v8/test/unittests/compiler/x64/instruction-selector-x64-unittest.cc
jiepan b7c71a6d1b [no-wasm] Fix compilation of some wasm simd test
Some wasm simd unit tests are not guarded by V8_ENABLE_WEBASSEMBLY,
it will cause test failure on no-wasm build.

Change-Id: Ib08e133f979e492ca620191d799f641bdb0f60bd
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3866706
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Commit-Queue: Jie Pan <jie.pan@intel.com>
Cr-Commit-Position: refs/heads/main@{#82887}
2022-09-01 08:26:52 +00:00

2485 lines
89 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include "src/common/globals.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/compiler/backend/instruction-selector-unittest.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/simd-shuffle.h"
#endif // V8_ENABLE_WEBASSEMBLY
namespace v8 {
namespace internal {
namespace compiler {
// -----------------------------------------------------------------------------
// Conversions.
TEST_F(InstructionSelectorTest, ChangeFloat32ToFloat64WithParameter) {
StreamBuilder m(this, MachineType::Float32(), MachineType::Float64());
m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat32ToFloat64, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, ChangeInt32ToInt64WithParameter) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int32());
m.Return(m.ChangeInt32ToInt64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxlq, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, ChangeUint32ToFloat64WithParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Uint32());
m.Return(m.ChangeUint32ToFloat64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEUint32ToFloat64, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, ChangeUint32ToUint64WithParameter) {
StreamBuilder m(this, MachineType::Uint64(), MachineType::Uint32());
m.Return(m.ChangeUint32ToUint64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, TruncateFloat64ToFloat32WithParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Float32());
m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat64ToFloat32, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, TruncateInt64ToInt32WithParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
m.Return(m.TruncateInt64ToInt32(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, SelectWord32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* cond = m.Int32Constant(1);
m.Return(m.Word32Select(cond, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
EXPECT_EQ(kX64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_select, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_TRUE(s.IsSameAsInput(s[0]->Output(), 2));
}
TEST_F(InstructionSelectorTest, SelectWord64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
Node* cond = m.Int32Constant(1);
m.Return(m.Word64Select(cond, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
EXPECT_EQ(kX64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_select, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_TRUE(s.IsSameAsInput(s[0]->Output(), 2));
}
namespace {
struct LoadWithToInt64Extension {
MachineType type;
ArchOpcode expected_opcode;
};
std::ostream& operator<<(std::ostream& os,
const LoadWithToInt64Extension& i32toi64) {
return os << i32toi64.type;
}
static const LoadWithToInt64Extension kLoadWithToInt64Extensions[] = {
{MachineType::Int8(), kX64Movsxbq},
{MachineType::Uint8(), kX64Movzxbq},
{MachineType::Int16(), kX64Movsxwq},
{MachineType::Uint16(), kX64Movzxwq},
{MachineType::Int32(), kX64Movsxlq}};
// The parameterized test that use the following type are intentionally part
// of the anonymous namespace. The issue here is that the type parameter is
// using a type that is in the anonymous namespace, but the class generated by
// TEST_P is not. This will cause GCC to generate a -Wsubobject-linkage warning.
//
// In this case there will only be single translation unit and the warning
// about subobject-linkage can be avoided by placing the class generated
// by TEST_P in the anoynmous namespace as well.
using InstructionSelectorChangeInt32ToInt64Test =
InstructionSelectorTestWithParam<LoadWithToInt64Extension>;
TEST_P(InstructionSelectorChangeInt32ToInt64Test, ChangeInt32ToInt64WithLoad) {
const LoadWithToInt64Extension extension = GetParam();
StreamBuilder m(this, MachineType::Int64(), MachineType::Pointer());
m.Return(m.ChangeInt32ToInt64(m.Load(extension.type, m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(extension.expected_opcode, s[0]->arch_opcode());
}
} // namespace
INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest,
InstructionSelectorChangeInt32ToInt64Test,
::testing::ValuesIn(kLoadWithToInt64Extensions));
// -----------------------------------------------------------------------------
// Loads and stores
namespace {
struct MemoryAccess {
MachineType type;
ArchOpcode load_opcode;
ArchOpcode store_opcode;
};
std::ostream& operator<<(std::ostream& os, const MemoryAccess& memacc) {
return os << memacc.type;
}
static const MemoryAccess kMemoryAccesses[] = {
{MachineType::Int8(), kX64Movsxbl, kX64Movb},
{MachineType::Uint8(), kX64Movzxbl, kX64Movb},
{MachineType::Int16(), kX64Movsxwl, kX64Movw},
{MachineType::Uint16(), kX64Movzxwl, kX64Movw},
{MachineType::Int32(), kX64Movl, kX64Movl},
{MachineType::Uint32(), kX64Movl, kX64Movl},
{MachineType::Int64(), kX64Movq, kX64Movq},
{MachineType::Uint64(), kX64Movq, kX64Movq},
{MachineType::Float32(), kX64Movss, kX64Movss},
{MachineType::Float64(), kX64Movsd, kX64Movsd}};
// The parameterized test that use the following type are intentionally part
// of the anonymous namespace. The issue here is that the type parameter is
// using a type that is in the anonymous namespace, but the class generated by
// TEST_P is not. This will cause GCC to generate a -Wsubobject-linkage warning.
