v8/src/ia32/lithium-codegen-ia32.cc
ricow@chromium.org 45c63ffa6a Add more generic version of reloc info padding to ensure enough space for reloc patching during deoptimization (fixes issue 1174).
The old version only added extra space when we did indirect calls, but
the problem remains the same with normal calls that can be represented
as a single byte. When doing patching each call will always be at
least 2 bytes long because we use RUNTIME_ENTY as the reloc mode.


Review URL: http://codereview.chromium.org/6541053

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6894 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-02-22 12:28:33 +00:00

3836 lines
124 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_IA32)
#include "ia32/lithium-codegen-ia32.h"
#include "code-stubs.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
// When invoking builtins, we need to record the safepoint in the middle of
// the invoke instruction sequence generated by the macro assembler.
class SafepointGenerator : public PostCallGenerator {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
int deoptimization_index,
bool ensure_reloc_space = false)
: codegen_(codegen),
pointers_(pointers),
deoptimization_index_(deoptimization_index),
ensure_reloc_space_(ensure_reloc_space) { }
virtual ~SafepointGenerator() { }
virtual void Generate() {
// Ensure that we have enough space in the reloc info to patch
// this with calls when doing deoptimization.
if (ensure_reloc_space_) {
codegen_->EnsureRelocSpaceForDeoptimization();
}
codegen_->RecordSafepoint(pointers_, deoptimization_index_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
int deoptimization_index_;
bool ensure_reloc_space_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
HPhase phase("Code generation", chunk());
ASSERT(is_unused());
status_ = GENERATING;
CpuFeatures::Scope scope(SSE2);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateRelocPadding() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
ASSERT(is_done());
code->set_stack_slots(StackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
}
void LCodeGen::Abort(const char* format, ...) {
if (FLAG_trace_bailout) {
SmartPointer<char> debug_name = graph()->debug_name()->ToCString();
PrintF("Aborting LCodeGen in @\"%s\": ", *debug_name);
va_list arguments;
va_start(arguments, format);
OS::VPrint(format, arguments);
va_end(arguments);
PrintF("\n");
}
status_ = ABORTED;
}
void LCodeGen::Comment(const char* format, ...) {
if (!FLAG_code_comments) return;
char buffer[4 * KB];
StringBuilder builder(buffer, ARRAY_SIZE(buffer));
va_list arguments;
va_start(arguments, format);
builder.AddFormattedList(format, arguments);
va_end(arguments);
// Copy the string before recording it in the assembler to avoid
// issues when the stack allocated buffer goes out of scope.
size_t length = builder.position();
Vector<char> copy = Vector<char>::New(length + 1);
memcpy(copy.start(), builder.Finalize(), copy.length());
masm()->RecordComment(copy.start());
}
bool LCodeGen::GenerateRelocPadding() {
int reloc_size = masm()->relocation_writer_size();
while (reloc_size < deoptimization_reloc_size.min_size) {
__ RecordComment(RelocInfo::kFillerCommentString, true);
reloc_size += RelocInfo::kRelocCommentSize;
}
return !is_aborted();
}
bool LCodeGen::GeneratePrologue() {
ASSERT(is_generating());
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
__ int3();
}
#endif
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(esi); // Callee's context.
__ push(edi); // Callee's JS function.
// Reserve space for the stack slots needed by the code.
int slots = StackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ mov(Operand(eax), Immediate(slots));
Label loop;
__ bind(&loop);
__ push(Immediate(kSlotsZapValue));
__ dec(eax);
__ j(not_zero, &loop);
} else {
__ sub(Operand(esp), Immediate(slots * kPointerSize));
#ifdef _MSC_VER
// On windows, you may not access the stack more than one page below
// the most recently mapped page. To make the allocated area randomly
// accessible, we write to each page in turn (the value is irrelevant).
const int kPageSize = 4 * KB;
for (int offset = slots * kPointerSize - kPageSize;
offset > 0;
offset -= kPageSize) {
__ mov(Operand(esp, offset), eax);
}
#endif
}
}
// Trace the call.
if (FLAG_trace) {
// We have not executed any compiled code yet, so esi still holds the
// incoming context.
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
bool LCodeGen::GenerateBody() {
ASSERT(is_generating());
bool emit_instructions = true;
for (current_instruction_ = 0;
!is_aborted() && current_instruction_ < instructions_->length();
current_instruction_++) {
LInstruction* instr = instructions_->at(current_instruction_);
if (instr->IsLabel()) {
LLabel* label = LLabel::cast(instr);
emit_instructions = !label->HasReplacement();
}
if (emit_instructions) {
Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
instr->CompileToNative(this);
}
}
return !is_aborted();
}
LInstruction* LCodeGen::GetNextInstruction() {
if (current_instruction_ < instructions_->length() - 1) {
return instructions_->at(current_instruction_ + 1);
} else {
return NULL;
}
}
bool LCodeGen::GenerateDeferredCode() {
ASSERT(is_generating());
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
__ bind(code->entry());
code->Generate();
__ jmp(code->exit());
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
ASSERT(is_done());
safepoints_.Emit(masm(), StackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
XMMRegister LCodeGen::ToDoubleRegister(int index) const {
return XMMRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
ASSERT(op->IsRegister());
return ToRegister(op->index());
}
XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
ASSERT(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
int LCodeGen::ToInteger32(LConstantOperand* op) const {
Handle<Object> value = chunk_->LookupLiteral(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
value->Number());
return static_cast<int32_t>(value->Number());
}
Immediate LCodeGen::ToImmediate(LOperand* op) {
LConstantOperand* const_op = LConstantOperand::cast(op);
Handle<Object> literal = chunk_->LookupLiteral(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
return Immediate(static_cast<int32_t>(literal->Number()));
} else if (r.IsDouble()) {
Abort("unsupported double immediate");
}
ASSERT(r.IsTagged());
return Immediate(literal);
}
Operand LCodeGen::ToOperand(LOperand* op) const {
if (op->IsRegister()) return Operand(ToRegister(op));
if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op));
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
int index = op->index();
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, and
// context in the fixed part of the frame.
return Operand(ebp, -(index + 3) * kPointerSize);
} else {
// Incoming parameter. Skip the return address.
return Operand(ebp, -(index - 1) * kPointerSize);
}
}
Operand LCodeGen::HighOperand(LOperand* op) {
ASSERT(op->IsDoubleStackSlot());
int index = op->index();
int offset = (index >= 0) ? index + 3 : index - 1;
return Operand(ebp, -offset * kPointerSize);
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->values()->length();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
int closure_id = DefineDeoptimizationLiteral(environment->closure());
translation->BeginFrame(environment->ast_id(), closure_id, height);
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
// spilled_registers_ and spilled_double_registers_ are either
// both NULL or both set.
if (environment->spilled_registers() != NULL && value != NULL) {
if (value->IsRegister() &&
environment->spilled_registers()[value->index()] != NULL) {
translation->MarkDuplicate();
AddToTranslation(translation,
environment->spilled_registers()[value->index()],
environment->HasTaggedValueAt(i));
} else if (
value->IsDoubleRegister() &&
environment->spilled_double_registers()[value->index()] != NULL) {
translation->MarkDuplicate();
AddToTranslation(
translation,
environment->spilled_double_registers()[value->index()],
false);
}
}
AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
}
}
void LCodeGen::EnsureRelocSpaceForDeoptimization() {
// Since we patch the reloc info with RUNTIME_ENTRY calls every patch
// site will take up 2 bytes + any pc-jumps.
// We are conservative and always reserver 6 bytes in case where a
// simple pc-jump is not enough.
uint32_t pc_delta =
masm()->pc_offset() - deoptimization_reloc_size.last_pc_offset;
if (is_uintn(pc_delta, 6)) {
deoptimization_reloc_size.min_size += 2;
} else {
deoptimization_reloc_size.min_size += 6;
}
deoptimization_reloc_size.last_pc_offset = masm()->pc_offset();
}
void LCodeGen::AddToTranslation(Translation* translation,
LOperand* op,
bool is_tagged) {
if (op == NULL) {
// TODO(twuerthinger): Introduce marker operands to indicate that this value
// is not present and must be reconstructed from the deoptimizer. Currently
// this is only used for the arguments object.
translation->StoreArgumentsObject();
} else if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsArgument()) {
ASSERT(is_tagged);
int src_index = StackSlotCount() + op->index();
translation->StoreStackSlot(src_index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
XMMRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(literal);
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
bool adjusted) {
ASSERT(instr != NULL);
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
if (!adjusted) {
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
}
__ call(code, mode);
EnsureRelocSpaceForDeoptimization();
RegisterLazyDeoptimization(instr);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::TYPE_RECORDING_BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallRuntime(Runtime::Function* fun,
int argc,
LInstruction* instr,
bool adjusted) {
ASSERT(instr != NULL);
ASSERT(instr->HasPointerMap());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
if (!adjusted) {
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
}
__ CallRuntime(fun, argc);
RegisterLazyDeoptimization(instr);
}
void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr) {
// Create the environment to bailout to. If the call has side effects
// execution has to continue after the call otherwise execution can continue
// from a previous bailout point repeating the call.
