v8/test/cctest/wasm/test-run-wasm.cc
titzer 45d75bca5c [turbofan] Handle dead diamonds in scheduling and add a test.
The background here is that graphs generated from WASM are not trimmed.
That means there can be some floating control diamonds that are not
reachable from end. An assertion in the scheduler for phis from floating
diamonds checks that the use edge in this situation is the control edge,
but in general, any edge could cause this.

Scheduling still works without this assertion. The longer term fix
is to either trim the graphs (more compile time overhead for WASM)
or improve the scheduler's handling of dead code in the graph. Currently
it does not schedule dead code but the potential use positions of
dead code are used in the computation of the common dominator of uses. We could
recognize dead nodes in PrepareUses() and check in GetBlockForUse()
as per TODO.

R=bradnelson@chromium.org, mstarzinger@chromium.org
BUG=

Review URL: https://codereview.chromium.org/1846933002

Cr-Commit-Position: refs/heads/master@{#35245}
2016-04-04 17:45:59 +00:00

2833 lines
84 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "src/wasm/wasm-macro-gen.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/test-signatures.h"
#include "test/cctest/wasm/wasm-run-utils.h"
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;
// for even shorter tests.
#define B2(a, b) kExprBlock, 2, a, b
#define B1(a) kExprBlock, 1, a
#define RET(x) kExprReturn, x
#define RET_I8(x) kExprReturn, kExprI8Const, x
TEST(Run_WasmInt8Const) {
WasmRunner<int32_t> r;
const byte kExpectedValue = 121;
// return(kExpectedValue)
BUILD(r, WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_fallthru1) {
WasmRunner<int32_t> r;
const byte kExpectedValue = 122;
// kExpectedValue
BUILD(r, WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_fallthru2) {
WasmRunner<int32_t> r;
const byte kExpectedValue = 123;
// -99 kExpectedValue
BUILD(r, WASM_I8(-99), WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_all) {
for (int value = -128; value <= 127; value++) {
WasmRunner<int32_t> r;
// return(value)
BUILD(r, WASM_I8(value));
int32_t result = r.Call();
CHECK_EQ(value, result);
}
}
TEST(Run_WasmInt32Const) {
WasmRunner<int32_t> r;
const int32_t kExpectedValue = 0x11223344;
// return(kExpectedValue)
BUILD(r, WASM_I32V_5(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt32Const_many) {
FOR_INT32_INPUTS(i) {
WasmRunner<int32_t> r;
const int32_t kExpectedValue = *i;
// return(kExpectedValue)
BUILD(r, WASM_I32V(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
}
TEST(Run_WasmMemorySize) {
TestingModule module;
WasmRunner<int32_t> r(&module);
module.AddMemory(1024);
BUILD(r, kExprMemorySize);
CHECK_EQ(1024, r.Call());
}
TEST(Run_WasmInt32Param0) {
WasmRunner<int32_t> r(MachineType::Int32());
// return(local[0])
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
TEST(Run_WasmInt32Param0_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// local[0]
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
TEST(Run_WasmInt32Param1) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// local[1]
BUILD(r, WASM_GET_LOCAL(1));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(-111, *i)); }
}
TEST(Run_WasmInt32Add) {
WasmRunner<int32_t> r;
// 11 + 44
BUILD(r, WASM_I32_ADD(WASM_I8(11), WASM_I8(44)));
CHECK_EQ(55, r.Call());
}
TEST(Run_WasmInt32Add_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 + 13
BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); }
}
TEST(Run_WasmInt32Add_P_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 + 13
BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); }
}
TEST(Run_WasmInt32Add_P2) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// p0 + p1
BUILD(r, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(*i) +
static_cast<uint32_t>(*j));
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmFloat32Add) {
WasmRunner<int32_t> r;
// int(11.5f + 44.5f)
BUILD(r,
WASM_I32_SCONVERT_F32(WASM_F32_ADD(WASM_F32(11.5f), WASM_F32(44.5f))));
CHECK_EQ(56, r.Call());
}
TEST(Run_WasmFloat64Add) {
WasmRunner<int32_t> r;
// return int(13.5d + 43.5d)
BUILD(r, WASM_I32_SCONVERT_F64(WASM_F64_ADD(WASM_F64(13.5), WASM_F64(43.5))));
CHECK_EQ(57, r.Call());
}
void TestInt32Binop(WasmOpcode opcode, int32_t expected, int32_t a, int32_t b) {
{
WasmRunner<int32_t> r;
// K op K
BUILD(r, WASM_BINOP(opcode, WASM_I32V(a), WASM_I32V(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
TEST(Run_WasmInt32Binops) {
TestInt32Binop(kExprI32Add, 88888888, 33333333, 55555555);
TestInt32Binop(kExprI32Sub, -1111111, 7777777, 8888888);
TestInt32Binop(kExprI32Mul, 65130756, 88734, 734);
TestInt32Binop(kExprI32DivS, -66, -4777344, 72384);
TestInt32Binop(kExprI32DivU, 805306368, 0xF0000000, 5);
TestInt32Binop(kExprI32RemS, -3, -3003, 1000);
TestInt32Binop(kExprI32RemU, 4, 4004, 1000);
TestInt32Binop(kExprI32And, 0xEE, 0xFFEE, 0xFF0000FF);
TestInt32Binop(kExprI32Ior, 0xF0FF00FF, 0xF0F000EE, 0x000F0011);
TestInt32Binop(kExprI32Xor, 0xABCDEF01, 0xABCDEFFF, 0xFE);
TestInt32Binop(kExprI32Shl, 0xA0000000, 0xA, 28);
TestInt32Binop(kExprI32ShrU, 0x07000010, 0x70000100, 4);
TestInt32Binop(kExprI32ShrS, 0xFF000000, 0x80000000, 7);
TestInt32Binop(kExprI32Ror, 0x01000000, 0x80000000, 7);
TestInt32Binop(kExprI32Ror, 0x01000000, 0x80000000, 39);
TestInt32Binop(kExprI32Rol, 0x00000040, 0x80000000, 7);
TestInt32Binop(kExprI32Rol, 0x00000040, 0x80000000, 39);
TestInt32Binop(kExprI32Eq, 1, -99, -99);
TestInt32Binop(kExprI32Ne, 0, -97, -97);
TestInt32Binop(kExprI32LtS, 1, -4, 4);
TestInt32Binop(kExprI32LeS, 0, -2, -3);
TestInt32Binop(kExprI32LtU, 1, 0, -6);
TestInt32Binop(kExprI32LeU, 1, 98978, 0xF0000000);
TestInt32Binop(kExprI32GtS, 1, 4, -4);
TestInt32Binop(kExprI32GeS, 0, -3, -2);
TestInt32Binop(kExprI32GtU, 1, -6, 0);
TestInt32Binop(kExprI32GeU, 1, 0xF0000000, 98978);
}
void TestInt32Unop(WasmOpcode opcode, int32_t expected, int32_t a) {
{
WasmRunner<int32_t> r;
// return op K
BUILD(r, WASM_UNOP(opcode, WASM_I32V(a)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Int32());
// return op a
BUILD(r, WASM_UNOP(opcode, WASM_GET_LOCAL(0)));
CHECK_EQ(expected, r.Call(a));
}
}
TEST(Run_WasmInt32Clz) {
TestInt32Unop(kExprI32Clz, 0, 0x80001000);
TestInt32Unop(kExprI32Clz, 1, 0x40000500);
TestInt32Unop(kExprI32Clz, 2, 0x20000300);
TestInt32Unop(kExprI32Clz, 3, 0x10000003);
TestInt32Unop(kExprI32Clz, 4, 0x08050000);
TestInt32Unop(kExprI32Clz, 5, 0x04006000);
TestInt32Unop(kExprI32Clz, 6, 0x02000000);
TestInt32Unop(kExprI32Clz, 7, 0x010000a0);
TestInt32Unop(kExprI32Clz, 8, 0x00800c00);
TestInt32Unop(kExprI32Clz, 9, 0x00400000);
TestInt32Unop(kExprI32Clz, 10, 0x0020000d);
TestInt32Unop(kExprI32Clz, 11, 0x00100f00);
TestInt32Unop(kExprI32Clz, 12, 0x00080000);
TestInt32Unop(kExprI32Clz, 13, 0x00041000);
TestInt32Unop(kExprI32Clz, 14, 0x00020020);
TestInt32Unop(kExprI32Clz, 15, 0x00010300);
TestInt32Unop(kExprI32Clz, 16, 0x00008040);
TestInt32Unop(kExprI32Clz, 17, 0x00004005);
TestInt32Unop(kExprI32Clz, 18, 0x00002050);
TestInt32Unop(kExprI32Clz, 19, 0x00001700);
TestInt32Unop(kExprI32Clz, 20, 0x00000870);
TestInt32Unop(kExprI32Clz, 21, 0x00000405);
TestInt32Unop(kExprI32Clz, 22, 0x00000203);
TestInt32Unop(kExprI32Clz, 23, 0x00000101);
TestInt32Unop(kExprI32Clz, 24, 0x00000089);
TestInt32Unop(kExprI32Clz, 25, 0x00000041);
TestInt32Unop(kExprI32Clz, 26, 0x00000022);
TestInt32Unop(kExprI32Clz, 27, 0x00000013);
TestInt32Unop(kExprI32Clz, 28, 0x00000008);
TestInt32Unop(kExprI32Clz, 29, 0x00000004);
TestInt32Unop(kExprI32Clz, 30, 0x00000002);
TestInt32Unop(kExprI32Clz, 31, 0x00000001);
TestInt32Unop(kExprI32Clz, 32, 0x00000000);
}
TEST(Run_WasmInt32Ctz) {
