state_ = NOT_IN_GC;
|
|
|
|
scavenges_since_last_idle_round_++;
|
|
}
|
|
|
|
|
|
String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
|
|
Object** p) {
|
|
MapWord first_word = HeapObject::cast(*p)->map_word();
|
|
|
|
if (!first_word.IsForwardingAddress()) {
|
|
// Unreachable external string can be finalized.
|
|
heap->FinalizeExternalString(String::cast(*p));
|
|
return NULL;
|
|
}
|
|
|
|
// String is still reachable.
|
|
return String::cast(first_word.ToForwardingAddress());
|
|
}
|
|
|
|
|
|
void Heap::UpdateNewSpaceReferencesInExternalStringTable(
|
|
ExternalStringTableUpdaterCallback updater_func) {
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
external_string_table_.Verify();
|
|
}
|
|
#endif
|
|
|
|
if (external_string_table_.new_space_strings_.is_empty()) return;
|
|
|
|
Object** start = &external_string_table_.new_space_strings_[0];
|
|
Object** end = start + external_string_table_.new_space_strings_.length();
|
|
Object** last = start;
|
|
|
|
for (Object** p = start; p < end; ++p) {
|
|
ASSERT(InFromSpace(*p));
|
|
String* target = updater_func(this, p);
|
|
|
|
if (target == NULL) continue;
|
|
|
|
ASSERT(target->IsExternalString());
|
|
|
|
if (InNewSpace(target)) {
|
|
// String is still in new space. Update the table entry.
|
|
*last = target;
|
|
++last;
|
|
} else {
|
|
// String got promoted. Move it to the old string list.
|
|
external_string_table_.AddOldString(target);
|
|
}
|
|
}
|
|
|
|
ASSERT(last <= end);
|
|
external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
|
|
}
|
|
|
|
|
|
void Heap::UpdateReferencesInExternalStringTable(
|
|
ExternalStringTableUpdaterCallback updater_func) {
|
|
|
|
// Update old space string references.
|
|
if (external_string_table_.old_space_strings_.length() > 0) {
|
|
Object** start = &external_string_table_.old_space_strings_[0];
|
|
Object** end = start + external_string_table_.old_space_strings_.length();
|
|
for (Object** p = start; p < end; ++p) *p = updater_func(this, p);
|
|
}
|
|
|
|
UpdateNewSpaceReferencesInExternalStringTable(updater_func);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
struct WeakListVisitor;
|
|
|
|
|
|
template <class T>
|
|
static Object* VisitWeakList(Heap* heap,
|
|
Object* list,
|
|
WeakObjectRetainer* retainer,
|
|
bool record_slots) {
|
|
Object* undefined = heap->undefined_value();
|
|
Object* head = undefined;
|
|
T* tail = NULL;
|
|
MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
while (list != undefined) {
|
|
// Check whether to keep the candidate in the list.
|
|
T* candidate = reinterpret_cast<T*>(list);
|
|
Object* retained = retainer->RetainAs(list);
|
|
if (retained != NULL) {
|
|
if (head == undefined) {
|
|
// First element in the list.
|
|
head = retained;
|
|
} else {
|
|
// Subsequent elements in the list.
|
|
ASSERT(tail != NULL);
|
|
WeakListVisitor<T>::SetWeakNext(tail, retained);
|
|
if (record_slots) {
|
|
Object** next_slot =
|
|
HeapObject::RawField(tail, WeakListVisitor<T>::WeakNextOffset());
|
|
collector->RecordSlot(next_slot, next_slot, retained);
|
|
}
|
|
}
|
|
// Retained object is new tail.
|
|
ASSERT(!retained->IsUndefined());
|
|
candidate = reinterpret_cast<T*>(retained);
|
|
tail = candidate;
|
|
|
|
|
|
// tail is a live object, visit it.
|
|
WeakListVisitor<T>::VisitLiveObject(
|
|
heap, tail, retainer, record_slots);
|
|
} else {
|
|
WeakListVisitor<T>::VisitPhantomObject(heap, candidate);
|
|
}
|
|
|
|
// Move to next element in the list.
|
|
list = WeakListVisitor<T>::WeakNext(candidate);
|
|
}
|
|
|
|
// Terminate the list if there is one or more elements.
|
|
if (tail != NULL) {
|
|
WeakListVisitor<T>::SetWeakNext(tail, undefined);
|
|
}
|
|
return head;
|
|
}
|
|
|
|
|
|
template<>
|
|
struct WeakListVisitor<JSFunction> {
|
|
static void SetWeakNext(JSFunction* function, Object* next) {
|
|
function->set_next_function_link(next);
|
|
}
|
|
|
|
static Object* WeakNext(JSFunction* function) {
|
|
return function->next_function_link();
|
|
}
|
|
|
|
static int WeakNextOffset() {
|
|
return JSFunction::kNextFunctionLinkOffset;
|
|
}
|
|
|
|
static void VisitLiveObject(Heap*, JSFunction*,
|
|
WeakObjectRetainer*, bool) {
|
|
}
|
|
|
|
static void VisitPhantomObject(Heap*, JSFunction*) {
|
|
}
|
|
};
|
|
|
|
|
|
template<>
|
|
struct WeakListVisitor<Context> {
|
|
static void SetWeakNext(Context* context, Object* next) {
|
|
context->set(Context::NEXT_CONTEXT_LINK,
|
|
next,
|
|
UPDATE_WRITE_BARRIER);
|
|
}
|
|
|
|
static Object* WeakNext(Context* context) {
|
|
return context->get(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
|
|
static void VisitLiveObject(Heap* heap,
|
|
Context* context,
|
|
WeakObjectRetainer* retainer,
|
|
bool record_slots) {
|
|
// Process the weak list of optimized functions for the context.
|
|
Object* function_list_head =
|
|
VisitWeakList<JSFunction>(
|
|
heap,
|
|
context->get(Context::OPTIMIZED_FUNCTIONS_LIST),
|
|
retainer,
|
|
record_slots);
|
|
context->set(Context::OPTIMIZED_FUNCTIONS_LIST,
|
|
function_list_head,
|
|
UPDATE_WRITE_BARRIER);
|
|
if (record_slots) {
|
|
Object** optimized_functions =
|
|
HeapObject::RawField(
|
|
context, FixedArray::SizeFor(Context::OPTIMIZED_FUNCTIONS_LIST));
|
|
heap->mark_compact_collector()->RecordSlot(
|
|
optimized_functions, optimized_functions, function_list_head);
|
|
}
|
|
}
|
|
|
|
static void VisitPhantomObject(Heap*, Context*) {
|
|
}
|
|
|
|
static int WeakNextOffset() {
|
|
return FixedArray::SizeFor(Context::NEXT_CONTEXT_LINK);
|
|
}
|
|
};
|
|
|
|
|
|
void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
|
|
// We don't record weak slots during marking or scavenges.
|
|
// Instead we do it once when we complete mark-compact cycle.
|
|
// Note that write barrier has no effect if we are already in the middle of
|
|
// compacting mark-sweep cycle and we have to record slots manually.
|
|
bool record_slots =
|
|
gc_state() == MARK_COMPACT &&
|
|
mark_compact_collector()->is_compacting();
|
|
ProcessArrayBuffers(retainer, record_slots);
|
|
ProcessNativeContexts(retainer, record_slots);
|
|
ProcessAllocationSites(retainer, record_slots);
|
|
}
|
|
|
|
void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer,
|
|
bool record_slots) {
|
|
Object* head =
|
|
VisitWeakList<Context>(
|
|
this, native_contexts_list(), retainer, record_slots);
|
|
// Update the head of the list of contexts.
|
|
native_contexts_list_ = head;
|
|
}
|
|
|
|
|
|
template<>
|
|
struct WeakListVisitor<JSArrayBufferView> {
|
|
static void SetWeakNext(JSArrayBufferView* obj, Object* next) {
|
|
obj->set_weak_next(next);
|
|
}
|
|
|
|
static Object* WeakNext(JSArrayBufferView* obj) {
|
|
return obj->weak_next();
|
|
}
|
|
|
|
static void VisitLiveObject(Heap*,
|
|
JSArrayBufferView* obj,
|
|
WeakObjectRetainer* retainer,
|
|
bool record_slots) {}
|
|
|
|
static void VisitPhantomObject(Heap*, JSArrayBufferView*) {}
|
|
|
|
static int WeakNextOffset() {
|
|
return JSArrayBufferView::kWeakNextOffset;
|
|
}
|
|
};
|
|
|
|
|
|
template<>
|
|
struct WeakListVisitor<JSArrayBuffer> {
|
|
static void SetWeakNext(JSArrayBuffer* obj, Object* next) {
|
|
obj->set_weak_next(next);
|
|
}
|
|
|
|
static Object* WeakNext(JSArrayBuffer* obj) {
|
|
return obj->weak_next();
|
|
}
|
|
|
|
static void VisitLiveObject(Heap* heap,
|
|
JSArrayBuffer* array_buffer,
|
|
WeakObjectRetainer* retainer,
|
|
bool record_slots) {
|
|
Object* typed_array_obj =
|
|
VisitWeakList<JSArrayBufferView>(
|
|
heap,
|
|
array_buffer->weak_first_view(),
|
|
retainer, record_slots);
|
|
array_buffer->set_weak_first_view(typed_array_obj);
|
|
if (typed_array_obj != heap->undefined_value() && record_slots) {
|
|
Object** slot = HeapObject::RawField(
|
|
array_buffer, JSArrayBuffer::kWeakFirstViewOffset);
|
|
heap->mark_compact_collector()->RecordSlot(slot, slot, typed_array_obj);
|
|
}
|
|
}
|
|
|
|
static void VisitPhantomObject(Heap* heap, JSArrayBuffer* phantom) {
|
|
Runtime::FreeArrayBuffer(heap->isolate(), phantom);
|
|
}
|
|
|
|
static int WeakNextOffset() {
|
|
return JSArrayBuffer::kWeakNextOffset;
|
|
}
|
|
};
|
|
|
|
|
|
void Heap::ProcessArrayBuffers(WeakObjectRetainer* retainer,
|
|
bool record_slots) {
|
|
Object* array_buffer_obj =
|
|
VisitWeakList<JSArrayBuffer>(this,
|
|
array_buffers_list(),
|
|
retainer, record_slots);
|
|
set_array_buffers_list(array_buffer_obj);
|
|
}
|
|
|
|
|
|
void Heap::TearDownArrayBuffers() {
|
|
Object* undefined = undefined_value();
|
|
for (Object* o = array_buffers_list(); o != undefined;) {
|
|
JSArrayBuffer* buffer = JSArrayBuffer::cast(o);
|
|
Runtime::FreeArrayBuffer(isolate(), buffer);
|
|
o = buffer->weak_next();
|
|
}
|
|
array_buffers_list_ = undefined;
|
|
}
|
|
|
|
|
|
template<>
|
|
struct WeakListVisitor<AllocationSite> {
|
|
static void SetWeakNext(AllocationSite* obj, Object* next) {
|
|
obj->set_weak_next(next);
|
|
}
|
|
|
|
static Object* WeakNext(AllocationSite* obj) {
|
|
return obj->weak_next();
|
|
}
|
|
|
|
static void VisitLiveObject(Heap* heap,
|
|
AllocationSite* array_buffer,
|
|
WeakObjectRetainer* retainer,
|
|
bool record_slots) {}
|
|
|
|
static void VisitPhantomObject(Heap* heap, AllocationSite* phantom) {}
|
|
|
|
static int WeakNextOffset() {
|
|
return AllocationSite::kWeakNextOffset;
|
|
}
|
|
};
|
|
|
|
|
|
void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer,
|
|
bool record_slots) {
|
|
Object* allocation_site_obj =
|
|
VisitWeakList<AllocationSite>(this,
|
|
allocation_sites_list(),
|
|
retainer, record_slots);
|
|
set_allocation_sites_list(allocation_site_obj);
|
|
}
|
|
|
|
|
|
void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
// Both the external string table and the string table may contain
|
|
// external strings, but neither lists them exhaustively, nor is the
|
|
// intersection set empty. Therefore we iterate over the external string
|
|
// table first, ignoring internalized strings, and then over the
|
|
// internalized string table.
|
|
|
|
class ExternalStringTableVisitorAdapter : public ObjectVisitor {
|
|
public:
|
|
explicit ExternalStringTableVisitorAdapter(
|
|
v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {}
|
|
virtual void VisitPointers(Object** start, Object** end) {
|
|
for (Object** p = start; p < end; p++) {
|
|
// Visit non-internalized external strings,
|
|
// since internalized strings are listed in the string table.
|
|
if (!(*p)->IsInternalizedString()) {
|
|
ASSERT((*p)->IsExternalString());
|
|
visitor_->VisitExternalString(Utils::ToLocal(
|
|
Handle<String>(String::cast(*p))));
|
|
}
|
|
}
|
|
}
|
|
private:
|
|
v8::ExternalResourceVisitor* visitor_;
|
|
} external_string_table_visitor(visitor);
|
|
|
|
external_string_table_.Iterate(&external_string_table_visitor);
|
|
|
|
class StringTableVisitorAdapter : public ObjectVisitor {
|
|
public:
|
|
explicit StringTableVisitorAdapter(
|
|
v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {}
|
|
virtual void VisitPointers(Object** start, Object** end) {
|
|
for (Object** p = start; p < end; p++) {
|
|
if ((*p)->IsExternalString()) {
|
|
ASSERT((*p)->IsInternalizedString());
|
|
visitor_->VisitExternalString(Utils::ToLocal(
|
|
Handle<String>(String::cast(*p))));
|
|
}
|
|
}
|
|
}
|
|
private:
|
|
v8::ExternalResourceVisitor* visitor_;
|
|
} string_table_visitor(visitor);
|
|
|
|
string_table()->IterateElements(&string_table_visitor);
|
|
}
|
|
|
|
|
|
class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
|
|
public:
|
|
static inline void VisitPointer(Heap* heap, Object** p) {
|
|
Object* object = *p;
|
|
if (!heap->InNewSpace(object)) return;
|
|
Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
|
|
reinterpret_cast<HeapObject*>(object));
|
|
}
|
|
};
|
|
|
|
|
|
Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
|
|
Address new_space_front) {
|
|
do {
|
|
SemiSpace::AssertValidRange(new_space_front, new_space_.top());
|
|
// The addresses new_space_front and new_space_.top() define a
|
|
// queue of unprocessed copied objects. Process them until the
|
|
// queue is empty.
|
|
while (new_space_front != new_space_.top()) {
|
|
if (!NewSpacePage::IsAtEnd(new_space_front)) {
|
|
HeapObject* object = HeapObject::FromAddress(new_space_front);
|
|
new_space_front +=
|
|
NewSpaceScavenger::IterateBody(object->map(), object);
|
|
} else {
|
|
new_space_front =
|
|
NewSpacePage::FromLimit(new_space_front)->next_page()->area_start();
|
|
}
|
|
}
|
|
|
|
// Promote and process all the to-be-promoted objects.
|
|
{
|
|
StoreBufferRebuildScope scope(this,
|
|
store_buffer(),
|
|
&ScavengeStoreBufferCallback);
|
|
while (!promotion_queue()->is_empty()) {
|
|
HeapObject* target;
|
|
int size;
|
|
promotion_queue()->remove(&target, &size);
|
|
|
|
// Promoted object might be already partially visited
|
|
// during old space pointer iteration. Thus we search specificly
|
|
// for pointers to from semispace instead of looking for pointers
|
|
// to new space.
|
|
ASSERT(!target->IsMap());
|
|
IterateAndMarkPointersToFromSpace(target->address(),
|
|
target->address() + size,
|
|
&ScavengeObject);
|
|
}
|
|
}
|
|
|
|
// Take another spin if there are now unswept objects in new space
|
|
// (there are currently no more unswept promoted objects).
|
|
} while (new_space_front != new_space_.top());
|
|
|
|
return new_space_front;
|
|
}
|
|
|
|
|
|
STATIC_ASSERT((FixedDoubleArray::kHeaderSize & kDoubleAlignmentMask) == 0);
|
|
|
|
|
|
INLINE(static HeapObject* EnsureDoubleAligned(Heap* heap,
|
|
HeapObject* object,
|
|
int size));
|
|
|
|
static HeapObject* EnsureDoubleAligned(Heap* heap,
|
|
HeapObject* object,
|
|
int size) {
|
|
if ((OffsetFrom(object->address()) & kDoubleAlignmentMask) != 0) {
|
|
heap->CreateFillerObjectAt(object->address(), kPointerSize);
|
|
return HeapObject::FromAddress(object->address() + kPointerSize);
|
|
} else {
|
|
heap->CreateFillerObjectAt(object->address() + size - kPointerSize,
|
|
kPointerSize);
|
|
return object;
|
|
}
|
|
}
|
|
|
|
|
|
enum LoggingAndProfiling {
|
|
LOGGING_AND_PROFILING_ENABLED,
|
|
LOGGING_AND_PROFILING_DISABLED
|
|
};
|
|
|
|
|
|
enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS };
|
|
|
|
|
|
template<MarksHandling marks_handling,
|
|
LoggingAndProfiling logging_and_profiling_mode>
|
|
class ScavengingVisitor : public StaticVisitorBase {
|
|
public:
|
|
static void Initialize() {
|
|
table_.Register(kVisitSeqOneByteString, &EvacuateSeqOneByteString);
|
|
table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
|
|
table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
|
|
table_.Register(kVisitByteArray, &EvacuateByteArray);
|
|
table_.Register(kVisitFixedArray, &EvacuateFixedArray);
|
|
table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray);
|
|
|
|
table_.Register(kVisitNativeContext,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<Context::kSize>);
|
|
|
|
table_.Register(kVisitConsString,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<ConsString::kSize>);
|
|
|
|
table_.Register(kVisitSlicedString,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<SlicedString::kSize>);
|
|
|
|
table_.Register(kVisitSymbol,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<Symbol::kSize>);
|
|
|
|
table_.Register(kVisitSharedFunctionInfo,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<SharedFunctionInfo::kSize>);
|
|
|
|
table_.Register(kVisitJSWeakMap,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
Visit);
|
|
|
|
table_.Register(kVisitJSArrayBuffer,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
Visit);
|
|
|
|
table_.Register(kVisitJSTypedArray,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
Visit);
|
|
|
|
table_.Register(kVisitJSDataView,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
Visit);
|
|
|
|
table_.Register(kVisitJSRegExp,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
Visit);
|
|
|
|
if (marks_handling == IGNORE_MARKS) {
|
|
table_.Register(kVisitJSFunction,
|
|
&ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<JSFunction::kSize>);
|
|
} else {
|
|
table_.Register(kVisitJSFunction, &EvacuateJSFunction);
|
|
}
|
|
|
|
table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
|
|
kVisitDataObject,
|
|
kVisitDataObjectGeneric>();
|
|
|
|
table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
|
|
kVisitJSObject,
|
|
kVisitJSObjectGeneric>();
|
|
|
|
table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
|
|
kVisitStruct,
|
|
kVisitStructGeneric>();
|
|
}
|
|
|
|
static VisitorDispatchTable<ScavengingCallback>* GetTable() {
|
|
return &table_;
|
|
}
|
|
|
|
private:
|
|
enum ObjectContents { DATA_OBJECT, POINTER_OBJECT };
|
|
enum SizeRestriction { SMALL, UNKNOWN_SIZE };
|
|
|
|
static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
|
|
bool should_record = false;
|
|
#ifdef DEBUG
|
|
should_record = FLAG_heap_stats;
|
|
#endif
|
|
should_record = should_record || FLAG_log_gc;
|
|
if (should_record) {
|
|
if (heap->new_space()->Contains(obj)) {
|
|
heap->new_space()->RecordAllocation(obj);
|
|
} else {
|
|
heap->new_space()->RecordPromotion(obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper function used by CopyObject to copy a source object to an
|
|
// allocated target object and update the forwarding pointer in the source
|
|
// object. Returns the target object.
|
|
INLINE(static void MigrateObject(Heap* heap,
|
|
HeapObject* source,
|
|
HeapObject* target,
|
|
int size)) {
|
|
// Copy the content of source to target.
|
|
heap->CopyBlock(target->address(), source->address(), size);
|
|
|
|
// Set the forwarding address.
|
|
source->set_map_word(MapWord::FromForwardingAddress(target));
|
|
|
|
if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
|
|
// Update NewSpace stats if necessary.
|
|
RecordCopiedObject(heap, target);
|
|
HEAP_PROFILE(heap, ObjectMoveEvent(source->address(), target->address()));
|
|
Isolate* isolate = heap->isolate();
|
|
if (isolate->logger()->is_logging_code_events() ||
|
|
isolate->cpu_profiler()->is_profiling()) {
|
|
if (target->IsSharedFunctionInfo()) {
|
|
PROFILE(isolate, SharedFunctionInfoMoveEvent(
|
|
source->address(), target->address()));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (marks_handling == TRANSFER_MARKS) {
|
|
if (Marking::TransferColor(source, target)) {
|
|
MemoryChunk::IncrementLiveBytesFromGC(target->address(), size);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<ObjectContents object_contents,
|
|
SizeRestriction size_restriction,
|
|
int alignment>
|
|
static inline void EvacuateObject(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object,
|
|
int object_size) {
|
|
SLOW_ASSERT((size_restriction != SMALL) ||
|
|
(object_size <= Page::kMaxNonCodeHeapObjectSize));
|
|
SLOW_ASSERT(object->Size() == object_size);
|
|
|
|
int allocation_size = object_size;
|
|
if (alignment != kObjectAlignment) {
|
|
ASSERT(alignment == kDoubleAlignment);
|
|
allocation_size += kPointerSize;
|
|
}
|
|
|
|
Heap* heap = map->GetHeap();
|
|
if (heap->ShouldBePromoted(object->address(), object_size)) {
|
|
MaybeObject* maybe_result;
|
|
|
|
if ((size_restriction != SMALL) &&
|
|
(allocation_size > Page::kMaxNonCodeHeapObjectSize)) {
|
|
maybe_result = heap->lo_space()->AllocateRaw(allocation_size,
|
|
NOT_EXECUTABLE);
|
|
} else {
|
|
if (object_contents == DATA_OBJECT) {
|
|
maybe_result = heap->old_data_space()->AllocateRaw(allocation_size);
|
|
} else {
|
|
maybe_result =
|
|
heap->old_pointer_space()->AllocateRaw(allocation_size);
|
|
}
|
|
}
|
|
|
|
Object* result = NULL; // Initialization to please compiler.
|
|
if (maybe_result->ToObject(&result)) {
|
|
HeapObject* target = HeapObject::cast(result);
|
|
|
|
if (alignment != kObjectAlignment) {
|
|
target = EnsureDoubleAligned(heap, target, allocation_size);
|
|
}
|
|
|
|
// Order is important: slot might be inside of the target if target
|
|
// was allocated over a dead object and slot comes from the store
|
|
// buffer.
|
|
*slot = target;
|
|
MigrateObject(heap, object, target, object_size);
|
|
|
|
if (object_contents == POINTER_OBJECT) {
|
|
if (map->instance_type() == JS_FUNCTION_TYPE) {
|
|
heap->promotion_queue()->insert(
|
|
target, JSFunction::kNonWeakFieldsEndOffset);
|
|
} else {
|
|
heap->promotion_queue()->insert(target, object_size);
|
|
}
|
|
}
|
|
|
|
heap->tracer()->increment_promoted_objects_size(object_size);
|
|
return;
|
|
}
|
|
}
|
|
MaybeObject* allocation = heap->new_space()->AllocateRaw(allocation_size);
|
|
heap->promotion_queue()->SetNewLimit(heap->new_space()->top());
|
|
Object* result = allocation->ToObjectUnchecked();
|
|
HeapObject* target = HeapObject::cast(result);
|
|
|
|
if (alignment != kObjectAlignment) {
|
|
target = EnsureDoubleAligned(heap, target, allocation_size);
|
|
}
|
|
|
|
// Order is important: slot might be inside of the target if target
|
|
// was allocated over a dead object and slot comes from the store
|
|
// buffer.
|
|
*slot = target;
|
|
MigrateObject(heap, object, target, object_size);
|
|
return;
|
|
}
|
|
|
|
|
|
static inline void EvacuateJSFunction(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
ObjectEvacuationStrategy<POINTER_OBJECT>::
|
|
template VisitSpecialized<JSFunction::kSize>(map, slot, object);
|
|
|
|
HeapObject* target = *slot;
|
|
MarkBit mark_bit = Marking::MarkBitFrom(target);
|
|
if (Marking::IsBlack(mark_bit)) {
|
|
// This object is black and it might not be rescanned by marker.
|
|
// We should explicitly record code entry slot for compaction because
|
|
// promotion queue processing (IterateAndMarkPointersToFromSpace) will
|
|
// miss it as it is not HeapObject-tagged.
|
|
Address code_entry_slot =
|
|
target->address() + JSFunction::kCodeEntryOffset;
|
|
Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot));
|
|
map->GetHeap()->mark_compact_collector()->
|
|
RecordCodeEntrySlot(code_entry_slot, code);
|
|
}
|
|
}
|
|
|
|
|
|
static inline void EvacuateFixedArray(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
|
|
EvacuateObject<POINTER_OBJECT, UNKNOWN_SIZE, kObjectAlignment>(map,
|
|
slot,
|
|
object,
|
|
object_size);
|
|
}
|
|
|
|
|
|
static inline void EvacuateFixedDoubleArray(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int length = reinterpret_cast<FixedDoubleArray*>(object)->length();
|
|
int object_size = FixedDoubleArray::SizeFor(length);
|
|
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE, kDoubleAlignment>(
|
|
map,
|
|
slot,
|
|
object,
|
|
object_size);
|
|
}
|
|
|
|
|
|
static inline void EvacuateByteArray(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
|
|
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE, kObjectAlignment>(
|
|
map, slot, object, object_size);
|
|
}
|
|
|
|
|
|
static inline void EvacuateSeqOneByteString(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = SeqOneByteString::cast(object)->
|
|
SeqOneByteStringSize(map->instance_type());
|
|
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE, kObjectAlignment>(
|
|
map, slot, object, object_size);
|
|
}
|
|
|
|
|
|
static inline void EvacuateSeqTwoByteString(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = SeqTwoByteString::cast(object)->
|
|
SeqTwoByteStringSize(map->instance_type());
|
|
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE, kObjectAlignment>(
|
|
map, slot, object, object_size);
|
|
}
|
|
|
|
|
|
static inline bool IsShortcutCandidate(int type) {
|
|
return ((type & kShortcutTypeMask) == kShortcutTypeTag);
|
|
}
|
|
|
|
static inline void EvacuateShortcutCandidate(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
ASSERT(IsShortcutCandidate(map->instance_type()));
|
|
|
|
Heap* heap = map->GetHeap();
|
|
|
|
if (marks_handling == IGNORE_MARKS &&
|
|
ConsString::cast(object)->unchecked_second() ==
|
|
heap->empty_string()) {
|
|
HeapObject* first =
|
|
HeapObject::cast(ConsString::cast(object)->unchecked_first());
|
|
|
|
*slot = first;
|
|
|
|
if (!heap->InNewSpace(first)) {
|
|
object->set_map_word(MapWord::FromForwardingAddress(first));
|
|
return;
|
|
}
|
|
|
|
MapWord first_word = first->map_word();
|
|
if (first_word.IsForwardingAddress()) {
|
|
HeapObject* target = first_word.ToForwardingAddress();
|
|
|
|
*slot = target;
|
|
object->set_map_word(MapWord::FromForwardingAddress(target));
|
|
return;
|
|
}
|
|
|
|
heap->DoScavengeObject(first->map(), slot, first);
|
|
object->set_map_word(MapWord::FromForwardingAddress(*slot));
|
|
return;
|
|
}
|
|
|
|
int object_size = ConsString::kSize;
|
|
EvacuateObject<POINTER_OBJECT, SMALL, kObjectAlignment>(
|
|
map, slot, object, object_size);
|
|
}
|
|
|
|
template<ObjectContents object_contents>
|
|
class ObjectEvacuationStrategy {
|
|
public:
|
|
template<int object_size>
|
|
static inline void VisitSpecialized(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
EvacuateObject<object_contents, SMALL, kObjectAlignment>(
|
|
map, slot, object, object_size);
|
|
}
|
|
|
|
static inline void Visit(Map* map,
|
|
HeapObject** slot,
|
|
HeapObject* object) {
|
|
int object_size = map->instance_size();
|
|
EvacuateObject<object_contents, SMALL, kObjectAlignment>(
|
|
map, slot, object, object_size);
|
|
}
|
|
};
|
|
|
|
static VisitorDispatchTable<ScavengingCallback> table_;
|
|
};
|
|
|
|
|
|
template<MarksHandling marks_handling,
|
|
LoggingAndProfiling logging_and_profiling_mode>
|
|
VisitorDispatchTable<ScavengingCallback>
|
|
ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_;
|
|
|
|
|
|
static void InitializeScavengingVisitorsTables() {
|
|
ScavengingVisitor<TRANSFER_MARKS,
|
|
LOGGING_AND_PROFILING_DISABLED>::Initialize();
|
|
ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize();
|
|
ScavengingVisitor<TRANSFER_MARKS,
|
|
LOGGING_AND_PROFILING_ENABLED>::Initialize();
|
|
ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize();
|
|
}
|
|
|
|
|
|
void Heap::SelectScavengingVisitorsTable() {
|
|
bool logging_and_profiling =
|
|
isolate()->logger()->is_logging() ||
|
|
isolate()->cpu_profiler()->is_profiling() ||
|
|
(isolate()->heap_profiler() != NULL &&
|
|
isolate()->heap_profiler()->is_profiling());
|
|
|
|
if (!incremental_marking()->IsMarking()) {
|
|
if (!logging_and_profiling) {
|
|
scavenging_visitors_table_.CopyFrom(
|
|
ScavengingVisitor<IGNORE_MARKS,
|
|
LOGGING_AND_PROFILING_DISABLED>::GetTable());
|
|
} else {
|
|
scavenging_visitors_table_.CopyFrom(
|
|
ScavengingVisitor<IGNORE_MARKS,
|
|
LOGGING_AND_PROFILING_ENABLED>::GetTable());
|
|
}
|
|
} else {
|
|
if (!logging_and_profiling) {
|
|
scavenging_visitors_table_.CopyFrom(
|
|
ScavengingVisitor<TRANSFER_MARKS,
|
|
LOGGING_AND_PROFILING_DISABLED>::GetTable());
|
|
} else {
|
|
scavenging_visitors_table_.CopyFrom(
|
|
ScavengingVisitor<TRANSFER_MARKS,
|
|
LOGGING_AND_PROFILING_ENABLED>::GetTable());
|
|
}
|
|
|
|
if (incremental_marking()->IsCompacting()) {
|
|
// When compacting forbid short-circuiting of cons-strings.