//
// In this case there will only be single translation unit and the warning
// about subobject-linkage can be avoided by placing the class generated
// by TEST_P in the anoynmous namespace as well.
using InstructionSelectorMemoryAccessTest =
InstructionSelectorTestWithParam<MemoryAccess>;
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, memacc.type, MachineType::Pointer(),
MachineType::Int32());
m.Return(m.Load(memacc.type, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(),
MachineType::Int32(), memacc.type);
m.Store(memacc.type.representation(), m.Parameter(0), m.Parameter(1),
m.Parameter(2), kNoWriteBarrier);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(0U, s[0]->OutputCount());
}
} // namespace
INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest,
InstructionSelectorMemoryAccessTest,
::testing::ValuesIn(kMemoryAccesses));
// -----------------------------------------------------------------------------
// ChangeUint32ToUint64.
namespace {
using Constructor = Node* (RawMachineAssembler::*)(Node*, Node*);
struct BinaryOperation {
Constructor constructor;
const char* constructor_name;
};
std::ostream& operator<<(std::ostream& os, const BinaryOperation& bop) {
return os << bop.constructor_name;
}
const BinaryOperation kWord32BinaryOperations[] = {
{&RawMachineAssembler::Word32And, "Word32And"},
{&RawMachineAssembler::Word32Or, "Word32Or"},
{&RawMachineAssembler::Word32Xor, "Word32Xor"},
{&RawMachineAssembler::Word32Shl, "Word32Shl"},
{&RawMachineAssembler::Word32Shr, "Word32Shr"},
{&RawMachineAssembler::Word32Sar, "Word32Sar"},
{&RawMachineAssembler::Word32Ror, "Word32Ror"},
{&RawMachineAssembler::Word32Equal, "Word32Equal"},
{&RawMachineAssembler::Int32Add, "Int32Add"},
{&RawMachineAssembler::Int32Sub, "Int32Sub"},
{&RawMachineAssembler::Int32Mul, "Int32Mul"},
{&RawMachineAssembler::Int32MulHigh, "Int32MulHigh"},
{&RawMachineAssembler::Int32Div, "Int32Div"},
{&RawMachineAssembler::Int32LessThan, "Int32LessThan"},
{&RawMachineAssembler::Int32LessThanOrEqual, "Int32LessThanOrEqual"},
{&RawMachineAssembler::Int32Mod, "Int32Mod"},
{&RawMachineAssembler::Uint32Div, "Uint32Div"},
{&RawMachineAssembler::Uint32LessThan, "Uint32LessThan"},
{&RawMachineAssembler::Uint32LessThanOrEqual, "Uint32LessThanOrEqual"},
{&RawMachineAssembler::Uint32Mod, "Uint32Mod"}};
// The parameterized test that use the following type are intentionally part
// of the anonymous namespace. The issue here is that the type parameter is
// using a type that is in the anonymous namespace, but the class generated by
// TEST_P is not. This will cause GCC to generate a -Wsubobject-linkage warning.
//
// In this case there will only be single translation unit and the warning
// about subobject-linkage can be avoided by placing the class generated
// by TEST_P in the anoynmous namespace as well.
using InstructionSelectorChangeUint32ToUint64Test =
InstructionSelectorTestWithParam<BinaryOperation>;
TEST_P(InstructionSelectorChangeUint32ToUint64Test, ChangeUint32ToUint64) {
const BinaryOperation& bop = GetParam();
StreamBuilder m(this, MachineType::Uint64(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(m.ChangeUint32ToUint64((m.*bop.constructor)(p0, p1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
}
} // namespace
INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest,
InstructionSelectorChangeUint32ToUint64Test,
::testing::ValuesIn(kWord32BinaryOperations));
// -----------------------------------------------------------------------------
// CanElideChangeUint32ToUint64
namespace {
template <typename T>
struct MachInst {
T constructor;
const char* constructor_name;
ArchOpcode arch_opcode;
MachineType machine_type;
};
using MachInst2 = MachInst<Node* (RawMachineAssembler::*)(Node*, Node*)>;
// X64 instructions that clear the top 32 bits of the destination.