TestInt32Unop(kExprI32Ctz, 32, 0x00000000);
TestInt32Unop(kExprI32Ctz, 31, 0x80000000);
TestInt32Unop(kExprI32Ctz, 30, 0x40000000);
TestInt32Unop(kExprI32Ctz, 29, 0x20000000);
TestInt32Unop(kExprI32Ctz, 28, 0x10000000);
TestInt32Unop(kExprI32Ctz, 27, 0xa8000000);
TestInt32Unop(kExprI32Ctz, 26, 0xf4000000);
TestInt32Unop(kExprI32Ctz, 25, 0x62000000);
TestInt32Unop(kExprI32Ctz, 24, 0x91000000);
TestInt32Unop(kExprI32Ctz, 23, 0xcd800000);
TestInt32Unop(kExprI32Ctz, 22, 0x09400000);
TestInt32Unop(kExprI32Ctz, 21, 0xaf200000);
TestInt32Unop(kExprI32Ctz, 20, 0xac100000);
TestInt32Unop(kExprI32Ctz, 19, 0xe0b80000);
TestInt32Unop(kExprI32Ctz, 18, 0x9ce40000);
TestInt32Unop(kExprI32Ctz, 17, 0xc7920000);
TestInt32Unop(kExprI32Ctz, 16, 0xb8f10000);
TestInt32Unop(kExprI32Ctz, 15, 0x3b9f8000);
TestInt32Unop(kExprI32Ctz, 14, 0xdb4c4000);
TestInt32Unop(kExprI32Ctz, 13, 0xe9a32000);
TestInt32Unop(kExprI32Ctz, 12, 0xfca61000);
TestInt32Unop(kExprI32Ctz, 11, 0x6c8a7800);
TestInt32Unop(kExprI32Ctz, 10, 0x8ce5a400);
TestInt32Unop(kExprI32Ctz, 9, 0xcb7d0200);
TestInt32Unop(kExprI32Ctz, 8, 0xcb4dc100);
TestInt32Unop(kExprI32Ctz, 7, 0xdfbec580);
TestInt32Unop(kExprI32Ctz, 6, 0x27a9db40);
TestInt32Unop(kExprI32Ctz, 5, 0xde3bcb20);
TestInt32Unop(kExprI32Ctz, 4, 0xd7e8a610);
TestInt32Unop(kExprI32Ctz, 3, 0x9afdbc88);
TestInt32Unop(kExprI32Ctz, 2, 0x9afdbc84);
TestInt32Unop(kExprI32Ctz, 1, 0x9afdbc82);
TestInt32Unop(kExprI32Ctz, 0, 0x9afdbc81);
}
TEST(Run_WasmInt32Popcnt) {
TestInt32Unop(kExprI32Popcnt, 32, 0xffffffff);
TestInt32Unop(kExprI32Popcnt, 0, 0x00000000);
TestInt32Unop(kExprI32Popcnt, 1, 0x00008000);
TestInt32Unop(kExprI32Popcnt, 13, 0x12345678);
TestInt32Unop(kExprI32Popcnt, 19, 0xfedcba09);
}
TEST(Run_WasmI32Eqz) {
TestInt32Unop(kExprI32Eqz, 0, 1);
TestInt32Unop(kExprI32Eqz, 0, -1);
TestInt32Unop(kExprI32Eqz, 0, -827343);
TestInt32Unop(kExprI32Eqz, 0, 8888888);
TestInt32Unop(kExprI32Eqz, 1, 0);
}
TEST(Run_WasmI32Shl) {
WasmRunner<uint32_t> r(MachineType::Uint32(), MachineType::Uint32());
BUILD(r, WASM_I32_SHL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i) << (*j & 0x1f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmI32Shr) {
WasmRunner<uint32_t> r(MachineType::Uint32(), MachineType::Uint32());
BUILD(r, WASM_I32_SHR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i) >> (*j & 0x1f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmI32Sar) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_SAR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = (*i) >> (*j & 0x1f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WASM_Int32DivS_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, -1));
CHECK_TRAP(r.Call(kMin, 0));
}
TEST(Run_WASM_Int32RemS_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(33, r.Call(133, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}
TEST(Run_WASM_Int32DivU_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}
TEST(Run_WASM_Int32RemU_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(17, r.Call(217, 100));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
CHECK_EQ(kMin, r.Call(kMin, -1));
}
TEST(Run_WASM_Int32DivS_asmjs) {
TestingModule module;
module.origin = kAsmJsOrigin;
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_EQ(0, r.Call(100, 0));
CHECK_EQ(0, r.Call(-1001, 0));
CHECK_EQ(kMin, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(kMin, 0));
}
TEST(Run_WASM_Int32RemS_asmjs) {
TestingModule module;
module.origin = kAsmJsOrigin;
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(33, r.Call(133, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(100, 0));
CHECK_EQ(0, r.Call(-1001, 0));
CHECK_EQ(0, r.Call(kMin, 0));
}
TEST(Run_WASM_Int32DivU_asmjs) {
TestingModule module;
module.origin = kAsmJsOrigin;
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(100, 0));
CHECK_EQ(0, r.Call(-1001, 0));
CHECK_EQ(0, r.Call(kMin, 0));
}
TEST(Run_WASM_Int32RemU_asmjs) {
TestingModule module;
module.origin = kAsmJsOrigin;
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(17, r.Call(217, 100));
CHECK_EQ(0, r.Call(100, 0));
CHECK_EQ(0, r.Call(-1001, 0));
CHECK_EQ(0, r.Call(kMin, 0));
CHECK_EQ(kMin, r.Call(kMin, -1));
}
TEST(Run_WASM_Int32DivS_byzero_const) {
for (int8_t denom = -2; denom < 8; denom++) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I8(denom)));
for (int32_t val = -7; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
TEST(Run_WASM_Int32DivU_byzero_const) {
for (uint32_t denom = 0xfffffffe; denom < 8; denom++) {
WasmRunner<uint32_t> r(MachineType::Uint32());
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32V_1(denom)));
for (uint32_t val = 0xfffffff0; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
TEST(Run_WASM_Int32DivS_trap_effect) {
TestingModule module;
module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r,
WASM_IF_ELSE(WASM_GET_LOCAL(0),
WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(),
WASM_ZERO, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1)),
WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(),
WASM_ZERO, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1))));
CHECK_EQ(0, r.Call(0, 100));
CHECK_TRAP(r.Call(8, 0));
CHECK_TRAP(r.Call(4, 0));
CHECK_TRAP(r.Call(0, 0));
}
void TestFloat32Binop(WasmOpcode opcode, int32_t expected, float a, float b) {
{
WasmRunner<int32_t> r;
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float32(), MachineType::Float32());
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat32BinopWithConvert(WasmOpcode opcode, int32_t expected, float a,
float b) {
{
WasmRunner<int32_t> r;
// return int(K op K)
BUILD(r,
WASM_I32_SCONVERT_F32(WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float32(), MachineType::Float32());
// return int(a op b)
BUILD(r, WASM_I32_SCONVERT_F32(
WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat32UnopWithConvert(WasmOpcode opcode, int32_t expected, float a) {
{
WasmRunner<int32_t> r;
// return int(op(K))
BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_F32(a))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float32());
// return int(op(a))
BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_GET_LOCAL(0))));
CHECK_EQ(expected, r.Call(a));
}
}
void TestFloat64Binop(WasmOpcode opcode, int32_t expected, double a, double b) {
{
WasmRunner<int32_t> r;
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float64(), MachineType::Float64());
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat64BinopWithConvert(WasmOpcode opcode, int32_t expected, double a,
double b) {
{
WasmRunner<int32_t> r;
// return int(K op K)
BUILD(r,
WASM_I32_SCONVERT_F64(WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_I32_SCONVERT_F64(
WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat64UnopWithConvert(WasmOpcode opcode, int32_t expected, double a) {
{
WasmRunner<int32_t> r;
// return int(op(K))
BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_F64(a))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float64());
// return int(op(a))
BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_GET_LOCAL(0))));
CHECK_EQ(expected, r.Call(a));
}
}
TEST(Run_WasmFloat32Binops) {
TestFloat32Binop(kExprF32Eq, 1, 8.125f, 8.125f);
TestFloat32Binop(kExprF32Ne, 1, 8.125f, 8.127f);
TestFloat32Binop(kExprF32Lt, 1, -9.5f, -9.0f);
TestFloat32Binop(kExprF32Le, 1, -1111.0f, -1111.0f);
TestFloat32Binop(kExprF32Gt, 1, -9.0f, -9.5f);
TestFloat32Binop(kExprF32Ge, 1, -1111.0f, -1111.0f);
TestFloat32BinopWithConvert(kExprF32Add, 10, 3.5f, 6.5f);
TestFloat32BinopWithConvert(kExprF32Sub, 2, 44.5f, 42.5f);
TestFloat32BinopWithConvert(kExprF32Mul, -66, -132.1f, 0.5f);
TestFloat32BinopWithConvert(kExprF32Div, 11, 22.1f, 2.0f);
}
TEST(Run_WasmFloat32Unops) {