|
|
// Scavenging code relies on the fact that new space object
|
|
// can't be evacuated into evacuation candidate but
|
|
// short-circuiting violates this assumption.
|
|
scavenging_visitors_table_.Register(
|
|
StaticVisitorBase::kVisitShortcutCandidate,
|
|
scavenging_visitors_table_.GetVisitorById(
|
|
StaticVisitorBase::kVisitConsString));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
|
|
SLOW_ASSERT(HEAP->InFromSpace(object));
|
|
MapWord first_word = object->map_word();
|
|
SLOW_ASSERT(!first_word.IsForwardingAddress());
|
|
Map* map = first_word.ToMap();
|
|
map->GetHeap()->DoScavengeObject(map, p, object);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocatePartialMap(InstanceType instance_type,
|
|
int instance_size) {
|
|
Object* result;
|
|
MaybeObject* maybe_result = AllocateRawMap();
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
// Map::cast cannot be used due to uninitialized map field.
|
|
reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
|
|
reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
|
|
reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
|
|
reinterpret_cast<Map*>(result)->set_visitor_id(
|
|
StaticVisitorBase::GetVisitorId(instance_type, instance_size));
|
|
reinterpret_cast<Map*>(result)->set_inobject_properties(0);
|
|
reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
|
|
reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
|
|
reinterpret_cast<Map*>(result)->set_bit_field(0);
|
|
reinterpret_cast<Map*>(result)->set_bit_field2(0);
|
|
int bit_field3 = Map::EnumLengthBits::encode(Map::kInvalidEnumCache) |
|
|
Map::OwnsDescriptors::encode(true);
|
|
reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateMap(InstanceType instance_type,
|
|
int instance_size,
|
|
ElementsKind elements_kind) {
|
|
Object* result;
|
|
MaybeObject* maybe_result = AllocateRawMap();
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
|
|
Map* map = reinterpret_cast<Map*>(result);
|
|
map->set_map_no_write_barrier(meta_map());
|
|
map->set_instance_type(instance_type);
|
|
map->set_visitor_id(
|
|
StaticVisitorBase::GetVisitorId(instance_type, instance_size));
|
|
map->set_prototype(null_value(), SKIP_WRITE_BARRIER);
|
|
map->set_constructor(null_value(), SKIP_WRITE_BARRIER);
|
|
map->set_instance_size(instance_size);
|
|
map->set_inobject_properties(0);
|
|
map->set_pre_allocated_property_fields(0);
|
|
map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
|
|
map->set_dependent_code(DependentCode::cast(empty_fixed_array()),
|
|
SKIP_WRITE_BARRIER);
|
|
map->init_back_pointer(undefined_value());
|
|
map->set_unused_property_fields(0);
|
|
map->set_instance_descriptors(empty_descriptor_array());
|
|
map->set_bit_field(0);
|
|
map->set_bit_field2(1 << Map::kIsExtensible);
|
|
int bit_field3 = Map::EnumLengthBits::encode(Map::kInvalidEnumCache) |
|
|
Map::OwnsDescriptors::encode(true);
|
|
map->set_bit_field3(bit_field3);
|
|
map->set_elements_kind(elements_kind);
|
|
|
|
return map;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateCodeCache() {
|
|
CodeCache* code_cache;
|
|
{ MaybeObject* maybe_code_cache = AllocateStruct(CODE_CACHE_TYPE);
|
|
if (!maybe_code_cache->To(&code_cache)) return maybe_code_cache;
|
|
}
|
|
code_cache->set_default_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
|
|
code_cache->set_normal_type_cache(undefined_value(), SKIP_WRITE_BARRIER);
|
|
return code_cache;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocatePolymorphicCodeCache() {
|
|
return AllocateStruct(POLYMORPHIC_CODE_CACHE_TYPE);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateAccessorPair() {
|
|
AccessorPair* accessors;
|
|
{ MaybeObject* maybe_accessors = AllocateStruct(ACCESSOR_PAIR_TYPE);
|
|
if (!maybe_accessors->To(&accessors)) return maybe_accessors;
|
|
}
|
|
accessors->set_getter(the_hole_value(), SKIP_WRITE_BARRIER);
|
|
accessors->set_setter(the_hole_value(), SKIP_WRITE_BARRIER);
|
|
return accessors;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateTypeFeedbackInfo() {
|
|
TypeFeedbackInfo* info;
|
|
{ MaybeObject* maybe_info = AllocateStruct(TYPE_FEEDBACK_INFO_TYPE);
|
|
if (!maybe_info->To(&info)) return maybe_info;
|
|
}
|
|
info->initialize_storage();
|
|
info->set_type_feedback_cells(TypeFeedbackCells::cast(empty_fixed_array()),
|
|
SKIP_WRITE_BARRIER);
|
|
return info;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateAliasedArgumentsEntry(int aliased_context_slot) {
|
|
AliasedArgumentsEntry* entry;
|
|
{ MaybeObject* maybe_entry = AllocateStruct(ALIASED_ARGUMENTS_ENTRY_TYPE);
|
|
if (!maybe_entry->To(&entry)) return maybe_entry;
|
|
}
|
|
entry->set_aliased_context_slot(aliased_context_slot);
|
|
return entry;
|
|
}
|
|
|
|
|
|
const Heap::StringTypeTable Heap::string_type_table[] = {
|
|
#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
|
|
{type, size, k##camel_name##MapRootIndex},
|
|
STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
|
|
#undef STRING_TYPE_ELEMENT
|
|
};
|
|
|
|
|
|
const Heap::ConstantStringTable Heap::constant_string_table[] = {
|
|
#define CONSTANT_STRING_ELEMENT(name, contents) \
|
|
{contents, k##name##RootIndex},
|
|
INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT)
|
|
#undef CONSTANT_STRING_ELEMENT
|
|
};
|
|
|
|
|
|
const Heap::StructTable Heap::struct_table[] = {
|
|
#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
|
|
{ NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
|
|
STRUCT_LIST(STRUCT_TABLE_ELEMENT)
|
|
#undef STRUCT_TABLE_ELEMENT
|
|
};
|
|
|
|
|
|
bool Heap::CreateInitialMaps() {
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
// Map::cast cannot be used due to uninitialized map field.
|
|
Map* new_meta_map = reinterpret_cast<Map*>(obj);
|
|
set_meta_map(new_meta_map);
|
|
new_meta_map->set_map(new_meta_map);
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocatePartialMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_fixed_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_oddball_map(Map::cast(obj));
|
|
|
|
// Allocate the empty array.
|
|
{ MaybeObject* maybe_obj = AllocateEmptyFixedArray();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_fixed_array(FixedArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_null_value(Oddball::cast(obj));
|
|
Oddball::cast(obj)->set_kind(Oddball::kNull);
|
|
|
|
{ MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_undefined_value(Oddball::cast(obj));
|
|
Oddball::cast(obj)->set_kind(Oddball::kUndefined);
|
|
ASSERT(!InNewSpace(undefined_value()));
|
|
|
|
// Allocate the empty descriptor array.
|
|
{ MaybeObject* maybe_obj = AllocateEmptyFixedArray();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_descriptor_array(DescriptorArray::cast(obj));
|
|
|
|
// Fix the instance_descriptors for the existing maps.
|
|
meta_map()->set_code_cache(empty_fixed_array());
|
|
meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
|
|
meta_map()->init_back_pointer(undefined_value());
|
|
meta_map()->set_instance_descriptors(empty_descriptor_array());
|
|
|
|
fixed_array_map()->set_code_cache(empty_fixed_array());
|
|
fixed_array_map()->set_dependent_code(
|
|
DependentCode::cast(empty_fixed_array()));
|
|
fixed_array_map()->init_back_pointer(undefined_value());
|
|
fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
|
|
|
|
oddball_map()->set_code_cache(empty_fixed_array());
|
|
oddball_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
|
|
oddball_map()->init_back_pointer(undefined_value());
|
|
oddball_map()->set_instance_descriptors(empty_descriptor_array());
|
|
|
|
// Fix prototype object for existing maps.
|
|
meta_map()->set_prototype(null_value());
|
|
meta_map()->set_constructor(null_value());
|
|
|
|
fixed_array_map()->set_prototype(null_value());
|
|
fixed_array_map()->set_constructor(null_value());
|
|
|
|
oddball_map()->set_prototype(null_value());
|
|
oddball_map()->set_constructor(null_value());
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_fixed_cow_array_map(Map::cast(obj));
|
|
ASSERT(fixed_array_map() != fixed_cow_array_map());
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_scope_info_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_heap_number_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(SYMBOL_TYPE, Symbol::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_symbol_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(FOREIGN_TYPE, Foreign::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_foreign_map(Map::cast(obj));
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
|
|
const StringTypeTable& entry = string_type_table[i];
|
|
{ MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
roots_[entry.index] = Map::cast(obj);
|
|
}
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(STRING_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_undetectable_string_map(Map::cast(obj));
|
|
Map::cast(obj)->set_is_undetectable();
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(ASCII_STRING_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_undetectable_ascii_string_map(Map::cast(obj));
|
|
Map::cast(obj)->set_is_undetectable();
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_DOUBLE_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_fixed_double_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(BYTE_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_byte_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FREE_SPACE_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_free_space_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateByteArray(0, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_byte_array(ByteArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(EXTERNAL_PIXEL_ARRAY_TYPE, ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_pixel_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_BYTE_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_byte_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_unsigned_byte_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_SHORT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_short_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_unsigned_short_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_INT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_int_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_unsigned_int_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_FLOAT_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_float_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_non_strict_arguments_elements_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_DOUBLE_ARRAY_TYPE,
|
|
ExternalArray::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_external_double_array_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalByteArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_byte_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateEmptyExternalArray(kExternalUnsignedByteArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_unsigned_byte_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalShortArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_short_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateEmptyExternalArray(
|
|
kExternalUnsignedShortArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_unsigned_short_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalIntArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_int_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateEmptyExternalArray(kExternalUnsignedIntArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_unsigned_int_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalFloatArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_float_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalDoubleArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_double_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateEmptyExternalArray(kExternalPixelArray);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_empty_external_pixel_array(ExternalArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(CODE_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_code_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(CELL_TYPE, Cell::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_cell_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(PROPERTY_CELL_TYPE,
|
|
PropertyCell::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_global_property_cell_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, kPointerSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_one_pointer_filler_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_two_pointer_filler_map(Map::cast(obj));
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
|
|
const StructTable& entry = struct_table[i];
|
|
{ MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
roots_[entry.index] = Map::cast(obj);
|
|
}
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_hash_table_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_function_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_catch_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_with_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_block_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_module_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_global_context_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
Map* native_context_map = Map::cast(obj);
|
|
native_context_map->set_dictionary_map(true);
|
|
native_context_map->set_visitor_id(StaticVisitorBase::kVisitNativeContext);
|
|
set_native_context_map(native_context_map);
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE,
|
|
SharedFunctionInfo::kAlignedSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_shared_function_info_map(Map::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(JS_MESSAGE_OBJECT_TYPE,
|
|
JSMessageObject::kSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_message_object_map(Map::cast(obj));
|
|
|
|
Map* external_map;
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize);
|
|
if (!maybe_obj->To(&external_map)) return false;
|
|
}
|
|
external_map->set_is_extensible(false);
|
|
set_external_map(external_map);
|
|
|
|
ASSERT(!InNewSpace(empty_fixed_array()));
|
|
return true;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
|
|
// Statically ensure that it is safe to allocate heap numbers in paged
|
|
// spaces.
|
|
STATIC_ASSERT(HeapNumber::kSize <= Page::kNonCodeObjectAreaSize);
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map());
|
|
HeapNumber::cast(result)->set_value(value);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateHeapNumber(double value) {
|
|
// Use general version, if we're forced to always allocate.
|
|
if (always_allocate()) return AllocateHeapNumber(value, TENURED);
|
|
|
|
// This version of AllocateHeapNumber is optimized for
|
|
// allocation in new space.
|
|
STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxNonCodeHeapObjectSize);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = new_space_.AllocateRaw(HeapNumber::kSize);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map());
|
|
HeapNumber::cast(result)->set_value(value);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateCell(Object* value) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawCell();
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
HeapObject::cast(result)->set_map_no_write_barrier(cell_map());
|
|
Cell::cast(result)->set_value(value);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocatePropertyCell(Object* value) {
|
|
Object* result;
|
|
MaybeObject* maybe_result = AllocateRawPropertyCell();
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
HeapObject::cast(result)->set_map_no_write_barrier(
|
|
global_property_cell_map());
|
|
PropertyCell* cell = PropertyCell::cast(result);
|
|
cell->set_dependent_code(DependentCode::cast(empty_fixed_array()),
|
|
SKIP_WRITE_BARRIER);
|
|
cell->set_value(value);
|
|
cell->set_type(Type::None());
|
|
maybe_result = cell->SetValueInferType(value);
|
|
if (maybe_result->IsFailure()) return maybe_result;
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateBox(Object* value, PretenureFlag pretenure) {
|
|
Box* result;
|
|
MaybeObject* maybe_result = AllocateStruct(BOX_TYPE);
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
result->set_value(value);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateAllocationSite() {
|
|
Object* result;
|
|
MaybeObject* maybe_result = Allocate(allocation_site_map(),
|
|
OLD_POINTER_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
AllocationSite* site = AllocationSite::cast(result);
|
|
site->Initialize();
|
|
|
|
// Link the site
|
|
site->set_weak_next(allocation_sites_list());
|
|
set_allocation_sites_list(site);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CreateOddball(const char* to_string,
|
|
Object* to_number,
|
|
byte kind) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(oddball_map(), OLD_POINTER_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
return Oddball::cast(result)->Initialize(to_string, to_number, kind);
|
|
}
|
|
|
|
|
|
bool Heap::CreateApiObjects() {
|
|
Object* obj;
|
|
|
|
{ MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
// Don't use Smi-only elements optimizations for objects with the neander
|
|
// map. There are too many cases where element values are set directly with a
|
|
// bottleneck to trap the Smi-only -> fast elements transition, and there
|
|
// appears to be no benefit for optimize this case.
|
|
Map* new_neander_map = Map::cast(obj);
|
|
new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND);
|
|
set_neander_map(new_neander_map);
|
|
|
|
{ MaybeObject* maybe_obj = AllocateJSObjectFromMap(neander_map());
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
Object* elements;
|
|
{ MaybeObject* maybe_elements = AllocateFixedArray(2);
|
|
if (!maybe_elements->ToObject(&elements)) return false;
|
|
}
|
|
FixedArray::cast(elements)->set(0, Smi::FromInt(0));
|
|
JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
|
|
set_message_listeners(JSObject::cast(obj));
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void Heap::CreateJSEntryStub() {
|
|
JSEntryStub stub;
|
|
set_js_entry_code(*stub.GetCode(isolate()));
|
|
}
|
|
|
|
|
|
void Heap::CreateJSConstructEntryStub() {
|
|
JSConstructEntryStub stub;
|
|
set_js_construct_entry_code(*stub.GetCode(isolate()));
|
|
}
|
|
|
|
|
|
void Heap::CreateFixedStubs() {
|
|
// Here we create roots for fixed stubs. They are needed at GC
|
|
// for cooking and uncooking (check out frames.cc).
|
|
// The eliminates the need for doing dictionary lookup in the
|
|
// stub cache for these stubs.
|
|
HandleScope scope(isolate());
|
|
// gcc-4.4 has problem generating correct code of following snippet:
|
|
// { JSEntryStub stub;
|
|
// js_entry_code_ = *stub.GetCode();
|
|
// }
|
|
// { JSConstructEntryStub stub;
|
|
// js_construct_entry_code_ = *stub.GetCode();
|
|
// }
|
|
// To workaround the problem, make separate functions without inlining.
|
|
Heap::CreateJSEntryStub();
|
|
Heap::CreateJSConstructEntryStub();
|
|
|
|
// Create stubs that should be there, so we don't unexpectedly have to
|
|
// create them if we need them during the creation of another stub.
|
|
// Stub creation mixes raw pointers and handles in an unsafe manner so
|
|
// we cannot create stubs while we are creating stubs.
|
|
CodeStub::GenerateStubsAheadOfTime(isolate());
|
|
}
|
|
|
|
|
|
bool Heap::CreateInitialObjects() {
|
|
Object* obj;
|
|
|
|
// The -0 value must be set before NumberFromDouble works.
|
|
{ MaybeObject* maybe_obj = AllocateHeapNumber(-0.0, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_minus_zero_value(HeapNumber::cast(obj));
|
|
ASSERT(std::signbit(minus_zero_value()->Number()) != 0);
|
|
|
|
{ MaybeObject* maybe_obj = AllocateHeapNumber(OS::nan_value(), TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_nan_value(HeapNumber::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateHeapNumber(V8_INFINITY, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_infinity_value(HeapNumber::cast(obj));
|
|
|
|
// The hole has not been created yet, but we want to put something
|
|
// predictable in the gaps in the string table, so lets make that Smi zero.
|
|
set_the_hole_value(reinterpret_cast<Oddball*>(Smi::FromInt(0)));
|
|
|
|
// Allocate initial string table.
|
|
{ MaybeObject* maybe_obj =
|
|
StringTable::Allocate(this, kInitialStringTableSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
// Don't use set_string_table() due to asserts.
|
|
roots_[kStringTableRootIndex] = obj;
|
|
|
|
// Finish initializing oddballs after creating the string table.
|
|
{ MaybeObject* maybe_obj =
|
|
undefined_value()->Initialize("undefined",
|
|
nan_value(),
|
|
Oddball::kUndefined);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
|
|
// Initialize the null_value.
|
|
{ MaybeObject* maybe_obj =
|
|
null_value()->Initialize("null", Smi::FromInt(0), Oddball::kNull);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("true",
|
|
Smi::FromInt(1),
|
|
Oddball::kTrue);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_true_value(Oddball::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("false",
|
|
Smi::FromInt(0),
|
|
Oddball::kFalse);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_false_value(Oddball::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("hole",
|
|
Smi::FromInt(-1),
|
|
Oddball::kTheHole);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_the_hole_value(Oddball::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("uninitialized",
|
|
Smi::FromInt(-1),
|
|
Oddball::kUninitialized);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_uninitialized_value(Oddball::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("arguments_marker",
|
|
Smi::FromInt(-4),
|
|
Oddball::kArgumentMarker);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_arguments_marker(Oddball::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("no_interceptor_result_sentinel",
|
|
Smi::FromInt(-2),
|
|
Oddball::kOther);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_no_interceptor_result_sentinel(obj);
|
|
|
|
{ MaybeObject* maybe_obj = CreateOddball("termination_exception",
|
|
Smi::FromInt(-3),
|
|
Oddball::kOther);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_termination_exception(obj);
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(constant_string_table); i++) {
|
|
{ MaybeObject* maybe_obj =
|
|
InternalizeUtf8String(constant_string_table[i].contents);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
roots_[constant_string_table[i].index] = String::cast(obj);
|
|
}
|
|
|
|
// Allocate the hidden string which is used to identify the hidden properties
|
|
// in JSObjects. The hash code has a special value so that it will not match
|
|
// the empty string when searching for the property. It cannot be part of the
|
|
// loop above because it needs to be allocated manually with the special
|
|
// hash code in place. The hash code for the hidden_string is zero to ensure
|
|
// that it will always be at the first entry in property descriptors.
|
|
{ MaybeObject* maybe_obj = AllocateOneByteInternalizedString(
|
|
OneByteVector("", 0), String::kEmptyStringHash);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
hidden_string_ = String::cast(obj);
|
|
|
|
// Allocate the code_stubs dictionary. The initial size is set to avoid
|
|
// expanding the dictionary during bootstrapping.
|
|
{ MaybeObject* maybe_obj = UnseededNumberDictionary::Allocate(this, 128);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_code_stubs(UnseededNumberDictionary::cast(obj));
|
|
|
|
|
|
// Allocate the non_monomorphic_cache used in stub-cache.cc. The initial size
|
|
// is set to avoid expanding the dictionary during bootstrapping.
|
|
{ MaybeObject* maybe_obj = UnseededNumberDictionary::Allocate(this, 64);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_non_monomorphic_cache(UnseededNumberDictionary::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocatePolymorphicCodeCache();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_polymorphic_code_cache(PolymorphicCodeCache::cast(obj));
|
|
|
|
set_instanceof_cache_function(Smi::FromInt(0));
|
|
set_instanceof_cache_map(Smi::FromInt(0));
|
|
set_instanceof_cache_answer(Smi::FromInt(0));
|
|
|
|
CreateFixedStubs();
|
|
|
|
// Allocate the dictionary of intrinsic function names.
|
|
{ MaybeObject* maybe_obj =
|
|
NameDictionary::Allocate(this, Runtime::kNumFunctions);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
{ MaybeObject* maybe_obj = Runtime::InitializeIntrinsicFunctionNames(this,
|
|
obj);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_intrinsic_function_names(NameDictionary::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateInitialNumberStringCache();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_number_string_cache(FixedArray::cast(obj));
|
|
|
|
// Allocate cache for single character one byte strings.
|
|
{ MaybeObject* maybe_obj =
|
|
AllocateFixedArray(String::kMaxOneByteCharCode + 1, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_single_character_string_cache(FixedArray::cast(obj));
|
|
|
|
// Allocate cache for string split.
|
|
{ MaybeObject* maybe_obj = AllocateFixedArray(
|
|
RegExpResultsCache::kRegExpResultsCacheSize, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_string_split_cache(FixedArray::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateFixedArray(
|
|
RegExpResultsCache::kRegExpResultsCacheSize, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_regexp_multiple_cache(FixedArray::cast(obj));
|
|
|
|
// Allocate cache for external strings pointing to native source code.
|
|
{ MaybeObject* maybe_obj = AllocateFixedArray(Natives::GetBuiltinsCount());
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_natives_source_cache(FixedArray::cast(obj));
|
|
|
|
// Allocate object to hold object observation state.
|
|
{ MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
{ MaybeObject* maybe_obj = AllocateJSObjectFromMap(Map::cast(obj));
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_observation_state(JSObject::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateSymbol();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_frozen_symbol(Symbol::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = SeededNumberDictionary::Allocate(this, 0, TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
SeededNumberDictionary::cast(obj)->set_requires_slow_elements();
|
|
set_empty_slow_element_dictionary(SeededNumberDictionary::cast(obj));
|
|
|
|
{ MaybeObject* maybe_obj = AllocateSymbol();
|
|
if (!maybe_obj->ToObject(&obj)) return false;
|
|
}
|
|
set_observed_symbol(Symbol::cast(obj));
|
|
|
|
// Handling of script id generation is in Factory::NewScript.
|
|
set_last_script_id(Smi::FromInt(v8::Script::kNoScriptId));
|
|
|
|
// Initialize keyed lookup cache.
|
|
isolate_->keyed_lookup_cache()->Clear();
|
|
|
|
// Initialize context slot cache.
|
|
isolate_->context_slot_cache()->Clear();
|
|
|
|
// Initialize descriptor cache.
|
|
isolate_->descriptor_lookup_cache()->Clear();
|
|
|
|
// Initialize compilation cache.
|
|
isolate_->compilation_cache()->Clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) {
|
|
RootListIndex writable_roots[] = {
|
|
kStoreBufferTopRootIndex,
|
|
kStackLimitRootIndex,
|
|
kNumberStringCacheRootIndex,
|
|
kInstanceofCacheFunctionRootIndex,
|
|
kInstanceofCacheMapRootIndex,
|
|
kInstanceofCacheAnswerRootIndex,
|
|
kCodeStubsRootIndex,
|
|
kNonMonomorphicCacheRootIndex,
|
|
kPolymorphicCodeCacheRootIndex,
|
|
kLastScriptIdRootIndex,
|
|
kEmptyScriptRootIndex,
|
|
kRealStackLimitRootIndex,
|
|
kArgumentsAdaptorDeoptPCOffsetRootIndex,
|
|
kConstructStubDeoptPCOffsetRootIndex,
|
|
kGetterStubDeoptPCOffsetRootIndex,
|
|
kSetterStubDeoptPCOffsetRootIndex,
|
|
kStringTableRootIndex,
|
|
};
|
|
|
|
for (unsigned int i = 0; i < ARRAY_SIZE(writable_roots); i++) {
|
|
if (root_index == writable_roots[i])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
Object* RegExpResultsCache::Lookup(Heap* heap,
|
|
String* key_string,
|
|
Object* key_pattern,
|
|
ResultsCacheType type) {
|
|
FixedArray* cache;
|
|
if (!key_string->IsInternalizedString()) return Smi::FromInt(0);
|
|
if (type == STRING_SPLIT_SUBSTRINGS) {
|
|
ASSERT(key_pattern->IsString());
|
|
if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0);
|
|
cache = heap->string_split_cache();
|
|
} else {
|
|
ASSERT(type == REGEXP_MULTIPLE_INDICES);
|
|
ASSERT(key_pattern->IsFixedArray());
|
|
cache = heap->regexp_multiple_cache();
|
|
}
|
|
|
|
uint32_t hash = key_string->Hash();
|
|
uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
|
|
~(kArrayEntriesPerCacheEntry - 1));
|
|
if (cache->get(index + kStringOffset) == key_string &&
|
|
cache->get(index + kPatternOffset) == key_pattern) {
|
|
return cache->get(index + kArrayOffset);
|
|
}
|
|
index =
|
|
((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
|
|
if (cache->get(index + kStringOffset) == key_string &&
|
|
cache->get(index + kPatternOffset) == key_pattern) {
|
|
return cache->get(index + kArrayOffset);
|
|
}
|
|
return Smi::FromInt(0);
|
|
}
|
|
|
|
|
|
void RegExpResultsCache::Enter(Heap* heap,
|
|
String* key_string,
|
|
Object* key_pattern,
|
|
FixedArray* value_array,
|
|
ResultsCacheType type) {
|
|
FixedArray* cache;
|
|
if (!key_string->IsInternalizedString()) return;
|
|
if (type == STRING_SPLIT_SUBSTRINGS) {
|
|
ASSERT(key_pattern->IsString());
|
|
if (!key_pattern->IsInternalizedString()) return;
|
|
cache = heap->string_split_cache();
|
|
} else {
|
|
ASSERT(type == REGEXP_MULTIPLE_INDICES);
|
|
ASSERT(key_pattern->IsFixedArray());
|
|
cache = heap->regexp_multiple_cache();
|
|
}
|
|
|
|
uint32_t hash = key_string->Hash();
|
|
uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
|
|
~(kArrayEntriesPerCacheEntry - 1));
|
|
if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
|
|
cache->set(index + kStringOffset, key_string);
|
|
cache->set(index + kPatternOffset, key_pattern);
|
|
cache->set(index + kArrayOffset, value_array);
|
|
} else {
|
|
uint32_t index2 =
|
|
((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
|
|
if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
|
|
cache->set(index2 + kStringOffset, key_string);
|
|
cache->set(index2 + kPatternOffset, key_pattern);
|
|
cache->set(index2 + kArrayOffset, value_array);
|
|
} else {
|
|
cache->set(index2 + kStringOffset, Smi::FromInt(0));
|
|
cache->set(index2 + kPatternOffset, Smi::FromInt(0));
|
|
cache->set(index2 + kArrayOffset, Smi::FromInt(0));
|
|
cache->set(index + kStringOffset, key_string);
|
|
cache->set(index + kPatternOffset, key_pattern);
|
|
cache->set(index + kArrayOffset, value_array);
|
|
}
|
|
}
|
|
// If the array is a reasonably short list of substrings, convert it into a
|
|
// list of internalized strings.
|
|
if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) {
|
|
for (int i = 0; i < value_array->length(); i++) {
|
|
String* str = String::cast(value_array->get(i));
|
|
Object* internalized_str;
|
|
MaybeObject* maybe_string = heap->InternalizeString(str);
|
|
if (maybe_string->ToObject(&internalized_str)) {
|
|
value_array->set(i, internalized_str);
|
|
}
|
|
}
|
|
}
|
|
// Convert backing store to a copy-on-write array.