const MachInst2 kCanElideChangeUint32ToUint64[] = {
{&RawMachineAssembler::Word32And, "Word32And", kX64And32,
MachineType::Uint32()},
{&RawMachineAssembler::Word32Or, "Word32Or", kX64Or32,
MachineType::Uint32()},
{&RawMachineAssembler::Word32Xor, "Word32Xor", kX64Xor32,
MachineType::Uint32()},
{&RawMachineAssembler::Word32Shl, "Word32Shl", kX64Shl32,
MachineType::Uint32()},
{&RawMachineAssembler::Word32Shr, "Word32Shr", kX64Shr32,
MachineType::Uint32()},
{&RawMachineAssembler::Word32Sar, "Word32Sar", kX64Sar32,
MachineType::Uint32()},
{&RawMachineAssembler::Word32Ror, "Word32Ror", kX64Ror32,
MachineType::Uint32()},
{&RawMachineAssembler::Word32Equal, "Word32Equal", kX64Cmp32,
MachineType::Uint32()},
{&RawMachineAssembler::Int32Add, "Int32Add", kX64Lea32,
MachineType::Int32()},
{&RawMachineAssembler::Int32Sub, "Int32Sub", kX64Sub32,
MachineType::Int32()},
{&RawMachineAssembler::Int32Mul, "Int32Mul", kX64Imul32,
MachineType::Int32()},
{&RawMachineAssembler::Int32MulHigh, "Int32MulHigh", kX64ImulHigh32,
MachineType::Int32()},
{&RawMachineAssembler::Int32Div, "Int32Div", kX64Idiv32,
MachineType::Int32()},
{&RawMachineAssembler::Int32LessThan, "Int32LessThan", kX64Cmp32,
MachineType::Int32()},
{&RawMachineAssembler::Int32LessThanOrEqual, "Int32LessThanOrEqual",
kX64Cmp32, MachineType::Int32()},
{&RawMachineAssembler::Int32Mod, "Int32Mod", kX64Idiv32,
MachineType::Int32()},
{&RawMachineAssembler::Uint32Div, "Uint32Div", kX64Udiv32,
MachineType::Uint32()},
{&RawMachineAssembler::Uint32LessThan, "Uint32LessThan", kX64Cmp32,
MachineType::Uint32()},
{&RawMachineAssembler::Uint32LessThanOrEqual, "Uint32LessThanOrEqual",
kX64Cmp32, MachineType::Uint32()},
{&RawMachineAssembler::Uint32Mod, "Uint32Mod", kX64Udiv32,
MachineType::Uint32()},
};
// The parameterized test that use the following type are intentionally part
// of the anonymous namespace. The issue here is that the type parameter is
// using a type that is in the anonymous namespace, but the class generated by
// TEST_P is not. This will cause GCC to generate a -Wsubobject-linkage warning.
//
// In this case there will only be single translation unit and the warning
// about subobject-linkage can be avoided by placing the class generated
// by TEST_P in the anoynmous namespace as well.
using InstructionSelectorElidedChangeUint32ToUint64Test =
InstructionSelectorTestWithParam<MachInst2>;
TEST_P(InstructionSelectorElidedChangeUint32ToUint64Test, Parameter) {
const MachInst2 binop = GetParam();
StreamBuilder m(this, MachineType::Uint64(), binop.machine_type,
binop.machine_type);
m.Return(m.ChangeUint32ToUint64(
(m.*binop.constructor)(m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
// Make sure the `ChangeUint32ToUint64` node turned into a no-op.
ASSERT_EQ(1U, s.size());
EXPECT_EQ(binop.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
} // namespace
INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest,
InstructionSelectorElidedChangeUint32ToUint64Test,
::testing::ValuesIn(kCanElideChangeUint32ToUint64));
// ChangeUint32ToUint64AfterLoad
TEST_F(InstructionSelectorTest, ChangeUint32ToUint64AfterLoad) {
// For each case, make sure the `ChangeUint32ToUint64` node turned into a
// no-op.
// movzxbl
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Pointer(),
MachineType::Int32());
m.Return(m.ChangeUint32ToUint64(
m.Load(MachineType::Uint8(), m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbl, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// movsxbl
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Pointer(),
MachineType::Int32());
m.Return(m.ChangeUint32ToUint64(
m.Load(MachineType::Int8(), m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxbl, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// movzxwl
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Pointer(),
MachineType::Int32());
m.Return(m.ChangeUint32ToUint64(
m.Load(MachineType::Uint16(), m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwl, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// movsxwl
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Pointer(),
MachineType::Int32());
m.Return(m.ChangeUint32ToUint64(
m.Load(MachineType::Int16(), m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxwl, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
// -----------------------------------------------------------------------------
// TruncateInt64ToInt32.
TEST_F(InstructionSelectorTest, TruncateInt64ToInt32WithWord64Sar) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
Node* const p = m.Parameter(0);
Node* const t = m.TruncateInt64ToInt32(m.Word64Sar(p, m.Int64Constant(32)));
m.Return(t);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shr, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(32, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->OutputAt(0)));
EXPECT_EQ(s.ToVreg(t), s.ToVreg(s[0]->OutputAt(0)));
}
TEST_F(InstructionSelectorTest, TruncateInt64ToInt32WithWord64Shr) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
Node* const p = m.Parameter(0);
Node* const t = m.TruncateInt64ToInt32(m.Word64Shr(p, m.Int64Constant(32)));
m.Return(t);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shr, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(32, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->OutputAt(0)));
EXPECT_EQ(s.ToVreg(t), s.ToVreg(s[0]->OutputAt(0)));
}
// -----------------------------------------------------------------------------
// Addition.
TEST_F(InstructionSelectorTest, Int32AddWithInt32ParametersLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const a0 = m.Int32Add(p0, p1);
// Additional uses of input to add chooses lea
Node* const a1 = m.Int32Div(p0, p1);
m.Return(m.Int32Div(a0, a1));
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32AddConstantAsLeaSingle) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
// If one of the add's operands is only used once, use an "leal", even though
// an "addl" could be used. The "leal" has proven faster--out best guess is
// that it gives the register allocation more freedom and it doesn't set
// flags, reducing pressure in the CPU's pipeline. If we're lucky with
// register allocation, then code generation will select an "addl" later for
// the cases that have been measured to be faster.