TestFloat32UnopWithConvert(kExprF32Abs, 8, 8.125f);
TestFloat32UnopWithConvert(kExprF32Abs, 9, -9.125f);
TestFloat32UnopWithConvert(kExprF32Neg, -213, 213.125f);
TestFloat32UnopWithConvert(kExprF32Sqrt, 12, 144.4f);
}
TEST(Run_WasmFloat64Binops) {
TestFloat64Binop(kExprF64Eq, 1, 16.25, 16.25);
TestFloat64Binop(kExprF64Ne, 1, 16.25, 16.15);
TestFloat64Binop(kExprF64Lt, 1, -32.4, 11.7);
TestFloat64Binop(kExprF64Le, 1, -88.9, -88.9);
TestFloat64Binop(kExprF64Gt, 1, 11.7, -32.4);
TestFloat64Binop(kExprF64Ge, 1, -88.9, -88.9);
TestFloat64BinopWithConvert(kExprF64Add, 100, 43.5, 56.5);
TestFloat64BinopWithConvert(kExprF64Sub, 200, 12200.1, 12000.1);
TestFloat64BinopWithConvert(kExprF64Mul, -33, 134, -0.25);
TestFloat64BinopWithConvert(kExprF64Div, -1111, -2222.3, 2);
}
TEST(Run_WasmFloat64Unops) {
TestFloat64UnopWithConvert(kExprF64Abs, 108, 108.125);
TestFloat64UnopWithConvert(kExprF64Abs, 209, -209.125);
TestFloat64UnopWithConvert(kExprF64Neg, -209, 209.125);
TestFloat64UnopWithConvert(kExprF64Sqrt, 13, 169.4);
}
TEST(Run_WasmFloat32Neg) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_NEG(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
CHECK_EQ(0x80000000,
bit_cast<uint32_t>(*i) ^ bit_cast<uint32_t>(r.Call(*i)));
}
}
TEST(Run_WasmFloat64Neg) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_NEG(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
CHECK_EQ(0x8000000000000000,
bit_cast<uint64_t>(*i) ^ bit_cast<uint64_t>(r.Call(*i)));
}
}
TEST(Run_Wasm_IfElse_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// if (p0) return 11; else return 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_IfElse_Unreachable1) {
WasmRunner<int32_t> r;
// if (0) unreachable; else return 22;
BUILD(r, WASM_IF_ELSE(WASM_ZERO, // --
WASM_UNREACHABLE, // --
WASM_I8(27))); // --
CHECK_EQ(27, r.Call());
}
TEST(Run_Wasm_Return12) {
WasmRunner<int32_t> r;
BUILD(r, RET_I8(12));
CHECK_EQ(12, r.Call());
}
TEST(Run_Wasm_Return17) {
WasmRunner<int32_t> r;
BUILD(r, B1(RET_I8(17)));
CHECK_EQ(17, r.Call());
}
TEST(Run_Wasm_Return_I32) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
TEST(Run_Wasm_Return_F32) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
float expect = *i;
float result = r.Call(expect);
if (std::isnan(expect)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(expect, result);
}
}
}
TEST(Run_Wasm_Return_F64) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
double expect = *i;
double result = r.Call(expect);
if (std::isnan(expect)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(expect, result);
}
}
}
TEST(Run_Wasm_Select) {
WasmRunner<int32_t> r(MachineType::Int32());
// return select(11, 22, a);
BUILD(r, WASM_SELECT(WASM_I8(11), WASM_I8(22), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Select_strict1) {
WasmRunner<int32_t> r(MachineType::Int32());
// select(a=0, a=1, a=2); return a
BUILD(r, B2(WASM_SELECT(WASM_SET_LOCAL(0, WASM_I8(0)),
WASM_SET_LOCAL(0, WASM_I8(1)),
WASM_SET_LOCAL(0, WASM_I8(2))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(*i)); }
}
TEST(Run_Wasm_Select_strict2) {
WasmRunner<int32_t> r(MachineType::Int32());
r.AllocateLocal(kAstI32);
r.AllocateLocal(kAstI32);
// select(b=5, c=6, a)
BUILD(r, WASM_SELECT(WASM_SET_LOCAL(1, WASM_I8(5)),
WASM_SET_LOCAL(2, WASM_I8(6)), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 5 : 6;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Select_strict3) {
WasmRunner<int32_t> r(MachineType::Int32());
r.AllocateLocal(kAstI32);
r.AllocateLocal(kAstI32);
// select(b=5, c=6, a=b)
BUILD(r, WASM_SELECT(WASM_SET_LOCAL(1, WASM_I8(5)),
WASM_SET_LOCAL(2, WASM_I8(6)),
WASM_SET_LOCAL(0, WASM_GET_LOCAL(1))));
FOR_INT32_INPUTS(i) {
int32_t expected = 5;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_BrIf_strict) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(
r,
B2(B1(WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(99)))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(99, r.Call(*i)); }
}
TEST(Run_Wasm_BrTable0a) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0))), WASM_I8(91)));
FOR_INT32_INPUTS(i) { CHECK_EQ(91, r.Call(*i)); }
}
TEST(Run_Wasm_BrTable0b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(0))),
WASM_I8(92)));
FOR_INT32_INPUTS(i) { CHECK_EQ(92, r.Call(*i)); }
}
TEST(Run_Wasm_BrTable0c) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(
r,
B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(1))),
RET_I8(76)),
WASM_I8(77)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i == 0 ? 76 : 77;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_BrTable1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0))), RET_I8(93));
FOR_INT32_INPUTS(i) { CHECK_EQ(93, r.Call(*i)); }
}
TEST(Run_Wasm_BrTable_loop) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(WASM_LOOP(1, WASM_BR_TABLE(WASM_INC_LOCAL_BY(0, 1), 2, BR_TARGET(2),
BR_TARGET(1), BR_TARGET(0))),
RET_I8(99)),
WASM_I8(98));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(98, r.Call(-1));
CHECK_EQ(98, r.Call(-2));
CHECK_EQ(98, r.Call(-3));
CHECK_EQ(98, r.Call(-100));
}
TEST(Run_Wasm_BrTable_br) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(1), BR_TARGET(0))),
RET_I8(91)),
WASM_I8(99));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(91, r.Call(1));
CHECK_EQ(91, r.Call(2));
CHECK_EQ(91, r.Call(3));
}
TEST(Run_Wasm_BrTable_br2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(1),
BR_TARGET(2), BR_TARGET(3), BR_TARGET(0))),
RET_I8(85)),
RET_I8(86)),
RET_I8(87)),
WASM_I8(88));
CHECK_EQ(86, r.Call(0));
CHECK_EQ(87, r.Call(1));
CHECK_EQ(88, r.Call(2));
CHECK_EQ(85, r.Call(3));
CHECK_EQ(85, r.Call(4));
CHECK_EQ(85, r.Call(5));
}
TEST(Run_Wasm_BrTable4) {
for (int i = 0; i < 4; i++) {
for (int t = 0; t < 4; t++) {
uint32_t cases[] = {0, 1, 2, 3};
cases[i] = t;
byte code[] = {B2(B2(B2(B2(B1(WASM_BR_TABLE(
WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]),
BR_TARGET(cases[1]), BR_TARGET(cases[2]),
BR_TARGET(cases[3]))),
RET_I8(70)),
RET_I8(71)),
RET_I8(72)),
RET_I8(73)),
WASM_I8(75)};
WasmRunner<int32_t> r(MachineType::Int32());
r.Build(code, code + arraysize(code));
for (int x = -3; x < 50; x++) {
int index = (x > 3 || x < 0) ? 3 : x;
int32_t expected = 70 + cases[index];
CHECK_EQ(expected, r.Call(x));
}
}
}
}
TEST(Run_Wasm_BrTable4x4) {
for (byte a = 0; a < 4; a++) {
for (byte b = 0; b < 4; b++) {
for (byte c = 0; c < 4; c++) {
for (byte d = 0; d < 4; d++) {
for (int i = 0; i < 4; i++) {
uint32_t cases[] = {a, b, c, d};
byte code[] = {
B2(B2(B2(B2(B1(WASM_BR_TABLE(
WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]),
BR_TARGET(cases[1]), BR_TARGET(cases[2]),
BR_TARGET(cases[3]))),
RET_I8(50)),
RET_I8(51)),
RET_I8(52)),
RET_I8(53)),
WASM_I8(55)};
WasmRunner<int32_t> r(MachineType::Int32());
r.Build(code, code + arraysize(code));
for (int x = -6; x < 47; x++) {
int index = (x > 3 || x < 0) ? 3 : x;
int32_t expected = 50 + cases[index];
CHECK_EQ(expected, r.Call(x));
}
}
}
}
}
}
}
TEST(Run_Wasm_BrTable4_fallthru) {
byte code[] = {
B2(B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(0),
BR_TARGET(1), BR_TARGET(2), BR_TARGET(3))),
WASM_INC_LOCAL_BY(1, 1)),
WASM_INC_LOCAL_BY(1, 2)),
WASM_INC_LOCAL_BY(1, 4)),
WASM_INC_LOCAL_BY(1, 8)),
WASM_GET_LOCAL(1)};
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
r.Build(code, code + arraysize(code));
CHECK_EQ(15, r.Call(0, 0));
CHECK_EQ(14, r.Call(1, 0));
CHECK_EQ(12, r.Call(2, 0));
CHECK_EQ(8, r.Call(3, 0));
CHECK_EQ(8, r.Call(4, 0));
CHECK_EQ(115, r.Call(0, 100));
CHECK_EQ(114, r.Call(1, 100));
CHECK_EQ(112, r.Call(2, 100));
CHECK_EQ(108, r.Call(3, 100));
CHECK_EQ(108, r.Call(4, 100));
}
TEST(Run_Wasm_F32ReinterpretI32) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_I32_REINTERPRET_F32(
WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
memory[0] = expected;
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_Wasm_I32ReinterpretF32) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_BLOCK(
2, WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO,
WASM_F32_REINTERPRET_I32(WASM_GET_LOCAL(0))),
WASM_I8(107)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
CHECK_EQ(107, r.Call(expected));
CHECK_EQ(expected, memory[0]);
}
}
TEST(Run_Wasm_ReturnStore) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO,
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
memory[0] = expected;
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_Wasm_VoidReturn1) {
// We use a wrapper function because WasmRunner<void> does not exist.
// Build the test function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.v_v(), &module);
BUILD(t, kExprNop);
uint32_t index = t.CompileAndAdd();
const int32_t kExpected = -414444;
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(r, B2(WASM_CALL_FUNCTION0(index), WASM_I32V_3(kExpected)));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
TEST(Run_Wasm_VoidReturn2) {
// We use a wrapper function because WasmRunner<void> does not exist.
// Build the test function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.v_v(), &module);
BUILD(t, WASM_RETURN0);
uint32_t index = t.CompileAndAdd();
const int32_t kExpected = -414444;
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(r, B2(WASM_CALL_FUNCTION0(index), WASM_I32V_3(kExpected)));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
TEST(Run_Wasm_Block_If_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) return 51; return 52; }
BUILD(r, B2( // --
WASM_IF(WASM_GET_LOCAL(0), // --
WASM_BRV(0, WASM_I8(51))), // --
WASM_I8(52))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 51 : 52;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_BrIf_P) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(51), WASM_GET_LOCAL(0)), WASM_I8(52)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 51 : 52;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_IfElse_P_assign) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) p0 = 71; else p0 = 72; return p0; }
BUILD(r, B2( // --
WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_SET_LOCAL(0, WASM_I8(71)), // --
WASM_SET_LOCAL(0, WASM_I8(72))), // --
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 71 : 72;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_IfElse_P_return) {
WasmRunner<int32_t> r(MachineType::Int32());
// if (p0) return 81; else return 82;
BUILD(r, // --
WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
RET_I8(81), // --
RET_I8(82))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 81 : 82;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_If_P_assign) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) p0 = 61; p0; }
BUILD(r, WASM_BLOCK(
2, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(61))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 61 : *i;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_DanglingAssign) {
WasmRunner<int32_t> r(MachineType::Int32());
// { return 0; p0 = 0; }
BUILD(r, B2(RET_I8(99), WASM_SET_LOCAL(0, WASM_ZERO)));
CHECK_EQ(99, r.Call(1));
}
TEST(Run_Wasm_ExprIf_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 ? 11 : 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_ExprIf_P_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 ? 11 : 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_CountDown) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(
2, WASM_LOOP(
1, WASM_IF(WASM_GET_LOCAL(0),
WASM_BRV(0, WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I8(1)))))),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_CountDown_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(
2, WASM_LOOP(3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BREAK(0)),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))),
WASM_CONTINUE(0)),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_WhileCountDown) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(
2, WASM_WHILE(WASM_GET_LOCAL(0),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I8(1)))),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_Loop_if_break1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(0)),
WASM_SET_LOCAL(0, WASM_I8(99))),
WASM_GET_LOCAL(0)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10000, r.Call(10000));
CHECK_EQ(-29, r.Call(-29));
}
TEST(Run_Wasm_Loop_if_break2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_LOOP(2, WASM_BR_IF(1, WASM_GET_LOCAL(0)),
WASM_SET_LOCAL(0, WASM_I8(99))),
WASM_GET_LOCAL(0)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10000, r.Call(10000));
CHECK_EQ(-29, r.Call(-29));
}
TEST(Run_Wasm_Loop_if_break_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B1(WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(1)),
WASM_SET_LOCAL(0, WASM_I8(93)))),
WASM_GET_LOCAL(0));
CHECK_EQ(93, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10001, r.Call(10001));
CHECK_EQ(-22, r.Call(-22));
}
TEST(Run_Wasm_LoadMemI32) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Int32());
module.RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(0)));
memory[0] = 99999999;
CHECK_EQ(99999999, r.Call(0));
memory[0] = 88888888;
CHECK_EQ(88888888, r.Call(0));
memory[0] = 77777777;
CHECK_EQ(77777777, r.Call(0));
}
TEST(Run_Wasm_LoadMemI32_oob) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Uint32());
module.RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
memory[0] = 88888888;
CHECK_EQ(88888888, r.Call(0u));
for (uint32_t offset = 29; offset < 40; offset++) {
CHECK_TRAP(r.Call(offset));
}
for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) {
CHECK_TRAP(r.Call(offset));
}
}
TEST(Run_Wasm_LoadMemI32_oob_asm) {
TestingModule module;
module.origin = kAsmJsOrigin;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Uint32());
module.RandomizeMemory(1112);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
memory[0] = 999999;
CHECK_EQ(999999, r.Call(0u));
// TODO(titzer): offset 29-31 should also be OOB.
for (uint32_t offset = 32; offset < 40; offset++) {
CHECK_EQ(0, r.Call(offset));
}
for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) {
CHECK_EQ(0, r.Call(offset));
}
}
TEST(Run_Wasm_LoadMem_offset_oob) {
TestingModule module;
module.AddMemoryElems<int32_t>(8);
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
for (size_t m = 0; m < arraysize(machineTypes); m++) {
module.RandomizeMemory(1116 + static_cast<int>(m));
WasmRunner<int32_t> r(&module, MachineType::Uint32());
uint32_t boundary = 24 - WasmOpcodes::MemSize(machineTypes[m]);
BUILD(r, WASM_LOAD_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0)),
WASM_ZERO);
CHECK_EQ(0, r.Call(boundary)); // in bounds.
for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
TEST(Run_Wasm_LoadMemI32_offset) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(4);
WasmRunner<int32_t> r(&module, MachineType::Int32());
module.RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0)));
memory[0] = 66666666;
memory[1] = 77777777;
memory[2] = 88888888;
memory[3] = 99999999;
CHECK_EQ(77777777, r.Call(0));
CHECK_EQ(88888888, r.Call(4));
CHECK_EQ(99999999, r.Call(8));
memory[0] = 11111111;
memory[1] = 22222222;
memory[2] = 33333333;
memory[3] = 44444444;
CHECK_EQ(22222222, r.Call(0));
CHECK_EQ(33333333, r.Call(4));
CHECK_EQ(44444444, r.Call(8));
}
#if !V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64
TEST(Run_Wasm_LoadMemI32_const_oob_misaligned) {
const int kMemSize = 12;
// TODO(titzer): Fix misaligned accesses on MIPS and re-enable.