LEnvironment* deoptimization_environment;
if (instr->HasDeoptimizationEnvironment()) {
deoptimization_environment = instr->deoptimization_environment();
} else {
deoptimization_environment = instr->environment();
}
RegisterEnvironmentForDeoptimization(deoptimization_environment);
RecordSafepoint(instr->pointer_map(),
deoptimization_environment->deoptimization_index());
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
}
Translation translation(&translations_, frame_count);
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
environment->Register(deoptimization_index, translation.index());
deoptimizations_.Add(environment);
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
RegisterEnvironmentForDeoptimization(environment);
ASSERT(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
ASSERT(entry != NULL);
if (entry == NULL) {
Abort("bailout was not prepared");
return;
}
if (FLAG_deopt_every_n_times != 0) {
Handle<SharedFunctionInfo> shared(info_->shared_info());
Label no_deopt;
__ pushfd();
__ push(eax);
__ push(ebx);
__ mov(ebx, shared);
__ mov(eax, FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset));
__ sub(Operand(eax), Immediate(Smi::FromInt(1)));
__ j(not_zero, &no_deopt);
if (FLAG_trap_on_deopt) __ int3();
__ mov(eax, Immediate(Smi::FromInt(FLAG_deopt_every_n_times)));
__ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax);
__ pop(ebx);
__ pop(eax);
__ popfd();
__ jmp(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&no_deopt);
__ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax);
__ pop(ebx);
__ pop(eax);
__ popfd();
}
if (cc == no_condition) {
if (FLAG_trap_on_deopt) __ int3();
__ jmp(entry, RelocInfo::RUNTIME_ENTRY);
} else {
if (FLAG_trap_on_deopt) {
NearLabel done;
__ j(NegateCondition(cc), &done);
__ int3();
__ jmp(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&done);
} else {
__ j(cc, entry, RelocInfo::RUNTIME_ENTRY, not_taken);
}
}
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
ASSERT(FLAG_deopt);
Handle<DeoptimizationInputData> data =
Factory::NewDeoptimizationInputData(length, TENURED);
data->SetTranslationByteArray(*translations_.CreateByteArray());
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
Handle<FixedArray> literals =
Factory::NewFixedArray(deoptimization_literals_.length(), TENURED);
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, Smi::FromInt(env->ast_id()));
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal);
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
ASSERT(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
int deoptimization_index) {
const ZoneList<LOperand*>* operands = pointers->operands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deoptimization_index);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer));
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
int deoptimization_index) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
int deoptimization_index) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments,
deoptimization_index);
}
void LCodeGen::RecordPosition(int position) {
if (!FLAG_debug_info || position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
}
void LCodeGen::DoLabel(LLabel* label) {
if (label->is_loop_header()) {
Comment(";;; B%d - LOOP entry", label->block_id());
} else {
Comment(";;; B%d", label->block_id());
}
__ bind(label->label());
current_block_ = label->block_id();
LCodeGen::DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
LInstruction* next = GetNextInstruction();
if (next != NULL && next->IsLazyBailout()) {
int pc = masm()->pc_offset();
safepoints_.SetPcAfterGap(pc);
}
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->result()).is(eax));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpConstructResult: {
RegExpConstructResultStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::RegExpExec: {
RegExpExecStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCharAt: {
StringCharAtStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::MathPow: {
MathPowStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::NumberToString: {
NumberToStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringAdd: {
StringAddStub stub(NO_STRING_ADD_FLAGS);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::TranscendentalCache: {
TranscendentalCacheStub stub(instr->transcendental_type(),
TranscendentalCacheStub::TAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
// Nothing to do.
}
void LCodeGen::DoModI(LModI* instr) {
LOperand* right = instr->InputAt(1);
ASSERT(ToRegister(instr->result()).is(edx));
ASSERT(ToRegister(instr->InputAt(0)).is(eax));
ASSERT(!ToRegister(instr->InputAt(1)).is(eax));
ASSERT(!ToRegister(instr->InputAt(1)).is(edx));
Register right_reg = ToRegister(right);
// Check for x % 0.
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(right_reg, ToOperand(right));
DeoptimizeIf(zero, instr->environment());
}
// Sign extend to edx.
__ cdq();
// Check for (0 % -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
NearLabel positive_left;
NearLabel done;
__ test(eax, Operand(eax));
__ j(not_sign, &positive_left);
__ idiv(right_reg);
// Test the remainder for 0, because then the result would be -0.
__ test(edx, Operand(edx));
__ j(not_zero, &done);
DeoptimizeIf(no_condition, instr->environment());
__ bind(&positive_left);
__ idiv(right_reg);
__ bind(&done);
} else {
__ idiv(right_reg);
}
}
void LCodeGen::DoDivI(LDivI* instr) {
LOperand* right = instr->InputAt(1);
ASSERT(ToRegister(instr->result()).is(eax));
ASSERT(ToRegister(instr->InputAt(0)).is(eax));
ASSERT(!ToRegister(instr->InputAt(1)).is(eax));
ASSERT(!ToRegister(instr->InputAt(1)).is(edx));
Register left_reg = eax;
// Check for x / 0.
Register right_reg = ToRegister(right);
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(right_reg, ToOperand(right));
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
NearLabel left_not_zero;
__ test(left_reg, Operand(left_reg));
__ j(not_zero, &left_not_zero);
__ test(right_reg, ToOperand(right));
DeoptimizeIf(sign, instr->environment());
__ bind(&left_not_zero);
}
// Check for (-kMinInt / -1).
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
NearLabel left_not_min_int;
__ cmp(left_reg, kMinInt);
__ j(not_zero, &left_not_min_int);
__ cmp(right_reg, -1);
DeoptimizeIf(zero, instr->environment());
__ bind(&left_not_min_int);
}
// Sign extend to edx.
__ cdq();
__ idiv(right_reg);
// Deoptimize if remainder is not 0.
__ test(edx, Operand(edx));
DeoptimizeIf(not_zero, instr->environment());
}
void LCodeGen::DoMulI(LMulI* instr) {
Register left = ToRegister(instr->InputAt(0));
LOperand* right = instr->InputAt(1);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ mov(ToRegister(instr->TempAt(0)), left);
}
if (right->IsConstantOperand()) {
__ imul(left, left, ToInteger32(LConstantOperand::cast(right)));
} else {
__ imul(left, ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
NearLabel done;
__ test(left, Operand(left));
__ j(not_zero, &done);
if (right->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(right)) <= 0) {
DeoptimizeIf(no_condition, instr->environment());
}
} else {
// Test the non-zero operand for negative sign.
__ or_(ToRegister(instr->TempAt(0)), ToOperand(right));
DeoptimizeIf(sign, instr->environment());
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
if (right->IsConstantOperand()) {
int right_operand = ToInteger32(LConstantOperand::cast(right));
switch (instr->op()) {
case Token::BIT_AND:
__ and_(ToRegister(left), right_operand);
break;
case Token::BIT_OR:
__ or_(ToRegister(left), right_operand);
break;
case Token::BIT_XOR:
__ xor_(ToRegister(left), right_operand);
break;
default:
UNREACHABLE();
break;
}
} else {
switch (instr->op()) {
case Token::BIT_AND:
__ and_(ToRegister(left), ToOperand(right));
break;
case Token::BIT_OR:
__ or_(ToRegister(left), ToOperand(right));
break;
case Token::BIT_XOR:
__ xor_(ToRegister(left), ToOperand(right));
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
if (right->IsRegister()) {
ASSERT(ToRegister(right).is(ecx));
switch (instr->op()) {
case Token::SAR:
__ sar_cl(ToRegister(left));
break;
case Token::SHR:
__ shr_cl(ToRegister(left));
if (instr->can_deopt()) {
__ test(ToRegister(left), Immediate(0x80000000));
DeoptimizeIf(not_zero, instr->environment());
}
break;
case Token::SHL:
__ shl_cl(ToRegister(left));
break;
default:
UNREACHABLE();
break;
}
} else {
int value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::SAR:
if (shift_count != 0) {
__ sar(ToRegister(left), shift_count);
}
break;
case Token::SHR:
if (shift_count == 0 && instr->can_deopt()) {
__ test(ToRegister(left), Immediate(0x80000000));
DeoptimizeIf(not_zero, instr->environment());
} else {
__ shr(ToRegister(left), shift_count);
}
break;
case Token::SHL:
if (shift_count != 0) {
__ shl(ToRegister(left), shift_count);
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
__ sub(ToOperand(left), ToImmediate(right));
} else {
__ sub(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
ASSERT(instr->result()->IsRegister());
__ Set(ToRegister(instr->result()), Immediate(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
ASSERT(instr->result()->IsDoubleRegister());
XMMRegister res = ToDoubleRegister(instr->result());
double v = instr->value();
// Use xor to produce +0.0 in a fast and compact way, but avoid to
// do so if the constant is -0.0.
if (BitCast<uint64_t, double>(v) == 0) {
__ xorpd(res, res);
} else {
Register temp = ToRegister(instr->TempAt(0));
uint64_t int_val = BitCast<uint64_t, double>(v);
int32_t lower = static_cast<int32_t>(int_val);
int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatures::Scope scope(SSE4_1);
if (lower != 0) {
__ Set(temp, Immediate(lower));
__ movd(res, Operand(temp));
__ Set(temp, Immediate(upper));
__ pinsrd(res, Operand(temp), 1);
} else {
__ xorpd(res, res);
__ Set(temp, Immediate(upper));
__ pinsrd(res, Operand(temp), 1);
}
} else {
__ Set(temp, Immediate(upper));
__ movd(res, Operand(temp));
__ psllq(res, 32);
if (lower != 0) {
__ Set(temp, Immediate(lower));
__ movd(xmm0, Operand(temp));
__ por(res, xmm0);
}
}
}
}
void LCodeGen::DoConstantT(LConstantT* instr) {
ASSERT(instr->result()->IsRegister());
__ Set(ToRegister(instr->result()), Immediate(instr->value()));
}
void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ mov(result, FieldOperand(array, JSArray::kLengthOffset));
}
void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ mov(result, FieldOperand(array, FixedArray::kLengthOffset));
}
void LCodeGen::DoPixelArrayLength(LPixelArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ mov(result, FieldOperand(array, PixelArray::kLengthOffset));
}
void LCodeGen::DoValueOf(LValueOf* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->TempAt(0));
ASSERT(input.is(result));
NearLabel done;
// If the object is a smi return the object.
__ test(input, Immediate(kSmiTagMask));
__ j(zero, &done);
// If the object is not a value type, return the object.
__ CmpObjectType(input, JS_VALUE_TYPE, map);
__ j(not_equal, &done);
__ mov(result, FieldOperand(input, JSValue::kValueOffset));
__ bind(&done);
}
void LCodeGen::DoBitNotI(LBitNotI* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->Equals(instr->result()));
__ not_(ToRegister(input));
}
void LCodeGen::DoThrow(LThrow* instr) {
__ push(ToOperand(instr->InputAt(0)));
CallRuntime(Runtime::kThrow, 1, instr, false);
if (FLAG_debug_code) {
Comment("Unreachable code.");
__ int3();
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
__ add(ToOperand(left), ToImmediate(right));
} else {
__ add(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
// Modulo uses a fixed result register.
ASSERT(instr->op() == Token::MOD || left->Equals(instr->result()));
switch (instr->op()) {
case Token::ADD:
__ addsd(ToDoubleRegister(left), ToDoubleRegister(right));
break;
case Token::SUB:
__ subsd(ToDoubleRegister(left), ToDoubleRegister(right));
break;
case Token::MUL:
__ mulsd(ToDoubleRegister(left), ToDoubleRegister(right));
break;
case Token::DIV:
__ divsd(ToDoubleRegister(left), ToDoubleRegister(right));
break;
case Token::MOD: {
// Pass two doubles as arguments on the stack.
__ PrepareCallCFunction(4, eax);
__ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
__ movdbl(Operand(esp, 1 * kDoubleSize), ToDoubleRegister(right));
__ CallCFunction(ExternalReference::double_fp_operation(Token::MOD), 4);
// Return value is in st(0) on ia32.
// Store it into the (fixed) result register.