Node* const v0 = m.Int32Add(p0, c0);
m.Return(v0);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddConstantAsAdd) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(1);
// If there is only a single use of an add's input and the immediate constant
// for the add is 1, don't use an inc. It is much slower on modern Intel
// architectures.
m.Return(m.Int32Add(p0, c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddConstantAsLeaDouble) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
// A second use of an add's input uses lea
Node* const a0 = m.Int32Add(p0, c0);
m.Return(m.Int32Div(a0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddCommutedConstantAsLeaSingle) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
// If one of the add's operands is only used once, use an "leal", even though
// an "addl" could be used. The "leal" has proven faster--out best guess is
// that it gives the register allocation more freedom and it doesn't set
// flags, reducing pressure in the CPU's pipeline. If we're lucky with
// register allocation, then code generation will select an "addl" later for
// the cases that have been measured to be faster.
m.Return(m.Int32Add(c0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddCommutedConstantAsLeaDouble) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
// A second use of an add's input uses lea
Node* const a0 = m.Int32Add(c0, p0);
USE(a0);
m.Return(m.Int32Div(a0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddSimpleAsAdd) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
// If one of the add's operands is only used once, use an "leal", even though
// an "addl" could be used. The "leal" has proven faster--out best guess is
// that it gives the register allocation more freedom and it doesn't set
// flags, reducing pressure in the CPU's pipeline. If we're lucky with
// register allocation, then code generation will select an "addl" later for
// the cases that have been measured to be faster.
m.Return(m.Int32Add(p0, p1));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddSimpleAsLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
// If all of of the add's operands are used multiple times, use an "leal".
Node* const v1 = m.Int32Add(p0, p1);
m.Return(m.Int32Add(m.Int32Add(v1, p1), p0));
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled2Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddCommutedScaled2Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
m.Return(m.Int32Add(s0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled2Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddCommutedScaled2Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
m.Return(m.Int32Add(s0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled4Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(4));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled4Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(2));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled8Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(8));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled8Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(3));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle1) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(p0, m.Int32Add(s0, c0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle2) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(s0, m.Int32Add(c0, p0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle3) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(s0, c0), p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle4) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(c0, p0), s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle5) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled4MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(4));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled4ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled8MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(8));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled8ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(3));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32SubConstantAsSub) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(-1);
// If there is only a single use of on of the sub's non-constant input, use a
// "subl" instruction.
m.Return(m.Int32Sub(p0, c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32SubConstantAsLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(-1);
// If there are multiple uses of on of the sub's non-constant input, use a
// "leal" instruction.
Node* const v0 = m.Int32Sub(p0, c0);
m.Return(m.Int32Div(p0, v0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2Other) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const a0 = m.Int32Add(s0, p2);
Node* const a1 = m.Int32Add(p0, a0);
m.Return(a1);
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[0]->OutputAt(0)));
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(kX64Lea32, s[1]->arch_opcode());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[1]->InputAt(1)));
EXPECT_EQ(s.ToVreg(a1), s.ToVreg(s[1]->OutputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32AddMinNegativeDisplacement) {
// This test case is simplified from a Wasm fuzz test in
// https://crbug.com/1091892. The key here is that we match on a
// sequence like: Int32Add(Int32Sub(-524288, -2147483648), -26048), which
// matches on an EmitLea, with -2147483648 as the displacement. Since we
// have a Int32Sub node, it sets kNegativeDisplacement, and later we try to
// negate -2147483648, which overflows.
StreamBuilder m(this, MachineType::Int32());
Node* const c0 = m.Int32Constant(-524288);
Node* const c1 = m.Int32Constant(std::numeric_limits<int32_t>::min());
Node* const c2 = m.Int32Constant(-26048);
Node* const a0 = m.Int32Sub(c0, c1);
Node* const a1 = m.Int32Add(a0, c2);
m.Return(a1);
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Sub32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(kMode_None, s[0]->addressing_mode());
EXPECT_EQ(s.ToVreg(c0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(c1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[0]->OutputAt(0)));
EXPECT_EQ(kX64Add32, s[1]->arch_opcode());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(kMode_None, s[1]->addressing_mode());
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[1]->InputAt(0)));
EXPECT_TRUE(s[1]->InputAt(1)->IsImmediate());
EXPECT_EQ(s.ToVreg(a1), s.ToVreg(s[1]->OutputAt(0)));
}
// -----------------------------------------------------------------------------
// Multiplication.