|
|
value_array->set_map_no_write_barrier(heap->fixed_cow_array_map());
|
|
}
|
|
|
|
|
|
void RegExpResultsCache::Clear(FixedArray* cache) {
|
|
for (int i = 0; i < kRegExpResultsCacheSize; i++) {
|
|
cache->set(i, Smi::FromInt(0));
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateInitialNumberStringCache() {
|
|
MaybeObject* maybe_obj =
|
|
AllocateFixedArray(kInitialNumberStringCacheSize * 2, TENURED);
|
|
return maybe_obj;
|
|
}
|
|
|
|
|
|
int Heap::FullSizeNumberStringCacheLength() {
|
|
// Compute the size of the number string cache based on the max newspace size.
|
|
// The number string cache has a minimum size based on twice the initial cache
|
|
// size to ensure that it is bigger after being made 'full size'.
|
|
int number_string_cache_size = max_semispace_size_ / 512;
|
|
number_string_cache_size = Max(kInitialNumberStringCacheSize * 2,
|
|
Min(0x4000, number_string_cache_size));
|
|
// There is a string and a number per entry so the length is twice the number
|
|
// of entries.
|
|
return number_string_cache_size * 2;
|
|
}
|
|
|
|
|
|
void Heap::AllocateFullSizeNumberStringCache() {
|
|
// The idea is to have a small number string cache in the snapshot to keep
|
|
// boot-time memory usage down. If we expand the number string cache already
|
|
// while creating the snapshot then that didn't work out.
|
|
ASSERT(!Serializer::enabled() || FLAG_extra_code != NULL);
|
|
MaybeObject* maybe_obj =
|
|
AllocateFixedArray(FullSizeNumberStringCacheLength(), TENURED);
|
|
Object* new_cache;
|
|
if (maybe_obj->ToObject(&new_cache)) {
|
|
// We don't bother to repopulate the cache with entries from the old cache.
|
|
// It will be repopulated soon enough with new strings.
|
|
set_number_string_cache(FixedArray::cast(new_cache));
|
|
}
|
|
// If allocation fails then we just return without doing anything. It is only
|
|
// a cache, so best effort is OK here.
|
|
}
|
|
|
|
|
|
void Heap::FlushNumberStringCache() {
|
|
// Flush the number to string cache.
|
|
int len = number_string_cache()->length();
|
|
for (int i = 0; i < len; i++) {
|
|
number_string_cache()->set_undefined(this, i);
|
|
}
|
|
}
|
|
|
|
|
|
static inline int double_get_hash(double d) {
|
|
DoubleRepresentation rep(d);
|
|
return static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32);
|
|
}
|
|
|
|
|
|
static inline int smi_get_hash(Smi* smi) {
|
|
return smi->value();
|
|
}
|
|
|
|
|
|
Object* Heap::GetNumberStringCache(Object* number) {
|
|
int hash;
|
|
int mask = (number_string_cache()->length() >> 1) - 1;
|
|
if (number->IsSmi()) {
|
|
hash = smi_get_hash(Smi::cast(number)) & mask;
|
|
} else {
|
|
hash = double_get_hash(number->Number()) & mask;
|
|
}
|
|
Object* key = number_string_cache()->get(hash * 2);
|
|
if (key == number) {
|
|
return String::cast(number_string_cache()->get(hash * 2 + 1));
|
|
} else if (key->IsHeapNumber() &&
|
|
number->IsHeapNumber() &&
|
|
key->Number() == number->Number()) {
|
|
return String::cast(number_string_cache()->get(hash * 2 + 1));
|
|
}
|
|
return undefined_value();
|
|
}
|
|
|
|
|
|
void Heap::SetNumberStringCache(Object* number, String* string) {
|
|
int hash;
|
|
int mask = (number_string_cache()->length() >> 1) - 1;
|
|
if (number->IsSmi()) {
|
|
hash = smi_get_hash(Smi::cast(number)) & mask;
|
|
} else {
|
|
hash = double_get_hash(number->Number()) & mask;
|
|
}
|
|
if (number_string_cache()->get(hash * 2) != undefined_value() &&
|
|
number_string_cache()->length() != FullSizeNumberStringCacheLength()) {
|
|
// The first time we have a hash collision, we move to the full sized
|
|
// number string cache.
|
|
AllocateFullSizeNumberStringCache();
|
|
return;
|
|
}
|
|
number_string_cache()->set(hash * 2, number);
|
|
number_string_cache()->set(hash * 2 + 1, string);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::NumberToString(Object* number,
|
|
bool check_number_string_cache,
|
|
PretenureFlag pretenure) {
|
|
isolate_->counters()->number_to_string_runtime()->Increment();
|
|
if (check_number_string_cache) {
|
|
Object* cached = GetNumberStringCache(number);
|
|
if (cached != undefined_value()) {
|
|
return cached;
|
|
}
|
|
}
|
|
|
|
char arr[100];
|
|
Vector<char> buffer(arr, ARRAY_SIZE(arr));
|
|
const char* str;
|
|
if (number->IsSmi()) {
|
|
int num = Smi::cast(number)->value();
|
|
str = IntToCString(num, buffer);
|
|
} else {
|
|
double num = HeapNumber::cast(number)->value();
|
|
str = DoubleToCString(num, buffer);
|
|
}
|
|
|
|
Object* js_string;
|
|
MaybeObject* maybe_js_string =
|
|
AllocateStringFromOneByte(CStrVector(str), pretenure);
|
|
if (maybe_js_string->ToObject(&js_string)) {
|
|
SetNumberStringCache(number, String::cast(js_string));
|
|
}
|
|
return maybe_js_string;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::Uint32ToString(uint32_t value,
|
|
bool check_number_string_cache) {
|
|
Object* number;
|
|
MaybeObject* maybe = NumberFromUint32(value);
|
|
if (!maybe->To<Object>(&number)) return maybe;
|
|
return NumberToString(number, check_number_string_cache);
|
|
}
|
|
|
|
|
|
Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
|
|
return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
|
|
}
|
|
|
|
|
|
Heap::RootListIndex Heap::RootIndexForExternalArrayType(
|
|
ExternalArrayType array_type) {
|
|
switch (array_type) {
|
|
case kExternalByteArray:
|
|
return kExternalByteArrayMapRootIndex;
|
|
case kExternalUnsignedByteArray:
|
|
return kExternalUnsignedByteArrayMapRootIndex;
|
|
case kExternalShortArray:
|
|
return kExternalShortArrayMapRootIndex;
|
|
case kExternalUnsignedShortArray:
|
|
return kExternalUnsignedShortArrayMapRootIndex;
|
|
case kExternalIntArray:
|
|
return kExternalIntArrayMapRootIndex;
|
|
case kExternalUnsignedIntArray:
|
|
return kExternalUnsignedIntArrayMapRootIndex;
|
|
case kExternalFloatArray:
|
|
return kExternalFloatArrayMapRootIndex;
|
|
case kExternalDoubleArray:
|
|
return kExternalDoubleArrayMapRootIndex;
|
|
case kExternalPixelArray:
|
|
return kExternalPixelArrayMapRootIndex;
|
|
default:
|
|
UNREACHABLE();
|
|
return kUndefinedValueRootIndex;
|
|
}
|
|
}
|
|
|
|
Heap::RootListIndex Heap::RootIndexForEmptyExternalArray(
|
|
ElementsKind elementsKind) {
|
|
switch (elementsKind) {
|
|
case EXTERNAL_BYTE_ELEMENTS:
|
|
return kEmptyExternalByteArrayRootIndex;
|
|
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
|
return kEmptyExternalUnsignedByteArrayRootIndex;
|
|
case EXTERNAL_SHORT_ELEMENTS:
|
|
return kEmptyExternalShortArrayRootIndex;
|
|
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
|
return kEmptyExternalUnsignedShortArrayRootIndex;
|
|
case EXTERNAL_INT_ELEMENTS:
|
|
return kEmptyExternalIntArrayRootIndex;
|
|
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
|
return kEmptyExternalUnsignedIntArrayRootIndex;
|
|
case EXTERNAL_FLOAT_ELEMENTS:
|
|
return kEmptyExternalFloatArrayRootIndex;
|
|
case EXTERNAL_DOUBLE_ELEMENTS:
|
|
return kEmptyExternalDoubleArrayRootIndex;
|
|
case EXTERNAL_PIXEL_ELEMENTS:
|
|
return kEmptyExternalPixelArrayRootIndex;
|
|
default:
|
|
UNREACHABLE();
|
|
return kUndefinedValueRootIndex;
|
|
}
|
|
}
|
|
|
|
|
|
ExternalArray* Heap::EmptyExternalArrayForMap(Map* map) {
|
|
return ExternalArray::cast(
|
|
roots_[RootIndexForEmptyExternalArray(map->elements_kind())]);
|
|
}
|
|
|
|
|
|
|
|
|
|
MaybeObject* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
|
|
// We need to distinguish the minus zero value and this cannot be
|
|
// done after conversion to int. Doing this by comparing bit
|
|
// patterns is faster than using fpclassify() et al.
|
|
static const DoubleRepresentation minus_zero(-0.0);
|
|
|
|
DoubleRepresentation rep(value);
|
|
if (rep.bits == minus_zero.bits) {
|
|
return AllocateHeapNumber(-0.0, pretenure);
|
|
}
|
|
|
|
int int_value = FastD2I(value);
|
|
if (value == int_value && Smi::IsValid(int_value)) {
|
|
return Smi::FromInt(int_value);
|
|
}
|
|
|
|
// Materialize the value in the heap.
|
|
return AllocateHeapNumber(value, pretenure);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateForeign(Address address, PretenureFlag pretenure) {
|
|
// Statically ensure that it is safe to allocate foreigns in paged spaces.
|
|
STATIC_ASSERT(Foreign::kSize <= Page::kMaxNonCodeHeapObjectSize);
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
Foreign* result;
|
|
MaybeObject* maybe_result = Allocate(foreign_map(), space);
|
|
if (!maybe_result->To(&result)) return maybe_result;
|
|
result->set_foreign_address(address);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateSharedFunctionInfo(Object* name) {
|
|
SharedFunctionInfo* share;
|
|
MaybeObject* maybe = Allocate(shared_function_info_map(), OLD_POINTER_SPACE);
|
|
if (!maybe->To<SharedFunctionInfo>(&share)) return maybe;
|
|
|
|
// Set pointer fields.
|
|
share->set_name(name);
|
|
Code* illegal = isolate_->builtins()->builtin(Builtins::kIllegal);
|
|
share->set_code(illegal);
|
|
share->set_optimized_code_map(Smi::FromInt(0));
|
|
share->set_scope_info(ScopeInfo::Empty(isolate_));
|
|
Code* construct_stub =
|
|
isolate_->builtins()->builtin(Builtins::kJSConstructStubGeneric);
|
|
share->set_construct_stub(construct_stub);
|
|
share->set_instance_class_name(Object_string());
|
|
share->set_function_data(undefined_value(), SKIP_WRITE_BARRIER);
|
|
share->set_script(undefined_value(), SKIP_WRITE_BARRIER);
|
|
share->set_debug_info(undefined_value(), SKIP_WRITE_BARRIER);
|
|
share->set_inferred_name(empty_string(), SKIP_WRITE_BARRIER);
|
|
share->set_initial_map(undefined_value(), SKIP_WRITE_BARRIER);
|
|
share->set_ast_node_count(0);
|
|
share->set_counters(0);
|
|
|
|
// Set integer fields (smi or int, depending on the architecture).
|
|
share->set_length(0);
|
|
share->set_formal_parameter_count(0);
|
|
share->set_expected_nof_properties(0);
|
|
share->set_num_literals(0);
|
|
share->set_start_position_and_type(0);
|
|
share->set_end_position(0);
|
|
share->set_function_token_position(0);
|
|
// All compiler hints default to false or 0.
|
|
share->set_compiler_hints(0);
|
|
share->set_opt_count(0);
|
|
|
|
return share;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSMessageObject(String* type,
|
|
JSArray* arguments,
|
|
int start_position,
|
|
int end_position,
|
|
Object* script,
|
|
Object* stack_trace,
|
|
Object* stack_frames) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(message_object_map(), NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
JSMessageObject* message = JSMessageObject::cast(result);
|
|
message->set_properties(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER);
|
|
message->initialize_elements();
|
|
message->set_elements(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER);
|
|
message->set_type(type);
|
|
message->set_arguments(arguments);
|
|
message->set_start_position(start_position);
|
|
message->set_end_position(end_position);
|
|
message->set_script(script);
|
|
message->set_stack_trace(stack_trace);
|
|
message->set_stack_frames(stack_frames);
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
// Returns true for a character in a range. Both limits are inclusive.
|
|
static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
|
|
// This makes uses of the the unsigned wraparound.
|
|
return character - from <= to - from;
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString(
|
|
Heap* heap,
|
|
uint16_t c1,
|
|
uint16_t c2) {
|
|
String* result;
|
|
// Numeric strings have a different hash algorithm not known by
|
|
// LookupTwoCharsStringIfExists, so we skip this step for such strings.
|
|
if ((!Between(c1, '0', '9') || !Between(c2, '0', '9')) &&
|
|
heap->string_table()->LookupTwoCharsStringIfExists(c1, c2, &result)) {
|
|
return result;
|
|
// Now we know the length is 2, we might as well make use of that fact
|
|
// when building the new string.
|
|
} else if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
|
|
// We can do this.
|
|
ASSERT(IsPowerOf2(String::kMaxOneByteCharCodeU + 1)); // because of this.
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = heap->AllocateRawOneByteString(2);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
uint8_t* dest = SeqOneByteString::cast(result)->GetChars();
|
|
dest[0] = static_cast<uint8_t>(c1);
|
|
dest[1] = static_cast<uint8_t>(c2);
|
|
return result;
|
|
} else {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = heap->AllocateRawTwoByteString(2);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
uc16* dest = SeqTwoByteString::cast(result)->GetChars();
|
|
dest[0] = c1;
|
|
dest[1] = c2;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateConsString(String* first, String* second) {
|
|
int first_length = first->length();
|
|
if (first_length == 0) {
|
|
return second;
|
|
}
|
|
|
|
int second_length = second->length();
|
|
if (second_length == 0) {
|
|
return first;
|
|
}
|
|
|
|
int length = first_length + second_length;
|
|
|
|
// Optimization for 2-byte strings often used as keys in a decompression
|
|
// dictionary. Check whether we already have the string in the string
|
|
// table to prevent creation of many unneccesary strings.
|
|
if (length == 2) {
|
|
uint16_t c1 = first->Get(0);
|
|
uint16_t c2 = second->Get(0);
|
|
return MakeOrFindTwoCharacterString(this, c1, c2);
|
|
}
|
|
|
|
bool first_is_one_byte = first->IsOneByteRepresentation();
|
|
bool second_is_one_byte = second->IsOneByteRepresentation();
|
|
bool is_one_byte = first_is_one_byte && second_is_one_byte;
|
|
// Make sure that an out of memory exception is thrown if the length
|
|
// of the new cons string is too large.
|
|
if (length > String::kMaxLength || length < 0) {
|
|
isolate()->context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException(0x4);
|
|
}
|
|
|
|
bool is_one_byte_data_in_two_byte_string = false;
|
|
if (!is_one_byte) {
|
|
// At least one of the strings uses two-byte representation so we
|
|
// can't use the fast case code for short ASCII strings below, but
|
|
// we can try to save memory if all chars actually fit in ASCII.
|
|
is_one_byte_data_in_two_byte_string =
|
|
first->HasOnlyOneByteChars() && second->HasOnlyOneByteChars();
|
|
if (is_one_byte_data_in_two_byte_string) {
|
|
isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
|
|
}
|
|
}
|
|
|
|
// If the resulting string is small make a flat string.
|
|
if (length < ConsString::kMinLength) {
|
|
// Note that neither of the two inputs can be a slice because:
|
|
STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
|
|
ASSERT(first->IsFlat());
|
|
ASSERT(second->IsFlat());
|
|
if (is_one_byte) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawOneByteString(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Copy the characters into the new object.
|
|
uint8_t* dest = SeqOneByteString::cast(result)->GetChars();
|
|
// Copy first part.
|
|
const uint8_t* src;
|
|
if (first->IsExternalString()) {
|
|
src = ExternalAsciiString::cast(first)->GetChars();
|
|
} else {
|
|
src = SeqOneByteString::cast(first)->GetChars();
|
|
}
|
|
for (int i = 0; i < first_length; i++) *dest++ = src[i];
|
|
// Copy second part.
|
|
if (second->IsExternalString()) {
|
|
src = ExternalAsciiString::cast(second)->GetChars();
|
|
} else {
|
|
src = SeqOneByteString::cast(second)->GetChars();
|
|
}
|
|
for (int i = 0; i < second_length; i++) *dest++ = src[i];
|
|
return result;
|
|
} else {
|
|
if (is_one_byte_data_in_two_byte_string) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawOneByteString(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Copy the characters into the new object.
|
|
uint8_t* dest = SeqOneByteString::cast(result)->GetChars();
|
|
String::WriteToFlat(first, dest, 0, first_length);
|
|
String::WriteToFlat(second, dest + first_length, 0, second_length);
|
|
isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
|
|
return result;
|
|
}
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawTwoByteString(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Copy the characters into the new object.
|
|
uc16* dest = SeqTwoByteString::cast(result)->GetChars();
|
|
String::WriteToFlat(first, dest, 0, first_length);
|
|
String::WriteToFlat(second, dest + first_length, 0, second_length);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
Map* map = (is_one_byte || is_one_byte_data_in_two_byte_string) ?
|
|
cons_ascii_string_map() : cons_string_map();
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
DisallowHeapAllocation no_gc;
|
|
ConsString* cons_string = ConsString::cast(result);
|
|
WriteBarrierMode mode = cons_string->GetWriteBarrierMode(no_gc);
|
|
cons_string->set_length(length);
|
|
cons_string->set_hash_field(String::kEmptyHashField);
|
|
cons_string->set_first(first, mode);
|
|
cons_string->set_second(second, mode);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateSubString(String* buffer,
|
|
int start,
|
|
int end,
|
|
PretenureFlag pretenure) {
|
|
int length = end - start;
|
|
if (length <= 0) {
|
|
return empty_string();
|
|
} else if (length == 1) {
|
|
return LookupSingleCharacterStringFromCode(buffer->Get(start));
|
|
} else if (length == 2) {
|
|
// Optimization for 2-byte strings often used as keys in a decompression
|
|
// dictionary. Check whether we already have the string in the string
|
|
// table to prevent creation of many unnecessary strings.
|
|
uint16_t c1 = buffer->Get(start);
|
|
uint16_t c2 = buffer->Get(start + 1);
|
|
return MakeOrFindTwoCharacterString(this, c1, c2);
|
|
}
|
|
|
|
// Make an attempt to flatten the buffer to reduce access time.
|
|
buffer = buffer->TryFlattenGetString();
|
|
|
|
if (!FLAG_string_slices ||
|
|
!buffer->IsFlat() ||
|
|
length < SlicedString::kMinLength ||
|
|
pretenure == TENURED) {
|
|
Object* result;
|
|
// WriteToFlat takes care of the case when an indirect string has a
|
|
// different encoding from its underlying string. These encodings may
|
|
// differ because of externalization.
|
|
bool is_one_byte = buffer->IsOneByteRepresentation();
|
|
{ MaybeObject* maybe_result = is_one_byte
|
|
? AllocateRawOneByteString(length, pretenure)
|
|
: AllocateRawTwoByteString(length, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
String* string_result = String::cast(result);
|
|
// Copy the characters into the new object.
|
|
if (is_one_byte) {
|
|
ASSERT(string_result->IsOneByteRepresentation());
|
|
uint8_t* dest = SeqOneByteString::cast(string_result)->GetChars();
|
|
String::WriteToFlat(buffer, dest, start, end);
|
|
} else {
|
|
ASSERT(string_result->IsTwoByteRepresentation());
|
|
uc16* dest = SeqTwoByteString::cast(string_result)->GetChars();
|
|
String::WriteToFlat(buffer, dest, start, end);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
ASSERT(buffer->IsFlat());
|
|
#if VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
buffer->StringVerify();
|
|
}
|
|
#endif
|
|
|
|
Object* result;
|
|
// When slicing an indirect string we use its encoding for a newly created
|
|
// slice and don't check the encoding of the underlying string. This is safe
|
|
// even if the encodings are different because of externalization. If an
|
|
// indirect ASCII string is pointing to a two-byte string, the two-byte char
|
|
// codes of the underlying string must still fit into ASCII (because
|
|
// externalization must not change char codes).
|
|
{ Map* map = buffer->IsOneByteRepresentation()
|
|
? sliced_ascii_string_map()
|
|
: sliced_string_map();
|
|
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
DisallowHeapAllocation no_gc;
|
|
SlicedString* sliced_string = SlicedString::cast(result);
|
|
sliced_string->set_length(length);
|
|
sliced_string->set_hash_field(String::kEmptyHashField);
|
|
if (buffer->IsConsString()) {
|
|
ConsString* cons = ConsString::cast(buffer);
|
|
ASSERT(cons->second()->length() == 0);
|
|
sliced_string->set_parent(cons->first());
|
|
sliced_string->set_offset(start);
|
|
} else if (buffer->IsSlicedString()) {
|
|
// Prevent nesting sliced strings.
|
|
SlicedString* parent_slice = SlicedString::cast(buffer);
|
|
sliced_string->set_parent(parent_slice->parent());
|
|
sliced_string->set_offset(start + parent_slice->offset());
|
|
} else {
|
|
sliced_string->set_parent(buffer);
|
|
sliced_string->set_offset(start);
|
|
}
|
|
ASSERT(sliced_string->parent()->IsSeqString() ||
|
|
sliced_string->parent()->IsExternalString());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateExternalStringFromAscii(
|
|
const ExternalAsciiString::Resource* resource) {
|
|
size_t length = resource->length();
|
|
if (length > static_cast<size_t>(String::kMaxLength)) {
|
|
isolate()->context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException(0x5);
|
|
}
|
|
|
|
Map* map = external_ascii_string_map();
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
|
|
external_string->set_length(static_cast<int>(length));
|
|
external_string->set_hash_field(String::kEmptyHashField);
|
|
external_string->set_resource(resource);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateExternalStringFromTwoByte(
|
|
const ExternalTwoByteString::Resource* resource) {
|
|
size_t length = resource->length();
|
|
if (length > static_cast<size_t>(String::kMaxLength)) {
|
|
isolate()->context()->mark_out_of_memory();
|
|
return Failure::OutOfMemoryException(0x6);
|
|
}
|
|
|
|
// For small strings we check whether the resource contains only
|
|
// one byte characters. If yes, we use a different string map.
|
|
static const size_t kOneByteCheckLengthLimit = 32;
|
|
bool is_one_byte = length <= kOneByteCheckLengthLimit &&
|
|
String::IsOneByte(resource->data(), static_cast<int>(length));
|
|
Map* map = is_one_byte ?
|
|
external_string_with_one_byte_data_map() : external_string_map();
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
|
|
external_string->set_length(static_cast<int>(length));
|
|
external_string->set_hash_field(String::kEmptyHashField);
|
|
external_string->set_resource(resource);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
|
|
if (code <= String::kMaxOneByteCharCode) {
|
|
Object* value = single_character_string_cache()->get(code);
|
|
if (value != undefined_value()) return value;
|
|
|
|
uint8_t buffer[1];
|
|
buffer[0] = static_cast<uint8_t>(code);
|
|
Object* result;
|
|
MaybeObject* maybe_result =
|
|
InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
|
|
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
single_character_string_cache()->set(code, result);
|
|
return result;
|
|
}
|
|
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawTwoByteString(1);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
String* answer = String::cast(result);
|
|
answer->Set(0, code);
|
|
return answer;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
|
|
if (length < 0 || length > ByteArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0x7);
|
|
}
|
|
if (pretenure == NOT_TENURED) {
|
|
return AllocateByteArray(length);
|
|
}
|
|
int size = ByteArray::SizeFor(length);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = (size <= Page::kMaxNonCodeHeapObjectSize)
|
|
? old_data_space_->AllocateRaw(size)
|
|
: lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
reinterpret_cast<ByteArray*>(result)->set_map_no_write_barrier(
|
|
byte_array_map());
|
|
reinterpret_cast<ByteArray*>(result)->set_length(length);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateByteArray(int length) {
|
|
if (length < 0 || length > ByteArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0x8);
|
|
}
|
|
int size = ByteArray::SizeFor(length);
|
|
AllocationSpace space =
|
|
(size > Page::kMaxNonCodeHeapObjectSize) ? LO_SPACE : NEW_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
reinterpret_cast<ByteArray*>(result)->set_map_no_write_barrier(
|
|
byte_array_map());
|
|
reinterpret_cast<ByteArray*>(result)->set_length(length);
|
|
return result;
|
|
}
|
|
|
|
|
|
void Heap::CreateFillerObjectAt(Address addr, int size) {
|
|
if (size == 0) return;
|
|
HeapObject* filler = HeapObject::FromAddress(addr);
|
|
if (size == kPointerSize) {
|
|
filler->set_map_no_write_barrier(one_pointer_filler_map());
|
|
} else if (size == 2 * kPointerSize) {
|
|
filler->set_map_no_write_barrier(two_pointer_filler_map());
|
|
} else {
|
|
filler->set_map_no_write_barrier(free_space_map());
|
|
FreeSpace::cast(filler)->set_size(size);
|
|
}
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateExternalArray(int length,
|
|
ExternalArrayType array_type,
|
|
void* external_pointer,
|
|
PretenureFlag pretenure) {
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRaw(ExternalArray::kAlignedSize,
|
|
space,
|
|
OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
reinterpret_cast<ExternalArray*>(result)->set_map_no_write_barrier(
|
|
MapForExternalArrayType(array_type));
|
|
reinterpret_cast<ExternalArray*>(result)->set_length(length);
|
|
reinterpret_cast<ExternalArray*>(result)->set_external_pointer(
|
|
external_pointer);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CreateCode(const CodeDesc& desc,
|
|
Code::Flags flags,
|
|
Handle<Object> self_reference,
|
|
bool immovable,
|
|
bool crankshafted) {
|
|
// Allocate ByteArray before the Code object, so that we do not risk
|
|
// leaving uninitialized Code object (and breaking the heap).
|
|
ByteArray* reloc_info;
|
|
MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED);
|
|
if (!maybe_reloc_info->To(&reloc_info)) return maybe_reloc_info;
|
|
|
|
// Compute size.
|
|
int body_size = RoundUp(desc.instr_size, kObjectAlignment);
|
|
int obj_size = Code::SizeFor(body_size);
|
|
ASSERT(IsAligned(static_cast<intptr_t>(obj_size), kCodeAlignment));
|
|
MaybeObject* maybe_result;
|
|
// Large code objects and code objects which should stay at a fixed address
|
|
// are allocated in large object space.
|
|
HeapObject* result;
|
|
bool force_lo_space = obj_size > code_space()->AreaSize();
|
|
if (force_lo_space) {
|
|
maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
|
|
} else {
|
|
maybe_result = code_space_->AllocateRaw(obj_size);
|
|
}
|
|
if (!maybe_result->To<HeapObject>(&result)) return maybe_result;
|
|
|
|
if (immovable && !force_lo_space &&
|
|
// Objects on the first page of each space are never moved.
|
|
!code_space_->FirstPage()->Contains(result->address())) {
|
|
// Discard the first code allocation, which was on a page where it could be
|
|
// moved.
|
|
CreateFillerObjectAt(result->address(), obj_size);
|
|
maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
|
|
if (!maybe_result->To<HeapObject>(&result)) return maybe_result;
|
|
}
|
|
|
|
// Initialize the object
|
|
result->set_map_no_write_barrier(code_map());
|
|
Code* code = Code::cast(result);
|
|
ASSERT(!isolate_->code_range()->exists() ||
|
|
isolate_->code_range()->contains(code->address()));
|
|
code->set_instruction_size(desc.instr_size);
|
|
code->set_relocation_info(reloc_info);
|
|
code->set_flags(flags);
|
|
if (code->is_call_stub() || code->is_keyed_call_stub()) {
|
|
code->set_check_type(RECEIVER_MAP_CHECK);
|
|
}
|
|
code->set_is_crankshafted(crankshafted);
|
|
code->set_deoptimization_data(empty_fixed_array(), SKIP_WRITE_BARRIER);
|
|
code->InitializeTypeFeedbackInfoNoWriteBarrier(undefined_value());
|
|
code->set_handler_table(empty_fixed_array(), SKIP_WRITE_BARRIER);
|
|
code->set_gc_metadata(Smi::FromInt(0));
|
|
code->set_ic_age(global_ic_age_);
|
|
code->set_prologue_offset(kPrologueOffsetNotSet);
|
|
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
code->set_marked_for_deoptimization(false);
|
|
}
|
|
// Allow self references to created code object by patching the handle to
|
|
// point to the newly allocated Code object.
|
|
if (!self_reference.is_null()) {
|
|
*(self_reference.location()) = code;
|
|
}
|
|
// Migrate generated code.
|
|
// The generated code can contain Object** values (typically from handles)
|
|
// that are dereferenced during the copy to point directly to the actual heap
|
|
// objects. These pointers can include references to the code object itself,
|
|
// through the self_reference parameter.
|
|
code->CopyFrom(desc);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
code->Verify();
|
|
}
|
|
#endif
|
|
return code;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyCode(Code* code) {
|
|
// Allocate an object the same size as the code object.