__ sub(Operand(esp), Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movdbl(ToDoubleRegister(instr->result()), Operand(esp, 0));
__ add(Operand(esp), Immediate(kDoubleSize));
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(edx));
ASSERT(ToRegister(instr->InputAt(1)).is(eax));
ASSERT(ToRegister(instr->result()).is(eax));
TypeRecordingBinaryOpStub stub(instr->op(), NO_OVERWRITE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
}
int LCodeGen::GetNextEmittedBlock(int block) {
for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
LLabel* label = chunk_->GetLabel(i);
if (!label->HasReplacement()) return i;
}
return -1;
}
void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
int next_block = GetNextEmittedBlock(current_block_);
right_block = chunk_->LookupDestination(right_block);
left_block = chunk_->LookupDestination(left_block);
if (right_block == left_block) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
__ jmp(chunk_->GetAssemblyLabel(right_block));
}
}
void LCodeGen::DoBranch(LBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Representation r = instr->hydrogen()->representation();
if (r.IsInteger32()) {
Register reg = ToRegister(instr->InputAt(0));
__ test(reg, Operand(reg));
EmitBranch(true_block, false_block, not_zero);
} else if (r.IsDouble()) {
XMMRegister reg = ToDoubleRegister(instr->InputAt(0));
__ xorpd(xmm0, xmm0);
__ ucomisd(reg, xmm0);
EmitBranch(true_block, false_block, not_equal);
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->InputAt(0));
if (instr->hydrogen()->type().IsBoolean()) {
__ cmp(reg, Factory::true_value());
EmitBranch(true_block, false_block, equal);
} else {
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ cmp(reg, Factory::undefined_value());
__ j(equal, false_label);
__ cmp(reg, Factory::true_value());
__ j(equal, true_label);
__ cmp(reg, Factory::false_value());
__ j(equal, false_label);
__ test(reg, Operand(reg));
__ j(equal, false_label);
__ test(reg, Immediate(kSmiTagMask));
__ j(zero, true_label);
// Test for double values. Zero is false.
NearLabel call_stub;
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(not_equal, &call_stub);
__ fldz();
__ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
__ FCmp();
__ j(zero, false_label);
__ jmp(true_label);
// The conversion stub doesn't cause garbage collections so it's
// safe to not record a safepoint after the call.
__ bind(&call_stub);
ToBooleanStub stub;
__ pushad();
__ push(reg);
__ CallStub(&stub);
__ test(eax, Operand(eax));
__ popad();
EmitBranch(true_block, false_block, not_zero);
}
}
}
void LCodeGen::EmitGoto(int block, LDeferredCode* deferred_stack_check) {
block = chunk_->LookupDestination(block);
int next_block = GetNextEmittedBlock(current_block_);
if (block != next_block) {
// Perform stack overflow check if this goto needs it before jumping.
if (deferred_stack_check != NULL) {
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit();
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, chunk_->GetAssemblyLabel(block));
__ jmp(deferred_stack_check->entry());
deferred_stack_check->SetExit(chunk_->GetAssemblyLabel(block));
} else {
__ jmp(chunk_->GetAssemblyLabel(block));
}
}
}
void LCodeGen::DoDeferredStackCheck(LGoto* instr) {
__ pushad();
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kStackGuard);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
__ popad();
}
void LCodeGen::DoGoto(LGoto* instr) {
class DeferredStackCheck: public LDeferredCode {
public:
DeferredStackCheck(LCodeGen* codegen, LGoto* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
private:
LGoto* instr_;
};
DeferredStackCheck* deferred = NULL;
if (instr->include_stack_check()) {
deferred = new DeferredStackCheck(this, instr);
}
EmitGoto(instr->block_id(), deferred);
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = no_condition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = equal;
break;
case Token::LT:
cond = is_unsigned ? below : less;
break;
case Token::GT:
cond = is_unsigned ? above : greater;
break;
case Token::LTE:
cond = is_unsigned ? below_equal : less_equal;
break;
case Token::GTE:
cond = is_unsigned ? above_equal : greater_equal;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) {
if (right->IsConstantOperand()) {
__ cmp(ToOperand(left), ToImmediate(right));
} else {
__ cmp(ToRegister(left), ToOperand(right));
}
}
void LCodeGen::DoCmpID(LCmpID* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
LOperand* result = instr->result();
NearLabel unordered;
if (instr->is_double()) {
// Don't base result on EFLAGS when a NaN is involved. Instead
// jump to the unordered case, which produces a false value.
__ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
__ j(parity_even, &unordered, not_taken);
} else {
EmitCmpI(left, right);
}
NearLabel done;
Condition cc = TokenToCondition(instr->op(), instr->is_double());
__ mov(ToRegister(result), Factory::true_value());
__ j(cc, &done);
__ bind(&unordered);
__ mov(ToRegister(result), Factory::false_value());
__ bind(&done);
}
void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
if (instr->is_double()) {
// Don't base result on EFLAGS when a NaN is involved. Instead
// jump to the false block.
__ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
__ j(parity_even, chunk_->GetAssemblyLabel(false_block));
} else {
EmitCmpI(left, right);
}
Condition cc = TokenToCondition(instr->op(), instr->is_double());
EmitBranch(true_block, false_block, cc);
}
void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) {
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
Register result = ToRegister(instr->result());
__ cmp(left, Operand(right));
__ mov(result, Factory::true_value());
NearLabel done;
__ j(equal, &done);
__ mov(result, Factory::false_value());
__ bind(&done);
}
void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) {
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
__ cmp(left, Operand(right));
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::DoIsNull(LIsNull* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
// TODO(fsc): If the expression is known to be a smi, then it's
// definitely not null. Materialize false.
__ cmp(reg, Factory::null_value());
if (instr->is_strict()) {
__ mov(result, Factory::true_value());
NearLabel done;
__ j(equal, &done);
__ mov(result, Factory::false_value());
__ bind(&done);
} else {
NearLabel true_value, false_value, done;
__ j(equal, &true_value);
__ cmp(reg, Factory::undefined_value());
__ j(equal, &true_value);
__ test(reg, Immediate(kSmiTagMask));
__ j(zero, &false_value);
// Check for undetectable objects by looking in the bit field in
// the map. The object has already been smi checked.
Register scratch = result;
__ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kBitFieldOffset));
__ test(scratch, Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &true_value);
__ bind(&false_value);
__ mov(result, Factory::false_value());
__ jmp(&done);
__ bind(&true_value);
__ mov(result, Factory::true_value());
__ bind(&done);
}
}
void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
// TODO(fsc): If the expression is known to be a smi, then it's
// definitely not null. Jump to the false block.
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ cmp(reg, Factory::null_value());
if (instr->is_strict()) {
EmitBranch(true_block, false_block, equal);
} else {
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ j(equal, true_label);
__ cmp(reg, Factory::undefined_value());
__ j(equal, true_label);
__ test(reg, Immediate(kSmiTagMask));
__ j(zero, false_label);
// Check for undetectable objects by looking in the bit field in
// the map. The object has already been smi checked.
Register scratch = ToRegister(instr->TempAt(0));
__ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kBitFieldOffset));
__ test(scratch, Immediate(1 << Map::kIsUndetectable));
EmitBranch(true_block, false_block, not_zero);
}
}
Condition LCodeGen::EmitIsObject(Register input,
Register temp1,
Register temp2,
Label* is_not_object,
Label* is_object) {
ASSERT(!input.is(temp1));
ASSERT(!input.is(temp2));
ASSERT(!temp1.is(temp2));
__ test(input, Immediate(kSmiTagMask));
__ j(equal, is_not_object);
__ cmp(input, Factory::null_value());
__ j(equal, is_object);
__ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
// Undetectable objects behave like undefined.
__ movzx_b(temp2, FieldOperand(temp1, Map::kBitFieldOffset));
__ test(temp2, Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, is_not_object);
__ movzx_b(temp2, FieldOperand(temp1, Map::kInstanceTypeOffset));
__ cmp(temp2, FIRST_JS_OBJECT_TYPE);
__ j(below, is_not_object);
__ cmp(temp2, LAST_JS_OBJECT_TYPE);
return below_equal;
}
void LCodeGen::DoIsObject(LIsObject* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Register temp = ToRegister(instr->TempAt(0));
Label is_false, is_true, done;
Condition true_cond = EmitIsObject(reg, result, temp, &is_false, &is_true);
__ j(true_cond, &is_true);
__ bind(&is_false);
__ mov(result, Factory::false_value());
__ jmp(&done);
__ bind(&is_true);
__ mov(result, Factory::true_value());
__ bind(&done);
}
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition true_cond = EmitIsObject(reg, temp, temp2, false_label, true_label);
EmitBranch(true_block, false_block, true_cond);
}
void LCodeGen::DoIsSmi(LIsSmi* instr) {
Operand input = ToOperand(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
__ test(input, Immediate(kSmiTagMask));
__ mov(result, Factory::true_value());
NearLabel done;
__ j(zero, &done);
__ mov(result, Factory::false_value());
__ bind(&done);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
Operand input = ToOperand(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ test(input, Immediate(kSmiTagMask));
EmitBranch(true_block, false_block, zero);
}
static InstanceType TestType(HHasInstanceType* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
ASSERT(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceType* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return equal;
if (to == LAST_TYPE) return above_equal;
if (from == FIRST_TYPE) return below_equal;
UNREACHABLE();
return equal;
}
void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
__ test(input, Immediate(kSmiTagMask));
NearLabel done, is_false;
__ j(zero, &is_false);
__ CmpObjectType(input, TestType(instr->hydrogen()), result);
__ j(NegateCondition(BranchCondition(instr->hydrogen())), &is_false);
__ mov(result, Factory::true_value());
__ jmp(&done);
__ bind(&is_false);
__ mov(result, Factory::false_value());
__ bind(&done);
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ test(input, Immediate(kSmiTagMask));
__ j(zero, false_label);
__ CmpObjectType(input, TestType(instr->hydrogen()), temp);
EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
}
void LCodeGen::DoHasCachedArrayIndex(LHasCachedArrayIndex* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
__ mov(result, Factory::true_value());
__ test(FieldOperand(input, String::kHashFieldOffset),
Immediate(String::kContainsCachedArrayIndexMask));
NearLabel done;
__ j(not_zero, &done);
__ mov(result, Factory::false_value());
__ bind(&done);
}
void LCodeGen::DoHasCachedArrayIndexAndBranch(
LHasCachedArrayIndexAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ test(FieldOperand(input, String::kHashFieldOffset),
Immediate(String::kContainsCachedArrayIndexMask));
EmitBranch(true_block, false_block, not_equal);
}
// Branches to a label or falls through with the answer in the z flag. Trashes
// the temp registers, but not the input. Only input and temp2 may alias.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String>class_name,
Register input,
Register temp,
Register temp2) {
ASSERT(!input.is(temp));
ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register.