TEST_F(InstructionSelectorTest, Int32MulWithInt32MulWithParameters) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const m0 = m.Int32Mul(p0, p1);
m.Return(m.Int32Mul(m0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Imul32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(m0), s.ToVreg(s[0]->OutputAt(0)));
EXPECT_EQ(kX64Imul32, s[1]->arch_opcode());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(m0), s.ToVreg(s[1]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32MulHigh) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const n = m.Int32MulHigh(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64ImulHigh32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s.IsFixed(s[0]->InputAt(0), rax));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(!s.IsUsedAtStart(s[0]->InputAt(1)));
ASSERT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_TRUE(s.IsFixed(s[0]->OutputAt(0), rdx));
}
TEST_F(InstructionSelectorTest, Uint32MulHigh) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const n = m.Uint32MulHigh(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64UmulHigh32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s.IsFixed(s[0]->InputAt(0), rax));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(!s.IsUsedAtStart(s[0]->InputAt(1)));
ASSERT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_TRUE(s.IsFixed(s[0]->OutputAt(0), rdx));
}
TEST_F(InstructionSelectorTest, Int32Mul2BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(2);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32Mul3BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(3);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32Mul4BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(4);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M4, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32Mul5BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(5);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32Mul8BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(8);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M8, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32Mul9BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(9);
Node* const n = m.Int32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
// -----------------------------------------------------------------------------
// Word32Shl.
TEST_F(InstructionSelectorTest, Int32Shl1BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(1);
Node* const n = m.Word32Shl(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32Shl2BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(2);
Node* const n = m.Word32Shl(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M4, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32Shl4BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const c1 = m.Int32Constant(3);
Node* const n = m.Word32Shl(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M8, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
// -----------------------------------------------------------------------------
// Binops with a memory operand.
TEST_F(InstructionSelectorTest, LoadCmp32) {
{
// Word32Equal(Load[Int8](p0, p1), Int32Constant(0)) -> cmpb [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Word32Equal(m.Load(MachineType::Int8(), p0, p1), m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp8, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(LoadImmutable[Int8](p0, p1), Int32Constant(0)) ->
// cmpb [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.LoadImmutable(MachineType::Int8(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp8, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Uint8](p0, p1), Int32Constant(0)) -> cmpb [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Uint8(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp8, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Int16](p0, p1), Int32Constant(0)) -> cmpw [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Int16(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp16, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Uint16](p0, p1), Int32Constant(0)) -> cmpw [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Uint16(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp16, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Int32](p0, p1), Int32Constant(0)) -> cmpl [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Int32(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Uint32](p0, p1), Int32Constant(0)) -> cmpl [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Uint32(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
}
TEST_F(InstructionSelectorTest, LoadAnd32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Word32And(p0, m.Load(MachineType::Int32(), p1, m.Int32Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, LoadOr32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Word32Or(p0, m.Load(MachineType::Int32(), p1, m.Int32Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Or32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, LoadXor32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Word32Xor(p0, m.Load(MachineType::Int32(), p1, m.Int32Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Xor32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, LoadAdd32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Int32Add(p0, m.Load(MachineType::Int32(), p1, m.Int32Constant(127))));
Stream s = m.Build();
// Use lea instead of add, so memory operand is invalid.
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
EXPECT_EQ(kX64Lea32, s[1]->arch_opcode());
}
TEST_F(InstructionSelectorTest, LoadSub32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Int32Sub(p0, m.Load(MachineType::Int32(), p1, m.Int32Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Sub32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, LoadAnd64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Word64And(p0, m.Load(MachineType::Int64(), p1, m.Int32Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, LoadOr64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Word64Or(p0, m.Load(MachineType::Int64(), p1, m.Int32Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Or, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, LoadXor64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Word64Xor(p0, m.Load(MachineType::Int64(), p1, m.Int32Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Xor, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, LoadAdd64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Int64Add(p0, m.Load(MachineType::Int64(), p1, m.Int32Constant(127))));
Stream s = m.Build();
// Use lea instead of add, so memory operand is invalid.
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Movq, s[0]->arch_opcode());
EXPECT_EQ(kX64Lea, s[1]->arch_opcode());
}
TEST_F(InstructionSelectorTest, LoadSub64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
m.Return(
m.Int64Sub(p0, m.Load(MachineType::Int64(), p1, m.Int32Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Sub, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
// -----------------------------------------------------------------------------
// Floating point operations.