for (int offset = 0; offset < kMemSize + 5; offset++) {
for (int index = 0; index < kMemSize + 5; index++) {
TestingModule module;
module.AddMemoryElems<byte>(kMemSize);
WasmRunner<int32_t> r(&module);
module.RandomizeMemory();
BUILD(r,
WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I8(index)));
if ((offset + index) <= (kMemSize - sizeof(int32_t))) {
CHECK_EQ(module.raw_val_at<int32_t>(offset + index), r.Call());
} else {
CHECK_TRAP(r.Call());
}
}
}
}
#endif
TEST(Run_Wasm_LoadMemI32_const_oob) {
const int kMemSize = 24;
for (int offset = 0; offset < kMemSize + 5; offset += 4) {
for (int index = 0; index < kMemSize + 5; index += 4) {
TestingModule module;
module.AddMemoryElems<byte>(kMemSize);
WasmRunner<int32_t> r(&module);
module.RandomizeMemory();
BUILD(r,
WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I8(index)));
if ((offset + index) <= (kMemSize - sizeof(int32_t))) {
CHECK_EQ(module.raw_val_at<int32_t>(offset + index), r.Call());
} else {
CHECK_TRAP(r.Call());
}
}
}
}
TEST(Run_Wasm_StoreMemI32_offset) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(4);
WasmRunner<int32_t> r(&module, MachineType::Int32());
const int32_t kWritten = 0xaabbccdd;
BUILD(r, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0),
WASM_I32V_5(kWritten)));
for (int i = 0; i < 2; i++) {
module.RandomizeMemory(1111);
memory[0] = 66666666;
memory[1] = 77777777;
memory[2] = 88888888;
memory[3] = 99999999;
CHECK_EQ(kWritten, r.Call(i * 4));
CHECK_EQ(66666666, memory[0]);
CHECK_EQ(i == 0 ? kWritten : 77777777, memory[1]);
CHECK_EQ(i == 1 ? kWritten : 88888888, memory[2]);
CHECK_EQ(i == 2 ? kWritten : 99999999, memory[3]);
}
}
TEST(Run_Wasm_StoreMem_offset_oob) {
TestingModule module;
byte* memory = module.AddMemoryElems<byte>(32);
#if WASM_64
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
#else
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Float32(), MachineType::Float64()};
#endif
for (size_t m = 0; m < arraysize(machineTypes); m++) {
module.RandomizeMemory(1119 + static_cast<int>(m));
WasmRunner<int32_t> r(&module, MachineType::Uint32());
BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0),
WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)),
WASM_ZERO);
byte memsize = WasmOpcodes::MemSize(machineTypes[m]);
uint32_t boundary = 24 - memsize;
CHECK_EQ(0, r.Call(boundary)); // in bounds.
CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize));
for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
TEST(Run_Wasm_LoadMemI32_P) {
const int kNumElems = 8;
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(kNumElems);
WasmRunner<int32_t> r(&module, MachineType::Int32());
module.RandomizeMemory(2222);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
for (int i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(i * 4));
}
}
TEST(Run_Wasm_MemI32_Sum) {
const int kNumElems = 20;
TestingModule module;
uint32_t* memory = module.AddMemoryElems<uint32_t>(kNumElems);
WasmRunner<uint32_t> r(&module, MachineType::Int32());
const byte kSum = r.AllocateLocal(kAstI32);
BUILD(r, WASM_BLOCK(
2, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kSum, WASM_I32_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Int32(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))),
WASM_GET_LOCAL(1)));
// Run 4 trials.
for (int i = 0; i < 3; i++) {
module.RandomizeMemory(i * 33);
uint32_t expected = 0;
for (size_t j = kNumElems - 1; j > 0; j--) {
expected += memory[j];
}
uint32_t result = r.Call(static_cast<int>(4 * (kNumElems - 1)));
CHECK_EQ(expected, result);
}
}
TEST(Run_Wasm_CheckMachIntsZero) {
const int kNumElems = 55;
TestingModule module;
module.AddMemoryElems<uint32_t>(kNumElems);
WasmRunner<uint32_t> r(&module, MachineType::Int32());
BUILD(r, kExprBlock, 2, kExprLoop, 1, kExprIf, kExprGetLocal, 0, kExprBr, 0,
kExprIfElse, kExprI32LoadMem, ZERO_ALIGNMENT, ZERO_OFFSET,
kExprGetLocal, 0, kExprBr, 2, kExprI8Const, 255, kExprSetLocal, 0,
kExprI32Sub, kExprGetLocal, 0, kExprI8Const, 4, kExprI8Const, 0);
module.BlankMemory();
CHECK_EQ(0, r.Call((kNumElems - 1) * 4));
}
TEST(Run_Wasm_MemF32_Sum) {
const int kSize = 5;
TestingModule module;
module.AddMemoryElems<float>(kSize);
float* buffer = module.raw_mem_start<float>();
buffer[0] = -99.25;
buffer[1] = -888.25;
buffer[2] = -77.25;
buffer[3] = 66666.25;
buffer[4] = 5555.25;
WasmRunner<int32_t> r(&module, MachineType::Int32());
const byte kSum = r.AllocateLocal(kAstF32);
BUILD(r, WASM_BLOCK(
3, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kSum, WASM_F32_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Float32(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))),
WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO,
WASM_GET_LOCAL(kSum)),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(4 * (kSize - 1)));
CHECK_NE(-99.25, buffer[0]);
CHECK_EQ(71256.0f, buffer[0]);
}
template <typename T>
T GenerateAndRunFold(WasmOpcode binop, T* buffer, size_t size,
LocalType astType, MachineType memType) {
TestingModule module;
module.AddMemoryElems<T>(size);
for (size_t i = 0; i < size; i++) {
module.raw_mem_start<T>()[i] = buffer[i];
}
WasmRunner<int32_t> r(&module, MachineType::Int32());
const byte kAccum = r.AllocateLocal(astType);
BUILD(
r,
WASM_BLOCK(
4, WASM_SET_LOCAL(kAccum, WASM_LOAD_MEM(memType, WASM_ZERO)),
WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kAccum,
WASM_BINOP(binop, WASM_GET_LOCAL(kAccum),
WASM_LOAD_MEM(memType, WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(sizeof(T)))))),
WASM_STORE_MEM(memType, WASM_ZERO, WASM_GET_LOCAL(kAccum)),
WASM_GET_LOCAL(0)));
r.Call(static_cast<int>(sizeof(T) * (size - 1)));
return module.raw_mem_at<double>(0);
}
TEST(Run_Wasm_MemF64_Mul) {
const size_t kSize = 6;
double buffer[kSize] = {1, 2, 2, 2, 2, 2};
double result = GenerateAndRunFold<double>(kExprF64Mul, buffer, kSize,
kAstF64, MachineType::Float64());
CHECK_EQ(32, result);
}
TEST(Build_Wasm_Infinite_Loop) {
WasmRunner<int32_t> r(MachineType::Int32());
// Only build the graph and compile, don't run.
BUILD(r, WASM_INFINITE_LOOP);
}
TEST(Build_Wasm_Infinite_Loop_effect) {
TestingModule module;
module.AddMemoryElems<int8_t>(16);
WasmRunner<int32_t> r(&module, MachineType::Int32());
// Only build the graph and compile, don't run.
BUILD(r, WASM_LOOP(1, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)));
}
TEST(Run_Wasm_Unreachable0a) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV(0, WASM_I8(9)), RET(WASM_GET_LOCAL(0))));
CHECK_EQ(9, r.Call(0));
CHECK_EQ(9, r.Call(1));
}
TEST(Run_Wasm_Unreachable0b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV(0, WASM_I8(7)), WASM_UNREACHABLE));
CHECK_EQ(7, r.Call(0));
CHECK_EQ(7, r.Call(1));
}
TEST(Build_Wasm_Unreachable1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE);
}
TEST(Build_Wasm_Unreachable2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE);
}
TEST(Build_Wasm_Unreachable3) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE, WASM_UNREACHABLE);
}
TEST(Build_Wasm_UnreachableIf1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_IF(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
}
TEST(Build_Wasm_UnreachableIf2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE,
WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_UNREACHABLE));
}
TEST(Run_Wasm_Unreachable_Load) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV(0, WASM_GET_LOCAL(0)),
WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0))));
CHECK_EQ(11, r.Call(11));
CHECK_EQ(21, r.Call(21));
}
TEST(Run_Wasm_Infinite_Loop_not_taken1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_INFINITE_LOOP), WASM_I8(45)));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(0));
}
TEST(Run_Wasm_Infinite_Loop_not_taken2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B1(WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(45)),
WASM_INFINITE_LOOP)));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(1));
}
TEST(Run_Wasm_Infinite_Loop_not_taken2_brif) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(WASM_BRV_IF(0, WASM_I8(45), WASM_GET_LOCAL(0)), WASM_INFINITE_LOOP));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(1));
}
static void TestBuildGraphForSimpleExpression(WasmOpcode opcode) {
if (!WasmOpcodes::IsSupported(opcode)) return;
Isolate* isolate = CcTest::InitIsolateOnce();
Zone zone(isolate->allocator());
HandleScope scope(isolate);
// Enable all optional operators.