__ test(input, Immediate(kSmiTagMask));
__ j(zero, is_false);
__ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, temp);
__ j(below, is_false);
// Map is now in temp.
// Functions have class 'Function'.
__ CmpInstanceType(temp, JS_FUNCTION_TYPE);
if (class_name->IsEqualTo(CStrVector("Function"))) {
__ j(equal, is_true);
} else {
__ j(equal, is_false);
}
// Check if the constructor in the map is a function.
__ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
// Objects with a non-function constructor have class 'Object'.
__ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
if (class_name->IsEqualTo(CStrVector("Object"))) {
__ j(not_equal, is_true);
} else {
__ j(not_equal, is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ mov(temp, FieldOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is a symbol because it's a literal.
// The name in the constructor is a symbol because of the way the context is
// booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are symbols it is sufficient to use an identity
// comparison.
__ cmp(temp, class_name);
// End with the answer in the z flag.
}
void LCodeGen::DoClassOfTest(LClassOfTest* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(input.is(result));
Register temp = ToRegister(instr->TempAt(0));
Handle<String> class_name = instr->hydrogen()->class_name();
NearLabel done;
Label is_true, is_false;
EmitClassOfTest(&is_true, &is_false, class_name, input, temp, input);
__ j(not_equal, &is_false);
__ bind(&is_true);
__ mov(result, Factory::true_value());
__ jmp(&done);
__ bind(&is_false);
__ mov(result, Factory::false_value());
__ bind(&done);
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
if (input.is(temp)) {
// Swap.
Register swapper = temp;
temp = temp2;
temp2 = swapper;
}
Handle<String> class_name = instr->hydrogen()->class_name();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
int true_block = instr->true_block_id();
int false_block = instr->false_block_id();
__ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
// Object and function are in fixed registers defined by the stub.
ASSERT(ToRegister(instr->context()).is(esi));
InstanceofStub stub(InstanceofStub::kArgsInRegisters);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
NearLabel true_value, done;
__ test(eax, Operand(eax));
__ j(zero, &true_value);
__ mov(ToRegister(instr->result()), Factory::false_value());
__ jmp(&done);
__ bind(&true_value);
__ mov(ToRegister(instr->result()), Factory::true_value());
__ bind(&done);
}
void LCodeGen::DoInstanceOfAndBranch(LInstanceOfAndBranch* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
InstanceofStub stub(InstanceofStub::kArgsInRegisters);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ test(eax, Operand(eax));
EmitBranch(true_block, false_block, zero);
}
void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
class DeferredInstanceOfKnownGlobal: public LDeferredCode {
public:
DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
LInstanceOfKnownGlobal* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_);
}
Label* map_check() { return &map_check_; }
private:
LInstanceOfKnownGlobal* instr_;
Label map_check_;
};
DeferredInstanceOfKnownGlobal* deferred;
deferred = new DeferredInstanceOfKnownGlobal(this, instr);
Label done, false_result;
Register object = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
// A Smi is not an instance of anything.
__ test(object, Immediate(kSmiTagMask));
__ j(zero, &false_result, not_taken);
// This is the inlined call site instanceof cache. The two occurences of the
// hole value will be patched to the last map/result pair generated by the
// instanceof stub.
NearLabel cache_miss;
Register map = ToRegister(instr->TempAt(0));
__ mov(map, FieldOperand(object, HeapObject::kMapOffset));
__ bind(deferred->map_check()); // Label for calculating code patching.
__ cmp(map, Factory::the_hole_value()); // Patched to cached map.
__ j(not_equal, &cache_miss, not_taken);
__ mov(eax, Factory::the_hole_value()); // Patched to either true or false.
__ jmp(&done);
// The inlined call site cache did not match. Check for null and string
// before calling the deferred code.
__ bind(&cache_miss);
// Null is not an instance of anything.
__ cmp(object, Factory::null_value());
__ j(equal, &false_result);
// String values are not instances of anything.
Condition is_string = masm_->IsObjectStringType(object, temp, temp);
__ j(is_string, &false_result);
// Go to the deferred code.
__ jmp(deferred->entry());
__ bind(&false_result);
__ mov(ToRegister(instr->result()), Factory::false_value());
// Here result has either true or false. Deferred code also produces true or
// false object.
__ bind(deferred->exit());
__ bind(&done);
}
void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
Label* map_check) {
__ PushSafepointRegisters();
InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kArgsInRegisters);
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kCallSiteInlineCheck);
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kReturnTrueFalseObject);
InstanceofStub stub(flags);
// Get the temp register reserved by the instruction. This needs to be edi as
// its slot of the pushing of safepoint registers is used to communicate the
// offset to the location of the map check.
Register temp = ToRegister(instr->TempAt(0));
ASSERT(temp.is(edi));
__ mov(InstanceofStub::right(), Immediate(instr->function()));
static const int kAdditionalDelta = 16;
int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
Label before_push_delta;
__ bind(&before_push_delta);
__ mov(temp, Immediate(delta));
__ StoreToSafepointRegisterSlot(temp, temp);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ call(stub.GetCode(), RelocInfo::CODE_TARGET);
ASSERT_EQ(kAdditionalDelta,
masm_->SizeOfCodeGeneratedSince(&before_push_delta));
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
// Put the result value into the eax slot and restore all registers.
__ StoreToSafepointRegisterSlot(eax, eax);
__ PopSafepointRegisters();
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return equal;
case Token::LT:
return less;
case Token::GT:
return greater;
case Token::LTE:
return less_equal;
case Token::GTE:
return greater_equal;
default:
UNREACHABLE();
return no_condition;
}
}
void LCodeGen::DoCmpT(LCmpT* instr) {
Token::Value op = instr->op();
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr, false);
Condition condition = ComputeCompareCondition(op);
if (op == Token::GT || op == Token::LTE) {
condition = ReverseCondition(condition);
}
NearLabel true_value, done;
__ test(eax, Operand(eax));
__ j(condition, &true_value);
__ mov(ToRegister(instr->result()), Factory::false_value());
__ jmp(&done);
__ bind(&true_value);
__ mov(ToRegister(instr->result()), Factory::true_value());
__ bind(&done);
}
void LCodeGen::DoCmpTAndBranch(LCmpTAndBranch* instr) {
Token::Value op = instr->op();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr, false);
// The compare stub expects compare condition and the input operands
// reversed for GT and LTE.
Condition condition = ComputeCompareCondition(op);
if (op == Token::GT || op == Token::LTE) {
condition = ReverseCondition(condition);
}
__ test(eax, Operand(eax));
EmitBranch(true_block, false_block, condition);
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace) {
// Preserve the return value on the stack and rely on the runtime call
// to return the value in the same register. We're leaving the code
// managed by the register allocator and tearing down the frame, it's
// safe to write to the context register.
__ push(eax);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kTraceExit, 1);
}
__ mov(esp, ebp);
__ pop(ebp);
__ Ret((ParameterCount() + 1) * kPointerSize, ecx);
}
void LCodeGen::DoLoadGlobal(LLoadGlobal* instr) {
Register result = ToRegister(instr->result());
__ mov(result, Operand::Cell(instr->hydrogen()->cell()));
if (instr->hydrogen()->check_hole_value()) {
__ cmp(result, Factory::the_hole_value());
DeoptimizeIf(equal, instr->environment());
}
}
void LCodeGen::DoStoreGlobal(LStoreGlobal* instr) {
Register value = ToRegister(instr->InputAt(0));
Operand cell_operand = Operand::Cell(instr->hydrogen()->cell());
// If the cell we are storing to contains the hole it could have
// been deleted from the property dictionary. In that case, we need
// to update the property details in the property dictionary to mark
// it as no longer deleted. We deoptimize in that case.
if (instr->hydrogen()->check_hole_value()) {
__ cmp(cell_operand, Factory::the_hole_value());
DeoptimizeIf(equal, instr->environment());
}
// Store the value.
__ mov(cell_operand, value);
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ mov(result, ContextOperand(context, instr->slot_index()));
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
__ mov(ContextOperand(context, instr->slot_index()), value);
if (instr->needs_write_barrier()) {
Register temp = ToRegister(instr->TempAt(0));
int offset = Context::SlotOffset(instr->slot_index());
__ RecordWrite(context, offset, value, temp);
}
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
Register object = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (instr->hydrogen()->is_in_object()) {
__ mov(result, FieldOperand(object, instr->hydrogen()->offset()));
} else {
__ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
__ mov(result, FieldOperand(result, instr->hydrogen()->offset()));
}
}
void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->object()).is(eax));
ASSERT(ToRegister(instr->result()).is(eax));
__ mov(ecx, instr->name());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register function = ToRegister(instr->function());
Register temp = ToRegister(instr->TempAt(0));
Register result = ToRegister(instr->result());
// Check that the function really is a function.
__ CmpObjectType(function, JS_FUNCTION_TYPE, result);
DeoptimizeIf(not_equal, instr->environment());
// Check whether the function has an instance prototype.
NearLabel non_instance;
__ test_b(FieldOperand(result, Map::kBitFieldOffset),
1 << Map::kHasNonInstancePrototype);
__ j(not_zero, &non_instance);
// Get the prototype or initial map from the function.
__ mov(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ cmp(Operand(result), Immediate(Factory::the_hole_value()));
DeoptimizeIf(equal, instr->environment());
// If the function does not have an initial map, we're done.
NearLabel done;
__ CmpObjectType(result, MAP_TYPE, temp);
__ j(not_equal, &done);
// Get the prototype from the initial map.
__ mov(result, FieldOperand(result, Map::kPrototypeOffset));
__ jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in the function's map.
__ bind(&non_instance);
__ mov(result, FieldOperand(result, Map::kConstructorOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadElements(LLoadElements* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->InputAt(0));
__ mov(result, FieldOperand(input, JSObject::kElementsOffset));
if (FLAG_debug_code) {
NearLabel done;
__ cmp(FieldOperand(result, HeapObject::kMapOffset),
Immediate(Factory::fixed_array_map()));
__ j(equal, &done);
__ cmp(FieldOperand(result, HeapObject::kMapOffset),
Immediate(Factory::pixel_array_map()));
__ j(equal, &done);
__ cmp(FieldOperand(result, HeapObject::kMapOffset),
Immediate(Factory::fixed_cow_array_map()));
__ Check(equal, "Check for fast elements or pixel array failed.");
__ bind(&done);
}
}
void LCodeGen::DoLoadPixelArrayExternalPointer(
LLoadPixelArrayExternalPointer* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->InputAt(0));
__ mov(result, FieldOperand(input, PixelArray::kExternalPointerOffset));
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register length = ToRegister(instr->length());
Operand index = ToOperand(instr->index());
Register result = ToRegister(instr->result());
__ sub(length, index);
DeoptimizeIf(below_equal, instr->environment());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
__ mov(result, Operand(arguments, length, times_4, kPointerSize));
}
void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
Register elements = ToRegister(instr->elements());
Register key = ToRegister(instr->key());
Register result = ToRegister(instr->result());
ASSERT(result.is(elements));
// Load the result.