TEST_F(InstructionSelectorTest, Float32Abs) {
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float32Abs(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Float32Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float32Abs(p0);
m.Return(n);
Stream s = m.Build(AVX);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Float32Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_F(InstructionSelectorTest, Float64Abs) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float64Abs(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Float64Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Float64Abs(p0);
m.Return(n);
Stream s = m.Build(AVX);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Float64Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_F(InstructionSelectorTest, Float64BinopArithmetic) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Float64());
Node* add = m.Float64Add(m.Parameter(0), m.Parameter(1));
Node* mul = m.Float64Mul(add, m.Parameter(1));
Node* sub = m.Float64Sub(mul, add);
Node* ret = m.Float64Div(mul, sub);
m.Return(ret);
Stream s = m.Build(AVX);
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kAVXFloat64Add, s[0]->arch_opcode());
EXPECT_EQ(kAVXFloat64Mul, s[1]->arch_opcode());
EXPECT_EQ(kAVXFloat64Sub, s[2]->arch_opcode());
EXPECT_EQ(kAVXFloat64Div, s[3]->arch_opcode());
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Float64());
Node* add = m.Float64Add(m.Parameter(0), m.Parameter(1));
Node* mul = m.Float64Mul(add, m.Parameter(1));
Node* sub = m.Float64Sub(mul, add);
Node* ret = m.Float64Div(mul, sub);
m.Return(ret);
Stream s = m.Build();
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kSSEFloat64Add, s[0]->arch_opcode());
EXPECT_EQ(kSSEFloat64Mul, s[1]->arch_opcode());
EXPECT_EQ(kSSEFloat64Sub, s[2]->arch_opcode());
EXPECT_EQ(kSSEFloat64Div, s[3]->arch_opcode());
}
}
TEST_F(InstructionSelectorTest, Float32BinopArithmeticWithLoad) {
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32(),
MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* add = m.Float32Add(
p0, m.Load(MachineType::Float32(), p1, m.Int32Constant(127)));
Node* sub = m.Float32Sub(
add, m.Load(MachineType::Float32(), p1, m.Int32Constant(127)));
Node* ret = m.Float32Mul(
m.Load(MachineType::Float32(), p2, m.Int32Constant(127)), sub);
m.Return(ret);
Stream s = m.Build(AVX);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kAVXFloat32Add, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(kAVXFloat32Sub, s[1]->arch_opcode());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(kAVXFloat32Mul, s[2]->arch_opcode());
ASSERT_EQ(3U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[2]->InputAt(1)));
}
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32(),
MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* add = m.Float32Add(
p0, m.Load(MachineType::Float32(), p1, m.Int32Constant(127)));
Node* sub = m.Float32Sub(
add, m.Load(MachineType::Float32(), p1, m.Int32Constant(127)));
Node* ret = m.Float32Mul(
m.Load(MachineType::Float32(), p2, m.Int32Constant(127)), sub);
m.Return(ret);
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kSSEFloat32Add, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(kSSEFloat32Sub, s[1]->arch_opcode());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(kSSEFloat32Mul, s[2]->arch_opcode());
ASSERT_EQ(3U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[2]->InputAt(1)));
}
}
TEST_F(InstructionSelectorTest, Float64BinopArithmeticWithLoad) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* add = m.Float64Add(
p0, m.Load(MachineType::Float64(), p1, m.Int32Constant(127)));
Node* sub = m.Float64Sub(
add, m.Load(MachineType::Float64(), p1, m.Int32Constant(127)));
Node* ret = m.Float64Mul(
m.Load(MachineType::Float64(), p2, m.Int32Constant(127)), sub);
m.Return(ret);
Stream s = m.Build(AVX);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kAVXFloat64Add, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(kAVXFloat64Sub, s[1]->arch_opcode());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(kAVXFloat64Mul, s[2]->arch_opcode());
ASSERT_EQ(3U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[2]->InputAt(1)));
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* add = m.Float64Add(
p0, m.Load(MachineType::Float64(), p1, m.Int32Constant(127)));
Node* sub = m.Float64Sub(
add, m.Load(MachineType::Float64(), p1, m.Int32Constant(127)));
Node* ret = m.Float64Mul(
m.Load(MachineType::Float64(), p2, m.Int32Constant(127)), sub);
m.Return(ret);
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kSSEFloat64Add, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(kSSEFloat64Sub, s[1]->arch_opcode());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(kSSEFloat64Mul, s[2]->arch_opcode());
ASSERT_EQ(3U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[2]->InputAt(1)));
}
}
// -----------------------------------------------------------------------------
// Miscellaneous.
TEST_F(InstructionSelectorTest, Word64ShlWithChangeInt32ToInt64) {
TRACED_FORRANGE(int64_t, x, 32, 63) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64Shl(m.ChangeInt32ToInt64(p0), m.Int64Constant(x));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word64ShlWithChangeUint32ToUint64) {
TRACED_FORRANGE(int64_t, x, 32, 63) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64Shl(m.ChangeUint32ToUint64(p0), m.Int64Constant(x));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word32AndWith0xFF) {
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32And(p0, m.Int32Constant(0xFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32And(m.Int32Constant(0xFF), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word64AndWith0xFFFFFFFF) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(p0, m.Int32Constant(0xFFFFFFFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(m.Int32Constant(0xFFFFFFFF), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word64AndWith0xFFFF) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(p0, m.Int32Constant(0xFFFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwq, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(m.Int32Constant(0xFFFF), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwq, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word64AndWith0xFF) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(p0, m.Int32Constant(0xFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbq, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(m.Int32Constant(0xFF), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbq, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word64AndWithInt64FitsUint32) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(p0, m.Int64Constant(15));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(m.Int64Constant(15), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word64AndWithInt64DontFitsUint32) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(p0, m.Int64Constant(0x100000000));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64And(m.Int64Constant(0x100000000), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word32AndWith0xFFFF) {
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32And(p0, m.Int32Constant(0xFFFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32And(m.Int32Constant(0xFFFF), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word32Clz) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const n = m.Word32Clz(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lzcnt32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
TEST_F(InstructionSelectorTest, LoadAndWord64ShiftRight32) {
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Uint32());
Node* const p0 = m.Parameter(0);
Node* const load = m.Load(MachineType::Uint64(), p0);
Node* const shift = m.Word64Shr(load, m.Int32Constant(32));
m.Return(shift);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(4, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(shift), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const load = m.Load(MachineType::Int64(), p0);
Node* const shift = m.Word64Sar(load, m.Int32Constant(32));
m.Return(shift);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxlq, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(4, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(shift), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int32());
Node* const p0 = m.Parameter(0);
Node* const load = m.Load(MachineType::Int64(), p0);
Node* const shift = m.Word64Sar(load, m.Int32Constant(32));
Node* const truncate = m.TruncateInt64ToInt32(shift);
m.Return(truncate);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(4, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(shift), s.ToVreg(s[0]->Output()));
}
}
// -----------------------------------------------------------------------------
// SIMD.