|
|
int obj_size = code->Size();
|
|
MaybeObject* maybe_result;
|
|
if (obj_size > code_space()->AreaSize()) {
|
|
maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
|
|
} else {
|
|
maybe_result = code_space_->AllocateRaw(obj_size);
|
|
}
|
|
|
|
Object* result;
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
// Copy code object.
|
|
Address old_addr = code->address();
|
|
Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
|
|
CopyBlock(new_addr, old_addr, obj_size);
|
|
// Relocate the copy.
|
|
Code* new_code = Code::cast(result);
|
|
ASSERT(!isolate_->code_range()->exists() ||
|
|
isolate_->code_range()->contains(code->address()));
|
|
new_code->Relocate(new_addr - old_addr);
|
|
return new_code;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
|
|
// Allocate ByteArray before the Code object, so that we do not risk
|
|
// leaving uninitialized Code object (and breaking the heap).
|
|
Object* reloc_info_array;
|
|
{ MaybeObject* maybe_reloc_info_array =
|
|
AllocateByteArray(reloc_info.length(), TENURED);
|
|
if (!maybe_reloc_info_array->ToObject(&reloc_info_array)) {
|
|
return maybe_reloc_info_array;
|
|
}
|
|
}
|
|
|
|
int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
|
|
|
|
int new_obj_size = Code::SizeFor(new_body_size);
|
|
|
|
Address old_addr = code->address();
|
|
|
|
size_t relocation_offset =
|
|
static_cast<size_t>(code->instruction_end() - old_addr);
|
|
|
|
MaybeObject* maybe_result;
|
|
if (new_obj_size > code_space()->AreaSize()) {
|
|
maybe_result = lo_space_->AllocateRaw(new_obj_size, EXECUTABLE);
|
|
} else {
|
|
maybe_result = code_space_->AllocateRaw(new_obj_size);
|
|
}
|
|
|
|
Object* result;
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
|
|
// Copy code object.
|
|
Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
|
|
|
|
// Copy header and instructions.
|
|
CopyBytes(new_addr, old_addr, relocation_offset);
|
|
|
|
Code* new_code = Code::cast(result);
|
|
new_code->set_relocation_info(ByteArray::cast(reloc_info_array));
|
|
|
|
// Copy patched rinfo.
|
|
CopyBytes(new_code->relocation_start(),
|
|
reloc_info.start(),
|
|
static_cast<size_t>(reloc_info.length()));
|
|
|
|
// Relocate the copy.
|
|
ASSERT(!isolate_->code_range()->exists() ||
|
|
isolate_->code_range()->contains(code->address()));
|
|
new_code->Relocate(new_addr - old_addr);
|
|
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
code->Verify();
|
|
}
|
|
#endif
|
|
return new_code;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateWithAllocationSite(Map* map, AllocationSpace space,
|
|
Handle<AllocationSite> allocation_site) {
|
|
ASSERT(gc_state_ == NOT_IN_GC);
|
|
ASSERT(map->instance_type() != MAP_TYPE);
|
|
// If allocation failures are disallowed, we may allocate in a different
|
|
// space when new space is full and the object is not a large object.
|
|
AllocationSpace retry_space =
|
|
(space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
|
|
int size = map->instance_size() + AllocationMemento::kSize;
|
|
Object* result;
|
|
MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
// No need for write barrier since object is white and map is in old space.
|
|
HeapObject::cast(result)->set_map_no_write_barrier(map);
|
|
AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
|
|
reinterpret_cast<Address>(result) + map->instance_size());
|
|
alloc_memento->set_map_no_write_barrier(allocation_memento_map());
|
|
alloc_memento->set_allocation_site(*allocation_site, SKIP_WRITE_BARRIER);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::Allocate(Map* map, AllocationSpace space) {
|
|
ASSERT(gc_state_ == NOT_IN_GC);
|
|
ASSERT(map->instance_type() != MAP_TYPE);
|
|
// If allocation failures are disallowed, we may allocate in a different
|
|
// space when new space is full and the object is not a large object.
|
|
AllocationSpace retry_space =
|
|
(space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
|
|
int size = map->instance_size();
|
|
Object* result;
|
|
MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
// No need for write barrier since object is white and map is in old space.
|
|
HeapObject::cast(result)->set_map_no_write_barrier(map);
|
|
return result;
|
|
}
|
|
|
|
|
|
void Heap::InitializeFunction(JSFunction* function,
|
|
SharedFunctionInfo* shared,
|
|
Object* prototype) {
|
|
ASSERT(!prototype->IsMap());
|
|
function->initialize_properties();
|
|
function->initialize_elements();
|
|
function->set_shared(shared);
|
|
function->set_code(shared->code());
|
|
function->set_prototype_or_initial_map(prototype);
|
|
function->set_context(undefined_value());
|
|
function->set_literals_or_bindings(empty_fixed_array());
|
|
function->set_next_function_link(undefined_value());
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFunctionPrototype(JSFunction* function) {
|
|
// Make sure to use globals from the function's context, since the function
|
|
// can be from a different context.
|
|
Context* native_context = function->context()->native_context();
|
|
Map* new_map;
|
|
if (function->shared()->is_generator()) {
|
|
// Generator prototypes can share maps since they don't have "constructor"
|
|
// properties.
|
|
new_map = native_context->generator_object_prototype_map();
|
|
} else {
|
|
// Each function prototype gets a fresh map to avoid unwanted sharing of
|
|
// maps between prototypes of different constructors.
|
|
JSFunction* object_function = native_context->object_function();
|
|
ASSERT(object_function->has_initial_map());
|
|
MaybeObject* maybe_map = object_function->initial_map()->Copy();
|
|
if (!maybe_map->To(&new_map)) return maybe_map;
|
|
}
|
|
|
|
Object* prototype;
|
|
MaybeObject* maybe_prototype = AllocateJSObjectFromMap(new_map);
|
|
if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
|
|
|
|
if (!function->shared()->is_generator()) {
|
|
MaybeObject* maybe_failure =
|
|
JSObject::cast(prototype)->SetLocalPropertyIgnoreAttributes(
|
|
constructor_string(), function, DONT_ENUM);
|
|
if (maybe_failure->IsFailure()) return maybe_failure;
|
|
}
|
|
|
|
return prototype;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFunction(Map* function_map,
|
|
SharedFunctionInfo* shared,
|
|
Object* prototype,
|
|
PretenureFlag pretenure) {
|
|
AllocationSpace space =
|
|
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(function_map, space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
InitializeFunction(JSFunction::cast(result), shared, prototype);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateArgumentsObject(Object* callee, int length) {
|
|
// To get fast allocation and map sharing for arguments objects we
|
|
// allocate them based on an arguments boilerplate.
|
|
|
|
JSObject* boilerplate;
|
|
int arguments_object_size;
|
|
bool strict_mode_callee = callee->IsJSFunction() &&
|
|
!JSFunction::cast(callee)->shared()->is_classic_mode();
|
|
if (strict_mode_callee) {
|
|
boilerplate =
|
|
isolate()->context()->native_context()->
|
|
strict_mode_arguments_boilerplate();
|
|
arguments_object_size = kArgumentsObjectSizeStrict;
|
|
} else {
|
|
boilerplate =
|
|
isolate()->context()->native_context()->arguments_boilerplate();
|
|
arguments_object_size = kArgumentsObjectSize;
|
|
}
|
|
|
|
// This calls Copy directly rather than using Heap::AllocateRaw so we
|
|
// duplicate the check here.
|
|
ASSERT(AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC);
|
|
|
|
// Check that the size of the boilerplate matches our
|
|
// expectations. The ArgumentsAccessStub::GenerateNewObject relies
|
|
// on the size being a known constant.
|
|
ASSERT(arguments_object_size == boilerplate->map()->instance_size());
|
|
|
|
// Do the allocation.
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(arguments_object_size, NEW_SPACE, OLD_POINTER_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Copy the content. The arguments boilerplate doesn't have any
|
|
// fields that point to new space so it's safe to skip the write
|
|
// barrier here.
|
|
CopyBlock(HeapObject::cast(result)->address(),
|
|
boilerplate->address(),
|
|
JSObject::kHeaderSize);
|
|
|
|
// Set the length property.
|
|
JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsLengthIndex,
|
|
Smi::FromInt(length),
|
|
SKIP_WRITE_BARRIER);
|
|
// Set the callee property for non-strict mode arguments object only.
|
|
if (!strict_mode_callee) {
|
|
JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsCalleeIndex,
|
|
callee);
|
|
}
|
|
|
|
// Check the state of the object
|
|
ASSERT(JSObject::cast(result)->HasFastProperties());
|
|
ASSERT(JSObject::cast(result)->HasFastObjectElements());
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateInitialMap(JSFunction* fun) {
|
|
ASSERT(!fun->has_initial_map());
|
|
|
|
// First create a new map with the size and number of in-object properties
|
|
// suggested by the function.
|
|
InstanceType instance_type;
|
|
int instance_size;
|
|
int in_object_properties;
|
|
if (fun->shared()->is_generator()) {
|
|
instance_type = JS_GENERATOR_OBJECT_TYPE;
|
|
instance_size = JSGeneratorObject::kSize;
|
|
in_object_properties = 0;
|
|
} else {
|
|
instance_type = JS_OBJECT_TYPE;
|
|
instance_size = fun->shared()->CalculateInstanceSize();
|
|
in_object_properties = fun->shared()->CalculateInObjectProperties();
|
|
}
|
|
Map* map;
|
|
MaybeObject* maybe_map = AllocateMap(instance_type, instance_size);
|
|
if (!maybe_map->To(&map)) return maybe_map;
|
|
|
|
// Fetch or allocate prototype.
|
|
Object* prototype;
|
|
if (fun->has_instance_prototype()) {
|
|
prototype = fun->instance_prototype();
|
|
} else {
|
|
MaybeObject* maybe_prototype = AllocateFunctionPrototype(fun);
|
|
if (!maybe_prototype->To(&prototype)) return maybe_prototype;
|
|
}
|
|
map->set_inobject_properties(in_object_properties);
|
|
map->set_unused_property_fields(in_object_properties);
|
|
map->set_prototype(prototype);
|
|
ASSERT(map->has_fast_object_elements());
|
|
|
|
if (!fun->shared()->is_generator()) {
|
|
fun->shared()->StartInobjectSlackTracking(map);
|
|
}
|
|
|
|
return map;
|
|
}
|
|
|
|
|
|
void Heap::InitializeJSObjectFromMap(JSObject* obj,
|
|
FixedArray* properties,
|
|
Map* map) {
|
|
obj->set_properties(properties);
|
|
obj->initialize_elements();
|
|
// TODO(1240798): Initialize the object's body using valid initial values
|
|
// according to the object's initial map. For example, if the map's
|
|
// instance type is JS_ARRAY_TYPE, the length field should be initialized
|
|
// to a number (e.g. Smi::FromInt(0)) and the elements initialized to a
|
|
// fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
|
|
// verification code has to cope with (temporarily) invalid objects. See
|
|
// for example, JSArray::JSArrayVerify).
|
|
Object* filler;
|
|
// We cannot always fill with one_pointer_filler_map because objects
|
|
// created from API functions expect their internal fields to be initialized
|
|
// with undefined_value.
|
|
// Pre-allocated fields need to be initialized with undefined_value as well
|
|
// so that object accesses before the constructor completes (e.g. in the
|
|
// debugger) will not cause a crash.
|
|
if (map->constructor()->IsJSFunction() &&
|
|
JSFunction::cast(map->constructor())->shared()->
|
|
IsInobjectSlackTrackingInProgress()) {
|
|
// We might want to shrink the object later.
|
|
ASSERT(obj->GetInternalFieldCount() == 0);
|
|
filler = Heap::one_pointer_filler_map();
|
|
} else {
|
|
filler = Heap::undefined_value();
|
|
}
|
|
obj->InitializeBody(map, Heap::undefined_value(), filler);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
|
|
// JSFunctions should be allocated using AllocateFunction to be
|
|
// properly initialized.
|
|
ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
|
|
|
|
// Both types of global objects should be allocated using
|
|
// AllocateGlobalObject to be properly initialized.
|
|
ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
|
|
ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
|
|
|
|
// Allocate the backing storage for the properties.
|
|
int prop_size = map->InitialPropertiesLength();
|
|
ASSERT(prop_size >= 0);
|
|
Object* properties;
|
|
{ MaybeObject* maybe_properties = AllocateFixedArray(prop_size, pretenure);
|
|
if (!maybe_properties->ToObject(&properties)) return maybe_properties;
|
|
}
|
|
|
|
// Allocate the JSObject.
|
|
AllocationSpace space =
|
|
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
|
|
if (map->instance_size() > Page::kMaxNonCodeHeapObjectSize) space = LO_SPACE;
|
|
Object* obj;
|
|
MaybeObject* maybe_obj = Allocate(map, space);
|
|
if (!maybe_obj->To(&obj)) return maybe_obj;
|
|
|
|
// Initialize the JSObject.
|
|
InitializeJSObjectFromMap(JSObject::cast(obj),
|
|
FixedArray::cast(properties),
|
|
map);
|
|
ASSERT(JSObject::cast(obj)->HasFastElements() ||
|
|
JSObject::cast(obj)->HasExternalArrayElements());
|
|
return obj;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSObjectFromMapWithAllocationSite(Map* map,
|
|
Handle<AllocationSite> allocation_site) {
|
|
// JSFunctions should be allocated using AllocateFunction to be
|
|
// properly initialized.
|
|
ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
|
|
|
|
// Both types of global objects should be allocated using
|
|
// AllocateGlobalObject to be properly initialized.
|
|
ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
|
|
ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
|
|
|
|
// Allocate the backing storage for the properties.
|
|
int prop_size = map->InitialPropertiesLength();
|
|
ASSERT(prop_size >= 0);
|
|
Object* properties;
|
|
{ MaybeObject* maybe_properties = AllocateFixedArray(prop_size);
|
|
if (!maybe_properties->ToObject(&properties)) return maybe_properties;
|
|
}
|
|
|
|
// Allocate the JSObject.
|
|
AllocationSpace space = NEW_SPACE;
|
|
if (map->instance_size() > Page::kMaxNonCodeHeapObjectSize) space = LO_SPACE;
|
|
Object* obj;
|
|
MaybeObject* maybe_obj =
|
|
AllocateWithAllocationSite(map, space, allocation_site);
|
|
if (!maybe_obj->To(&obj)) return maybe_obj;
|
|
|
|
// Initialize the JSObject.
|
|
InitializeJSObjectFromMap(JSObject::cast(obj),
|
|
FixedArray::cast(properties),
|
|
map);
|
|
ASSERT(JSObject::cast(obj)->HasFastElements());
|
|
return obj;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSObject(JSFunction* constructor,
|
|
PretenureFlag pretenure) {
|
|
// Allocate the initial map if absent.
|
|
if (!constructor->has_initial_map()) {
|
|
Object* initial_map;
|
|
{ MaybeObject* maybe_initial_map = AllocateInitialMap(constructor);
|
|
if (!maybe_initial_map->ToObject(&initial_map)) return maybe_initial_map;
|
|
}
|
|
constructor->set_initial_map(Map::cast(initial_map));
|
|
Map::cast(initial_map)->set_constructor(constructor);
|
|
}
|
|
// Allocate the object based on the constructors initial map.
|
|
MaybeObject* result = AllocateJSObjectFromMap(
|
|
constructor->initial_map(), pretenure);
|
|
#ifdef DEBUG
|
|
// Make sure result is NOT a global object if valid.
|
|
Object* non_failure;
|
|
ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject());
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSObjectWithAllocationSite(JSFunction* constructor,
|
|
Handle<AllocationSite> allocation_site) {
|
|
// Allocate the initial map if absent.
|
|
if (!constructor->has_initial_map()) {
|
|
Object* initial_map;
|
|
{ MaybeObject* maybe_initial_map = AllocateInitialMap(constructor);
|
|
if (!maybe_initial_map->ToObject(&initial_map)) return maybe_initial_map;
|
|
}
|
|
constructor->set_initial_map(Map::cast(initial_map));
|
|
Map::cast(initial_map)->set_constructor(constructor);
|
|
}
|
|
// Allocate the object based on the constructors initial map, or the payload
|
|
// advice
|
|
Map* initial_map = constructor->initial_map();
|
|
|
|
Smi* smi = Smi::cast(allocation_site->transition_info());
|
|
ElementsKind to_kind = static_cast<ElementsKind>(smi->value());
|
|
AllocationSiteMode mode = TRACK_ALLOCATION_SITE;
|
|
if (to_kind != initial_map->elements_kind()) {
|
|
MaybeObject* maybe_new_map = initial_map->AsElementsKind(to_kind);
|
|
if (!maybe_new_map->To(&initial_map)) return maybe_new_map;
|
|
// Possibly alter the mode, since we found an updated elements kind
|
|
// in the type info cell.
|
|
mode = AllocationSite::GetMode(to_kind);
|
|
}
|
|
|
|
MaybeObject* result;
|
|
if (mode == TRACK_ALLOCATION_SITE) {
|
|
result = AllocateJSObjectFromMapWithAllocationSite(initial_map,
|
|
allocation_site);
|
|
} else {
|
|
result = AllocateJSObjectFromMap(initial_map, NOT_TENURED);
|
|
}
|
|
#ifdef DEBUG
|
|
// Make sure result is NOT a global object if valid.
|
|
Object* non_failure;
|
|
ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject());
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSGeneratorObject(JSFunction *function) {
|
|
ASSERT(function->shared()->is_generator());
|
|
Map *map;
|
|
if (function->has_initial_map()) {
|
|
map = function->initial_map();
|
|
} else {
|
|
// Allocate the initial map if absent.
|
|
MaybeObject* maybe_map = AllocateInitialMap(function);
|
|
if (!maybe_map->To(&map)) return maybe_map;
|
|
function->set_initial_map(map);
|
|
map->set_constructor(function);
|
|
}
|
|
ASSERT(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
|
|
return AllocateJSObjectFromMap(map);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSModule(Context* context, ScopeInfo* scope_info) {
|
|
// Allocate a fresh map. Modules do not have a prototype.
|
|
Map* map;
|
|
MaybeObject* maybe_map = AllocateMap(JS_MODULE_TYPE, JSModule::kSize);
|
|
if (!maybe_map->To(&map)) return maybe_map;
|
|
// Allocate the object based on the map.
|
|
JSModule* module;
|
|
MaybeObject* maybe_module = AllocateJSObjectFromMap(map, TENURED);
|
|
if (!maybe_module->To(&module)) return maybe_module;
|
|
module->set_context(context);
|
|
module->set_scope_info(scope_info);
|
|
return module;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSArrayAndStorage(
|
|
ElementsKind elements_kind,
|
|
int length,
|
|
int capacity,
|
|
ArrayStorageAllocationMode mode,
|
|
PretenureFlag pretenure) {
|
|
MaybeObject* maybe_array = AllocateJSArray(elements_kind, pretenure);
|
|
JSArray* array;
|
|
if (!maybe_array->To(&array)) return maybe_array;
|
|
|
|
// TODO(mvstanton): this body of code is duplicate with AllocateJSArrayStorage
|
|
// for performance reasons.
|
|
ASSERT(capacity >= length);
|
|
|
|
if (capacity == 0) {
|
|
array->set_length(Smi::FromInt(0));
|
|
array->set_elements(empty_fixed_array());
|
|
return array;
|
|
}
|
|
|
|
FixedArrayBase* elms;
|
|
MaybeObject* maybe_elms = NULL;
|
|
if (IsFastDoubleElementsKind(elements_kind)) {
|
|
if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
|
|
maybe_elms = AllocateUninitializedFixedDoubleArray(capacity);
|
|
} else {
|
|
ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
|
|
maybe_elms = AllocateFixedDoubleArrayWithHoles(capacity);
|
|
}
|
|
} else {
|
|
ASSERT(IsFastSmiOrObjectElementsKind(elements_kind));
|
|
if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
|
|
maybe_elms = AllocateUninitializedFixedArray(capacity);
|
|
} else {
|
|
ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
|
|
maybe_elms = AllocateFixedArrayWithHoles(capacity);
|
|
}
|
|
}
|
|
if (!maybe_elms->To(&elms)) return maybe_elms;
|
|
|
|
array->set_elements(elms);
|
|
array->set_length(Smi::FromInt(length));
|
|
return array;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSArrayAndStorageWithAllocationSite(
|
|
ElementsKind elements_kind,
|
|
int length,
|
|
int capacity,
|
|
Handle<AllocationSite> allocation_site,
|
|
ArrayStorageAllocationMode mode) {
|
|
MaybeObject* maybe_array = AllocateJSArrayWithAllocationSite(elements_kind,
|
|
allocation_site);
|
|
JSArray* array;
|
|
if (!maybe_array->To(&array)) return maybe_array;
|
|
return AllocateJSArrayStorage(array, length, capacity, mode);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSArrayStorage(
|
|
JSArray* array,
|
|
int length,
|
|
int capacity,
|
|
ArrayStorageAllocationMode mode) {
|
|
ASSERT(capacity >= length);
|
|
|
|
if (capacity == 0) {
|
|
array->set_length(Smi::FromInt(0));
|
|
array->set_elements(empty_fixed_array());
|
|
return array;
|
|
}
|
|
|
|
FixedArrayBase* elms;
|
|
MaybeObject* maybe_elms = NULL;
|
|
ElementsKind elements_kind = array->GetElementsKind();
|
|
if (IsFastDoubleElementsKind(elements_kind)) {
|
|
if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
|
|
maybe_elms = AllocateUninitializedFixedDoubleArray(capacity);
|
|
} else {
|
|
ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
|
|
maybe_elms = AllocateFixedDoubleArrayWithHoles(capacity);
|
|
}
|
|
} else {
|
|
ASSERT(IsFastSmiOrObjectElementsKind(elements_kind));
|
|
if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
|
|
maybe_elms = AllocateUninitializedFixedArray(capacity);
|
|
} else {
|
|
ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
|
|
maybe_elms = AllocateFixedArrayWithHoles(capacity);
|
|
}
|
|
}
|
|
if (!maybe_elms->To(&elms)) return maybe_elms;
|
|
|
|
array->set_elements(elms);
|
|
array->set_length(Smi::FromInt(length));
|
|
return array;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSArrayWithElements(
|
|
FixedArrayBase* elements,
|
|
ElementsKind elements_kind,
|
|
int length,
|
|
PretenureFlag pretenure) {
|
|
MaybeObject* maybe_array = AllocateJSArray(elements_kind, pretenure);
|
|
JSArray* array;
|
|
if (!maybe_array->To(&array)) return maybe_array;
|
|
|
|
array->set_elements(elements);
|
|
array->set_length(Smi::FromInt(length));
|
|
array->ValidateElements();
|
|
return array;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSProxy(Object* handler, Object* prototype) {
|
|
// Allocate map.
|
|
// TODO(rossberg): Once we optimize proxies, think about a scheme to share
|
|
// maps. Will probably depend on the identity of the handler object, too.
|
|
Map* map;
|
|
MaybeObject* maybe_map_obj = AllocateMap(JS_PROXY_TYPE, JSProxy::kSize);
|
|
if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
|
|
map->set_prototype(prototype);
|
|
|
|
// Allocate the proxy object.
|
|
JSProxy* result;
|
|
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->To<JSProxy>(&result)) return maybe_result;
|
|
result->InitializeBody(map->instance_size(), Smi::FromInt(0));
|
|
result->set_handler(handler);
|
|
result->set_hash(undefined_value(), SKIP_WRITE_BARRIER);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSFunctionProxy(Object* handler,
|
|
Object* call_trap,
|
|
Object* construct_trap,
|
|
Object* prototype) {
|
|
// Allocate map.
|
|
// TODO(rossberg): Once we optimize proxies, think about a scheme to share
|
|
// maps. Will probably depend on the identity of the handler object, too.
|
|
Map* map;
|
|
MaybeObject* maybe_map_obj =
|
|
AllocateMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
|
|
if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
|
|
map->set_prototype(prototype);
|
|
|
|
// Allocate the proxy object.
|
|
JSFunctionProxy* result;
|
|
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
|
|
if (!maybe_result->To<JSFunctionProxy>(&result)) return maybe_result;
|
|
result->InitializeBody(map->instance_size(), Smi::FromInt(0));
|
|
result->set_handler(handler);
|
|
result->set_hash(undefined_value(), SKIP_WRITE_BARRIER);
|
|
result->set_call_trap(call_trap);
|
|
result->set_construct_trap(construct_trap);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateGlobalObject(JSFunction* constructor) {
|
|
ASSERT(constructor->has_initial_map());
|
|
Map* map = constructor->initial_map();
|
|
ASSERT(map->is_dictionary_map());
|
|
|
|
// Make sure no field properties are described in the initial map.
|
|
// This guarantees us that normalizing the properties does not
|
|
// require us to change property values to PropertyCells.
|
|
ASSERT(map->NextFreePropertyIndex() == 0);
|
|
|
|
// Make sure we don't have a ton of pre-allocated slots in the
|
|
// global objects. They will be unused once we normalize the object.
|
|
ASSERT(map->unused_property_fields() == 0);
|
|
ASSERT(map->inobject_properties() == 0);
|
|
|
|
// Initial size of the backing store to avoid resize of the storage during
|
|
// bootstrapping. The size differs between the JS global object ad the
|
|
// builtins object.
|
|
int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
|
|
|
|
// Allocate a dictionary object for backing storage.
|
|
NameDictionary* dictionary;
|
|
MaybeObject* maybe_dictionary =
|
|
NameDictionary::Allocate(
|
|
this,
|
|
map->NumberOfOwnDescriptors() * 2 + initial_size);
|
|
if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary;
|
|
|
|
// The global object might be created from an object template with accessors.
|
|
// Fill these accessors into the dictionary.
|
|
DescriptorArray* descs = map->instance_descriptors();
|
|
for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
|
|
PropertyDetails details = descs->GetDetails(i);
|
|
ASSERT(details.type() == CALLBACKS); // Only accessors are expected.
|
|
PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1);
|
|
Object* value = descs->GetCallbacksObject(i);
|
|
MaybeObject* maybe_value = AllocatePropertyCell(value);
|
|
if (!maybe_value->ToObject(&value)) return maybe_value;
|
|
|
|
MaybeObject* maybe_added = dictionary->Add(descs->GetKey(i), value, d);
|
|
if (!maybe_added->To(&dictionary)) return maybe_added;
|
|
}
|
|
|
|
// Allocate the global object and initialize it with the backing store.
|
|
JSObject* global;
|
|
MaybeObject* maybe_global = Allocate(map, OLD_POINTER_SPACE);
|
|
if (!maybe_global->To(&global)) return maybe_global;
|
|
|
|
InitializeJSObjectFromMap(global, dictionary, map);
|
|
|
|
// Create a new map for the global object.
|
|
Map* new_map;
|
|
MaybeObject* maybe_map = map->CopyDropDescriptors();
|
|
if (!maybe_map->To(&new_map)) return maybe_map;
|
|
new_map->set_dictionary_map(true);
|
|
|
|
// Set up the global object as a normalized object.
|
|
global->set_map(new_map);
|
|
global->set_properties(dictionary);
|
|
|
|
// Make sure result is a global object with properties in dictionary.
|
|
ASSERT(global->IsGlobalObject());
|
|
ASSERT(!global->HasFastProperties());
|
|
return global;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyJSObject(JSObject* source) {
|
|
// Never used to copy functions. If functions need to be copied we
|
|
// have to be careful to clear the literals array.
|
|
SLOW_ASSERT(!source->IsJSFunction());
|
|
|
|
// Make the clone.
|
|
Map* map = source->map();
|
|
int object_size = map->instance_size();
|
|
Object* clone;
|
|
|
|
WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER;
|
|
|
|
// If we're forced to always allocate, we use the general allocation
|
|
// functions which may leave us with an object in old space.
|
|
if (always_allocate()) {
|
|
{ MaybeObject* maybe_clone =
|
|
AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
|
|
if (!maybe_clone->ToObject(&clone)) return maybe_clone;
|
|
}
|
|
Address clone_address = HeapObject::cast(clone)->address();
|
|
CopyBlock(clone_address,
|
|
source->address(),
|
|
object_size);
|
|
// Update write barrier for all fields that lie beyond the header.
|
|
RecordWrites(clone_address,
|
|
JSObject::kHeaderSize,
|
|
(object_size - JSObject::kHeaderSize) / kPointerSize);
|
|
} else {
|
|
wb_mode = SKIP_WRITE_BARRIER;
|
|
|
|
{ MaybeObject* maybe_clone = new_space_.AllocateRaw(object_size);
|
|
if (!maybe_clone->ToObject(&clone)) return maybe_clone;
|
|
}
|
|
SLOW_ASSERT(InNewSpace(clone));
|
|
// Since we know the clone is allocated in new space, we can copy
|
|
// the contents without worrying about updating the write barrier.
|
|
CopyBlock(HeapObject::cast(clone)->address(),
|
|
source->address(),
|
|
object_size);
|
|
}
|
|
|
|
SLOW_ASSERT(
|
|
JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind());
|
|
FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
|
|
FixedArray* properties = FixedArray::cast(source->properties());
|
|
// Update elements if necessary.
|
|
if (elements->length() > 0) {
|
|
Object* elem;
|
|
{ MaybeObject* maybe_elem;
|
|
if (elements->map() == fixed_cow_array_map()) {
|
|
maybe_elem = FixedArray::cast(elements);
|
|
} else if (source->HasFastDoubleElements()) {
|
|
maybe_elem = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
|
|
} else {
|
|
maybe_elem = CopyFixedArray(FixedArray::cast(elements));
|
|
}
|
|
if (!maybe_elem->ToObject(&elem)) return maybe_elem;
|
|
}
|
|
JSObject::cast(clone)->set_elements(FixedArrayBase::cast(elem), wb_mode);
|
|
}
|
|
// Update properties if necessary.