__ mov(result, FieldOperand(elements,
key,
times_pointer_size,
FixedArray::kHeaderSize));
// Check for the hole value.
__ cmp(result, Factory::the_hole_value());
DeoptimizeIf(equal, instr->environment());
}
void LCodeGen::DoLoadPixelArrayElement(LLoadPixelArrayElement* instr) {
Register external_pointer = ToRegister(instr->external_pointer());
Register key = ToRegister(instr->key());
Register result = ToRegister(instr->result());
ASSERT(result.is(external_pointer));
// Load the result.
__ movzx_b(result, Operand(external_pointer, key, times_1, 0));
}
void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->object()).is(edx));
ASSERT(ToRegister(instr->key()).is(eax));
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Register result = ToRegister(instr->result());
// Check for arguments adapter frame.
NearLabel done, adapted;
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
__ cmp(Operand(result),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &adapted);
// No arguments adaptor frame.
__ mov(result, Operand(ebp));
__ jmp(&done);
// Arguments adaptor frame present.
__ bind(&adapted);
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
// Result is the frame pointer for the frame if not adapted and for the real
// frame below the adaptor frame if adapted.
__ bind(&done);
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Operand elem = ToOperand(instr->InputAt(0));
Register result = ToRegister(instr->result());
NearLabel done;
// If no arguments adaptor frame the number of arguments is fixed.
__ cmp(ebp, elem);
__ mov(result, Immediate(scope()->num_parameters()));
__ j(equal, &done);
// Arguments adaptor frame present. Get argument length from there.
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(result, Operand(result,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(result);
// Argument length is in result register.
__ bind(&done);
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register length = ToRegister(instr->length());
Register elements = ToRegister(instr->elements());
Register scratch = ToRegister(instr->TempAt(0));
ASSERT(receiver.is(eax)); // Used for parameter count.
ASSERT(function.is(edi)); // Required by InvokeFunction.
ASSERT(ToRegister(instr->result()).is(eax));
// If the receiver is null or undefined, we have to pass the global object
// as a receiver.
NearLabel global_object, receiver_ok;
__ cmp(receiver, Factory::null_value());
__ j(equal, &global_object);
__ cmp(receiver, Factory::undefined_value());
__ j(equal, &global_object);
// The receiver should be a JS object.
__ test(receiver, Immediate(kSmiTagMask));
DeoptimizeIf(equal, instr->environment());
__ CmpObjectType(receiver, FIRST_JS_OBJECT_TYPE, scratch);
DeoptimizeIf(below, instr->environment());
__ jmp(&receiver_ok);
__ bind(&global_object);
// TODO(kmillikin): We have a hydrogen value for the global object. See
// if it's better to use it than to explicitly fetch it from the context
// here.
__ mov(receiver, Operand(ebp, StandardFrameConstants::kContextOffset));
__ mov(receiver, ContextOperand(receiver, Context::GLOBAL_INDEX));
__ bind(&receiver_ok);
// Copy the arguments to this function possibly from the
// adaptor frame below it.
const uint32_t kArgumentsLimit = 1 * KB;
__ cmp(length, kArgumentsLimit);
DeoptimizeIf(above, instr->environment());
__ push(receiver);
__ mov(receiver, length);
// Loop through the arguments pushing them onto the execution
// stack.
NearLabel invoke, loop;
// length is a small non-negative integer, due to the test above.
__ test(length, Operand(length));
__ j(zero, &invoke);
__ bind(&loop);
__ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
__ dec(length);
__ j(not_zero, &loop);
// Invoke the function.
__ bind(&invoke);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
LEnvironment* env = instr->deoptimization_environment();
RecordPosition(pointers->position());
RegisterEnvironmentForDeoptimization(env);
SafepointGenerator safepoint_generator(this,
pointers,
env->deoptimization_index(),
true);
v8::internal::ParameterCount actual(eax);
__ InvokeFunction(function, actual, CALL_FUNCTION, &safepoint_generator);
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->InputAt(0);
if (argument->IsConstantOperand()) {
__ push(ToImmediate(argument));
} else {
__ push(ToOperand(argument));
}
}
void LCodeGen::DoContext(LContext* instr) {
Register result = ToRegister(instr->result());
__ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoOuterContext(LOuterContext* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ mov(result, Operand(context, Context::SlotOffset(Context::CLOSURE_INDEX)));
__ mov(result, FieldOperand(result, JSFunction::kContextOffset));
}
void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ mov(result, Operand(context, Context::SlotOffset(Context::GLOBAL_INDEX)));
}
void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
Register global = ToRegister(instr->global());
Register result = ToRegister(instr->result());
__ mov(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset));
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int arity,
LInstruction* instr) {
// Change context if needed.
bool change_context =
(graph()->info()->closure()->context() != function->context()) ||
scope()->contains_with() ||
(scope()->num_heap_slots() > 0);
if (change_context) {
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
} else {
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
}
// Set eax to arguments count if adaption is not needed. Assumes that eax
// is available to write to at this point.
if (!function->NeedsArgumentsAdaption()) {
__ mov(eax, arity);
}
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
// Invoke function.
if (*function == *graph()->info()->closure()) {
__ CallSelf();
} else {
__ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
EnsureRelocSpaceForDeoptimization();
}
// Setup deoptimization.
RegisterLazyDeoptimization(instr);
}
void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
ASSERT(ToRegister(instr->result()).is(eax));
__ mov(edi, instr->function());
CallKnownFunction(instr->function(), instr->arity(), instr);
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
Register input_reg = ToRegister(instr->InputAt(0));
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
Factory::heap_number_map());
DeoptimizeIf(not_equal, instr->environment());
Label done;
Register tmp = input_reg.is(eax) ? ecx : eax;
Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
// Preserve the value of all registers.
__ PushSafepointRegisters();
Label negative;
__ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive, just
// return it. We do not need to patch the stack since |input| and
// |result| are the same register and |input| will be restored
// unchanged by popping safepoint registers.
__ test(tmp, Immediate(HeapNumber::kSignMask));
__ j(not_zero, &negative);
__ jmp(&done);
__ bind(&negative);
Label allocated, slow;
__ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
__ jmp(&allocated);
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
// Set the pointer to the new heap number in tmp.
if (!tmp.is(eax)) __ mov(tmp, eax);
// Restore input_reg after call to runtime.
__ LoadFromSafepointRegisterSlot(input_reg, input_reg);
__ bind(&allocated);
__ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
__ and_(tmp2, ~HeapNumber::kSignMask);
__ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
__ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
__ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
__ StoreToSafepointRegisterSlot(input_reg, tmp);
__ bind(&done);
__ PopSafepointRegisters();
}
void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
Register input_reg = ToRegister(instr->InputAt(0));
__ test(input_reg, Operand(input_reg));
Label is_positive;
__ j(not_sign, &is_positive);
__ neg(input_reg);
__ test(input_reg, Operand(input_reg));
DeoptimizeIf(negative, instr->environment());
__ bind(&is_positive);
}
void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
// Class for deferred case.
class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
public:
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
LUnaryMathOperation* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
}
private:
LUnaryMathOperation* instr_;
};
ASSERT(instr->InputAt(0)->Equals(instr->result()));
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
XMMRegister scratch = xmm0;
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
__ pxor(scratch, scratch);
__ subsd(scratch, input_reg);
__ pand(input_reg, scratch);
} else if (r.IsInteger32()) {
EmitIntegerMathAbs(instr);
} else { // Tagged case.
DeferredMathAbsTaggedHeapNumber* deferred =
new DeferredMathAbsTaggedHeapNumber(this, instr);
Register input_reg = ToRegister(instr->InputAt(0));
// Smi check.
__ test(input_reg, Immediate(kSmiTagMask));
__ j(not_zero, deferred->entry());
EmitIntegerMathAbs(instr);
__ bind(deferred->exit());
}
}
void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
XMMRegister xmm_scratch = xmm0;
Register output_reg = ToRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
__ xorpd(xmm_scratch, xmm_scratch); // Zero the register.
__ ucomisd(input_reg, xmm_scratch);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(below_equal, instr->environment());
} else {
DeoptimizeIf(below, instr->environment());
}
// Use truncating instruction (OK because input is positive).
__ cvttsd2si(output_reg, Operand(input_reg));
// Overflow is signalled with minint.
__ cmp(output_reg, 0x80000000u);
DeoptimizeIf(equal, instr->environment());
}
void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
XMMRegister xmm_scratch = xmm0;
Register output_reg = ToRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
// xmm_scratch = 0.5
ExternalReference one_half = ExternalReference::address_of_one_half();
__ movdbl(xmm_scratch, Operand::StaticVariable(one_half));
// input = input + 0.5
__ addsd(input_reg, xmm_scratch);
// We need to return -0 for the input range [-0.5, 0[, otherwise
// compute Math.floor(value + 0.5).
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ ucomisd(input_reg, xmm_scratch);
DeoptimizeIf(below_equal, instr->environment());
} else {
// If we don't need to bailout on -0, we check only bailout
// on negative inputs.
__ xorpd(xmm_scratch, xmm_scratch); // Zero the register.
__ ucomisd(input_reg, xmm_scratch);
DeoptimizeIf(below, instr->environment());
}
// Compute Math.floor(value + 0.5).
// Use truncating instruction (OK because input is positive).
__ cvttsd2si(output_reg, Operand(input_reg));
// Overflow is signalled with minint.
__ cmp(output_reg, 0x80000000u);
DeoptimizeIf(equal, instr->environment());
}
void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
__ sqrtsd(input_reg, input_reg);
}
void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
XMMRegister xmm_scratch = xmm0;
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
__ xorpd(xmm_scratch, xmm_scratch);
__ addsd(input_reg, xmm_scratch); // Convert -0 to +0.
__ sqrtsd(input_reg, input_reg);
}
void LCodeGen::DoPower(LPower* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
DoubleRegister result_reg = ToDoubleRegister(instr->result());
Representation exponent_type = instr->hydrogen()->right()->representation();
if (exponent_type.IsDouble()) {
// It is safe to use ebx directly since the instruction is marked
// as a call.