CommonOperatorBuilder common(&zone);
MachineOperatorBuilder machine(&zone, MachineType::PointerRepresentation(),
MachineOperatorBuilder::kAllOptionalOps);
Graph graph(&zone);
JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine);
FunctionSig* sig = WasmOpcodes::Signature(opcode);
if (sig->parameter_count() == 1) {
byte code[] = {WASM_NO_LOCALS, static_cast<byte>(opcode), kExprGetLocal, 0};
TestBuildingGraph(&zone, &jsgraph, nullptr, sig, code,
code + arraysize(code));
} else {
CHECK_EQ(2, sig->parameter_count());
byte code[] = {WASM_NO_LOCALS, static_cast<byte>(opcode),
kExprGetLocal, 0,
kExprGetLocal, 1};
TestBuildingGraph(&zone, &jsgraph, nullptr, sig, code,
code + arraysize(code));
}
}
TEST(Build_Wasm_SimpleExprs) {
// Test that the decoder can build a graph for all supported simple expressions.
#define GRAPH_BUILD_TEST(name, opcode, sig) \
TestBuildGraphForSimpleExpression(kExpr##name);
FOREACH_SIMPLE_OPCODE(GRAPH_BUILD_TEST);
#undef GRAPH_BUILD_TEST
}
TEST(Run_Wasm_Int32LoadInt8_signext) {
TestingModule module;
const int kNumElems = 16;
int8_t* memory = module.AddMemoryElems<int8_t>(kNumElems);
module.RandomizeMemory();
memory[0] = -1;
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt8_zeroext) {
TestingModule module;
const int kNumElems = 16;
byte* memory = module.AddMemory(kNumElems);
module.RandomizeMemory(77);
memory[0] = 255;
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_LOAD_MEM(MachineType::Uint8(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt16_signext) {
TestingModule module;
const int kNumBytes = 16;
byte* memory = module.AddMemory(kNumBytes);
module.RandomizeMemory(888);
memory[1] = 200;
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_LOAD_MEM(MachineType::Int16(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumBytes; i += 2) {
int32_t expected = memory[i] | (static_cast<int8_t>(memory[i + 1]) << 8);
CHECK_EQ(expected, r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt16_zeroext) {
TestingModule module;
const int kNumBytes = 16;
byte* memory = module.AddMemory(kNumBytes);
module.RandomizeMemory(9999);
memory[1] = 204;
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_LOAD_MEM(MachineType::Uint16(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumBytes; i += 2) {
int32_t expected = memory[i] | (memory[i + 1] << 8);
CHECK_EQ(expected, r.Call(static_cast<int>(i)));
}
}
TEST(Run_WasmInt32Global) {
TestingModule module;
int32_t* global = module.AddGlobal<int32_t>(MachineType::Int32());
WasmRunner<int32_t> r(&module, MachineType::Int32());
// global = global + p0
BUILD(r, WASM_STORE_GLOBAL(
0, WASM_I32_ADD(WASM_LOAD_GLOBAL(0), WASM_GET_LOCAL(0))));
*global = 116;
for (int i = 9; i < 444444; i += 111111) {
int32_t expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmInt32Globals_DontAlias) {
const int kNumGlobals = 3;
TestingModule module;
int32_t* globals[] = {module.AddGlobal<int32_t>(MachineType::Int32()),
module.AddGlobal<int32_t>(MachineType::Int32()),
module.AddGlobal<int32_t>(MachineType::Int32())};
for (int g = 0; g < kNumGlobals; g++) {
// global = global + p0
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_STORE_GLOBAL(
g, WASM_I32_ADD(WASM_LOAD_GLOBAL(g), WASM_GET_LOCAL(0))));
// Check that reading/writing global number {g} doesn't alter the others.
*globals[g] = 116 * g;
int32_t before[kNumGlobals];
for (int i = 9; i < 444444; i += 111113) {
int32_t sum = *globals[g] + i;
for (int j = 0; j < kNumGlobals; j++) before[j] = *globals[j];
r.Call(i);
for (int j = 0; j < kNumGlobals; j++) {
int32_t expected = j == g ? sum : before[j];
CHECK_EQ(expected, *globals[j]);
}
}
}
}
TEST(Run_WasmFloat32Global) {
TestingModule module;
float* global = module.AddGlobal<float>(MachineType::Float32());
WasmRunner<int32_t> r(&module, MachineType::Int32());
// global = global + p0
BUILD(r, B2(WASM_STORE_GLOBAL(
0, WASM_F32_ADD(WASM_LOAD_GLOBAL(0),
WASM_F32_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO));
*global = 1.25;
for (int i = 9; i < 4444; i += 1111) {
volatile float expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmFloat64Global) {
TestingModule module;
double* global = module.AddGlobal<double>(MachineType::Float64());
WasmRunner<int32_t> r(&module, MachineType::Int32());
// global = global + p0
BUILD(r, B2(WASM_STORE_GLOBAL(
0, WASM_F64_ADD(WASM_LOAD_GLOBAL(0),
WASM_F64_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO));
*global = 1.25;
for (int i = 9; i < 4444; i += 1111) {
volatile double expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmMixedGlobals) {
TestingModule module;
int32_t* unused = module.AddGlobal<int32_t>(MachineType::Int32());
byte* memory = module.AddMemory(32);
int8_t* var_int8 = module.AddGlobal<int8_t>(MachineType::Int8());
uint8_t* var_uint8 = module.AddGlobal<uint8_t>(MachineType::Uint8());
int16_t* var_int16 = module.AddGlobal<int16_t>(MachineType::Int16());
uint16_t* var_uint16 = module.AddGlobal<uint16_t>(MachineType::Uint16());
int32_t* var_int32 = module.AddGlobal<int32_t>(MachineType::Int32());
uint32_t* var_uint32 = module.AddGlobal<uint32_t>(MachineType::Uint32());
float* var_float = module.AddGlobal<float>(MachineType::Float32());
double* var_double = module.AddGlobal<double>(MachineType::Float64());
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(
r,
WASM_BLOCK(
9,
WASM_STORE_GLOBAL(1, WASM_LOAD_MEM(MachineType::Int8(), WASM_ZERO)),
WASM_STORE_GLOBAL(2, WASM_LOAD_MEM(MachineType::Uint8(), WASM_ZERO)),
WASM_STORE_GLOBAL(3, WASM_LOAD_MEM(MachineType::Int16(), WASM_ZERO)),
WASM_STORE_GLOBAL(4, WASM_LOAD_MEM(MachineType::Uint16(), WASM_ZERO)),
WASM_STORE_GLOBAL(5, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)),
WASM_STORE_GLOBAL(6, WASM_LOAD_MEM(MachineType::Uint32(), WASM_ZERO)),
WASM_STORE_GLOBAL(7,
WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)),
WASM_STORE_GLOBAL(8,
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)),
WASM_ZERO));
memory[0] = 0xaa;
memory[1] = 0xcc;
memory[2] = 0x55;
memory[3] = 0xee;
memory[4] = 0x33;
memory[5] = 0x22;
memory[6] = 0x11;
memory[7] = 0x99;
r.Call(1);
CHECK(static_cast<int8_t>(0xaa) == *var_int8);
CHECK(static_cast<uint8_t>(0xaa) == *var_uint8);
CHECK(static_cast<int16_t>(0xccaa) == *var_int16);
CHECK(static_cast<uint16_t>(0xccaa) == *var_uint16);
CHECK(static_cast<int32_t>(0xee55ccaa) == *var_int32);
CHECK(static_cast<uint32_t>(0xee55ccaa) == *var_uint32);
CHECK(bit_cast<float>(0xee55ccaa) == *var_float);
CHECK(bit_cast<double>(0x99112233ee55ccaaULL) == *var_double);
USE(unused);
}
TEST(Run_WasmCallEmpty) {
const int32_t kExpected = -414444;
// Build the target function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.i_v(), &module);
BUILD(t, WASM_I32V_3(kExpected));
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_CALL_FUNCTION0(index));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
TEST(Run_WasmCallF32StackParameter) {
// Build the target function.