|
|
if (properties->length() > 0) {
|
|
Object* prop;
|
|
{ MaybeObject* maybe_prop = CopyFixedArray(properties);
|
|
if (!maybe_prop->ToObject(&prop)) return maybe_prop;
|
|
}
|
|
JSObject::cast(clone)->set_properties(FixedArray::cast(prop), wb_mode);
|
|
}
|
|
// Return the new clone.
|
|
return clone;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyJSObjectWithAllocationSite(
|
|
JSObject* source,
|
|
AllocationSite* site) {
|
|
// Never used to copy functions. If functions need to be copied we
|
|
// have to be careful to clear the literals array.
|
|
SLOW_ASSERT(!source->IsJSFunction());
|
|
|
|
// Make the clone.
|
|
Map* map = source->map();
|
|
int object_size = map->instance_size();
|
|
Object* clone;
|
|
|
|
ASSERT(map->CanTrackAllocationSite());
|
|
ASSERT(map->instance_type() == JS_ARRAY_TYPE);
|
|
WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER;
|
|
|
|
// If we're forced to always allocate, we use the general allocation
|
|
// functions which may leave us with an object in old space.
|
|
int adjusted_object_size = object_size;
|
|
if (always_allocate()) {
|
|
// We'll only track origin if we are certain to allocate in new space
|
|
const int kMinFreeNewSpaceAfterGC = InitialSemiSpaceSize() * 3/4;
|
|
if ((object_size + AllocationMemento::kSize) < kMinFreeNewSpaceAfterGC) {
|
|
adjusted_object_size += AllocationMemento::kSize;
|
|
}
|
|
|
|
{ MaybeObject* maybe_clone =
|
|
AllocateRaw(adjusted_object_size, NEW_SPACE, OLD_POINTER_SPACE);
|
|
if (!maybe_clone->ToObject(&clone)) return maybe_clone;
|
|
}
|
|
Address clone_address = HeapObject::cast(clone)->address();
|
|
CopyBlock(clone_address,
|
|
source->address(),
|
|
object_size);
|
|
// Update write barrier for all fields that lie beyond the header.
|
|
int write_barrier_offset = adjusted_object_size > object_size
|
|
? JSArray::kSize + AllocationMemento::kSize
|
|
: JSObject::kHeaderSize;
|
|
if (((object_size - write_barrier_offset) / kPointerSize) > 0) {
|
|
RecordWrites(clone_address,
|
|
write_barrier_offset,
|
|
(object_size - write_barrier_offset) / kPointerSize);
|
|
}
|
|
|
|
// Track allocation site information, if we failed to allocate it inline.
|
|
if (InNewSpace(clone) &&
|
|
adjusted_object_size == object_size) {
|
|
MaybeObject* maybe_alloc_memento =
|
|
AllocateStruct(ALLOCATION_MEMENTO_TYPE);
|
|
AllocationMemento* alloc_memento;
|
|
if (maybe_alloc_memento->To(&alloc_memento)) {
|
|
alloc_memento->set_map_no_write_barrier(allocation_memento_map());
|
|
alloc_memento->set_allocation_site(site, SKIP_WRITE_BARRIER);
|
|
}
|
|
}
|
|
} else {
|
|
wb_mode = SKIP_WRITE_BARRIER;
|
|
adjusted_object_size += AllocationMemento::kSize;
|
|
|
|
{ MaybeObject* maybe_clone = new_space_.AllocateRaw(adjusted_object_size);
|
|
if (!maybe_clone->ToObject(&clone)) return maybe_clone;
|
|
}
|
|
SLOW_ASSERT(InNewSpace(clone));
|
|
// Since we know the clone is allocated in new space, we can copy
|
|
// the contents without worrying about updating the write barrier.
|
|
CopyBlock(HeapObject::cast(clone)->address(),
|
|
source->address(),
|
|
object_size);
|
|
}
|
|
|
|
if (adjusted_object_size > object_size) {
|
|
AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
|
|
reinterpret_cast<Address>(clone) + object_size);
|
|
alloc_memento->set_map_no_write_barrier(allocation_memento_map());
|
|
alloc_memento->set_allocation_site(site, SKIP_WRITE_BARRIER);
|
|
}
|
|
|
|
SLOW_ASSERT(
|
|
JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind());
|
|
FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
|
|
FixedArray* properties = FixedArray::cast(source->properties());
|
|
// Update elements if necessary.
|
|
if (elements->length() > 0) {
|
|
Object* elem;
|
|
{ MaybeObject* maybe_elem;
|
|
if (elements->map() == fixed_cow_array_map()) {
|
|
maybe_elem = FixedArray::cast(elements);
|
|
} else if (source->HasFastDoubleElements()) {
|
|
maybe_elem = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
|
|
} else {
|
|
maybe_elem = CopyFixedArray(FixedArray::cast(elements));
|
|
}
|
|
if (!maybe_elem->ToObject(&elem)) return maybe_elem;
|
|
}
|
|
JSObject::cast(clone)->set_elements(FixedArrayBase::cast(elem), wb_mode);
|
|
}
|
|
// Update properties if necessary.
|
|
if (properties->length() > 0) {
|
|
Object* prop;
|
|
{ MaybeObject* maybe_prop = CopyFixedArray(properties);
|
|
if (!maybe_prop->ToObject(&prop)) return maybe_prop;
|
|
}
|
|
JSObject::cast(clone)->set_properties(FixedArray::cast(prop), wb_mode);
|
|
}
|
|
// Return the new clone.
|
|
return clone;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::ReinitializeJSReceiver(
|
|
JSReceiver* object, InstanceType type, int size) {
|
|
ASSERT(type >= FIRST_JS_OBJECT_TYPE);
|
|
|
|
// Allocate fresh map.
|
|
// TODO(rossberg): Once we optimize proxies, cache these maps.
|
|
Map* map;
|
|
MaybeObject* maybe = AllocateMap(type, size);
|
|
if (!maybe->To<Map>(&map)) return maybe;
|
|
|
|
// Check that the receiver has at least the size of the fresh object.
|
|
int size_difference = object->map()->instance_size() - map->instance_size();
|
|
ASSERT(size_difference >= 0);
|
|
|
|
map->set_prototype(object->map()->prototype());
|
|
|
|
// Allocate the backing storage for the properties.
|
|
int prop_size = map->unused_property_fields() - map->inobject_properties();
|
|
Object* properties;
|
|
maybe = AllocateFixedArray(prop_size, TENURED);
|
|
if (!maybe->ToObject(&properties)) return maybe;
|
|
|
|
// Functions require some allocation, which might fail here.
|
|
SharedFunctionInfo* shared = NULL;
|
|
if (type == JS_FUNCTION_TYPE) {
|
|
String* name;
|
|
maybe =
|
|
InternalizeOneByteString(STATIC_ASCII_VECTOR("<freezing call trap>"));
|
|
if (!maybe->To<String>(&name)) return maybe;
|
|
maybe = AllocateSharedFunctionInfo(name);
|
|
if (!maybe->To<SharedFunctionInfo>(&shared)) return maybe;
|
|
}
|
|
|
|
// Because of possible retries of this function after failure,
|
|
// we must NOT fail after this point, where we have changed the type!
|
|
|
|
// Reset the map for the object.
|
|
object->set_map(map);
|
|
JSObject* jsobj = JSObject::cast(object);
|
|
|
|
// Reinitialize the object from the constructor map.
|
|
InitializeJSObjectFromMap(jsobj, FixedArray::cast(properties), map);
|
|
|
|
// Functions require some minimal initialization.
|
|
if (type == JS_FUNCTION_TYPE) {
|
|
map->set_function_with_prototype(true);
|
|
InitializeFunction(JSFunction::cast(object), shared, the_hole_value());
|
|
JSFunction::cast(object)->set_context(
|
|
isolate()->context()->native_context());
|
|
}
|
|
|
|
// Put in filler if the new object is smaller than the old.
|
|
if (size_difference > 0) {
|
|
CreateFillerObjectAt(
|
|
object->address() + map->instance_size(), size_difference);
|
|
}
|
|
|
|
return object;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
|
|
JSGlobalProxy* object) {
|
|
ASSERT(constructor->has_initial_map());
|
|
Map* map = constructor->initial_map();
|
|
|
|
// Check that the already allocated object has the same size and type as
|
|
// objects allocated using the constructor.
|
|
ASSERT(map->instance_size() == object->map()->instance_size());
|
|
ASSERT(map->instance_type() == object->map()->instance_type());
|
|
|
|
// Allocate the backing storage for the properties.
|
|
int prop_size = map->unused_property_fields() - map->inobject_properties();
|
|
Object* properties;
|
|
{ MaybeObject* maybe_properties = AllocateFixedArray(prop_size, TENURED);
|
|
if (!maybe_properties->ToObject(&properties)) return maybe_properties;
|
|
}
|
|
|
|
// Reset the map for the object.
|
|
object->set_map(constructor->initial_map());
|
|
|
|
// Reinitialize the object from the constructor map.
|
|
InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
|
|
return object;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateStringFromOneByte(Vector<const uint8_t> string,
|
|
PretenureFlag pretenure) {
|
|
int length = string.length();
|
|
if (length == 1) {
|
|
return Heap::LookupSingleCharacterStringFromCode(string[0]);
|
|
}
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRawOneByteString(string.length(), pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Copy the characters into the new object.
|
|
CopyChars(SeqOneByteString::cast(result)->GetChars(),
|
|
string.start(),
|
|
length);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateStringFromUtf8Slow(Vector<const char> string,
|
|
int non_ascii_start,
|
|
PretenureFlag pretenure) {
|
|
// Continue counting the number of characters in the UTF-8 string, starting
|
|
// from the first non-ascii character or word.
|
|
Access<UnicodeCache::Utf8Decoder>
|
|
decoder(isolate_->unicode_cache()->utf8_decoder());
|
|
decoder->Reset(string.start() + non_ascii_start,
|
|
string.length() - non_ascii_start);
|
|
int utf16_length = decoder->Utf16Length();
|
|
ASSERT(utf16_length > 0);
|
|
// Allocate string.
|
|
Object* result;
|
|
{
|
|
int chars = non_ascii_start + utf16_length;
|
|
MaybeObject* maybe_result = AllocateRawTwoByteString(chars, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Convert and copy the characters into the new object.
|
|
SeqTwoByteString* twobyte = SeqTwoByteString::cast(result);
|
|
// Copy ascii portion.
|
|
uint16_t* data = twobyte->GetChars();
|
|
if (non_ascii_start != 0) {
|
|
const char* ascii_data = string.start();
|
|
for (int i = 0; i < non_ascii_start; i++) {
|
|
*data++ = *ascii_data++;
|
|
}
|
|
}
|
|
// Now write the remainder.
|
|
decoder->WriteUtf16(data, utf16_length);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
|
|
PretenureFlag pretenure) {
|
|
// Check if the string is an ASCII string.
|
|
Object* result;
|
|
int length = string.length();
|
|
const uc16* start = string.start();
|
|
|
|
if (String::IsOneByte(start, length)) {
|
|
MaybeObject* maybe_result = AllocateRawOneByteString(length, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
CopyChars(SeqOneByteString::cast(result)->GetChars(), start, length);
|
|
} else { // It's not a one byte string.
|
|
MaybeObject* maybe_result = AllocateRawTwoByteString(length, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
CopyChars(SeqTwoByteString::cast(result)->GetChars(), start, length);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
Map* Heap::InternalizedStringMapForString(String* string) {
|
|
// If the string is in new space it cannot be used as internalized.
|
|
if (InNewSpace(string)) return NULL;
|
|
|
|
// Find the corresponding internalized string map for strings.
|
|
switch (string->map()->instance_type()) {
|
|
case STRING_TYPE: return internalized_string_map();
|
|
case ASCII_STRING_TYPE: return ascii_internalized_string_map();
|
|
case CONS_STRING_TYPE: return cons_internalized_string_map();
|
|
case CONS_ASCII_STRING_TYPE: return cons_ascii_internalized_string_map();
|
|
case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
|
|
case EXTERNAL_ASCII_STRING_TYPE:
|
|
return external_ascii_internalized_string_map();
|
|
case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
|
|
return external_internalized_string_with_one_byte_data_map();
|
|
case SHORT_EXTERNAL_STRING_TYPE:
|
|
return short_external_internalized_string_map();
|
|
case SHORT_EXTERNAL_ASCII_STRING_TYPE:
|
|
return short_external_ascii_internalized_string_map();
|
|
case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
|
|
return short_external_internalized_string_with_one_byte_data_map();
|
|
default: return NULL; // No match found.
|
|
}
|
|
}
|
|
|
|
|
|
static inline void WriteOneByteData(Vector<const char> vector,
|
|
uint8_t* chars,
|
|
int len) {
|
|
// Only works for ascii.
|
|
ASSERT(vector.length() == len);
|
|
OS::MemCopy(chars, vector.start(), len);
|
|
}
|
|
|
|
static inline void WriteTwoByteData(Vector<const char> vector,
|
|
uint16_t* chars,
|
|
int len) {
|
|
const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start());
|
|
unsigned stream_length = vector.length();
|
|
while (stream_length != 0) {
|
|
unsigned consumed = 0;
|
|
uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed);
|
|
ASSERT(c != unibrow::Utf8::kBadChar);
|
|
ASSERT(consumed <= stream_length);
|
|
stream_length -= consumed;
|
|
stream += consumed;
|
|
if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
|
|
len -= 2;
|
|
if (len < 0) break;
|
|
*chars++ = unibrow::Utf16::LeadSurrogate(c);
|
|
*chars++ = unibrow::Utf16::TrailSurrogate(c);
|
|
} else {
|
|
len -= 1;
|
|
if (len < 0) break;
|
|
*chars++ = c;
|
|
}
|
|
}
|
|
ASSERT(stream_length == 0);
|
|
ASSERT(len == 0);
|
|
}
|
|
|
|
|
|
static inline void WriteOneByteData(String* s, uint8_t* chars, int len) {
|
|
ASSERT(s->length() == len);
|
|
String::WriteToFlat(s, chars, 0, len);
|
|
}
|
|
|
|
|
|
static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) {
|
|
ASSERT(s->length() == len);
|
|
String::WriteToFlat(s, chars, 0, len);
|
|
}
|
|
|
|
|
|
template<bool is_one_byte, typename T>
|
|
MaybeObject* Heap::AllocateInternalizedStringImpl(
|
|
T t, int chars, uint32_t hash_field) {
|
|
ASSERT(chars >= 0);
|
|
// Compute map and object size.
|
|
int size;
|
|
Map* map;
|
|
|
|
if (is_one_byte) {
|
|
if (chars > SeqOneByteString::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0x9);
|
|
}
|
|
map = ascii_internalized_string_map();
|
|
size = SeqOneByteString::SizeFor(chars);
|
|
} else {
|
|
if (chars > SeqTwoByteString::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0xa);
|
|
}
|
|
map = internalized_string_map();
|
|
size = SeqTwoByteString::SizeFor(chars);
|
|
}
|
|
|
|
// Allocate string.
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
|
|
? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
|
|
: old_data_space_->AllocateRaw(size);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(map);
|
|
// Set length and hash fields of the allocated string.
|
|
String* answer = String::cast(result);
|
|
answer->set_length(chars);
|
|
answer->set_hash_field(hash_field);
|
|
|
|
ASSERT_EQ(size, answer->Size());
|
|
|
|
if (is_one_byte) {
|
|
WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars);
|
|
} else {
|
|
WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars);
|
|
}
|
|
return answer;
|
|
}
|
|
|
|
|
|
// Need explicit instantiations.
|
|
template
|
|
MaybeObject* Heap::AllocateInternalizedStringImpl<true>(String*, int, uint32_t);
|
|
template
|
|
MaybeObject* Heap::AllocateInternalizedStringImpl<false>(
|
|
String*, int, uint32_t);
|
|
template
|
|
MaybeObject* Heap::AllocateInternalizedStringImpl<false>(
|
|
Vector<const char>, int, uint32_t);
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawOneByteString(int length,
|
|
PretenureFlag pretenure) {
|
|
if (length < 0 || length > SeqOneByteString::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0xb);
|
|
}
|
|
|
|
int size = SeqOneByteString::SizeFor(length);
|
|
ASSERT(size <= SeqOneByteString::kMaxSize);
|
|
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
AllocationSpace retry_space = OLD_DATA_SPACE;
|
|
|
|
if (space == NEW_SPACE) {
|
|
if (size > kMaxObjectSizeInNewSpace) {
|
|
// Allocate in large object space, retry space will be ignored.
|
|
space = LO_SPACE;
|
|
} else if (size > Page::kMaxNonCodeHeapObjectSize) {
|
|
// Allocate in new space, retry in large object space.
|
|
retry_space = LO_SPACE;
|
|
}
|
|
} else if (space == OLD_DATA_SPACE &&
|
|
size > Page::kMaxNonCodeHeapObjectSize) {
|
|
space = LO_SPACE;
|
|
}
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Partially initialize the object.
|
|
HeapObject::cast(result)->set_map_no_write_barrier(ascii_string_map());
|
|
String::cast(result)->set_length(length);
|
|
String::cast(result)->set_hash_field(String::kEmptyHashField);
|
|
ASSERT_EQ(size, HeapObject::cast(result)->Size());
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawTwoByteString(int length,
|
|
PretenureFlag pretenure) {
|
|
if (length < 0 || length > SeqTwoByteString::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0xc);
|
|
}
|
|
int size = SeqTwoByteString::SizeFor(length);
|
|
ASSERT(size <= SeqTwoByteString::kMaxSize);
|
|
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
AllocationSpace retry_space = OLD_DATA_SPACE;
|
|
|
|
if (space == NEW_SPACE) {
|
|
if (size > kMaxObjectSizeInNewSpace) {
|
|
// Allocate in large object space, retry space will be ignored.
|
|
space = LO_SPACE;
|
|
} else if (size > Page::kMaxNonCodeHeapObjectSize) {
|
|
// Allocate in new space, retry in large object space.
|
|
retry_space = LO_SPACE;
|
|
}
|
|
} else if (space == OLD_DATA_SPACE &&
|
|
size > Page::kMaxNonCodeHeapObjectSize) {
|
|
space = LO_SPACE;
|
|
}
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
// Partially initialize the object.
|
|
HeapObject::cast(result)->set_map_no_write_barrier(string_map());
|
|
String::cast(result)->set_length(length);
|
|
String::cast(result)->set_hash_field(String::kEmptyHashField);
|
|
ASSERT_EQ(size, HeapObject::cast(result)->Size());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSArray(
|
|
ElementsKind elements_kind,
|
|
PretenureFlag pretenure) {
|
|
Context* native_context = isolate()->context()->native_context();
|
|
JSFunction* array_function = native_context->array_function();
|
|
Map* map = array_function->initial_map();
|
|
Map* transition_map = isolate()->get_initial_js_array_map(elements_kind);
|
|
if (transition_map != NULL) map = transition_map;
|
|
return AllocateJSObjectFromMap(map, pretenure);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateJSArrayWithAllocationSite(
|
|
ElementsKind elements_kind,
|
|
Handle<AllocationSite> allocation_site) {
|
|
Context* native_context = isolate()->context()->native_context();
|
|
JSFunction* array_function = native_context->array_function();
|
|
Map* map = array_function->initial_map();
|
|
Object* maybe_map_array = native_context->js_array_maps();
|
|
if (!maybe_map_array->IsUndefined()) {
|
|
Object* maybe_transitioned_map =
|
|
FixedArray::cast(maybe_map_array)->get(elements_kind);
|
|
if (!maybe_transitioned_map->IsUndefined()) {
|
|
map = Map::cast(maybe_transitioned_map);
|
|
}
|
|
}
|
|
return AllocateJSObjectFromMapWithAllocationSite(map, allocation_site);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateEmptyFixedArray() {
|
|
int size = FixedArray::SizeFor(0);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Initialize the object.
|
|
reinterpret_cast<FixedArray*>(result)->set_map_no_write_barrier(
|
|
fixed_array_map());
|
|
reinterpret_cast<FixedArray*>(result)->set_length(0);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateEmptyExternalArray(ExternalArrayType array_type) {
|
|
return AllocateExternalArray(0, array_type, NULL, TENURED);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawFixedArray(int length) {
|
|
if (length < 0 || length > FixedArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0xd);
|
|
}
|
|
ASSERT(length > 0);
|
|
// Use the general function if we're forced to always allocate.
|
|
if (always_allocate()) return AllocateFixedArray(length, TENURED);
|
|
// Allocate the raw data for a fixed array.
|
|
int size = FixedArray::SizeFor(length);
|
|
return size <= kMaxObjectSizeInNewSpace
|
|
? new_space_.AllocateRaw(size)
|
|
: lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
|
|
int len = src->length();
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocateRawFixedArray(len);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
if (InNewSpace(obj)) {
|
|
HeapObject* dst = HeapObject::cast(obj);
|
|
dst->set_map_no_write_barrier(map);
|
|
CopyBlock(dst->address() + kPointerSize,
|
|
src->address() + kPointerSize,
|
|
FixedArray::SizeFor(len) - kPointerSize);
|
|
return obj;
|
|
}
|
|
HeapObject::cast(obj)->set_map_no_write_barrier(map);
|
|
FixedArray* result = FixedArray::cast(obj);
|
|
result->set_length(len);
|
|
|
|
// Copy the content
|
|
DisallowHeapAllocation no_gc;
|
|
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
|
|
for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src,
|
|
Map* map) {
|
|
int len = src->length();
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(len, NOT_TENURED);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
HeapObject* dst = HeapObject::cast(obj);
|
|
dst->set_map_no_write_barrier(map);
|
|
CopyBlock(
|
|
dst->address() + FixedDoubleArray::kLengthOffset,
|
|
src->address() + FixedDoubleArray::kLengthOffset,
|
|
FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
|
|
return obj;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFixedArray(int length) {
|
|
ASSERT(length >= 0);
|
|
if (length == 0) return empty_fixed_array();
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateRawFixedArray(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Initialize header.
|
|
FixedArray* array = reinterpret_cast<FixedArray*>(result);
|
|
array->set_map_no_write_barrier(fixed_array_map());
|
|
array->set_length(length);
|
|
// Initialize body.
|
|
ASSERT(!InNewSpace(undefined_value()));
|
|
MemsetPointer(array->data_start(), undefined_value(), length);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) {
|
|
if (length < 0 || length > FixedArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0xe);
|
|
}
|
|
|
|
AllocationSpace space =
|
|
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
|
|
int size = FixedArray::SizeFor(length);
|
|
if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
|
|
// Too big for new space.
|
|
space = LO_SPACE;
|
|
} else if (space == OLD_POINTER_SPACE &&
|
|
size > Page::kMaxNonCodeHeapObjectSize) {
|
|
// Too big for old pointer space.
|
|
space = LO_SPACE;
|
|
}
|
|
|
|
AllocationSpace retry_space =
|
|
(size <= Page::kMaxNonCodeHeapObjectSize) ? OLD_POINTER_SPACE : LO_SPACE;
|
|
|
|
return AllocateRaw(size, space, retry_space);
|
|
}
|
|
|
|
|
|
MUST_USE_RESULT static MaybeObject* AllocateFixedArrayWithFiller(
|
|
Heap* heap,
|
|
int length,
|
|
PretenureFlag pretenure,
|
|
Object* filler) {
|
|
ASSERT(length >= 0);
|
|
ASSERT(heap->empty_fixed_array()->IsFixedArray());
|
|
if (length == 0) return heap->empty_fixed_array();
|
|
|
|
ASSERT(!heap->InNewSpace(filler));
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = heap->AllocateRawFixedArray(length, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
|
|
HeapObject::cast(result)->set_map_no_write_barrier(heap->fixed_array_map());
|
|
FixedArray* array = FixedArray::cast(result);
|
|
array->set_length(length);
|
|
MemsetPointer(array->data_start(), filler, length);
|
|
return array;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
|
|
return AllocateFixedArrayWithFiller(this,
|
|
length,
|
|
pretenure,
|
|
undefined_value());
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFixedArrayWithHoles(int length,
|
|
PretenureFlag pretenure) {
|
|
return AllocateFixedArrayWithFiller(this,
|
|
length,
|
|
pretenure,
|
|
the_hole_value());
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateUninitializedFixedArray(int length) {
|
|
if (length == 0) return empty_fixed_array();
|
|
|
|
Object* obj;
|
|
{ MaybeObject* maybe_obj = AllocateRawFixedArray(length);
|
|
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
|
|
}
|
|
|
|
reinterpret_cast<FixedArray*>(obj)->set_map_no_write_barrier(
|
|
fixed_array_map());
|
|
FixedArray::cast(obj)->set_length(length);
|
|
return obj;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateEmptyFixedDoubleArray() {
|
|
int size = FixedDoubleArray::SizeFor(0);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
// Initialize the object.
|
|
reinterpret_cast<FixedDoubleArray*>(result)->set_map_no_write_barrier(
|
|
fixed_double_array_map());
|
|
reinterpret_cast<FixedDoubleArray*>(result)->set_length(0);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateUninitializedFixedDoubleArray(
|
|
int length,
|
|
PretenureFlag pretenure) {
|
|
if (length == 0) return empty_fixed_array();
|
|
|
|
Object* elements_object;
|
|
MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure);
|
|
if (!maybe_obj->ToObject(&elements_object)) return maybe_obj;
|
|
FixedDoubleArray* elements =
|
|
reinterpret_cast<FixedDoubleArray*>(elements_object);
|
|
|
|
elements->set_map_no_write_barrier(fixed_double_array_map());
|
|
elements->set_length(length);
|
|
return elements;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFixedDoubleArrayWithHoles(
|
|
int length,
|
|
PretenureFlag pretenure) {
|
|
if (length == 0) return empty_fixed_array();
|
|
|
|
Object* elements_object;
|
|
MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure);
|
|
if (!maybe_obj->ToObject(&elements_object)) return maybe_obj;
|
|
FixedDoubleArray* elements =
|
|
reinterpret_cast<FixedDoubleArray*>(elements_object);
|
|
|
|
for (int i = 0; i < length; ++i) {
|
|
elements->set_the_hole(i);
|
|
}
|
|
|
|
elements->set_map_no_write_barrier(fixed_double_array_map());
|
|
elements->set_length(length);
|
|
return elements;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateRawFixedDoubleArray(int length,
|
|
PretenureFlag pretenure) {
|
|
if (length < 0 || length > FixedDoubleArray::kMaxLength) {
|
|
return Failure::OutOfMemoryException(0xf);
|
|
}
|
|
|
|
AllocationSpace space =
|
|
(pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
|
|
int size = FixedDoubleArray::SizeFor(length);
|
|
|
|
#ifndef V8_HOST_ARCH_64_BIT
|
|
size += kPointerSize;
|
|
#endif
|
|
|
|
if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
|
|
// Too big for new space.
|
|
space = LO_SPACE;
|
|
} else if (space == OLD_DATA_SPACE &&
|
|
size > Page::kMaxNonCodeHeapObjectSize) {
|
|
// Too big for old data space.
|
|
space = LO_SPACE;
|
|
}
|
|
|
|
AllocationSpace retry_space =
|
|
(size <= Page::kMaxNonCodeHeapObjectSize) ? OLD_DATA_SPACE : LO_SPACE;
|
|
|
|
HeapObject* object;
|
|
{ MaybeObject* maybe_object = AllocateRaw(size, space, retry_space);
|
|
if (!maybe_object->To<HeapObject>(&object)) return maybe_object;
|
|
}
|
|
|
|
return EnsureDoubleAligned(this, object, size);
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateHashTable(int length, PretenureFlag pretenure) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateFixedArray(length, pretenure);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(
|
|
hash_table_map());
|
|
ASSERT(result->IsHashTable());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateSymbol() {
|
|
// Statically ensure that it is safe to allocate symbols in paged spaces.
|
|
STATIC_ASSERT(Symbol::kSize <= Page::kNonCodeObjectAreaSize);
|
|
|
|
Object* result;
|
|
MaybeObject* maybe =
|
|
AllocateRaw(Symbol::kSize, OLD_POINTER_SPACE, OLD_POINTER_SPACE);
|
|
if (!maybe->ToObject(&result)) return maybe;
|
|
|
|
HeapObject::cast(result)->set_map_no_write_barrier(symbol_map());
|
|
|
|
// Generate a random hash value.
|
|
int hash;
|
|
int attempts = 0;
|
|
do {
|
|
hash = V8::RandomPrivate(isolate()) & Name::kHashBitMask;
|
|
attempts++;
|
|
} while (hash == 0 && attempts < 30);
|
|
if (hash == 0) hash = 1; // never return 0
|
|
|
|
Symbol::cast(result)->set_hash_field(
|
|
Name::kIsNotArrayIndexMask | (hash << Name::kHashShift));
|
|
Symbol::cast(result)->set_name(undefined_value());
|
|
|
|
ASSERT(result->IsSymbol());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateNativeContext() {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateFixedArray(Context::NATIVE_CONTEXT_SLOTS);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map_no_write_barrier(native_context_map());
|
|
context->set_js_array_maps(undefined_value());
|
|
ASSERT(context->IsNativeContext());
|
|
ASSERT(result->IsContext());
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateGlobalContext(JSFunction* function,
|
|
ScopeInfo* scope_info) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateFixedArray(scope_info->ContextLength(), TENURED);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map_no_write_barrier(global_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(function->context());
|
|
context->set_extension(scope_info);
|
|
context->set_global_object(function->context()->global_object());
|
|
ASSERT(context->IsGlobalContext());
|
|
ASSERT(result->IsContext());
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateModuleContext(ScopeInfo* scope_info) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateFixedArray(scope_info->ContextLength(), TENURED);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map_no_write_barrier(module_context_map());
|
|
// Instance link will be set later.