__ PrepareCallCFunction(4, ebx);
__ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
__ movdbl(Operand(esp, 1 * kDoubleSize), ToDoubleRegister(right));
__ CallCFunction(ExternalReference::power_double_double_function(), 4);
} else if (exponent_type.IsInteger32()) {
// It is safe to use ebx directly since the instruction is marked
// as a call.
ASSERT(!ToRegister(right).is(ebx));
__ PrepareCallCFunction(4, ebx);
__ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
__ mov(Operand(esp, 1 * kDoubleSize), ToRegister(right));
__ CallCFunction(ExternalReference::power_double_int_function(), 4);
} else {
ASSERT(exponent_type.IsTagged());
CpuFeatures::Scope scope(SSE2);
Register right_reg = ToRegister(right);
Label non_smi, call;
__ test(right_reg, Immediate(kSmiTagMask));
__ j(not_zero, &non_smi);
__ SmiUntag(right_reg);
__ cvtsi2sd(result_reg, Operand(right_reg));
__ jmp(&call);
__ bind(&non_smi);
// It is safe to use ebx directly since the instruction is marked
// as a call.
ASSERT(!right_reg.is(ebx));
__ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , ebx);
DeoptimizeIf(not_equal, instr->environment());
__ movdbl(result_reg, FieldOperand(right_reg, HeapNumber::kValueOffset));
__ bind(&call);
__ PrepareCallCFunction(4, ebx);
__ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
__ movdbl(Operand(esp, 1 * kDoubleSize), result_reg);
__ CallCFunction(ExternalReference::power_double_double_function(), 4);
}
// Return value is in st(0) on ia32.
// Store it into the (fixed) result register.
__ sub(Operand(esp), Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movdbl(result_reg, Operand(esp, 0));
__ add(Operand(esp), Immediate(kDoubleSize));
}
void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
}
void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::COS,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
}
void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::SIN,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
}
void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
switch (instr->op()) {
case kMathAbs:
DoMathAbs(instr);
break;
case kMathFloor:
DoMathFloor(instr);
break;
case kMathRound:
DoMathRound(instr);
break;
case kMathSqrt:
DoMathSqrt(instr);
break;
case kMathPowHalf:
DoMathPowHalf(instr);
break;
case kMathCos:
DoMathCos(instr);
break;
case kMathSin:
DoMathSin(instr);
break;
case kMathLog:
DoMathLog(instr);
break;
default:
UNREACHABLE();
}
}
void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->key()).is(ecx));
ASSERT(ToRegister(instr->result()).is(eax));
int arity = instr->arity();
Handle<Code> ic = StubCache::ComputeKeyedCallInitialize(arity, NOT_IN_LOOP);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoCallNamed(LCallNamed* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->result()).is(eax));
int arity = instr->arity();
Handle<Code> ic = StubCache::ComputeCallInitialize(arity, NOT_IN_LOOP);
__ mov(ecx, instr->name());
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoCallFunction(LCallFunction* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->result()).is(eax));
int arity = instr->arity();
CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ Drop(1);
}
void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->result()).is(eax));
int arity = instr->arity();
Handle<Code> ic = StubCache::ComputeCallInitialize(arity, NOT_IN_LOOP);
__ mov(ecx, instr->name());
CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
}
void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
ASSERT(ToRegister(instr->result()).is(eax));
__ mov(edi, instr->target());
CallKnownFunction(instr->target(), instr->arity(), instr);
}
void LCodeGen::DoCallNew(LCallNew* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->constructor()).is(edi));
ASSERT(ToRegister(instr->result()).is(eax));
Handle<Code> builtin(Builtins::builtin(Builtins::JSConstructCall));
__ Set(eax, Immediate(instr->arity()));
CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
CallRuntime(instr->function(), instr->arity(), instr, false);
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
Register object = ToRegister(instr->object());
Register value = ToRegister(instr->value());
int offset = instr->offset();
if (!instr->transition().is_null()) {
__ mov(FieldOperand(object, HeapObject::kMapOffset), instr->transition());
}
// Do the store.
if (instr->is_in_object()) {
__ mov(FieldOperand(object, offset), value);
if (instr->needs_write_barrier()) {
Register temp = ToRegister(instr->TempAt(0));
// Update the write barrier for the object for in-object properties.
__ RecordWrite(object, offset, value, temp);
}
} else {
Register temp = ToRegister(instr->TempAt(0));
__ mov(temp, FieldOperand(object, JSObject::kPropertiesOffset));
__ mov(FieldOperand(temp, offset), value);
if (instr->needs_write_barrier()) {
// Update the write barrier for the properties array.
// object is used as a scratch register.
__ RecordWrite(temp, offset, value, object);
}
}
}
void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->object()).is(edx));
ASSERT(ToRegister(instr->value()).is(eax));
__ mov(ecx, instr->name());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
__ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
DeoptimizeIf(above_equal, instr->environment());
}
void LCodeGen::DoStorePixelArrayElement(LStorePixelArrayElement* instr) {
Register external_pointer = ToRegister(instr->external_pointer());
Register key = ToRegister(instr->key());
Register value = ToRegister(instr->value());
ASSERT(ToRegister(instr->TempAt(0)).is(eax));
__ mov(eax, value);
{ // Clamp the value to [0..255].
NearLabel done;
__ test(eax, Immediate(0xFFFFFF00));
__ j(zero, &done);
__ setcc(negative, eax); // 1 if negative, 0 if positive.
__ dec_b(eax); // 0 if negative, 255 if positive.
__ bind(&done);
}
__ mov_b(Operand(external_pointer, key, times_1, 0), eax);
}
void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
Register value = ToRegister(instr->value());
Register elements = ToRegister(instr->object());
Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
// Do the store.
if (instr->key()->IsConstantOperand()) {
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
int offset =
ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
__ mov(FieldOperand(elements, offset), value);
} else {
__ mov(FieldOperand(elements,
key,
times_pointer_size,
FixedArray::kHeaderSize),
value);
}
if (instr->hydrogen()->NeedsWriteBarrier()) {
// Compute address of modified element and store it into key register.
__ lea(key,
FieldOperand(elements,
key,
times_pointer_size,
FixedArray::kHeaderSize));
__ RecordWrite(elements, key, value);
}
}
void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->object()).is(edx));
ASSERT(ToRegister(instr->key()).is(ecx));
ASSERT(ToRegister(instr->value()).is(eax));
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
class DeferredStringCharCodeAt: public LDeferredCode {
public:
DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
private:
LStringCharCodeAt* instr_;
};
Register string = ToRegister(instr->string());
Register index = no_reg;
int const_index = -1;
if (instr->index()->IsConstantOperand()) {
const_index = ToInteger32(LConstantOperand::cast(instr->index()));
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
if (!Smi::IsValid(const_index)) {
// Guaranteed to be out of bounds because of the assert above.
// So the bounds check that must dominate this instruction must
// have deoptimized already.
if (FLAG_debug_code) {
__ Abort("StringCharCodeAt: out of bounds index.");
}
// No code needs to be generated.
return;
}
} else {
index = ToRegister(instr->index());
}
Register result = ToRegister(instr->result());
DeferredStringCharCodeAt* deferred =
new DeferredStringCharCodeAt(this, instr);
NearLabel flat_string, ascii_string, done;
// Fetch the instance type of the receiver into result register.
__ mov(result, FieldOperand(string, HeapObject::kMapOffset));
__ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));
// We need special handling for non-flat strings.
STATIC_ASSERT(kSeqStringTag == 0);
__ test(result, Immediate(kStringRepresentationMask));
__ j(zero, &flat_string);
// Handle non-flat strings.
__ test(result, Immediate(kIsConsStringMask));
__ j(zero, deferred->entry());
// ConsString.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ cmp(FieldOperand(string, ConsString::kSecondOffset),
Immediate(Factory::empty_string()));
__ j(not_equal, deferred->entry());
// Get the first of the two strings and load its instance type.
__ mov(string, FieldOperand(string, ConsString::kFirstOffset));
__ mov(result, FieldOperand(string, HeapObject::kMapOffset));
__ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));
// If the first cons component is also non-flat, then go to runtime.
STATIC_ASSERT(kSeqStringTag == 0);
__ test(result, Immediate(kStringRepresentationMask));
__ j(not_zero, deferred->entry());
// Check for ASCII or two-byte string.
__ bind(&flat_string);
STATIC_ASSERT(kAsciiStringTag != 0);
__ test(result, Immediate(kStringEncodingMask));
__ j(not_zero, &ascii_string);
// Two-byte string.
// Load the two-byte character code into the result register.
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
if (instr->index()->IsConstantOperand()) {
__ movzx_w(result,
FieldOperand(string,
SeqTwoByteString::kHeaderSize +
(kUC16Size * const_index)));
} else {
__ movzx_w(result, FieldOperand(string,
index,
times_2,
SeqTwoByteString::kHeaderSize));
}
__ jmp(&done);
// ASCII string.
// Load the byte into the result register.
__ bind(&ascii_string);
if (instr->index()->IsConstantOperand()) {
__ movzx_b(result, FieldOperand(string,
SeqAsciiString::kHeaderSize + const_index));
} else {
__ movzx_b(result, FieldOperand(string,
index,
times_1,
SeqAsciiString::kHeaderSize));
}
__ bind(&done);
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Set(result, Immediate(0));
__ PushSafepointRegisters();
__ push(string);
// Push the index as a smi. This is safe because of the checks in
// DoStringCharCodeAt above.
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
if (instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
__ push(Immediate(Smi::FromInt(const_index)));
} else {
Register index = ToRegister(instr->index());
__ SmiTag(index);
__ push(index);
}
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kStringCharCodeAt);
RecordSafepointWithRegisters(
instr->pointer_map(), 2, Safepoint::kNoDeoptimizationIndex);
if (FLAG_debug_code) {
__ AbortIfNotSmi(eax);
}
__ SmiUntag(eax);
__ StoreToSafepointRegisterSlot(result, eax);
__ PopSafepointRegisters();
}
void LCodeGen::DoStringLength(LStringLength* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
__ mov(result, FieldOperand(string, String::kLengthOffset));
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() || input->IsStackSlot());
LOperand* output = instr->result();
ASSERT(output->IsDoubleRegister());
__ cvtsi2sd(ToDoubleRegister(output), ToOperand(input));
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI: public LDeferredCode {
public:
DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
private:
LNumberTagI* instr_;
};
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
__ SmiTag(reg);
__ j(overflow, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
Label slow;
Register reg = ToRegister(instr->InputAt(0));
Register tmp = reg.is(eax) ? ecx : eax;
// Preserve the value of all registers.
__ PushSafepointRegisters();
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
// the value in there. If that fails, call the runtime system.