LocalType param_types[20];
for (int i = 0; i < 20; i++) param_types[i] = kAstF32;
FunctionSig sig(1, 19, param_types);
TestingModule module;
WasmFunctionCompiler t(&sig, &module);
BUILD(t, WASM_GET_LOCAL(17));
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<float> r(&module);
BUILD(r, WASM_CALL_FUNCTION(
index, WASM_F32(1.0f), WASM_F32(2.0f), WASM_F32(4.0f),
WASM_F32(8.0f), WASM_F32(16.0f), WASM_F32(32.0f),
WASM_F32(64.0f), WASM_F32(128.0f), WASM_F32(256.0f),
WASM_F32(1.5f), WASM_F32(2.5f), WASM_F32(4.5f), WASM_F32(8.5f),
WASM_F32(16.5f), WASM_F32(32.5f), WASM_F32(64.5f),
WASM_F32(128.5f), WASM_F32(256.5f), WASM_F32(512.5f)));
float result = r.Call();
CHECK_EQ(256.5f, result);
}
TEST(Run_WasmCallF64StackParameter) {
// Build the target function.
LocalType param_types[20];
for (int i = 0; i < 20; i++) param_types[i] = kAstF64;
FunctionSig sig(1, 19, param_types);
TestingModule module;
WasmFunctionCompiler t(&sig, &module);
BUILD(t, WASM_GET_LOCAL(17));
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<double> r(&module);
BUILD(r, WASM_CALL_FUNCTION(index, WASM_F64(1.0), WASM_F64(2.0),
WASM_F64(4.0), WASM_F64(8.0), WASM_F64(16.0),
WASM_F64(32.0), WASM_F64(64.0), WASM_F64(128.0),
WASM_F64(256.0), WASM_F64(1.5), WASM_F64(2.5),
WASM_F64(4.5), WASM_F64(8.5), WASM_F64(16.5),
WASM_F64(32.5), WASM_F64(64.5), WASM_F64(128.5),
WASM_F64(256.5), WASM_F64(512.5)));
float result = r.Call();
CHECK_EQ(256.5, result);
}
TEST(Run_WasmCallVoid) {
const byte kMemOffset = 8;
const int32_t kElemNum = kMemOffset / sizeof(int32_t);
const int32_t kExpected = -414444;
// Build the target function.
TestSignatures sigs;
TestingModule module;
module.AddMemory(16);
module.RandomizeMemory();
WasmFunctionCompiler t(sigs.v_v(), &module);
BUILD(t, WASM_STORE_MEM(MachineType::Int32(), WASM_I8(kMemOffset),
WASM_I32V_3(kExpected)));
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_CALL_FUNCTION0(index),
WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(kMemOffset)));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
CHECK_EQ(kExpected, module.raw_mem_start<int32_t>()[kElemNum]);
}
TEST(Run_WasmCall_Int32Add) {
// Build the target function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.i_ii(), &module);
BUILD(t, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
uint32_t index = t.CompileAndAdd();
// Build the caller function.
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(*i) +
static_cast<uint32_t>(*j));
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmCall_Float32Sub) {
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.f_ff(), &module);
// Build the target function.
BUILD(t, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
uint32_t index = t.CompileAndAdd();
// Builder the caller function.
WasmRunner<float> r(&module, MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*i - *j, r.Call(*i, *j)); }
}
}
TEST(Run_WasmCall_Float64Sub) {
TestingModule module;
double* memory = module.AddMemoryElems<double>(16);
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_BLOCK(
2, WASM_STORE_MEM(
MachineType::Float64(), WASM_ZERO,
WASM_F64_SUB(
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO),
WASM_LOAD_MEM(MachineType::Float64(), WASM_I8(8)))),
WASM_I8(107)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
memory[0] = *i;
memory[1] = *j;
double expected = *i - *j;
CHECK_EQ(107, r.Call());
if (expected != expected) {
CHECK(memory[0] != memory[0]);
} else {
CHECK_EQ(expected, memory[0]);
}
}
}
}
#define ADD_CODE(vec, ...) \
do { \
byte __buf[] = {__VA_ARGS__}; \
for (size_t i = 0; i < sizeof(__buf); i++) vec.push_back(__buf[i]); \
} while (false)
static void Run_WasmMixedCall_N(int start) {
const int kExpected = 6333;
const int kElemSize = 8;
TestSignatures sigs;
#if WASM_64
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Int64(),
MachineType::Float64(), MachineType::Float32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Float64(), MachineType::Float32(),
MachineType::Float64(), MachineType::Int32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Int32()};
#else
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Float64(),
MachineType::Float32(), MachineType::Int32(), MachineType::Float64(),
MachineType::Float32(), MachineType::Float64(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32()};
#endif
int num_params = static_cast<int>(arraysize(mixed)) - start;
for (int which = 0; which < num_params; which++) {
v8::base::AccountingAllocator allocator;
Zone zone(&allocator);
TestingModule module;
module.AddMemory(1024);
MachineType* memtypes = &mixed[start];
MachineType result = memtypes[which];
// =========================================================================
// Build the selector function.
// =========================================================================
uint32_t index;
FunctionSig::Builder b(&zone, 1, num_params);
b.AddReturn(WasmOpcodes::LocalTypeFor(result));
for (int i = 0; i < num_params; i++) {
b.AddParam(WasmOpcodes::LocalTypeFor(memtypes[i]));
}
WasmFunctionCompiler t(b.Build(), &module);
BUILD(t, WASM_GET_LOCAL(which));
index = t.CompileAndAdd();
// =========================================================================
// Build the calling function.
// =========================================================================
WasmRunner<int32_t> r(&module);
std::vector<byte> code;
ADD_CODE(code,
static_cast<byte>(WasmOpcodes::LoadStoreOpcodeOf(result, true)),
ZERO_ALIGNMENT, ZERO_OFFSET);
ADD_CODE(code, WASM_ZERO);
ADD_CODE(code, kExprCallFunction, static_cast<byte>(index));
for (int i = 0; i < num_params; i++) {
int offset = (i + 1) * kElemSize;
ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I8(offset)));
}
ADD_CODE(code, WASM_I32V_2(kExpected));
size_t end = code.size();
code.push_back(0);
r.Build(&code[0], &code[end]);
// Run the code.
for (int t = 0; t < 10; t++) {
module.RandomizeMemory();
CHECK_EQ(kExpected, r.Call());
int size = WasmOpcodes::MemSize(result);
for (int i = 0; i < size; i++) {
int base = (which + 1) * kElemSize;
byte expected = module.raw_mem_at<byte>(base + i);
byte result = module.raw_mem_at<byte>(i);
CHECK_EQ(expected, result);
}
}
}
}
TEST(Run_WasmMixedCall_0) { Run_WasmMixedCall_N(0); }
TEST(Run_WasmMixedCall_1) { Run_WasmMixedCall_N(1); }
TEST(Run_WasmMixedCall_2) { Run_WasmMixedCall_N(2); }
TEST(Run_WasmMixedCall_3) { Run_WasmMixedCall_N(3); }
TEST(Run_Wasm_AddCall) {
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t1(sigs.i_ii(), &module);
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd();
WasmRunner<int32_t> r(&module, MachineType::Int32());
byte local = r.AllocateLocal(kAstI32);
BUILD(r, B2(WASM_SET_LOCAL(local, WASM_I8(99)),
WASM_I32_ADD(
WASM_CALL_FUNCTION(t1.function_index_, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(0)),
WASM_CALL_FUNCTION(t1.function_index_, WASM_GET_LOCAL(1),
WASM_GET_LOCAL(local)))));
CHECK_EQ(198, r.Call(0));
CHECK_EQ(200, r.Call(1));
CHECK_EQ(100, r.Call(-49));
}
TEST(Run_Wasm_CountDown_expr) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_LOOP(
3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)),
WASM_BREAKV(0, WASM_GET_LOCAL(0))),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))),
WASM_CONTINUE(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_ExprBlock2a) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(1))), WASM_I8(1)));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(1))), WASM_I8(2)));
CHECK_EQ(2, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2c) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(1), WASM_GET_LOCAL(0)), WASM_I8(1)));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2d) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(1), WASM_GET_LOCAL(0)), WASM_I8(2)));
CHECK_EQ(2, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock_ManualSwitch) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(6, WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1)),
WASM_BRV(0, WASM_I8(11))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2)),
WASM_BRV(0, WASM_I8(12))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3)),
WASM_BRV(0, WASM_I8(13))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4)),
WASM_BRV(0, WASM_I8(14))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5)),
WASM_BRV(0, WASM_I8(15))),
WASM_I8(99)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(12, r.Call(2));
CHECK_EQ(13, r.Call(3));
CHECK_EQ(14, r.Call(4));
CHECK_EQ(15, r.Call(5));
CHECK_EQ(99, r.Call(6));
}
TEST(Run_Wasm_ExprBlock_ManualSwitch_brif) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(6, WASM_BRV_IF(0, WASM_I8(11),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1))),
WASM_BRV_IF(0, WASM_I8(12),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2))),
WASM_BRV_IF(0, WASM_I8(13),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3))),
WASM_BRV_IF(0, WASM_I8(14),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4))),
WASM_BRV_IF(0, WASM_I8(15),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5))),
WASM_I8(99)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(12, r.Call(2));
CHECK_EQ(13, r.Call(3));
CHECK_EQ(14, r.Call(4));
CHECK_EQ(15, r.Call(5));
CHECK_EQ(99, r.Call(6));
}
TEST(Run_Wasm_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(11), WASM_I8(12)),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(13), WASM_I8(14))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
TEST(Run_Wasm_ExprBlock_if) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B1(WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(11)),
WASM_BRV(0, WASM_I8(14)))));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(14, r.Call(0));
}
TEST(Run_Wasm_ExprBlock_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_BLOCK(
1, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(11)),
WASM_BRV(0, WASM_I8(12))),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(13)),
WASM_BRV(0, WASM_I8(14))))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
TEST(Run_Wasm_ExprLoop_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_LOOP(
1, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(11)),
WASM_BRV(1, WASM_I8(12))),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(13)),
WASM_BRV(1, WASM_I8(14))))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
TEST(Run_Wasm_SimpleCallIndirect) {
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t1(sigs.i_ii(), &module);
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd(/*sig_index*/ 1);
WasmFunctionCompiler t2(sigs.i_ii(), &module);
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.CompileAndAdd(/*sig_index*/ 1);
// Signature table.