|
|
context->set_extension(Smi::FromInt(0));
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateFunctionContext(int length, JSFunction* function) {
|
|
ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateFixedArray(length);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map_no_write_barrier(function_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(function->context());
|
|
context->set_extension(Smi::FromInt(0));
|
|
context->set_global_object(function->context()->global_object());
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateCatchContext(JSFunction* function,
|
|
Context* previous,
|
|
String* name,
|
|
Object* thrown_object) {
|
|
STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map_no_write_barrier(catch_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(previous);
|
|
context->set_extension(name);
|
|
context->set_global_object(previous->global_object());
|
|
context->set(Context::THROWN_OBJECT_INDEX, thrown_object);
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateWithContext(JSFunction* function,
|
|
Context* previous,
|
|
JSReceiver* extension) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map_no_write_barrier(with_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(previous);
|
|
context->set_extension(extension);
|
|
context->set_global_object(previous->global_object());
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateBlockContext(JSFunction* function,
|
|
Context* previous,
|
|
ScopeInfo* scope_info) {
|
|
Object* result;
|
|
{ MaybeObject* maybe_result =
|
|
AllocateFixedArrayWithHoles(scope_info->ContextLength());
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Context* context = reinterpret_cast<Context*>(result);
|
|
context->set_map_no_write_barrier(block_context_map());
|
|
context->set_closure(function);
|
|
context->set_previous(previous);
|
|
context->set_extension(scope_info);
|
|
context->set_global_object(previous->global_object());
|
|
return context;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateScopeInfo(int length) {
|
|
FixedArray* scope_info;
|
|
MaybeObject* maybe_scope_info = AllocateFixedArray(length, TENURED);
|
|
if (!maybe_scope_info->To(&scope_info)) return maybe_scope_info;
|
|
scope_info->set_map_no_write_barrier(scope_info_map());
|
|
return scope_info;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateExternal(void* value) {
|
|
Foreign* foreign;
|
|
{ MaybeObject* maybe_result = AllocateForeign(static_cast<Address>(value));
|
|
if (!maybe_result->To(&foreign)) return maybe_result;
|
|
}
|
|
JSObject* external;
|
|
{ MaybeObject* maybe_result = AllocateJSObjectFromMap(external_map());
|
|
if (!maybe_result->To(&external)) return maybe_result;
|
|
}
|
|
external->SetInternalField(0, foreign);
|
|
return external;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::AllocateStruct(InstanceType type) {
|
|
Map* map;
|
|
switch (type) {
|
|
#define MAKE_CASE(NAME, Name, name) \
|
|
case NAME##_TYPE: map = name##_map(); break;
|
|
STRUCT_LIST(MAKE_CASE)
|
|
#undef MAKE_CASE
|
|
default:
|
|
UNREACHABLE();
|
|
return Failure::InternalError();
|
|
}
|
|
int size = map->instance_size();
|
|
AllocationSpace space =
|
|
(size > Page::kMaxNonCodeHeapObjectSize) ? LO_SPACE : OLD_POINTER_SPACE;
|
|
Object* result;
|
|
{ MaybeObject* maybe_result = Allocate(map, space);
|
|
if (!maybe_result->ToObject(&result)) return maybe_result;
|
|
}
|
|
Struct::cast(result)->InitializeBody(size);
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Heap::IsHeapIterable() {
|
|
return (!old_pointer_space()->was_swept_conservatively() &&
|
|
!old_data_space()->was_swept_conservatively());
|
|
}
|
|
|
|
|
|
void Heap::EnsureHeapIsIterable() {
|
|
ASSERT(AllowHeapAllocation::IsAllowed());
|
|
if (!IsHeapIterable()) {
|
|
CollectAllGarbage(kMakeHeapIterableMask, "Heap::EnsureHeapIsIterable");
|
|
}
|
|
ASSERT(IsHeapIterable());
|
|
}
|
|
|
|
|
|
void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) {
|
|
incremental_marking()->Step(step_size,
|
|
IncrementalMarking::NO_GC_VIA_STACK_GUARD);
|
|
|
|
if (incremental_marking()->IsComplete()) {
|
|
bool uncommit = false;
|
|
if (gc_count_at_last_idle_gc_ == gc_count_) {
|
|
// No GC since the last full GC, the mutator is probably not active.
|
|
isolate_->compilation_cache()->Clear();
|
|
uncommit = true;
|
|
}
|
|
CollectAllGarbage(kNoGCFlags, "idle notification: finalize incremental");
|
|
mark_sweeps_since_idle_round_started_++;
|
|
gc_count_at_last_idle_gc_ = gc_count_;
|
|
if (uncommit) {
|
|
new_space_.Shrink();
|
|
UncommitFromSpace();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Heap::IdleNotification(int hint) {
|
|
// Hints greater than this value indicate that
|
|
// the embedder is requesting a lot of GC work.
|
|
const int kMaxHint = 1000;
|
|
const int kMinHintForIncrementalMarking = 10;
|
|
// Minimal hint that allows to do full GC.
|
|
const int kMinHintForFullGC = 100;
|
|
intptr_t size_factor = Min(Max(hint, 20), kMaxHint) / 4;
|
|
// The size factor is in range [5..250]. The numbers here are chosen from
|
|
// experiments. If you changes them, make sure to test with
|
|
// chrome/performance_ui_tests --gtest_filter="GeneralMixMemoryTest.*
|
|
intptr_t step_size =
|
|
size_factor * IncrementalMarking::kAllocatedThreshold;
|
|
|
|
if (contexts_disposed_ > 0) {
|
|
if (hint >= kMaxHint) {
|
|
// The embedder is requesting a lot of GC work after context disposal,
|
|
// we age inline caches so that they don't keep objects from
|
|
// the old context alive.
|
|
AgeInlineCaches();
|
|
}
|
|
int mark_sweep_time = Min(TimeMarkSweepWouldTakeInMs(), 1000);
|
|
if (hint >= mark_sweep_time && !FLAG_expose_gc &&
|
|
incremental_marking()->IsStopped()) {
|
|
HistogramTimerScope scope(isolate_->counters()->gc_context());
|
|
CollectAllGarbage(kReduceMemoryFootprintMask,
|
|
"idle notification: contexts disposed");
|
|
} else {
|
|
AdvanceIdleIncrementalMarking(step_size);
|
|
contexts_disposed_ = 0;
|
|
}
|
|
// After context disposal there is likely a lot of garbage remaining, reset
|
|
// the idle notification counters in order to trigger more incremental GCs
|
|
// on subsequent idle notifications.
|
|
StartIdleRound();
|
|
return false;
|
|
}
|
|
|
|
if (!FLAG_incremental_marking || FLAG_expose_gc || Serializer::enabled()) {
|
|
return IdleGlobalGC();
|
|
}
|
|
|
|
// By doing small chunks of GC work in each IdleNotification,
|
|
// perform a round of incremental GCs and after that wait until
|
|
// the mutator creates enough garbage to justify a new round.
|
|
// An incremental GC progresses as follows:
|
|
// 1. many incremental marking steps,
|
|
// 2. one old space mark-sweep-compact,
|
|
// 3. many lazy sweep steps.
|
|
// Use mark-sweep-compact events to count incremental GCs in a round.
|
|
|
|
if (incremental_marking()->IsStopped()) {
|
|
if (!mark_compact_collector()->AreSweeperThreadsActivated() &&
|
|
!IsSweepingComplete() &&
|
|
!AdvanceSweepers(static_cast<int>(step_size))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
|
|
if (EnoughGarbageSinceLastIdleRound()) {
|
|
StartIdleRound();
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
int remaining_mark_sweeps = kMaxMarkSweepsInIdleRound -
|
|
mark_sweeps_since_idle_round_started_;
|
|
|
|
if (incremental_marking()->IsStopped()) {
|
|
// If there are no more than two GCs left in this idle round and we are
|
|
// allowed to do a full GC, then make those GCs full in order to compact
|
|
// the code space.
|
|
// TODO(ulan): Once we enable code compaction for incremental marking,
|
|
// we can get rid of this special case and always start incremental marking.
|
|
if (remaining_mark_sweeps <= 2 && hint >= kMinHintForFullGC) {
|
|
CollectAllGarbage(kReduceMemoryFootprintMask,
|
|
"idle notification: finalize idle round");
|
|
mark_sweeps_since_idle_round_started_++;
|
|
} else if (hint > kMinHintForIncrementalMarking) {
|
|
incremental_marking()->Start();
|
|
}
|
|
}
|
|
if (!incremental_marking()->IsStopped() &&
|
|
hint > kMinHintForIncrementalMarking) {
|
|
AdvanceIdleIncrementalMarking(step_size);
|
|
}
|
|
|
|
if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
|
|
FinishIdleRound();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Heap::IdleGlobalGC() {
|
|
static const int kIdlesBeforeScavenge = 4;
|
|
static const int kIdlesBeforeMarkSweep = 7;
|
|
static const int kIdlesBeforeMarkCompact = 8;
|
|
static const int kMaxIdleCount = kIdlesBeforeMarkCompact + 1;
|
|
static const unsigned int kGCsBetweenCleanup = 4;
|
|
|
|
if (!last_idle_notification_gc_count_init_) {
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
last_idle_notification_gc_count_init_ = true;
|
|
}
|
|
|
|
bool uncommit = true;
|
|
bool finished = false;
|
|
|
|
// Reset the number of idle notifications received when a number of
|
|
// GCs have taken place. This allows another round of cleanup based
|
|
// on idle notifications if enough work has been carried out to
|
|
// provoke a number of garbage collections.
|
|
if (gc_count_ - last_idle_notification_gc_count_ < kGCsBetweenCleanup) {
|
|
number_idle_notifications_ =
|
|
Min(number_idle_notifications_ + 1, kMaxIdleCount);
|
|
} else {
|
|
number_idle_notifications_ = 0;
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
}
|
|
|
|
if (number_idle_notifications_ == kIdlesBeforeScavenge) {
|
|
CollectGarbage(NEW_SPACE, "idle notification");
|
|
new_space_.Shrink();
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
} else if (number_idle_notifications_ == kIdlesBeforeMarkSweep) {
|
|
// Before doing the mark-sweep collections we clear the
|
|
// compilation cache to avoid hanging on to source code and
|
|
// generated code for cached functions.
|
|
isolate_->compilation_cache()->Clear();
|
|
|
|
CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification");
|
|
new_space_.Shrink();
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
|
|
} else if (number_idle_notifications_ == kIdlesBeforeMarkCompact) {
|
|
CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification");
|
|
new_space_.Shrink();
|
|
last_idle_notification_gc_count_ = gc_count_;
|
|
number_idle_notifications_ = 0;
|
|
finished = true;
|
|
} else if (number_idle_notifications_ > kIdlesBeforeMarkCompact) {
|
|
// If we have received more than kIdlesBeforeMarkCompact idle
|
|
// notifications we do not perform any cleanup because we don't
|
|
// expect to gain much by doing so.
|
|
finished = true;
|
|
}
|
|
|
|
if (uncommit) UncommitFromSpace();
|
|
|
|
return finished;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void Heap::Print() {
|
|
if (!HasBeenSetUp()) return;
|
|
isolate()->PrintStack(stdout);
|
|
AllSpaces spaces(this);
|
|
for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
|
|
space->Print();
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::ReportCodeStatistics(const char* title) {
|
|
PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
|
|
PagedSpace::ResetCodeStatistics();
|
|
// We do not look for code in new space, map space, or old space. If code
|
|
// somehow ends up in those spaces, we would miss it here.
|
|
code_space_->CollectCodeStatistics();
|
|
lo_space_->CollectCodeStatistics();
|
|
PagedSpace::ReportCodeStatistics();
|
|
}
|
|
|
|
|
|
// This function expects that NewSpace's allocated objects histogram is
|
|
// populated (via a call to CollectStatistics or else as a side effect of a
|
|
// just-completed scavenge collection).
|
|
void Heap::ReportHeapStatistics(const char* title) {
|
|
USE(title);
|
|
PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
|
|
title, gc_count_);
|
|
PrintF("old_generation_allocation_limit_ %" V8_PTR_PREFIX "d\n",
|
|
old_generation_allocation_limit_);
|
|
|
|
PrintF("\n");
|
|
PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_));
|
|
isolate_->global_handles()->PrintStats();
|
|
PrintF("\n");
|
|
|
|
PrintF("Heap statistics : ");
|
|
isolate_->memory_allocator()->ReportStatistics();
|
|
PrintF("To space : ");
|
|
new_space_.ReportStatistics();
|
|
PrintF("Old pointer space : ");
|
|
old_pointer_space_->ReportStatistics();
|
|
PrintF("Old data space : ");
|
|
old_data_space_->ReportStatistics();
|
|
PrintF("Code space : ");
|
|
code_space_->ReportStatistics();
|
|
PrintF("Map space : ");
|
|
map_space_->ReportStatistics();
|
|
PrintF("Cell space : ");
|
|
cell_space_->ReportStatistics();
|
|
PrintF("PropertyCell space : ");
|
|
property_cell_space_->ReportStatistics();
|
|
PrintF("Large object space : ");
|
|
lo_space_->ReportStatistics();
|
|
PrintF(">>>>>> ========================================= >>>>>>\n");
|
|
}
|
|
|
|
#endif // DEBUG
|
|
|
|
bool Heap::Contains(HeapObject* value) {
|
|
return Contains(value->address());
|
|
}
|
|
|
|
|
|
bool Heap::Contains(Address addr) {
|
|
if (OS::IsOutsideAllocatedSpace(addr)) return false;
|
|
return HasBeenSetUp() &&
|
|
(new_space_.ToSpaceContains(addr) ||
|
|
old_pointer_space_->Contains(addr) ||
|
|
old_data_space_->Contains(addr) ||
|
|
code_space_->Contains(addr) ||
|
|
map_space_->Contains(addr) ||
|
|
cell_space_->Contains(addr) ||
|
|
property_cell_space_->Contains(addr) ||
|
|
lo_space_->SlowContains(addr));
|
|
}
|
|
|
|
|
|
bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
|
|
return InSpace(value->address(), space);
|
|
}
|
|
|
|
|
|
bool Heap::InSpace(Address addr, AllocationSpace space) {
|
|
if (OS::IsOutsideAllocatedSpace(addr)) return false;
|
|
if (!HasBeenSetUp()) return false;
|
|
|
|
switch (space) {
|
|
case NEW_SPACE:
|
|
return new_space_.ToSpaceContains(addr);
|
|
case OLD_POINTER_SPACE:
|
|
return old_pointer_space_->Contains(addr);
|
|
case OLD_DATA_SPACE:
|
|
return old_data_space_->Contains(addr);
|
|
case CODE_SPACE:
|
|
return code_space_->Contains(addr);
|
|
case MAP_SPACE:
|
|
return map_space_->Contains(addr);
|
|
case CELL_SPACE:
|
|
return cell_space_->Contains(addr);
|
|
case PROPERTY_CELL_SPACE:
|
|
return property_cell_space_->Contains(addr);
|
|
case LO_SPACE:
|
|
return lo_space_->SlowContains(addr);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void Heap::Verify() {
|
|
CHECK(HasBeenSetUp());
|
|
|
|
store_buffer()->Verify();
|
|
|
|
VerifyPointersVisitor visitor;
|
|
IterateRoots(&visitor, VISIT_ONLY_STRONG);
|
|
|
|
new_space_.Verify();
|
|
|
|
old_pointer_space_->Verify(&visitor);
|
|
map_space_->Verify(&visitor);
|
|
|
|
VerifyPointersVisitor no_dirty_regions_visitor;
|
|
old_data_space_->Verify(&no_dirty_regions_visitor);
|
|
code_space_->Verify(&no_dirty_regions_visitor);
|
|
cell_space_->Verify(&no_dirty_regions_visitor);
|
|
property_cell_space_->Verify(&no_dirty_regions_visitor);
|
|
|
|
lo_space_->Verify();
|
|
}
|
|
#endif
|
|
|
|
|
|
MaybeObject* Heap::InternalizeUtf8String(Vector<const char> string) {
|
|
Object* result = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
string_table()->LookupUtf8String(string, &result);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_string_table because StringTable::cast knows that
|
|
// StringTable is a singleton and checks for identity.
|
|
roots_[kStringTableRootIndex] = new_table;
|
|
ASSERT(result != NULL);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::InternalizeOneByteString(Vector<const uint8_t> string) {
|
|
Object* result = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
string_table()->LookupOneByteString(string, &result);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_string_table because StringTable::cast knows that
|
|
// StringTable is a singleton and checks for identity.
|
|
roots_[kStringTableRootIndex] = new_table;
|
|
ASSERT(result != NULL);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::InternalizeOneByteString(Handle<SeqOneByteString> string,
|
|
int from,
|
|
int length) {
|
|
Object* result = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
string_table()->LookupSubStringOneByteString(string,
|
|
from,
|
|
length,
|
|
&result);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_string_table because StringTable::cast knows that
|
|
// StringTable is a singleton and checks for identity.
|
|
roots_[kStringTableRootIndex] = new_table;
|
|
ASSERT(result != NULL);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::InternalizeTwoByteString(Vector<const uc16> string) {
|
|
Object* result = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
string_table()->LookupTwoByteString(string, &result);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_string_table because StringTable::cast knows that
|
|
// StringTable is a singleton and checks for identity.
|
|
roots_[kStringTableRootIndex] = new_table;
|
|
ASSERT(result != NULL);
|
|
return result;
|
|
}
|
|
|
|
|
|
MaybeObject* Heap::InternalizeString(String* string) {
|
|
if (string->IsInternalizedString()) return string;
|
|
Object* result = NULL;
|
|
Object* new_table;
|
|
{ MaybeObject* maybe_new_table =
|
|
string_table()->LookupString(string, &result);
|
|
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
|
|
}
|
|
// Can't use set_string_table because StringTable::cast knows that
|
|
// StringTable is a singleton and checks for identity.
|
|
roots_[kStringTableRootIndex] = new_table;
|
|
ASSERT(result != NULL);
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Heap::InternalizeStringIfExists(String* string, String** result) {
|
|
if (string->IsInternalizedString()) {
|
|
*result = string;
|
|
return true;
|
|
}
|
|
return string_table()->LookupStringIfExists(string, result);
|
|
}
|
|
|
|
|
|
void Heap::ZapFromSpace() {
|
|
NewSpacePageIterator it(new_space_.FromSpaceStart(),
|
|
new_space_.FromSpaceEnd());
|
|
while (it.has_next()) {
|
|
NewSpacePage* page = it.next();
|
|
for (Address cursor = page->area_start(), limit = page->area_end();
|
|
cursor < limit;
|
|
cursor += kPointerSize) {
|
|
Memory::Address_at(cursor) = kFromSpaceZapValue;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::IterateAndMarkPointersToFromSpace(Address start,
|
|
Address end,
|
|
ObjectSlotCallback callback) {
|
|
Address slot_address = start;
|
|
|
|
// We are not collecting slots on new space objects during mutation
|
|
// thus we have to scan for pointers to evacuation candidates when we
|
|
// promote objects. But we should not record any slots in non-black
|
|
// objects. Grey object's slots would be rescanned.
|
|
// White object might not survive until the end of collection
|
|
// it would be a violation of the invariant to record it's slots.
|
|
bool record_slots = false;
|
|
if (incremental_marking()->IsCompacting()) {
|
|
MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start));
|
|
record_slots = Marking::IsBlack(mark_bit);
|
|
}
|
|
|
|
while (slot_address < end) {
|
|
Object** slot = reinterpret_cast<Object**>(slot_address);
|
|
Object* object = *slot;
|
|
// If the store buffer becomes overfull we mark pages as being exempt from
|
|
// the store buffer. These pages are scanned to find pointers that point
|
|
// to the new space. In that case we may hit newly promoted objects and
|
|
// fix the pointers before the promotion queue gets to them. Thus the 'if'.
|
|
if (object->IsHeapObject()) {
|
|
if (Heap::InFromSpace(object)) {
|
|
callback(reinterpret_cast<HeapObject**>(slot),
|
|
HeapObject::cast(object));
|
|
Object* new_object = *slot;
|
|
if (InNewSpace(new_object)) {
|
|
SLOW_ASSERT(Heap::InToSpace(new_object));
|
|
SLOW_ASSERT(new_object->IsHeapObject());
|
|
store_buffer_.EnterDirectlyIntoStoreBuffer(
|
|
reinterpret_cast<Address>(slot));
|
|
}
|
|
SLOW_ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_object));
|
|
} else if (record_slots &&
|
|
MarkCompactCollector::IsOnEvacuationCandidate(object)) {
|
|
mark_compact_collector()->RecordSlot(slot, slot, object);
|
|
}
|
|
}
|
|
slot_address += kPointerSize;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
typedef bool (*CheckStoreBufferFilter)(Object** addr);
|
|
|
|
|
|
bool IsAMapPointerAddress(Object** addr) {
|
|
uintptr_t a = reinterpret_cast<uintptr_t>(addr);
|
|
int mod = a % Map::kSize;
|
|
return mod >= Map::kPointerFieldsBeginOffset &&
|
|
mod < Map::kPointerFieldsEndOffset;
|
|
}
|
|
|
|
|
|
bool EverythingsAPointer(Object** addr) {
|
|
return true;
|
|
}
|
|
|
|
|
|
static void CheckStoreBuffer(Heap* heap,
|
|
Object** current,
|
|
Object** limit,
|
|
Object**** store_buffer_position,
|
|
Object*** store_buffer_top,
|
|
CheckStoreBufferFilter filter,
|
|
Address special_garbage_start,
|
|
Address special_garbage_end) {
|
|
Map* free_space_map = heap->free_space_map();
|
|
for ( ; current < limit; current++) {
|
|
Object* o = *current;
|
|
Address current_address = reinterpret_cast<Address>(current);
|
|
// Skip free space.
|
|
if (o == free_space_map) {
|
|
Address current_address = reinterpret_cast<Address>(current);
|
|
FreeSpace* free_space =
|
|
FreeSpace::cast(HeapObject::FromAddress(current_address));
|
|
int skip = free_space->Size();
|
|
ASSERT(current_address + skip <= reinterpret_cast<Address>(limit));
|
|
ASSERT(skip > 0);
|
|
current_address += skip - kPointerSize;
|
|
current = reinterpret_cast<Object**>(current_address);
|
|
continue;
|
|
}
|
|
// Skip the current linear allocation space between top and limit which is
|
|
// unmarked with the free space map, but can contain junk.
|
|
if (current_address == special_garbage_start &&
|
|
special_garbage_end != special_garbage_start) {
|
|
current_address = special_garbage_end - kPointerSize;
|
|
current = reinterpret_cast<Object**>(current_address);
|
|
continue;
|
|
}
|
|
if (!(*filter)(current)) continue;
|
|
ASSERT(current_address < special_garbage_start ||
|
|
current_address >= special_garbage_end);
|
|
ASSERT(reinterpret_cast<uintptr_t>(o) != kFreeListZapValue);
|
|
// We have to check that the pointer does not point into new space
|
|
// without trying to cast it to a heap object since the hash field of
|
|
// a string can contain values like 1 and 3 which are tagged null
|
|
// pointers.
|
|
if (!heap->InNewSpace(o)) continue;
|
|
while (**store_buffer_position < current &&
|
|
*store_buffer_position < store_buffer_top) {
|
|
(*store_buffer_position)++;
|
|
}
|
|
if (**store_buffer_position != current ||
|
|
*store_buffer_position == store_buffer_top) {
|
|
Object** obj_start = current;
|
|
while (!(*obj_start)->IsMap()) obj_start--;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Check that the store buffer contains all intergenerational pointers by
|
|
// scanning a page and ensuring that all pointers to young space are in the
|
|
// store buffer.
|
|
void Heap::OldPointerSpaceCheckStoreBuffer() {
|
|
OldSpace* space = old_pointer_space();
|
|
PageIterator pages(space);
|
|
|
|
store_buffer()->SortUniq();
|
|
|
|
while (pages.has_next()) {
|
|
Page* page = pages.next();
|
|
Object** current = reinterpret_cast<Object**>(page->area_start());
|
|
|
|
Address end = page->area_end();
|
|
|
|
Object*** store_buffer_position = store_buffer()->Start();
|
|
Object*** store_buffer_top = store_buffer()->Top();
|
|
|
|
Object** limit = reinterpret_cast<Object**>(end);
|
|
CheckStoreBuffer(this,
|
|
current,
|
|
limit,
|
|
&store_buffer_position,
|
|
store_buffer_top,
|
|
&EverythingsAPointer,
|
|
space->top(),
|
|
space->limit());
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::MapSpaceCheckStoreBuffer() {
|
|
MapSpace* space = map_space();
|
|
PageIterator pages(space);
|
|
|
|
store_buffer()->SortUniq();
|
|
|
|
while (pages.has_next()) {
|
|
Page* page = pages.next();
|
|
Object** current = reinterpret_cast<Object**>(page->area_start());
|
|
|
|
Address end = page->area_end();
|
|
|
|
Object*** store_buffer_position = store_buffer()->Start();
|
|
Object*** store_buffer_top = store_buffer()->Top();
|
|
|
|
Object** limit = reinterpret_cast<Object**>(end);
|
|
CheckStoreBuffer(this,
|
|
current,
|
|
limit,
|
|
&store_buffer_position,
|
|
store_buffer_top,
|
|
&IsAMapPointerAddress,
|
|
space->top(),
|
|
space->limit());
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::LargeObjectSpaceCheckStoreBuffer() {
|
|
LargeObjectIterator it(lo_space());
|
|
for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
|
|
// We only have code, sequential strings, or fixed arrays in large
|
|
// object space, and only fixed arrays can possibly contain pointers to
|
|
// the young generation.
|
|
if (object->IsFixedArray()) {
|
|
Object*** store_buffer_position = store_buffer()->Start();
|
|
Object*** store_buffer_top = store_buffer()->Top();
|
|
Object** current = reinterpret_cast<Object**>(object->address());
|
|
Object** limit =
|
|
reinterpret_cast<Object**>(object->address() + object->Size());
|
|
CheckStoreBuffer(this,
|
|
current,
|
|
limit,
|
|
&store_buffer_position,
|
|
store_buffer_top,
|
|
&EverythingsAPointer,
|
|
NULL,
|
|
NULL);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
|
|
IterateStrongRoots(v, mode);
|
|
IterateWeakRoots(v, mode);
|
|
}
|
|
|
|
|
|
void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
|
|
v->VisitPointer(reinterpret_cast<Object**>(&roots_[kStringTableRootIndex]));
|
|
v->Synchronize(VisitorSynchronization::kStringTable);
|
|
if (mode != VISIT_ALL_IN_SCAVENGE &&
|
|
mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
|
|
// Scavenge collections have special processing for this.
|
|
external_string_table_.Iterate(v);
|
|
error_object_list_.Iterate(v);
|
|
}
|
|
v->Synchronize(VisitorSynchronization::kExternalStringsTable);
|
|
}
|
|
|
|
|
|
void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
|
|
v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
|
|
v->Synchronize(VisitorSynchronization::kStrongRootList);
|
|
|
|
v->VisitPointer(BitCast<Object**>(&hidden_string_));
|
|
v->Synchronize(VisitorSynchronization::kInternalizedString);
|
|
|
|
isolate_->bootstrapper()->Iterate(v);
|
|
v->Synchronize(VisitorSynchronization::kBootstrapper);
|
|
isolate_->Iterate(v);
|
|
v->Synchronize(VisitorSynchronization::kTop);
|
|
Relocatable::Iterate(v);
|
|
v->Synchronize(VisitorSynchronization::kRelocatable);
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
isolate_->debug()->Iterate(v);
|
|
if (isolate_->deoptimizer_data() != NULL) {
|
|
isolate_->deoptimizer_data()->Iterate(v);
|
|
}
|
|
#endif
|
|
v->Synchronize(VisitorSynchronization::kDebug);
|
|
isolate_->compilation_cache()->Iterate(v);
|
|
v->Synchronize(VisitorSynchronization::kCompilationCache);
|
|
|
|
// Iterate over local handles in handle scopes.
|
|
isolate_->handle_scope_implementer()->Iterate(v);
|
|
isolate_->IterateDeferredHandles(v);
|
|
v->Synchronize(VisitorSynchronization::kHandleScope);
|
|
|
|
// Iterate over the builtin code objects and code stubs in the
|
|
// heap. Note that it is not necessary to iterate over code objects
|
|
// on scavenge collections.
|
|
if (mode != VISIT_ALL_IN_SCAVENGE) {
|
|
isolate_->builtins()->IterateBuiltins(v);
|
|
}
|
|
v->Synchronize(VisitorSynchronization::kBuiltins);
|
|
|
|
// Iterate over global handles.