NearLabel done;
__ SmiUntag(reg);
__ xor_(reg, 0x80000000);
__ cvtsi2sd(xmm0, Operand(reg));
if (FLAG_inline_new) {
__ AllocateHeapNumber(reg, tmp, no_reg, &slow);
__ jmp(&done);
}
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
// TODO(3095996): Put a valid pointer value in the stack slot where the result
// register is stored, as this register is in the pointer map, but contains an
// integer value.
__ StoreToSafepointRegisterSlot(reg, Immediate(0));
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
if (!reg.is(eax)) __ mov(reg, eax);
// Done. Put the value in xmm0 into the value of the allocated heap
// number.
__ bind(&done);
__ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), xmm0);
__ StoreToSafepointRegisterSlot(reg, reg);
__ PopSafepointRegisters();
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD: public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
private:
LNumberTagD* instr_;
};
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
Register reg = ToRegister(instr->result());
Register tmp = ToRegister(instr->TempAt(0));
DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
__ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
} else {
__ jmp(deferred->entry());
}
__ bind(deferred->exit());
__ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ Set(reg, Immediate(0));
__ PushSafepointRegisters();
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
__ StoreToSafepointRegisterSlot(reg, eax);
__ PopSafepointRegisters();
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
__ SmiTag(ToRegister(input));
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
if (instr->needs_check()) {
__ test(ToRegister(input), Immediate(kSmiTagMask));
DeoptimizeIf(not_zero, instr->environment());
}
__ SmiUntag(ToRegister(input));
}
void LCodeGen::EmitNumberUntagD(Register input_reg,
XMMRegister result_reg,
LEnvironment* env) {
NearLabel load_smi, heap_number, done;
// Smi check.
__ test(input_reg, Immediate(kSmiTagMask));
__ j(zero, &load_smi, not_taken);
// Heap number map check.
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(equal, &heap_number);
__ cmp(input_reg, Factory::undefined_value());
DeoptimizeIf(not_equal, env);
// Convert undefined to NaN.
__ push(input_reg);
__ mov(input_reg, Factory::nan_value());
__ movdbl(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ pop(input_reg);
__ jmp(&done);
// Heap number to XMM conversion.
__ bind(&heap_number);
__ movdbl(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ jmp(&done);
// Smi to XMM conversion
__ bind(&load_smi);
__ SmiUntag(input_reg); // Untag smi before converting to float.
__ cvtsi2sd(result_reg, Operand(input_reg));
__ SmiTag(input_reg); // Retag smi.
__ bind(&done);
}
class DeferredTaggedToI: public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
private:
LTaggedToI* instr_;
};
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
NearLabel done, heap_number;
Register input_reg = ToRegister(instr->InputAt(0));
// Heap number map check.
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
Factory::heap_number_map());
if (instr->truncating()) {
__ j(equal, &heap_number);
// Check for undefined. Undefined is converted to zero for truncating
// conversions.
__ cmp(input_reg, Factory::undefined_value());
DeoptimizeIf(not_equal, instr->environment());
__ mov(input_reg, 0);
__ jmp(&done);
__ bind(&heap_number);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatures::Scope scope(SSE3);
NearLabel convert;
// Use more powerful conversion when sse3 is available.
// Load x87 register with heap number.
__ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
// Get exponent alone and check for too-big exponent.
__ mov(input_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
__ and_(input_reg, HeapNumber::kExponentMask);
const uint32_t kTooBigExponent =
(HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
__ cmp(Operand(input_reg), Immediate(kTooBigExponent));
__ j(less, &convert);
// Pop FPU stack before deoptimizing.
__ ffree(0);
__ fincstp();
DeoptimizeIf(no_condition, instr->environment());
// Reserve space for 64 bit answer.
__ bind(&convert);
__ sub(Operand(esp), Immediate(kDoubleSize));
// Do conversion, which cannot fail because we checked the exponent.
__ fisttp_d(Operand(esp, 0));
__ mov(input_reg, Operand(esp, 0)); // Low word of answer is the result.
__ add(Operand(esp), Immediate(kDoubleSize));
} else {
NearLabel deopt;
XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
__ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ cvttsd2si(input_reg, Operand(xmm0));
__ cmp(input_reg, 0x80000000u);
__ j(not_equal, &done);
// Check if the input was 0x8000000 (kMinInt).
// If no, then we got an overflow and we deoptimize.
ExternalReference min_int = ExternalReference::address_of_min_int();
__ movdbl(xmm_temp, Operand::StaticVariable(min_int));
__ ucomisd(xmm_temp, xmm0);
DeoptimizeIf(not_equal, instr->environment());
DeoptimizeIf(parity_even, instr->environment()); // NaN.
}
} else {
// Deoptimize if we don't have a heap number.
DeoptimizeIf(not_equal, instr->environment());
XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
__ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ cvttsd2si(input_reg, Operand(xmm0));
__ cvtsi2sd(xmm_temp, Operand(input_reg));
__ ucomisd(xmm0, xmm_temp);
DeoptimizeIf(not_equal, instr->environment());
DeoptimizeIf(parity_even, instr->environment()); // NaN.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ test(input_reg, Operand(input_reg));
__ j(not_zero, &done);
__ movmskpd(input_reg, xmm0);
__ and_(input_reg, 1);
DeoptimizeIf(not_zero, instr->environment());
}
}
__ bind(&done);
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
ASSERT(input->Equals(instr->result()));
Register input_reg = ToRegister(input);
DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
// Smi check.
__ test(input_reg, Immediate(kSmiTagMask));
__ j(not_zero, deferred->entry());
// Smi to int32 conversion
__ SmiUntag(input_reg); // Untag smi.
__ bind(deferred->exit());
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
LOperand* result = instr->result();
ASSERT(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
XMMRegister result_reg = ToDoubleRegister(result);
EmitNumberUntagD(input_reg, result_reg, instr->environment());
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsDoubleRegister());
LOperand* result = instr->result();
ASSERT(result->IsRegister());
XMMRegister input_reg = ToDoubleRegister(input);
Register result_reg = ToRegister(result);
if (instr->truncating()) {
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations.
__ cvttsd2si(result_reg, Operand(input_reg));
__ cmp(result_reg, 0x80000000u);
if (CpuFeatures::IsSupported(SSE3)) {
// This will deoptimize if the exponent of the input in out of range.
CpuFeatures::Scope scope(SSE3);
NearLabel convert, done;
__ j(not_equal, &done);
__ sub(Operand(esp), Immediate(kDoubleSize));
__ movdbl(Operand(esp, 0), input_reg);
// Get exponent alone and check for too-big exponent.
__ mov(result_reg, Operand(esp, sizeof(int32_t)));
__ and_(result_reg, HeapNumber::kExponentMask);
const uint32_t kTooBigExponent =
(HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
__ cmp(Operand(result_reg), Immediate(kTooBigExponent));
__ j(less, &convert);
__ add(Operand(esp), Immediate(kDoubleSize));
DeoptimizeIf(no_condition, instr->environment());
__ bind(&convert);
// Do conversion, which cannot fail because we checked the exponent.
__ fld_d(Operand(esp, 0));
__ fisttp_d(Operand(esp, 0));
__ mov(result_reg, Operand(esp, 0)); // Low word of answer is the result.
__ add(Operand(esp), Immediate(kDoubleSize));
__ bind(&done);
} else {
NearLabel done;
Register temp_reg = ToRegister(instr->TempAt(0));
XMMRegister xmm_scratch = xmm0;
// If cvttsd2si succeeded, we're done. Otherwise, we attempt
// manual conversion.
__ j(not_equal, &done);
// Get high 32 bits of the input in result_reg and temp_reg.
__ pshufd(xmm_scratch, input_reg, 1);
__ movd(Operand(temp_reg), xmm_scratch);
__ mov(result_reg, temp_reg);
// Prepare negation mask in temp_reg.
__ sar(temp_reg, kBitsPerInt - 1);
// Extract the exponent from result_reg and subtract adjusted
// bias from it. The adjustment is selected in a way such that
// when the difference is zero, the answer is in the low 32 bits
// of the input, otherwise a shift has to be performed.
__ shr(result_reg, HeapNumber::kExponentShift);
__ and_(result_reg,
HeapNumber::kExponentMask >> HeapNumber::kExponentShift);
__ sub(Operand(result_reg),
Immediate(HeapNumber::kExponentBias +
HeapNumber::kExponentBits +
HeapNumber::kMantissaBits));
// Don't handle big (> kMantissaBits + kExponentBits == 63) or
// special exponents.
DeoptimizeIf(greater, instr->environment());
// Zero out the sign and the exponent in the input (by shifting
// it to the left) and restore the implicit mantissa bit,
// i.e. convert the input to unsigned int64 shifted left by
// kExponentBits.
ExternalReference minus_zero = ExternalReference::address_of_minus_zero();
// Minus zero has the most significant bit set and the other
// bits cleared.
__ movdbl(xmm_scratch, Operand::StaticVariable(minus_zero));
__ psllq(input_reg, HeapNumber::kExponentBits);
__ por(input_reg, xmm_scratch);
// Get the amount to shift the input right in xmm_scratch.
__ neg(result_reg);
__ movd(xmm_scratch, Operand(result_reg));
// Shift the input right and extract low 32 bits.
__ psrlq(input_reg, xmm_scratch);
__ movd(Operand(result_reg), input_reg);
// Use the prepared mask in temp_reg to negate the result if necessary.
__ xor_(result_reg, Operand(temp_reg));
__ sub(result_reg, Operand(temp_reg));
__ bind(&done);
}
} else {
NearLabel done;
__ cvttsd2si(result_reg, Operand(input_reg));
__ cvtsi2sd(xmm0, Operand(result_reg));
__ ucomisd(xmm0, input_reg);
DeoptimizeIf(not_equal, instr->environment());
DeoptimizeIf(parity_even, instr->environment()); // NaN.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// The integer converted back is equal to the original. We
// only have to test if we got -0 as an input.
__ test(result_reg, Operand(result_reg));
__ j(not_zero, &done);
__ movmskpd(result_reg, input_reg);
// Bit 0 contains the sign of the double in input_reg.
// If input was positive, we are ok and return 0, otherwise
// deoptimize.
__ and_(result_reg, 1);
DeoptimizeIf(not_zero, instr->environment());
}
__ bind(&done);
}
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
__ test(ToRegister(input), Immediate(kSmiTagMask));
DeoptimizeIf(instr->condition(), instr->environment());
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
InstanceType first = instr->hydrogen()->first();
InstanceType last = instr->hydrogen()->last();
__ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
// If there is only one type in the interval check for equality.
if (first == last) {
__ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
static_cast<int8_t>(first));
DeoptimizeIf(not_equal, instr->environment());
} else if (first == FIRST_STRING_TYPE && last == LAST_STRING_TYPE) {
// String has a dedicated bit in instance type.
__ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), kIsNotStringMask);
DeoptimizeIf(not_zero, instr->environment());
} else {
__ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
static_cast<int8_t>(first));
DeoptimizeIf(below, instr->environment());
// Omit check for the last type.
if (last != LAST_TYPE) {
__ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
static_cast<int8_t>(last));
DeoptimizeIf(above, instr->environment());
}
}
}
void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
ASSERT(instr->InputAt(0)->IsRegister());
Register reg = ToRegister(instr->InputAt(0));
__ cmp(reg, instr->hydrogen()->target());
DeoptimizeIf(not_equal, instr->environment());
}
void LCodeGen::DoCheckMap(LCheckMap* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
Register reg = ToRegister(input);
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
instr->hydrogen()->map());
DeoptimizeIf(not_equal, instr->environment());
}
void LCodeGen::LoadHeapObject(Register result, Handle<HeapObject> object) {
if (Heap::InNewSpace(*object)) {
Handle<JSGlobalPropertyCell> cell =
Factory::NewJSGlobalPropertyCell(object);
__ mov(result, Operand::Cell(cell));
} else {
__ mov(result, object);
}
}
void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
Register reg = ToRegister(instr->TempAt(0));
Handle<JSObject> holder = instr->holder();
Handle<JSObject> current_prototype = instr->prototype();
// Load prototype object.
LoadHeapObject(reg, current_prototype);
// Check prototype maps up to the holder.
while (!current_prototype.is_identical_to(holder)) {
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
Handle<Map>(current_prototype->map()));
DeoptimizeIf(not_equal, instr->environment());
current_prototype =
Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
// Load next prototype object.
LoadHeapObject(reg, current_prototype);
}
// Check the holder map.
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
Handle<Map>(current_prototype->map()));
DeoptimizeIf(not_equal, instr->environment());
}
void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
// Setup the parameters to the stub/runtime call.
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(eax, JSFunction::kLiteralsOffset));
__ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
__ push(Immediate(instr->hydrogen()->constant_elements()));
// Pick the right runtime function or stub to call.
int length = instr->hydrogen()->length();
if (instr->hydrogen()->IsCopyOnWrite()) {
ASSERT(instr->hydrogen()->depth() == 1);
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
} else if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateArrayLiteral, 3, instr, false);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr, false);
} else {
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::CLONE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
}
}
void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
// Setup the parameters to the stub/runtime call.
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(eax, JSFunction::kLiteralsOffset));
__ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
__ push(Immediate(instr->hydrogen()->constant_properties()));
__ push(Immediate(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0)));
// Pick the right runtime function to call.
if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
} else {
CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
}
}
void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
NearLabel materialized;
// Registers will be used as follows:
// edi = JS function.
// ecx = literals array.
// ebx = regexp literal.
// eax = regexp literal clone.
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset));
int literal_offset = FixedArray::kHeaderSize +
instr->hydrogen()->literal_index() * kPointerSize;
__ mov(ebx, FieldOperand(ecx, literal_offset));
__ cmp(ebx, Factory::undefined_value());
__ j(not_equal, &materialized);
// Create regexp literal using runtime function
// Result will be in eax.
__ push(ecx);
__ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
__ push(Immediate(instr->hydrogen()->pattern()));
__ push(Immediate(instr->hydrogen()->flags()));
CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr, false);
__ mov(ebx, eax);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ AllocateInNewSpace(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ push(ebx);
__ push(Immediate(Smi::FromInt(size)));
CallRuntime(Runtime::kAllocateInNewSpace, 1, instr, false);
__ pop(ebx);
__ bind(&allocated);
// Copy the content into the newly allocated memory.
// (Unroll copy loop once for better throughput).
for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
__ mov(edx, FieldOperand(ebx, i));
__ mov(ecx, FieldOperand(ebx, i + kPointerSize));
__ mov(FieldOperand(eax, i), edx);
__ mov(FieldOperand(eax, i + kPointerSize), ecx);
}
if ((size % (2 * kPointerSize)) != 0) {
__ mov(edx, FieldOperand(ebx, size - kPointerSize));
__ mov(FieldOperand(eax, size - kPointerSize), edx);
}
}
void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
Handle<SharedFunctionInfo> shared_info = instr->shared_info();
bool pretenure = instr->hydrogen()->pretenure();
if (shared_info->num_literals() == 0 && !pretenure) {
FastNewClosureStub stub;
__ push(Immediate(shared_info));
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
} else {
__ push(Operand(ebp, StandardFrameConstants::kContextOffset));
__ push(Immediate(shared_info));
__ push(Immediate(pretenure
? Factory::true_value()
: Factory::false_value()));
CallRuntime(Runtime::kNewClosure, 3, instr, false);
}
}
void LCodeGen::DoTypeof(LTypeof* instr) {
LOperand* input = instr->InputAt(0);
if (input->IsConstantOperand()) {
__ push(ToImmediate(input));
} else {
__ push(ToOperand(input));
}
CallRuntime(Runtime::kTypeof, 1, instr, false);
}
void LCodeGen::DoTypeofIs(LTypeofIs* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Label true_label;
Label false_label;
NearLabel done;
Condition final_branch_condition = EmitTypeofIs(&true_label,
&false_label,
input,
instr->type_literal());
__ j(final_branch_condition, &true_label);
__ bind(&false_label);
__ mov(result, Factory::false_value());
__ jmp(&done);
__ bind(&true_label);
__ mov(result, Factory::true_value());
__ bind(&done);
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition final_branch_condition = EmitTypeofIs(true_label,
false_label,
input,
instr->type_literal());
EmitBranch(true_block, false_block, final_branch_condition);
}
Condition LCodeGen::EmitTypeofIs(Label* true_label,
Label* false_label,
Register input,
Handle<String> type_name) {
Condition final_branch_condition = no_condition;
if (type_name->Equals(Heap::number_symbol())) {
__ test(input, Immediate(kSmiTagMask));
__ j(zero, true_label);
__ cmp(FieldOperand(input, HeapObject::kMapOffset),
Factory::heap_number_map());
final_branch_condition = equal;
} else if (type_name->Equals(Heap::string_symbol())) {
__ test(input, Immediate(kSmiTagMask));
__ j(zero, false_label);
__ mov(input, FieldOperand(input, HeapObject::kMapOffset));
__ test_b(FieldOperand(input, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
__ j(not_zero, false_label);
__ CmpInstanceType(input, FIRST_NONSTRING_TYPE);
final_branch_condition = below;
} else if (type_name->Equals(Heap::boolean_symbol())) {
__ cmp(input, Factory::true_value());
__ j(equal, true_label);
__ cmp(input, Factory::false_value());
final_branch_condition = equal;
} else if (type_name->Equals(Heap::undefined_symbol())) {
__ cmp(input, Factory::undefined_value());
__ j(equal, true_label);
__ test(input, Immediate(kSmiTagMask));
__ j(zero, false_label);
// Check for undetectable objects => true.
__ mov(input, FieldOperand(input, HeapObject::kMapOffset));
__ test_b(FieldOperand(input, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
final_branch_condition = not_zero;
} else if (type_name->Equals(Heap::function_symbol())) {
__ test(input, Immediate(kSmiTagMask));
__ j(zero, false_label);
__ CmpObjectType(input, JS_FUNCTION_TYPE, input);
__ j(equal, true_label);
// Regular expressions => 'function' (they are callable).
__ CmpInstanceType(input, JS_REGEXP_TYPE);
final_branch_condition = equal;
} else if (type_name->Equals(Heap::object_symbol())) {
__ test(input, Immediate(kSmiTagMask));
__ j(zero, false_label);
__ cmp(input, Factory::null_value());
__ j(equal, true_label);
// Regular expressions => 'function', not 'object'.
__ CmpObjectType(input, JS_REGEXP_TYPE, input);
__ j(equal, false_label);
// Check for undetectable objects => false.
__ test_b(FieldOperand(input, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
__ j(not_zero, false_label);
// Check for JS objects => true.
__ CmpInstanceType(input, FIRST_JS_OBJECT_TYPE);
__ j(below, false_label);
__ CmpInstanceType(input, LAST_JS_OBJECT_TYPE);
final_branch_condition = below_equal;
} else {
final_branch_condition = not_equal;
__ jmp(false_label);
// A dead branch instruction will be generated after this point.
}
return final_branch_condition;
}
void LCodeGen::DoIsConstructCall(LIsConstructCall* instr) {
Register result = ToRegister(instr->result());
NearLabel true_label;
NearLabel false_label;
NearLabel done;
EmitIsConstructCall(result);
__ j(equal, &true_label);
__ mov(result, Factory::false_value());
__ jmp(&done);
__ bind(&true_label);
__ mov(result, Factory::true_value());
__ bind(&done);
}
void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
Register temp = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
EmitIsConstructCall(temp);
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::EmitIsConstructCall(Register temp) {
// Get the frame pointer for the calling frame.
__ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
NearLabel check_frame_marker;
__ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &check_frame_marker);
__ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
// No code for lazy bailout instruction. Used to capture environment after a
// call for populating the safepoint data with deoptimization data.
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
DeoptimizeIf(no_condition, instr->environment());
}
void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
LOperand* obj = instr->object();
LOperand* key = instr->key();
__ push(ToOperand(obj));
if (key->IsConstantOperand()) {
__ push(ToImmediate(key));
} else {
__ push(ToOperand(key));
}
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
LEnvironment* env = instr->deoptimization_environment();
RecordPosition(pointers->position());
RegisterEnvironmentForDeoptimization(env);
// Create safepoint generator that will also ensure enough space in the
// reloc info for patching in deoptimization (since this is invoking a
// builtin)
SafepointGenerator safepoint_generator(this,
pointers,
env->deoptimization_index(),
true);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ push(Immediate(Smi::FromInt(strict_mode_flag())));
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, &safepoint_generator);
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
// Perform stack overflow check.
NearLabel done;
ExternalReference stack_limit = ExternalReference::address_of_stack_limit();
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &done);
StackCheckStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
__ bind(&done);
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
// This is a pseudo-instruction that ensures that the environment here is
// properly registered for deoptimization and records the assembler's PC
// offset.
LEnvironment* environment = instr->environment();
environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
instr->SpilledDoubleRegisterArray());
// If the environment were already registered, we would have no way of
// backpatching it with the spill slot operands.
ASSERT(!environment->HasBeenRegistered());
RegisterEnvironmentForDeoptimization(environment);
ASSERT(osr_pc_offset_ == -1);
osr_pc_offset_ = masm()->pc_offset();
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32