TEST_F(InstructionSelectorTest, SIMDSplatZero) {
// Test optimization for splat of contant 0.
// {i8x16,i16x8,i32x4,i64x2}.splat(const(0)) -> v128.zero().
// Optimizations for f32x4.splat and f64x2.splat not implemented since it
// doesn't improve the codegen as much (same number of instructions).
{
StreamBuilder m(this, MachineType::Simd128());
Node* const splat = m.I64x2Splat(m.Int64Constant(0));
m.Return(splat);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64S128Zero, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, MachineType::Simd128());
Node* const splat = m.I32x4Splat(m.Int32Constant(0));
m.Return(splat);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64S128Zero, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, MachineType::Simd128());
Node* const splat = m.I16x8Splat(m.Int32Constant(0));
m.Return(splat);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64S128Zero, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, MachineType::Simd128());
Node* const splat = m.I8x16Splat(m.Int32Constant(0));
m.Return(splat);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64S128Zero, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
#if V8_ENABLE_WEBASSEMBLY
struct ArchShuffle {
uint8_t shuffle[kSimd128Size];
ArchOpcode arch_opcode;
size_t input_count;
};
static constexpr ArchShuffle kArchShuffles[] = {
// These are architecture specific shuffles defined in
// instruction-selecor-x64.cc arch_shuffles.
{
{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23},
kX64S64x2UnpackLow,
2,
},
{
{8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31},
kX64S64x2UnpackHigh,
2,
},
{
{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23},
kX64S32x4UnpackLow,
2,
},
{
{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31},
kX64S32x4UnpackHigh,
2,
},
{
{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23},
kX64S16x8UnpackLow,
2,
},
{
{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31},
kX64S16x8UnpackHigh,
2,
},
{
{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23},
kX64S8x16UnpackLow,
2,
},
{
{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31},
kX64S8x16UnpackHigh,
2,
},
{
{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29},
kX64S16x8UnzipLow,
2,
},
{
{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31},
kX64S16x8UnzipHigh,
2,
},
{
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
kX64S8x16UnzipLow,
2,
},
{
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31},
kX64S8x16UnzipHigh,
2,
},
{
{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30},
kX64S8x16TransposeLow,
2,
},
{
{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31},
kX64S8x16TransposeHigh,
2,
},
{
{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8},
kX64S8x8Reverse,
1,
},
{
{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12},
kX64S8x4Reverse,
1,
},
{
{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14},
kX64S8x2Reverse,
1,
},
// These are matched by TryMatchConcat && TryMatch32x4Rotate.
{
{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3},
kX64S32x4Rotate,
2,
},
{
{8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7},
kX64S32x4Rotate,
2,
},
{
{12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
kX64S32x4Rotate,
2,
},
// These are matched by TryMatchConcat && !TryMatch32x4Rotate.
{
{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2},
kX64S8x16Alignr,
3,
},
{
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1},
kX64S8x16Alignr,
3,
},
{
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17},
kX64S8x16Alignr,
3,
},
// These are matched by TryMatch32x4Shuffle && is_swizzle.
{
{0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15},
kX64S32x4Swizzle,
2,
},
{
{0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9, 10, 11},
kX64S32x4Swizzle,
2,
},
// These are matched by TryMatch32x4Shuffle && !is_swizzle && TryMatchBlend.
{
{0, 1, 2, 3, 20, 21, 22, 23, 8, 9, 10, 11, 28, 29, 30, 31},
kX64S16x8Blend,
3,
},
{
{16, 17, 18, 19, 4, 5, 6, 7, 24, 25, 26, 27, 12, 13, 14, 15},
kX64S16x8Blend,
3,
},
// These are matched by TryMatch32x4Shuffle && !is_swizzle &&
// TryMatchShufps.
{
{0, 1, 2, 3, 8, 9, 10, 11, 28, 29, 30, 31, 28, 29, 30, 31},
kX64Shufps,
3,
},
{
{8, 9, 10, 11, 0, 1, 2, 3, 28, 29, 30, 31, 28, 29, 30, 31},
kX64Shufps,
3,
},
// These are matched by TryMatch32x4Shuffle && !is_swizzle.
{
{28, 29, 30, 31, 0, 1, 2, 3, 28, 29, 30, 31, 28, 29, 30, 31},
kX64S32x4Shuffle,
4,
},
// These are matched by TryMatch16x8Shuffle && TryMatchBlend.
{
{16, 17, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 12, 13, 14, 15},
kX64S16x8Blend,
3,
},
// These are matched by TryMatch16x8Shuffle && TryMatchSplat<8>.
{
{2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3},
kX64S16x8Dup,
2,
},
// These are matched by TryMatch16x8Shuffle && TryMatch16x8HalfShuffle.