|
|
switch (mode) {
|
|
case VISIT_ONLY_STRONG:
|
|
isolate_->global_handles()->IterateStrongRoots(v);
|
|
break;
|
|
case VISIT_ALL_IN_SCAVENGE:
|
|
isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v);
|
|
break;
|
|
case VISIT_ALL_IN_SWEEP_NEWSPACE:
|
|
case VISIT_ALL:
|
|
isolate_->global_handles()->IterateAllRoots(v);
|
|
break;
|
|
}
|
|
v->Synchronize(VisitorSynchronization::kGlobalHandles);
|
|
|
|
// Iterate over pointers being held by inactive threads.
|
|
isolate_->thread_manager()->Iterate(v);
|
|
v->Synchronize(VisitorSynchronization::kThreadManager);
|
|
|
|
// Iterate over the pointers the Serialization/Deserialization code is
|
|
// holding.
|
|
// During garbage collection this keeps the partial snapshot cache alive.
|
|
// During deserialization of the startup snapshot this creates the partial
|
|
// snapshot cache and deserializes the objects it refers to. During
|
|
// serialization this does nothing, since the partial snapshot cache is
|
|
// empty. However the next thing we do is create the partial snapshot,
|
|
// filling up the partial snapshot cache with objects it needs as we go.
|
|
SerializerDeserializer::Iterate(v);
|
|
// We don't do a v->Synchronize call here, because in debug mode that will
|
|
// output a flag to the snapshot. However at this point the serializer and
|
|
// deserializer are deliberately a little unsynchronized (see above) so the
|
|
// checking of the sync flag in the snapshot would fail.
|
|
}
|
|
|
|
|
|
// TODO(1236194): Since the heap size is configurable on the command line
|
|
// and through the API, we should gracefully handle the case that the heap
|
|
// size is not big enough to fit all the initial objects.
|
|
bool Heap::ConfigureHeap(int max_semispace_size,
|
|
intptr_t max_old_gen_size,
|
|
intptr_t max_executable_size) {
|
|
if (HasBeenSetUp()) return false;
|
|
|
|
if (FLAG_stress_compaction) {
|
|
// This will cause more frequent GCs when stressing.
|
|
max_semispace_size_ = Page::kPageSize;
|
|
}
|
|
|
|
if (max_semispace_size > 0) {
|
|
if (max_semispace_size < Page::kPageSize) {
|
|
max_semispace_size = Page::kPageSize;
|
|
if (FLAG_trace_gc) {
|
|
PrintPID("Max semispace size cannot be less than %dkbytes\n",
|
|
Page::kPageSize >> 10);
|
|
}
|
|
}
|
|
max_semispace_size_ = max_semispace_size;
|
|
}
|
|
|
|
if (Snapshot::IsEnabled()) {
|
|
// If we are using a snapshot we always reserve the default amount
|
|
// of memory for each semispace because code in the snapshot has
|
|
// write-barrier code that relies on the size and alignment of new
|
|
// space. We therefore cannot use a larger max semispace size
|
|
// than the default reserved semispace size.
|
|
if (max_semispace_size_ > reserved_semispace_size_) {
|
|
max_semispace_size_ = reserved_semispace_size_;
|
|
if (FLAG_trace_gc) {
|
|
PrintPID("Max semispace size cannot be more than %dkbytes\n",
|
|
reserved_semispace_size_ >> 10);
|
|
}
|
|
}
|
|
} else {
|
|
// If we are not using snapshots we reserve space for the actual
|
|
// max semispace size.
|
|
reserved_semispace_size_ = max_semispace_size_;
|
|
}
|
|
|
|
if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size;
|
|
if (max_executable_size > 0) {
|
|
max_executable_size_ = RoundUp(max_executable_size, Page::kPageSize);
|
|
}
|
|
|
|
// The max executable size must be less than or equal to the max old
|
|
// generation size.
|
|
if (max_executable_size_ > max_old_generation_size_) {
|
|
max_executable_size_ = max_old_generation_size_;
|
|
}
|
|
|
|
// The new space size must be a power of two to support single-bit testing
|
|
// for containment.
|
|
max_semispace_size_ = RoundUpToPowerOf2(max_semispace_size_);
|
|
reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
|
|
initial_semispace_size_ = Min(initial_semispace_size_, max_semispace_size_);
|
|
|
|
// The external allocation limit should be below 256 MB on all architectures
|
|
// to avoid unnecessary low memory notifications, as that is the threshold
|
|
// for some embedders.
|
|
external_allocation_limit_ = 12 * max_semispace_size_;
|
|
ASSERT(external_allocation_limit_ <= 256 * MB);
|
|
|
|
// The old generation is paged and needs at least one page for each space.
|
|
int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1;
|
|
max_old_generation_size_ = Max(static_cast<intptr_t>(paged_space_count *
|
|
Page::kPageSize),
|
|
RoundUp(max_old_generation_size_,
|
|
Page::kPageSize));
|
|
|
|
configured_ = true;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Heap::ConfigureHeapDefault() {
|
|
return ConfigureHeap(static_cast<intptr_t>(FLAG_max_new_space_size / 2) * KB,
|
|
static_cast<intptr_t>(FLAG_max_old_space_size) * MB,
|
|
static_cast<intptr_t>(FLAG_max_executable_size) * MB);
|
|
}
|
|
|
|
|
|
void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
|
|
*stats->start_marker = HeapStats::kStartMarker;
|
|
*stats->end_marker = HeapStats::kEndMarker;
|
|
*stats->new_space_size = new_space_.SizeAsInt();
|
|
*stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
|
|
*stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects();
|
|
*stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
|
|
*stats->old_data_space_size = old_data_space_->SizeOfObjects();
|
|
*stats->old_data_space_capacity = old_data_space_->Capacity();
|
|
*stats->code_space_size = code_space_->SizeOfObjects();
|
|
*stats->code_space_capacity = code_space_->Capacity();
|
|
*stats->map_space_size = map_space_->SizeOfObjects();
|
|
*stats->map_space_capacity = map_space_->Capacity();
|
|
*stats->cell_space_size = cell_space_->SizeOfObjects();
|
|
*stats->cell_space_capacity = cell_space_->Capacity();
|
|
*stats->property_cell_space_size = property_cell_space_->SizeOfObjects();
|
|
*stats->property_cell_space_capacity = property_cell_space_->Capacity();
|
|
*stats->lo_space_size = lo_space_->Size();
|
|
isolate_->global_handles()->RecordStats(stats);
|
|
*stats->memory_allocator_size = isolate()->memory_allocator()->Size();
|
|
*stats->memory_allocator_capacity =
|
|
isolate()->memory_allocator()->Size() +
|
|
isolate()->memory_allocator()->Available();
|
|
*stats->os_error = OS::GetLastError();
|
|
isolate()->memory_allocator()->Available();
|
|
if (take_snapshot) {
|
|
HeapIterator iterator(this);
|
|
for (HeapObject* obj = iterator.next();
|
|
obj != NULL;
|
|
obj = iterator.next()) {
|
|
InstanceType type = obj->map()->instance_type();
|
|
ASSERT(0 <= type && type <= LAST_TYPE);
|
|
stats->objects_per_type[type]++;
|
|
stats->size_per_type[type] += obj->Size();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
intptr_t Heap::PromotedSpaceSizeOfObjects() {
|
|
return old_pointer_space_->SizeOfObjects()
|
|
+ old_data_space_->SizeOfObjects()
|
|
+ code_space_->SizeOfObjects()
|
|
+ map_space_->SizeOfObjects()
|
|
+ cell_space_->SizeOfObjects()
|
|
+ property_cell_space_->SizeOfObjects()
|
|
+ lo_space_->SizeOfObjects();
|
|
}
|
|
|
|
|
|
intptr_t Heap::PromotedExternalMemorySize() {
|
|
if (amount_of_external_allocated_memory_
|
|
<= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
|
|
return amount_of_external_allocated_memory_
|
|
- amount_of_external_allocated_memory_at_last_global_gc_;
|
|
}
|
|
|
|
|
|
V8_DECLARE_ONCE(initialize_gc_once);
|
|
|
|
static void InitializeGCOnce() {
|
|
InitializeScavengingVisitorsTables();
|
|
NewSpaceScavenger::Initialize();
|
|
MarkCompactCollector::Initialize();
|
|
}
|
|
|
|
|
|
bool Heap::SetUp() {
|
|
#ifdef DEBUG
|
|
allocation_timeout_ = FLAG_gc_interval;
|
|
#endif
|
|
|
|
// Initialize heap spaces and initial maps and objects. Whenever something
|
|
// goes wrong, just return false. The caller should check the results and
|
|
// call Heap::TearDown() to release allocated memory.
|
|
//
|
|
// If the heap is not yet configured (e.g. through the API), configure it.
|
|
// Configuration is based on the flags new-space-size (really the semispace
|
|
// size) and old-space-size if set or the initial values of semispace_size_
|
|
// and old_generation_size_ otherwise.
|
|
if (!configured_) {
|
|
if (!ConfigureHeapDefault()) return false;
|
|
}
|
|
|
|
CallOnce(&initialize_gc_once, &InitializeGCOnce);
|
|
|
|
MarkMapPointersAsEncoded(false);
|
|
|
|
// Set up memory allocator.
|
|
if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize()))
|
|
return false;
|
|
|
|
// Set up new space.
|
|
if (!new_space_.SetUp(reserved_semispace_size_, max_semispace_size_)) {
|
|
return false;
|
|
}
|
|
|
|
// Initialize old pointer space.
|
|
old_pointer_space_ =
|
|
new OldSpace(this,
|
|
max_old_generation_size_,
|
|
OLD_POINTER_SPACE,
|
|
NOT_EXECUTABLE);
|
|
if (old_pointer_space_ == NULL) return false;
|
|
if (!old_pointer_space_->SetUp()) return false;
|
|
|
|
// Initialize old data space.
|
|
old_data_space_ =
|
|
new OldSpace(this,
|
|
max_old_generation_size_,
|
|
OLD_DATA_SPACE,
|
|
NOT_EXECUTABLE);
|
|
if (old_data_space_ == NULL) return false;
|
|
if (!old_data_space_->SetUp()) return false;
|
|
|
|
// Initialize the code space, set its maximum capacity to the old
|
|
// generation size. It needs executable memory.
|
|
// On 64-bit platform(s), we put all code objects in a 2 GB range of
|
|
// virtual address space, so that they can call each other with near calls.
|
|
if (code_range_size_ > 0) {
|
|
if (!isolate_->code_range()->SetUp(code_range_size_)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
code_space_ =
|
|
new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
|
|
if (code_space_ == NULL) return false;
|
|
if (!code_space_->SetUp()) return false;
|
|
|
|
// Initialize map space.
|
|
map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE);
|
|
if (map_space_ == NULL) return false;
|
|
if (!map_space_->SetUp()) return false;
|
|
|
|
// Initialize simple cell space.
|
|
cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
|
|
if (cell_space_ == NULL) return false;
|
|
if (!cell_space_->SetUp()) return false;
|
|
|
|
// Initialize global property cell space.
|
|
property_cell_space_ = new PropertyCellSpace(this, max_old_generation_size_,
|
|
PROPERTY_CELL_SPACE);
|
|
if (property_cell_space_ == NULL) return false;
|
|
if (!property_cell_space_->SetUp()) return false;
|
|
|
|
// The large object code space may contain code or data. We set the memory
|
|
// to be non-executable here for safety, but this means we need to enable it
|
|
// explicitly when allocating large code objects.
|
|
lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE);
|
|
if (lo_space_ == NULL) return false;
|
|
if (!lo_space_->SetUp()) return false;
|
|
|
|
// Set up the seed that is used to randomize the string hash function.
|
|
ASSERT(hash_seed() == 0);
|
|
if (FLAG_randomize_hashes) {
|
|
if (FLAG_hash_seed == 0) {
|
|
set_hash_seed(
|
|
Smi::FromInt(V8::RandomPrivate(isolate()) & 0x3fffffff));
|
|
} else {
|
|
set_hash_seed(Smi::FromInt(FLAG_hash_seed));
|
|
}
|
|
}
|
|
|
|
LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
|
|
LOG(isolate_, IntPtrTEvent("heap-available", Available()));
|
|
|
|
store_buffer()->SetUp();
|
|
|
|
if (FLAG_parallel_recompilation) relocation_mutex_ = OS::CreateMutex();
|
|
#ifdef DEBUG
|
|
relocation_mutex_locked_by_optimizer_thread_ = false;
|
|
#endif // DEBUG
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Heap::CreateHeapObjects() {
|
|
// Create initial maps.
|
|
if (!CreateInitialMaps()) return false;
|
|
if (!CreateApiObjects()) return false;
|
|
|
|
// Create initial objects
|
|
if (!CreateInitialObjects()) return false;
|
|
|
|
native_contexts_list_ = undefined_value();
|
|
array_buffers_list_ = undefined_value();
|
|
allocation_sites_list_ = undefined_value();
|
|
return true;
|
|
}
|
|
|
|
|
|
void Heap::SetStackLimits() {
|
|
ASSERT(isolate_ != NULL);
|
|
ASSERT(isolate_ == isolate());
|
|
// On 64 bit machines, pointers are generally out of range of Smis. We write
|
|
// something that looks like an out of range Smi to the GC.
|
|
|
|
// Set up the special root array entries containing the stack limits.
|
|
// These are actually addresses, but the tag makes the GC ignore it.
|
|
roots_[kStackLimitRootIndex] =
|
|
reinterpret_cast<Object*>(
|
|
(isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
|
|
roots_[kRealStackLimitRootIndex] =
|
|
reinterpret_cast<Object*>(
|
|
(isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
|
|
}
|
|
|
|
|
|
void Heap::TearDown() {
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
Verify();
|
|
}
|
|
#endif
|
|
|
|
if (FLAG_print_cumulative_gc_stat) {
|
|
PrintF("\n");
|
|
PrintF("gc_count=%d ", gc_count_);
|
|
PrintF("mark_sweep_count=%d ", ms_count_);
|
|
PrintF("max_gc_pause=%.1f ", get_max_gc_pause());
|
|
PrintF("total_gc_time=%.1f ", total_gc_time_ms_);
|
|
PrintF("min_in_mutator=%.1f ", get_min_in_mutator());
|
|
PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
|
|
get_max_alive_after_gc());
|
|
PrintF("total_marking_time=%.1f ", marking_time());
|
|
PrintF("total_sweeping_time=%.1f ", sweeping_time());
|
|
PrintF("\n\n");
|
|
}
|
|
|
|
TearDownArrayBuffers();
|
|
|
|
isolate_->global_handles()->TearDown();
|
|
|
|
external_string_table_.TearDown();
|
|
|
|
error_object_list_.TearDown();
|
|
|
|
new_space_.TearDown();
|
|
|
|
if (old_pointer_space_ != NULL) {
|
|
old_pointer_space_->TearDown();
|
|
delete old_pointer_space_;
|
|
old_pointer_space_ = NULL;
|
|
}
|
|
|
|
if (old_data_space_ != NULL) {
|
|
old_data_space_->TearDown();
|
|
delete old_data_space_;
|
|
old_data_space_ = NULL;
|
|
}
|
|
|
|
if (code_space_ != NULL) {
|
|
code_space_->TearDown();
|
|
delete code_space_;
|
|
code_space_ = NULL;
|
|
}
|
|
|
|
if (map_space_ != NULL) {
|
|
map_space_->TearDown();
|
|
delete map_space_;
|
|
map_space_ = NULL;
|
|
}
|
|
|
|
if (cell_space_ != NULL) {
|
|
cell_space_->TearDown();
|
|
delete cell_space_;
|
|
cell_space_ = NULL;
|
|
}
|
|
|
|
if (property_cell_space_ != NULL) {
|
|
property_cell_space_->TearDown();
|
|
delete property_cell_space_;
|
|
property_cell_space_ = NULL;
|
|
}
|
|
|
|
if (lo_space_ != NULL) {
|
|
lo_space_->TearDown();
|
|
delete lo_space_;
|
|
lo_space_ = NULL;
|
|
}
|
|
|
|
store_buffer()->TearDown();
|
|
incremental_marking()->TearDown();
|
|
|
|
isolate_->memory_allocator()->TearDown();
|
|
|
|
delete relocation_mutex_;
|
|
}
|
|
|
|
|
|
void Heap::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) {
|
|
ASSERT(callback != NULL);
|
|
GCPrologueCallbackPair pair(callback, gc_type);
|
|
ASSERT(!gc_prologue_callbacks_.Contains(pair));
|
|
return gc_prologue_callbacks_.Add(pair);
|
|
}
|
|
|
|
|
|
void Heap::RemoveGCPrologueCallback(GCPrologueCallback callback) {
|
|
ASSERT(callback != NULL);
|
|
for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
|
|
if (gc_prologue_callbacks_[i].callback == callback) {
|
|
gc_prologue_callbacks_.Remove(i);
|
|
return;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void Heap::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) {
|
|
ASSERT(callback != NULL);
|
|
GCEpilogueCallbackPair pair(callback, gc_type);
|
|
ASSERT(!gc_epilogue_callbacks_.Contains(pair));
|
|
return gc_epilogue_callbacks_.Add(pair);
|
|
}
|
|
|
|
|
|
void Heap::RemoveGCEpilogueCallback(GCEpilogueCallback callback) {
|
|
ASSERT(callback != NULL);
|
|
for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
|
|
if (gc_epilogue_callbacks_[i].callback == callback) {
|
|
gc_epilogue_callbacks_.Remove(i);
|
|
return;
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
class PrintHandleVisitor: public ObjectVisitor {
|
|
public:
|
|
void VisitPointers(Object** start, Object** end) {
|
|
for (Object** p = start; p < end; p++)
|
|
PrintF(" handle %p to %p\n",
|
|
reinterpret_cast<void*>(p),
|
|
reinterpret_cast<void*>(*p));
|
|
}
|
|
};
|
|
|
|
|
|
void Heap::PrintHandles() {
|
|
PrintF("Handles:\n");
|
|
PrintHandleVisitor v;
|
|
isolate_->handle_scope_implementer()->Iterate(&v);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
Space* AllSpaces::next() {
|
|
switch (counter_++) {
|
|
case NEW_SPACE:
|
|
return heap_->new_space();
|
|
case OLD_POINTER_SPACE:
|
|
return heap_->old_pointer_space();
|
|
case OLD_DATA_SPACE:
|
|
return heap_->old_data_space();
|
|
case CODE_SPACE:
|
|
return heap_->code_space();
|
|
case MAP_SPACE:
|
|
return heap_->map_space();
|
|
case CELL_SPACE:
|
|
return heap_->cell_space();
|
|
case PROPERTY_CELL_SPACE:
|
|
return heap_->property_cell_space();
|
|
case LO_SPACE:
|
|
return heap_->lo_space();
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
PagedSpace* PagedSpaces::next() {
|
|
switch (counter_++) {
|
|
case OLD_POINTER_SPACE:
|
|
return heap_->old_pointer_space();
|
|
case OLD_DATA_SPACE:
|
|
return heap_->old_data_space();
|
|
case CODE_SPACE:
|
|
return heap_->code_space();
|
|
case MAP_SPACE:
|
|
return heap_->map_space();
|
|
case CELL_SPACE:
|
|
return heap_->cell_space();
|
|
case PROPERTY_CELL_SPACE:
|
|
return heap_->property_cell_space();
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
OldSpace* OldSpaces::next() {
|
|
switch (counter_++) {
|
|
case OLD_POINTER_SPACE:
|
|
return heap_->old_pointer_space();
|
|
case OLD_DATA_SPACE:
|
|
return heap_->old_data_space();
|
|
case CODE_SPACE:
|
|
return heap_->code_space();
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
SpaceIterator::SpaceIterator(Heap* heap)
|
|
: heap_(heap),
|
|
current_space_(FIRST_SPACE),
|
|
iterator_(NULL),
|
|
size_func_(NULL) {
|
|
}
|
|
|
|
|
|
SpaceIterator::SpaceIterator(Heap* heap, HeapObjectCallback size_func)
|
|
: heap_(heap),
|
|
current_space_(FIRST_SPACE),
|
|
iterator_(NULL),
|
|
size_func_(size_func) {
|
|
}
|
|
|
|
|
|
SpaceIterator::~SpaceIterator() {
|
|
// Delete active iterator if any.
|
|
delete iterator_;
|
|
}
|
|
|
|
|
|
bool SpaceIterator::has_next() {
|
|
// Iterate until no more spaces.
|
|
return current_space_ != LAST_SPACE;
|
|
}
|
|
|
|
|
|
ObjectIterator* SpaceIterator::next() {
|
|
if (iterator_ != NULL) {
|
|
delete iterator_;
|
|
iterator_ = NULL;
|
|
// Move to the next space
|
|
current_space_++;
|
|
if (current_space_ > LAST_SPACE) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Return iterator for the new current space.
|
|
return CreateIterator();
|
|
}
|
|
|
|
|
|
// Create an iterator for the space to iterate.
|
|
ObjectIterator* SpaceIterator::CreateIterator() {
|
|
ASSERT(iterator_ == NULL);
|
|
|
|
switch (current_space_) {
|
|
case NEW_SPACE:
|
|
iterator_ = new SemiSpaceIterator(heap_->new_space(), size_func_);
|
|
break;
|
|
case OLD_POINTER_SPACE:
|
|
iterator_ =
|
|
new HeapObjectIterator(heap_->old_pointer_space(), size_func_);
|
|
break;
|
|
case OLD_DATA_SPACE:
|
|
iterator_ = new HeapObjectIterator(heap_->old_data_space(), size_func_);
|
|
break;
|
|
case CODE_SPACE:
|
|
iterator_ = new HeapObjectIterator(heap_->code_space(), size_func_);
|
|
break;
|
|
case MAP_SPACE:
|
|
iterator_ = new HeapObjectIterator(heap_->map_space(), size_func_);
|
|
break;
|
|
case CELL_SPACE:
|
|
iterator_ = new HeapObjectIterator(heap_->cell_space(), size_func_);
|
|
break;
|
|
case PROPERTY_CELL_SPACE:
|
|
iterator_ = new HeapObjectIterator(heap_->property_cell_space(),
|
|
size_func_);
|
|
break;
|
|
case LO_SPACE:
|
|
iterator_ = new LargeObjectIterator(heap_->lo_space(), size_func_);
|
|
break;
|
|
}
|
|
|
|
// Return the newly allocated iterator;
|
|
ASSERT(iterator_ != NULL);
|
|
return iterator_;
|
|
}
|
|
|
|
|
|
class HeapObjectsFilter {
|
|
public:
|
|
virtual ~HeapObjectsFilter() {}
|
|
virtual bool SkipObject(HeapObject* object) = 0;
|
|
};
|
|
|
|
|
|
class UnreachableObjectsFilter : public HeapObjectsFilter {
|
|
public:
|
|
UnreachableObjectsFilter() {
|
|
MarkReachableObjects();
|
|
}
|
|
|
|
~UnreachableObjectsFilter() {
|
|
Isolate::Current()->heap()->mark_compact_collector()->ClearMarkbits();
|
|
}
|
|
|
|
bool SkipObject(HeapObject* object) {
|
|
MarkBit mark_bit = Marking::MarkBitFrom(object);
|
|
return !mark_bit.Get();
|
|
}
|
|
|
|
private:
|
|
class MarkingVisitor : public ObjectVisitor {
|
|
public:
|
|
MarkingVisitor() : marking_stack_(10) {}
|
|
|
|
void VisitPointers(Object** start, Object** end) {
|
|
for (Object** p = start; p < end; p++) {
|
|
if (!(*p)->IsHeapObject()) continue;
|
|
HeapObject* obj = HeapObject::cast(*p);
|
|
MarkBit mark_bit = Marking::MarkBitFrom(obj);
|
|
if (!mark_bit.Get()) {
|
|
mark_bit.Set();
|
|
marking_stack_.Add(obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransitiveClosure() {
|
|
while (!marking_stack_.is_empty()) {
|
|
HeapObject* obj = marking_stack_.RemoveLast();
|
|
obj->Iterate(this);
|
|
}
|
|
}
|
|
|
|
private:
|
|
List<HeapObject*> marking_stack_;
|
|
};
|
|
|
|
void MarkReachableObjects() {
|
|
Heap* heap = Isolate::Current()->heap();
|
|
MarkingVisitor visitor;
|
|
heap->IterateRoots(&visitor, VISIT_ALL);
|
|
visitor.TransitiveClosure();
|
|
}
|
|
|
|
DisallowHeapAllocation no_allocation_;
|
|
};
|
|
|
|
|
|
HeapIterator::HeapIterator(Heap* heap)
|
|
: heap_(heap),
|
|
filtering_(HeapIterator::kNoFiltering),
|
|
filter_(NULL) {
|
|
Init();
|
|
}
|
|
|
|
|
|
HeapIterator::HeapIterator(Heap* heap,
|
|
HeapIterator::HeapObjectsFiltering filtering)
|
|
: heap_(heap),
|
|
filtering_(filtering),
|
|
filter_(NULL) {
|
|
Init();
|
|
}
|
|
|
|
|
|
HeapIterator::~HeapIterator() {
|
|
Shutdown();
|
|
}
|
|
|
|
|
|
void HeapIterator::Init() {
|
|
// Start the iteration.
|
|
space_iterator_ = new SpaceIterator(heap_);
|
|
switch (filtering_) {
|
|
case kFilterUnreachable:
|
|
filter_ = new UnreachableObjectsFilter;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
object_iterator_ = space_iterator_->next();
|
|
}
|
|
|
|
|
|
void HeapIterator::Shutdown() {
|
|
#ifdef DEBUG
|
|
// Assert that in filtering mode we have iterated through all
|
|
// objects. Otherwise, heap will be left in an inconsistent state.
|
|
if (filtering_ != kNoFiltering) {
|
|
ASSERT(object_iterator_ == NULL);
|
|
}
|
|
#endif
|
|
// Make sure the last iterator is deallocated.
|
|
delete space_iterator_;
|
|
space_iterator_ = NULL;
|
|
object_iterator_ = NULL;
|
|
delete filter_;
|
|
filter_ = NULL;
|
|
}
|
|
|
|
|
|
HeapObject* HeapIterator::next() {
|
|
if (filter_ == NULL) return NextObject();
|
|
|
|
HeapObject* obj = NextObject();
|
|
while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
|
|
return obj;
|
|
}
|
|
|
|
|
|
HeapObject* HeapIterator::NextObject() {
|
|
// No iterator means we are done.
|
|
if (object_iterator_ == NULL) return NULL;
|
|
|
|
if (HeapObject* obj = object_iterator_->next_object()) {
|
|
// If the current iterator has more objects we are fine.
|
|
return obj;
|
|
} else {
|
|
// Go though the spaces looking for one that has objects.
|
|
while (space_iterator_->has_next()) {
|
|
object_iterator_ = space_iterator_->next();
|
|
if (HeapObject* obj = object_iterator_->next_object()) {
|
|
return obj;
|
|
}
|
|
}
|
|
}
|
|
// Done with the last space.
|
|
object_iterator_ = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void HeapIterator::reset() {
|
|
// Restart the iterator.
|
|
Shutdown();
|
|
Init();
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
Object* const PathTracer::kAnyGlobalObject = NULL;
|
|
|
|
class PathTracer::MarkVisitor: public ObjectVisitor {
|
|
public:
|
|
explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Scan all HeapObject pointers in [start, end)
|
|
for (Object** p = start; !tracer_->found() && (p < end); p++) {
|
|
if ((*p)->IsHeapObject())
|
|
tracer_->MarkRecursively(p, this);
|
|
}
|
|
}
|
|
|
|
private:
|
|
PathTracer* tracer_;
|
|
};
|
|
|
|
|
|
class PathTracer::UnmarkVisitor: public ObjectVisitor {
|
|
public:
|
|
explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
|
|
void VisitPointers(Object** start, Object** end) {
|
|
// Scan all HeapObject pointers in [start, end)
|
|
for (Object** p = start; p < end; p++) {
|
|
if ((*p)->IsHeapObject())
|
|
tracer_->UnmarkRecursively(p, this);
|
|
}
|
|
}
|
|
|
|
private:
|
|
PathTracer* tracer_;
|
|
};
|
|
|
|
|
|
void PathTracer::VisitPointers(Object** start, Object** end) {
|
|
bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
|
|
// Visit all HeapObject pointers in [start, end)
|
|
for (Object** p = start; !done && (p < end); p++) {
|
|
if ((*p)->IsHeapObject()) {
|
|
TracePathFrom(p);
|
|
done = ((what_to_find_ == FIND_FIRST) && found_target_);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void PathTracer::Reset() {
|
|
found_target_ = false;
|
|
object_stack_.Clear();
|
|
}
|
|
|
|
|
|
void PathTracer::TracePathFrom(Object** root) {
|
|
ASSERT((search_target_ == kAnyGlobalObject) ||
|
|
search_target_->IsHeapObject());
|
|
found_target_in_trace_ = false;
|
|
Reset();
|
|
|
|
MarkVisitor mark_visitor(this);
|
|
MarkRecursively(root, &mark_visitor);
|
|
|
|
UnmarkVisitor unmark_visitor(this);
|
|
UnmarkRecursively(root, &unmark_visitor);
|
|
|
|
ProcessResults();
|
|
}
|
|
|
|
|
|
static bool SafeIsNativeContext(HeapObject* obj) {
|
|
return obj->map() == obj->GetHeap()->raw_unchecked_native_context_map();
|
|
}
|
|
|
|
|
|
void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
|
|
if (!(*p)->IsHeapObject()) return;
|
|
|
|
HeapObject* obj = HeapObject::cast(*p);
|
|
|
|
Object* map = obj->map();
|
|
|
|
if (!map->IsHeapObject()) return; // visited before
|
|
|
|
if (found_target_in_trace_) return; // stop if target found
|
|
object_stack_.Add(obj);
|
|
if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
|
|
(obj == search_target_)) {
|
|
found_target_in_trace_ = true;
|
|
found_target_ = true;
|
|
return;
|
|
}
|
|
|
|
bool is_native_context = SafeIsNativeContext(obj);
|
|
|
|
// not visited yet
|
|
Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
|
|
|
|
Address map_addr = map_p->address();
|
|
|
|
obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_addr + kMarkTag));
|
|
|
|
// Scan the object body.
|
|
if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
|
|
// This is specialized to scan Context's properly.
|
|
Object** start = reinterpret_cast<Object**>(obj->address() +
|
|
Context::kHeaderSize);
|
|
Object** end = reinterpret_cast<Object**>(obj->address() +
|
|
Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
|
|
mark_visitor->VisitPointers(start, end);
|
|
} else {
|
|
obj->IterateBody(map_p->instance_type(),
|
|
obj->SizeFromMap(map_p),
|
|
mark_visitor);
|
|
}
|
|
|
|
// Scan the map after the body because the body is a lot more interesting
|
|
// when doing leak detection.
|
|
MarkRecursively(&map, mark_visitor);
|
|
|
|
if (!found_target_in_trace_) // don't pop if found the target
|
|
object_stack_.RemoveLast();
|
|
}
|
|
|
|
|
|
void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
|
|
if (!(*p)->IsHeapObject()) return;
|
|
|
|
HeapObject* obj = HeapObject::cast(*p);
|
|
|
|
Object* map = obj->map();
|
|
|
|
if (map->IsHeapObject()) return; // unmarked already
|
|
|
|
Address map_addr = reinterpret_cast<Address>(map);
|
|
|
|
map_addr -= kMarkTag;
|
|
|
|
ASSERT_TAG_ALIGNED(map_addr);
|
|
|
|
HeapObject* map_p = HeapObject::FromAddress(map_addr);
|
|
|
|
obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_p));
|
|
|
|
UnmarkRecursively(reinterpret_cast<Object**>(&map_p), unmark_visitor);
|
|
|
|
obj->IterateBody(Map::cast(map_p)->instance_type(),
|
|
obj->SizeFromMap(Map::cast(map_p)),
|
|
unmark_visitor);
|
|
}
|
|
|
|
|
|
void PathTracer::ProcessResults() {
|
|
if (found_target_) {
|
|
PrintF("=====================================\n");
|
|
PrintF("==== Path to object ====\n");
|
|
PrintF("=====================================\n\n");
|
|
|
|
ASSERT(!object_stack_.is_empty());
|
|
for (int i = 0; i < object_stack_.length(); i++) {
|
|
if (i > 0) PrintF("\n |\n |\n V\n\n");
|
|
Object* obj = object_stack_[i];
|
|
obj->Print();
|
|
}
|
|
PrintF("=====================================\n");
|
|
}
|
|
}
|
|
|
|
|
|
// Triggers a depth-first traversal of reachable objects from one
|
|
// given root object and finds a path to a specific heap object and
|
|
// prints it.
|
|
void Heap::TracePathToObjectFrom(Object* target, Object* root) {
|
|
PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
|
|
tracer.VisitPointer(&root);
|
|
}
|
|
|
|
|
|
// Triggers a depth-first traversal of reachable objects from roots
|
|
// and finds a path to a specific heap object and prints it.
|
|
void Heap::TracePathToObject(Object* target) {
|
|
PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
|
|
IterateRoots(&tracer, VISIT_ONLY_STRONG);
|
|
}
|
|
|
|
|
|
// Triggers a depth-first traversal of reachable objects from roots
|
|
// and finds a path to any global object and prints it. Useful for
|
|
// determining the source for leaks of global objects.
|
|
void Heap::TracePathToGlobal() {
|
|
PathTracer tracer(PathTracer::kAnyGlobalObject,
|
|
PathTracer::FIND_ALL,
|
|
VISIT_ALL);
|
|
IterateRoots(&tracer, VISIT_ONLY_STRONG);
|
|
}
|
|
#endif
|
|
|
|
|
|
static intptr_t CountTotalHolesSize(Heap* heap) {
|
|
intptr_t holes_size = 0;
|
|
OldSpaces spaces(heap);
|
|
for (OldSpace* space = spaces.next();
|
|
space != NULL;
|
|
space = spaces.next()) {
|
|
holes_size += space->Waste() + space->Available();
|
|
}
|
|
return holes_size;
|
|
}
|
|
|
|
|
|
GCTracer::GCTracer(Heap* heap,
|
|
const char* gc_reason,
|
|
const char* collector_reason)
|
|
: start_time_(0.0),
|
|
start_object_size_(0),
|
|
start_memory_size_(0),
|
|
gc_count_(0),
|
|
full_gc_count_(0),
|
|
allocated_since_last_gc_(0),
|
|
spent_in_mutator_(0),
|
|
promoted_objects_size_(0),
|
|
nodes_died_in_new_space_(0),
|
|
nodes_copied_in_new_space_(0),
|
|
nodes_promoted_(0),
|
|
heap_(heap),
|
|
gc_reason_(gc_reason),
|
|
collector_reason_(collector_reason) {
|
|
if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
|
|
start_time_ = OS::TimeCurrentMillis();
|
|
start_object_size_ = heap_->SizeOfObjects();
|
|
start_memory_size_ = heap_->isolate()->memory_allocator()->Size();
|
|
|
|
for (int i = 0; i < Scope::kNumberOfScopes; i++) {
|
|
scopes_[i] = 0;
|
|
}
|
|
|
|
in_free_list_or_wasted_before_gc_ = CountTotalHolesSize(heap);
|
|
|
|
allocated_since_last_gc_ =
|
|
heap_->SizeOfObjects() - heap_->alive_after_last_gc_;
|
|
|
|
if (heap_->last_gc_end_timestamp_ > 0) {
|
|
spent_in_mutator_ = Max(start_time_ - heap_->last_gc_end_timestamp_, 0.0);
|
|
}
|
|
|
|
steps_count_ = heap_->incremental_marking()->steps_count();
|
|
steps_took_ = heap_->incremental_marking()->steps_took();
|
|
longest_step_ = heap_->incremental_marking()->longest_step();
|
|
steps_count_since_last_gc_ =
|
|
heap_->incremental_marking()->steps_count_since_last_gc();
|
|
steps_took_since_last_gc_ =
|
|
heap_->incremental_marking()->steps_took_since_last_gc();
|
|
}
|
|
|
|
|
|
GCTracer::~GCTracer() {
|
|
// Printf ONE line iff flag is set.
|
|
if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
|
|
|
|
bool first_gc = (heap_->last_gc_end_timestamp_ == 0);
|
|
|
|
heap_->alive_after_last_gc_ = heap_->SizeOfObjects();
|
|
heap_->last_gc_end_timestamp_ = OS::TimeCurrentMillis();
|
|
|
|
double time = heap_->last_gc_end_timestamp_ - start_time_;
|
|
|
|
// Update cumulative GC statistics if required.
|
|
if (FLAG_print_cumulative_gc_stat) {
|
|
heap_->total_gc_time_ms_ += time;
|
|
heap_->max_gc_pause_ = Max(heap_->max_gc_pause_, time);
|
|
heap_->max_alive_after_gc_ = Max(heap_->max_alive_after_gc_,
|
|
heap_->alive_after_last_gc_);
|
|
if (!first_gc) {
|
|
heap_->min_in_mutator_ = Min(heap_->min_in_mutator_,
|
|
spent_in_mutator_);
|
|
}
|
|
} else if (FLAG_trace_gc_verbose) {
|
|
heap_->total_gc_time_ms_ += time;
|
|
}
|
|
|
|
if (collector_ == SCAVENGER && FLAG_trace_gc_ignore_scavenger) return;
|
|
|
|
heap_->AddMarkingTime(scopes_[Scope::MC_MARK]);
|
|
|
|
if (FLAG_print_cumulative_gc_stat && !FLAG_trace_gc) return;
|
|
PrintPID("%8.0f ms: ", heap_->isolate()->time_millis_since_init());
|
|
|
|
if (!FLAG_trace_gc_nvp) {
|
|
int external_time = static_cast<int>(scopes_[Scope::EXTERNAL]);
|
|
|
|
double end_memory_size_mb =
|
|
static_cast<double>(heap_->isolate()->memory_allocator()->Size()) / MB;
|
|
|
|
PrintF("%s %.1f (%.1f) -> %.1f (%.1f) MB, ",
|
|
CollectorString(),
|
|
static_cast<double>(start_object_size_) / MB,
|
|
static_cast<double>(start_memory_size_) / MB,
|
|
SizeOfHeapObjects(),
|
|
end_memory_size_mb);
|
|
|
|
if (external_time > 0) PrintF("%d / ", external_time);
|
|
PrintF("%.1f ms", time);
|
|
if (steps_count_ > 0) {
|
|
if (collector_ == SCAVENGER) {
|
|
PrintF(" (+ %.1f ms in %d steps since last GC)",
|
|
steps_took_since_last_gc_,
|
|
steps_count_since_last_gc_);
|
|
} else {
|
|
PrintF(" (+ %.1f ms in %d steps since start of marking, "
|
|
"biggest step %.1f ms)",
|
|
steps_took_,
|
|
steps_count_,
|
|
longest_step_);
|
|
}
|
|
}
|
|
|
|
if (gc_reason_ != NULL) {
|
|
PrintF(" [%s]", gc_reason_);
|
|
}
|
|
|
|
if (collector_reason_ != NULL) {
|
|
PrintF(" [%s]", collector_reason_);
|
|
}
|
|
|
|
PrintF(".\n");
|
|
} else {
|
|
PrintF("pause=%.1f ", time);
|
|
PrintF("mutator=%.1f ", spent_in_mutator_);
|
|
PrintF("gc=");
|
|
switch (collector_) {
|
|
case SCAVENGER:
|
|
PrintF("s");
|
|
break;
|
|
case MARK_COMPACTOR:
|
|
PrintF("ms");
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
PrintF(" ");
|
|
|
|
PrintF("external=%.1f ", scopes_[Scope::EXTERNAL]);
|
|
PrintF("mark=%.1f ", scopes_[Scope::MC_MARK]);
|
|
PrintF("sweep=%.1f ", scopes_[Scope::MC_SWEEP]);
|
|
PrintF("sweepns=%.1f ", scopes_[Scope::MC_SWEEP_NEWSPACE]);
|
|
PrintF("evacuate=%.1f ", scopes_[Scope::MC_EVACUATE_PAGES]);
|
|
PrintF("new_new=%.1f ", scopes_[Scope::MC_UPDATE_NEW_TO_NEW_POINTERS]);
|
|
PrintF("root_new=%.1f ", scopes_[Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS]);
|
|
PrintF("old_new=%.1f ", scopes_[Scope::MC_UPDATE_OLD_TO_NEW_POINTERS]);
|
|
PrintF("compaction_ptrs=%.1f ",
|
|
scopes_[Scope::MC_UPDATE_POINTERS_TO_EVACUATED]);
|
|
PrintF("intracompaction_ptrs=%.1f ",
|
|
scopes_[Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED]);
|
|
PrintF("misc_compaction=%.1f ", scopes_[Scope::MC_UPDATE_MISC_POINTERS]);
|
|
PrintF("weakmap_process=%.1f ", scopes_[Scope::MC_WEAKMAP_PROCESS]);
|
|
PrintF("weakmap_clear=%.1f ", scopes_[Scope::MC_WEAKMAP_CLEAR]);
|
|
|
|
PrintF("total_size_before=%" V8_PTR_PREFIX "d ", start_object_size_);
|
|
PrintF("total_size_after=%" V8_PTR_PREFIX "d ", heap_->SizeOfObjects());
|
|
PrintF("holes_size_before=%" V8_PTR_PREFIX "d ",
|
|
in_free_list_or_wasted_before_gc_);
|
|
PrintF("holes_size_after=%" V8_PTR_PREFIX "d ", CountTotalHolesSize(heap_));
|
|
|
|
PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc_);
|
|
PrintF("promoted=%" V8_PTR_PREFIX "d ", promoted_objects_size_);
|
|
PrintF("nodes_died_in_new=%d ", nodes_died_in_new_space_);
|
|
PrintF("nodes_copied_in_new=%d ", nodes_copied_in_new_space_);
|
|
PrintF("nodes_promoted=%d ", nodes_promoted_);
|
|
|
|
if (collector_ == SCAVENGER) {
|
|
PrintF("stepscount=%d ", steps_count_since_last_gc_);
|
|
PrintF("stepstook=%.1f ", steps_took_since_last_gc_);
|
|
} else {
|
|
PrintF("stepscount=%d ", steps_count_);
|
|
PrintF("stepstook=%.1f ", steps_took_);
|
|
PrintF("longeststep=%.1f ", longest_step_);
|
|
}
|
|
|
|
PrintF("\n");
|
|
}
|
|
|
|
heap_->PrintShortHeapStatistics();
|
|
}
|
|
|
|
|
|
const char* GCTracer::CollectorString() {
|
|
switch (collector_) {
|
|
case SCAVENGER:
|
|
return "Scavenge";
|
|
case MARK_COMPACTOR:
|
|
return "Mark-sweep";
|
|
}
|
|
return "Unknown GC";
|
|
}
|
|
|
|
|
|
int KeyedLookupCache::Hash(Map* map, Name* name) {
|
|
// Uses only lower 32 bits if pointers are larger.
|
|
uintptr_t addr_hash =
|
|
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)) >> kMapHashShift;
|
|
return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
|
|
}
|
|
|
|
|
|
int KeyedLookupCache::Lookup(Map* map, Name* name) {
|
|
int index = (Hash(map, name) & kHashMask);
|
|
for (int i = 0; i < kEntriesPerBucket; i++) {
|
|
Key& key = keys_[index + i];
|
|
if ((key.map == map) && key.name->Equals(name)) {
|
|
return field_offsets_[index + i];
|
|
}
|
|
}
|
|
return kNotFound;
|
|
}
|
|
|
|
|
|
void KeyedLookupCache::Update(Map* map, Name* name, int field_offset) {
|
|
if (!name->IsUniqueName()) {
|
|
String* internalized_string;
|
|
if (!HEAP->InternalizeStringIfExists(
|
|
String::cast(name), &internalized_string)) {
|
|
return;
|
|
}
|
|
name = internalized_string;
|
|
}
|
|
// This cache is cleared only between mark compact passes, so we expect the
|
|
// cache to only contain old space names.
|
|
ASSERT(!HEAP->InNewSpace(name));
|
|
|
|
int index = (Hash(map, name) & kHashMask);
|
|
// After a GC there will be free slots, so we use them in order (this may
|
|
// help to get the most frequently used one in position 0).
|
|
for (int i = 0; i< kEntriesPerBucket; i++) {
|
|
Key& key = keys_[index];
|
|
Object* free_entry_indicator = NULL;
|
|
if (key.map == free_entry_indicator) {
|
|
key.map = map;
|
|
key.name = name;
|
|
field_offsets_[index + i] = field_offset;
|
|
return;
|
|
}
|
|
}
|
|
// No free entry found in this bucket, so we move them all down one and
|
|
// put the new entry at position zero.
|
|
for (int i = kEntriesPerBucket - 1; i > 0; i--) {
|
|
Key& key = keys_[index + i];
|
|
Key& key2 = keys_[index + i - 1];
|
|
key = key2;
|
|
field_offsets_[index + i] = field_offsets_[index + i - 1];
|
|
}
|
|
|
|
// Write the new first entry.
|
|
Key& key = keys_[index];
|
|
key.map = map;
|
|
key.name = name;
|
|
field_offsets_[index] = field_offset;
|
|
}
|
|
|
|
|
|
void KeyedLookupCache::Clear() {
|
|
for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
|
|
}
|
|
|
|
|
|
void DescriptorLookupCache::Clear() {
|
|
for (int index = 0; index < kLength; index++) keys_[index].source = NULL;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
void Heap::GarbageCollectionGreedyCheck() {
|
|
ASSERT(FLAG_gc_greedy);
|
|
if (isolate_->bootstrapper()->IsActive()) return;
|
|
if (disallow_allocation_failure()) return;
|
|
CollectGarbage(NEW_SPACE);
|
|
}
|
|
#endif
|
|
|
|
|
|
TranscendentalCache::SubCache::SubCache(Type t)
|
|
: type_(t),
|
|
isolate_(Isolate::Current()) {
|
|
uint32_t in0 = 0xffffffffu; // Bit-pattern for a NaN that isn't
|
|
uint32_t in1 = 0xffffffffu; // generated by the FPU.
|
|
for (int i = 0; i < kCacheSize; i++) {
|
|
elements_[i].in[0] = in0;
|
|
elements_[i].in[1] = in1;
|
|
elements_[i].output = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
void TranscendentalCache::Clear() {
|
|
for (int i = 0; i < kNumberOfCaches; i++) {
|
|
if (caches_[i] != NULL) {
|
|
delete caches_[i];
|
|
caches_[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ExternalStringTable::CleanUp() {
|
|
int last = 0;
|
|
for (int i = 0; i < new_space_strings_.length(); ++i) {
|
|
if (new_space_strings_[i] == heap_->the_hole_value()) {
|
|
continue;
|
|
}
|
|
if (heap_->InNewSpace(new_space_strings_[i])) {
|
|
new_space_strings_[last++] = new_space_strings_[i];
|
|
} else {
|
|
old_space_strings_.Add(new_space_strings_[i]);
|
|
}
|
|
}
|
|
new_space_strings_.Rewind(last);
|
|
new_space_strings_.Trim();
|
|
|
|
last = 0;
|
|
for (int i = 0; i < old_space_strings_.length(); ++i) {
|
|
if (old_space_strings_[i] == heap_->the_hole_value()) {
|
|
continue;
|
|
}
|
|
ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
|
|
old_space_strings_[last++] = old_space_strings_[i];
|
|
}
|
|
old_space_strings_.Rewind(last);
|
|
old_space_strings_.Trim();
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
Verify();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void ExternalStringTable::TearDown() {
|
|
new_space_strings_.Free();
|
|
old_space_strings_.Free();
|
|
}
|
|
|
|
|
|
// Update all references.
|
|
void ErrorObjectList::UpdateReferences() {
|
|
for (int i = 0; i < list_.length(); i++) {
|
|
HeapObject* object = HeapObject::cast(list_[i]);
|
|
MapWord first_word = object->map_word();
|
|
if (first_word.IsForwardingAddress()) {
|
|
list_[i] = first_word.ToForwardingAddress();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Unforwarded objects in new space are dead and removed from the list.
|
|
void ErrorObjectList::UpdateReferencesInNewSpace(Heap* heap) {
|
|
if (list_.is_empty()) return;
|
|
if (!nested_) {
|
|
int write_index = 0;
|
|
for (int i = 0; i < list_.length(); i++) {
|
|
MapWord first_word = HeapObject::cast(list_[i])->map_word();
|
|
if (first_word.IsForwardingAddress()) {
|
|
list_[write_index++] = first_word.ToForwardingAddress();
|
|
}
|
|
}
|
|
list_.Rewind(write_index);
|
|
} else {
|
|
// If a GC is triggered during DeferredFormatStackTrace, we do not move
|
|
// objects in the list, just remove dead ones, as to not confuse the
|
|
// loop in DeferredFormatStackTrace.
|
|
for (int i = 0; i < list_.length(); i++) {
|
|
MapWord first_word = HeapObject::cast(list_[i])->map_word();
|
|
list_[i] = first_word.IsForwardingAddress()
|
|
? first_word.ToForwardingAddress()
|
|
: heap->the_hole_value();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ErrorObjectList::DeferredFormatStackTrace(Isolate* isolate) {
|
|
// If formatting the stack trace causes a GC, this method will be
|
|
// recursively called. In that case, skip the recursive call, since
|
|
// the loop modifies the list while iterating over it.
|
|
if (nested_ || list_.is_empty() || isolate->has_pending_exception()) return;
|
|
nested_ = true;
|
|
HandleScope scope(isolate);
|
|
Handle<String> stack_key = isolate->factory()->stack_string();
|
|
int write_index = 0;
|
|
int budget = kBudgetPerGC;
|
|
for (int i = 0; i < list_.length(); i++) {
|
|
Object* object = list_[i];
|
|
JSFunction* getter_fun;
|
|
|
|
{ DisallowHeapAllocation no_gc;
|
|
// Skip possible holes in the list.
|
|
if (object->IsTheHole()) continue;
|
|
if (isolate->heap()->InNewSpace(object) || budget == 0) {
|
|
list_[write_index++] = object;
|
|
continue;
|
|
}
|
|
|
|
// Check whether the stack property is backed by the original getter.
|
|
LookupResult lookup(isolate);
|
|
JSObject::cast(object)->LocalLookupRealNamedProperty(*stack_key, &lookup);
|
|
if (!lookup.IsFound() || lookup.type() != CALLBACKS) continue;
|
|
Object* callback = lookup.GetCallbackObject();
|
|
if (!callback->IsAccessorPair()) continue;
|
|
Object* getter_obj = AccessorPair::cast(callback)->getter();
|
|
if (!getter_obj->IsJSFunction()) continue;
|
|
getter_fun = JSFunction::cast(getter_obj);
|
|
String* key = isolate->heap()->hidden_stack_trace_string();
|
|
Object* value = getter_fun->GetHiddenProperty(key);
|
|
if (key != value) continue;
|
|
}
|
|
|
|
budget--;
|
|
HandleScope scope(isolate);
|
|
bool has_exception = false;
|
|
#ifdef DEBUG
|
|
Handle<Map> map(HeapObject::cast(object)->map(), isolate);
|
|
#endif
|
|
Handle<Object> object_handle(object, isolate);
|
|
Handle<Object> getter_handle(getter_fun, isolate);
|
|
Execution::Call(getter_handle, object_handle, 0, NULL, &has_exception);
|
|
ASSERT(*map == HeapObject::cast(*object_handle)->map());
|
|
if (has_exception) {
|
|
// Hit an exception (most likely a stack overflow).
|
|
// Wrap up this pass and retry after another GC.
|
|
isolate->clear_pending_exception();
|
|
// We use the handle since calling the getter might have caused a GC.
|
|
list_[write_index++] = *object_handle;
|
|
budget = 0;
|
|
}
|
|
}
|
|
list_.Rewind(write_index);
|
|
list_.Trim();
|
|
nested_ = false;
|
|
}
|
|
|
|
|
|
void ErrorObjectList::RemoveUnmarked(Heap* heap) {
|
|
for (int i = 0; i < list_.length(); i++) {
|
|
HeapObject* object = HeapObject::cast(list_[i]);
|
|
if (!Marking::MarkBitFrom(object).Get()) {
|
|
list_[i] = heap->the_hole_value();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ErrorObjectList::TearDown() {
|
|
list_.Free();
|
|
}
|
|
|
|
|
|
void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) {
|
|
chunk->set_next_chunk(chunks_queued_for_free_);
|
|
chunks_queued_for_free_ = chunk;
|
|
}
|
|
|
|
|
|
void Heap::FreeQueuedChunks() {
|
|
if (chunks_queued_for_free_ == NULL) return;
|
|
MemoryChunk* next;
|
|
MemoryChunk* chunk;
|
|
for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
|
|
next = chunk->next_chunk();
|
|
chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
|
|
|
|
if (chunk->owner()->identity() == LO_SPACE) {
|
|
// StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress.
|
|
// If FromAnyPointerAddress encounters a slot that belongs to a large
|
|
// chunk queued for deletion it will fail to find the chunk because
|
|
// it try to perform a search in the list of pages owned by of the large
|
|
// object space and queued chunks were detached from that list.
|
|
// To work around this we split large chunk into normal kPageSize aligned
|
|
// pieces and initialize size, owner and flags field of every piece.
|
|
// If FromAnyPointerAddress encounters a slot that belongs to one of
|
|
// these smaller pieces it will treat it as a slot on a normal Page.
|
|
Address chunk_end = chunk->address() + chunk->size();
|
|
MemoryChunk* inner = MemoryChunk::FromAddress(
|
|
chunk->address() + Page::kPageSize);
|
|
MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1);
|
|
while (inner <= inner_last) {
|
|
// Size of a large chunk is always a multiple of
|
|
// OS::AllocateAlignment() so there is always
|
|
// enough space for a fake MemoryChunk header.
|
|
Address area_end = Min(inner->address() + Page::kPageSize, chunk_end);
|
|
// Guard against overflow.
|
|
if (area_end < inner->address()) area_end = chunk_end;
|
|
inner->SetArea(inner->address(), area_end);
|
|
inner->set_size(Page::kPageSize);
|
|
inner->set_owner(lo_space());
|
|
inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
|
|
inner = MemoryChunk::FromAddress(
|
|
inner->address() + Page::kPageSize);
|
|
}
|
|
}
|
|
}
|
|
isolate_->heap()->store_buffer()->Compact();
|
|
isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED);
|
|
for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
|
|
next = chunk->next_chunk();
|
|
isolate_->memory_allocator()->Free(chunk);
|
|
}
|
|
chunks_queued_for_free_ = NULL;
|
|
}
|
|
|
|
|
|
void Heap::RememberUnmappedPage(Address page, bool compacted) {
|
|
uintptr_t p = reinterpret_cast<uintptr_t>(page);
|
|
// Tag the page pointer to make it findable in the dump file.
|
|
if (compacted) {
|
|
p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared.
|
|
} else {
|
|
p ^= 0x1d1ed & (Page::kPageSize - 1); // I died.
|
|
}
|
|
remembered_unmapped_pages_[remembered_unmapped_pages_index_] =
|
|
reinterpret_cast<Address>(p);
|
|
remembered_unmapped_pages_index_++;
|
|
remembered_unmapped_pages_index_ %= kRememberedUnmappedPages;
|
|
}
|
|
|
|
|
|
void Heap::ClearObjectStats(bool clear_last_time_stats) {
|
|
memset(object_counts_, 0, sizeof(object_counts_));
|
|
memset(object_sizes_, 0, sizeof(object_sizes_));
|
|
if (clear_last_time_stats) {
|
|
memset(object_counts_last_time_, 0, sizeof(object_counts_last_time_));
|
|
memset(object_sizes_last_time_, 0, sizeof(object_sizes_last_time_));
|
|
}
|
|
}
|
|
|
|
|
|
static LazyMutex checkpoint_object_stats_mutex = LAZY_MUTEX_INITIALIZER;
|
|
|
|
|
|
void Heap::CheckpointObjectStats() {
|
|
ScopedLock lock(checkpoint_object_stats_mutex.Pointer());
|
|
Counters* counters = isolate()->counters();
|
|
#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
|
|
counters->count_of_##name()->Increment( \
|
|
static_cast<int>(object_counts_[name])); \
|
|
counters->count_of_##name()->Decrement( \
|
|
static_cast<int>(object_counts_last_time_[name])); \
|
|
counters->size_of_##name()->Increment( \
|
|
static_cast<int>(object_sizes_[name])); \
|
|
counters->size_of_##name()->Decrement( \
|
|
static_cast<int>(object_sizes_last_time_[name]));
|
|
INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
|
|
#undef ADJUST_LAST_TIME_OBJECT_COUNT
|
|
int index;
|
|
#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
|
|
index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \
|
|
counters->count_of_CODE_TYPE_##name()->Increment( \
|
|
static_cast<int>(object_counts_[index])); \
|
|
counters->count_of_CODE_TYPE_##name()->Decrement( \
|
|
static_cast<int>(object_counts_last_time_[index])); \
|
|
counters->size_of_CODE_TYPE_##name()->Increment( \
|
|
static_cast<int>(object_sizes_[index])); \
|
|
counters->size_of_CODE_TYPE_##name()->Decrement( \
|
|
static_cast<int>(object_sizes_last_time_[index]));
|
|
CODE_KIND_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
|
|
#undef ADJUST_LAST_TIME_OBJECT_COUNT
|
|
#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
|
|
index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \
|
|
counters->count_of_FIXED_ARRAY_##name()->Increment( \
|
|
static_cast<int>(object_counts_[index])); \
|
|
counters->count_of_FIXED_ARRAY_##name()->Decrement( \
|
|
static_cast<int>(object_counts_last_time_[index])); \
|
|
counters->size_of_FIXED_ARRAY_##name()->Increment( \
|
|
static_cast<int>(object_sizes_[index])); \
|
|
counters->size_of_FIXED_ARRAY_##name()->Decrement( \
|
|
static_cast<int>(object_sizes_last_time_[index]));
|
|
FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
|
|
#undef ADJUST_LAST_TIME_OBJECT_COUNT
|
|
|
|
OS::MemCopy(object_counts_last_time_, object_counts_, sizeof(object_counts_));
|
|
OS::MemCopy(object_sizes_last_time_, object_sizes_, sizeof(object_sizes_));
|
|
ClearObjectStats();
|
|
}
|
|
|
|
|
|
Heap::RelocationLock::RelocationLock(Heap* heap) : heap_(heap) {
|
|
if (FLAG_parallel_recompilation) {
|
|
heap_->relocation_mutex_->Lock();
|
|
#ifdef DEBUG
|
|
heap_->relocation_mutex_locked_by_optimizer_thread_ =
|
|
heap_->isolate()->optimizing_compiler_thread()->IsOptimizerThread();
|
|
#endif // DEBUG
|
|
}
|
|
}
|
|
|
|
} } // namespace v8::internal
|