{
{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9},
kX64S16x8HalfShuffle1,
3,
},
{
{6, 7, 4, 5, 2, 3, 0, 1, 30, 31, 28, 29, 26, 27, 24, 25},
kX64S16x8HalfShuffle2,
5,
},
// These are matched by TryMatchSplat<16>.
{
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
kX64S8x16Dup,
2,
},
// Generic shuffle that only uses 1 input.
{
{1, 15, 2, 14, 3, 13, 4, 12, 5, 11, 6, 10, 7, 9, 8},
kX64I8x16Shuffle,
5,
},
// Generic shuffle that uses both input.
{
{1, 31, 2, 14, 3, 13, 4, 12, 5, 11, 6, 10, 7, 9, 8},
kX64I8x16Shuffle,
6,
},
};
using InstructionSelectorSIMDArchShuffleTest =
InstructionSelectorTestWithParam<ArchShuffle>;
TEST_P(InstructionSelectorSIMDArchShuffleTest, SIMDArchShuffle) {
MachineType type = MachineType::Simd128();
{
// Tests various shuffle optimizations
StreamBuilder m(this, type, type, type);
auto param = GetParam();
auto shuffle = param.shuffle;
const Operator* op = m.machine()->I8x16Shuffle(shuffle);
Node* n = m.AddNode(op, m.Parameter(0), m.Parameter(1));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(param.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(param.input_count, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest,
InstructionSelectorSIMDArchShuffleTest,
::testing::ValuesIn(kArchShuffles));
struct ShuffleWithZeroInput {
uint8_t shuffle_mask[kSimd128Size];
ArchOpcode arch_opcode;
size_t input_count;
};
static constexpr ShuffleWithZeroInput kShuffleWithZeroInput[] = {
// These are matched by TryMatchByteToDwordZeroExtend.
{
{16, 1, 2, 3, 17, 4, 5, 6, 18, 7, 8, 9, 19, 10, 11, 12},
kX64I32X4ShiftZeroExtendI8x16,
2,
},
// Generic shuffle that uses one zero input.
{
{16, 1, 2, 3, 17, 4, 5, 6, 18, 7, 8, 9, 19, 20, 21, 22},
kX64I8x16Shuffle,
5,
},
};
using InstructionSelectorSIMDShuffleWithZeroInputTest =
InstructionSelectorTestWithParam<ShuffleWithZeroInput>;
TEST_P(InstructionSelectorSIMDShuffleWithZeroInputTest,
SIMDShuffleWithZeroInputTest) {
MachineType type = MachineType::Simd128();
{
// Tests shuffle to packed zero extend optimization
uint8_t zeros[kSimd128Size] = {0};
StreamBuilder m(this, type, type);
auto param = GetParam();
const Operator* op = m.machine()->I8x16Shuffle(param.shuffle_mask);
Node* const c = m.S128Const(zeros);
Node* n = m.AddNode(op, c, m.Parameter(0));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(param.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(param.input_count, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest,
InstructionSelectorSIMDShuffleWithZeroInputTest,
::testing::ValuesIn(kShuffleWithZeroInput));
struct SwizzleConstants {
uint8_t shuffle[kSimd128Size];
bool omit_add;
};
static constexpr SwizzleConstants kSwizzleConstants[] = {
{
// all lanes < kSimd128Size
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
true,
},
{
// lanes that are >= kSimd128Size have top bit set
{12, 13, 14, 15, 0x90, 0x91, 0x92, 0x93, 0xA0, 0xA1, 0xA2, 0xA3, 0xFC,
0xFD, 0xFE, 0xFF},
true,
},
{
{12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27},
false,
},
};
using InstructionSelectorSIMDSwizzleConstantTest =
InstructionSelectorTestWithParam<SwizzleConstants>;
TEST_P(InstructionSelectorSIMDSwizzleConstantTest, SimdSwizzleConstant) {
// Test optimization of swizzle with constant indices.
auto param = GetParam();
StreamBuilder m(this, MachineType::Simd128(), MachineType::Simd128());
Node* const c = m.S128Const(param.shuffle);
Node* swizzle = m.AddNode(m.machine()->I8x16Swizzle(), m.Parameter(0), c);
m.Return(swizzle);
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
ASSERT_EQ(kX64I8x16Swizzle, s[1]->arch_opcode());
ASSERT_EQ(param.omit_add, s[1]->misc());
ASSERT_EQ(1U, s[0]->OutputCount());
}
INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest,
InstructionSelectorSIMDSwizzleConstantTest,
::testing::ValuesIn(kSwizzleConstants));
TEST_F(InstructionSelectorTest, F64x2PromoteLowF32x4WithS128Load64Zero) {
StreamBuilder m(this, MachineType::Simd128(), MachineType::Int32());
Node* const load =
m.AddNode(m.machine()->LoadTransform(MemoryAccessKind::kProtected,
LoadTransformation::kS128Load64Zero),
m.Int32Constant(2), m.Parameter(0));
Node* const promote = m.AddNode(m.machine()->F64x2PromoteLowF32x4(), load);
m.Return(promote);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
ASSERT_EQ(kX64F64x2PromoteLowF32x4, s[0]->arch_opcode());
ASSERT_EQ(kMode_MRI, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
#endif // V8_ENABLE_WEBASSEMBLY
} // namespace compiler
} // namespace internal
} // namespace v8