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_ii());
module.AddSignature(sigs.d_dd());
// Function table.
int table[] = {0, 1};
module.AddIndirectFunctionTable(table, 2);
module.PopulateIndirectFunctionTable();
// Builder the caller function.
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_I8(66), WASM_I8(22)));
CHECK_EQ(88, r.Call(0));
CHECK_EQ(44, r.Call(1));
CHECK_TRAP(r.Call(2));
}
TEST(Run_Wasm_MultipleCallIndirect) {
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t1(sigs.i_ii(), &module);
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd(/*sig_index*/ 1);
WasmFunctionCompiler t2(sigs.i_ii(), &module);
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.CompileAndAdd(/*sig_index*/ 1);
// Signature table.
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_ii());
module.AddSignature(sigs.d_dd());
// Function table.
int table[] = {0, 1};
module.AddIndirectFunctionTable(table, 2);
module.PopulateIndirectFunctionTable();
// Builder the caller function.
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
BUILD(r,
WASM_I32_ADD(WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2),
WASM_GET_LOCAL(0))));
CHECK_EQ(5, r.Call(0, 1, 2));
CHECK_EQ(19, r.Call(0, 1, 9));
CHECK_EQ(1, r.Call(1, 0, 2));
CHECK_EQ(1, r.Call(1, 0, 9));
CHECK_TRAP(r.Call(0, 2, 1));
CHECK_TRAP(r.Call(1, 2, 0));
CHECK_TRAP(r.Call(2, 0, 1));
CHECK_TRAP(r.Call(2, 1, 0));
}
TEST(Run_Wasm_CallIndirect_NoTable) {
TestSignatures sigs;
TestingModule module;
// One function.
WasmFunctionCompiler t1(sigs.i_ii(), &module);
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd(/*sig_index*/ 1);
// Signature table.
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_ii());
// Builder the caller function.
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_I8(66), WASM_I8(22)));
CHECK_TRAP(r.Call(0));
CHECK_TRAP(r.Call(1));
CHECK_TRAP(r.Call(2));
}
TEST(Run_Wasm_F32Floor) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_FLOOR(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Ceil) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_CEIL(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Trunc) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_TRUNC(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32NearestInt) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_NEARESTINT(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(nearbyintf(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Floor) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_FLOOR(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Ceil) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_CEIL(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Trunc) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_TRUNC(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(trunc(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64NearestInt) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_NEARESTINT(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(nearbyint(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Min) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) {
float expected;
if (*i < *j) {
expected = *i;
} else if (*j < *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CHECK_FLOAT_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F64Min) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
double expected;
if (*i < *j) {
expected = *i;
} else if (*j < *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CHECK_DOUBLE_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F32Max) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) {
float expected;
if (*i > *j) {
expected = *i;
} else if (*j > *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CHECK_FLOAT_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F64Max) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
double expected;
if (*i > *j) {
expected = *i;
} else if (*j > *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CHECK_DOUBLE_EQ(expected, r.Call(*i, *j));
}
}
}
// TODO(ahaas): Fix on arm and mips and reenable.
#if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \
!V8_TARGET_ARCH_MIPS64
TEST(Run_Wasm_F32Min_Snan) {
// Test that the instruction does not return a signalling NaN.
{
WasmRunner<float> r;
BUILD(r,
WASM_F32_MIN(WASM_F32(bit_cast<float>(0xff80f1e2)), WASM_F32(57.67)));
CHECK_EQ(0xffc0f1e2, bit_cast<uint32_t>(r.Call()));
}
{
WasmRunner<float> r;
BUILD(r,
WASM_F32_MIN(WASM_F32(45.73), WASM_F32(bit_cast<float>(0x7f80f1e2))));
CHECK_EQ(0x7fc0f1e2, bit_cast<uint32_t>(r.Call()));
}
}
TEST(Run_Wasm_F32Max_Snan) {
// Test that the instruction does not return a signalling NaN.
{
WasmRunner<float> r;
BUILD(r,
WASM_F32_MAX(WASM_F32(bit_cast<float>(0xff80f1e2)), WASM_F32(57.67)));
CHECK_EQ(0xffc0f1e2, bit_cast<uint32_t>(r.Call()));
}
{
WasmRunner<float> r;
BUILD(r,
WASM_F32_MAX(WASM_F32(45.73), WASM_F32(bit_cast<float>(0x7f80f1e2))));
CHECK_EQ(0x7fc0f1e2, bit_cast<uint32_t>(r.Call()));
}
}
TEST(Run_Wasm_F64Min_Snan) {
// Test that the instruction does not return a signalling NaN.
{
WasmRunner<double> r;
BUILD(r, WASM_F64_MIN(WASM_F64(bit_cast<double>(0xfff000000000f1e2)),
WASM_F64(57.67)));
CHECK_EQ(0xfff800000000f1e2, bit_cast<uint64_t>(r.Call()));
}
{
WasmRunner<double> r;
BUILD(r, WASM_F64_MIN(WASM_F64(45.73),
WASM_F64(bit_cast<double>(0x7ff000000000f1e2))));
CHECK_EQ(0x7ff800000000f1e2, bit_cast<uint64_t>(r.Call()));
}
}
TEST(Run_Wasm_F64Max_Snan) {
// Test that the instruction does not return a signalling NaN.
{
WasmRunner<double> r;
BUILD(r, WASM_F64_MAX(WASM_F64(bit_cast<double>(0xfff000000000f1e2)),
WASM_F64(57.67)));
CHECK_EQ(0xfff800000000f1e2, bit_cast<uint64_t>(r.Call()));
}
{
WasmRunner<double> r;
BUILD(r, WASM_F64_MAX(WASM_F64(45.73),
WASM_F64(bit_cast<double>(0x7ff000000000f1e2))));
CHECK_EQ(0x7ff800000000f1e2, bit_cast<uint64_t>(r.Call()));
}
}
#endif
TEST(Run_Wasm_I32SConvertF32) {
WasmRunner<int32_t> r(MachineType::Float32());
BUILD(r, WASM_I32_SCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(INT32_MAX) &&
*i >= static_cast<float>(INT32_MIN)) {
CHECK_EQ(static_cast<int32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32SConvertF64) {
WasmRunner<int32_t> r(MachineType::Float64());
BUILD(r, WASM_I32_SCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < (static_cast<double>(INT32_MAX) + 1.0) &&
*i > (static_cast<double>(INT32_MIN) - 1.0)) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32UConvertF32) {
WasmRunner<uint32_t> r(MachineType::Float32());
BUILD(r, WASM_I32_UCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < (static_cast<float>(UINT32_MAX) + 1.0) && *i > -1) {
CHECK_EQ(static_cast<uint32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32UConvertF64) {
WasmRunner<uint32_t> r(MachineType::Float64());
BUILD(r, WASM_I32_UCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < (static_cast<float>(UINT32_MAX) + 1.0) && *i > -1) {
CHECK_EQ(static_cast<uint32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_F64CopySign) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(copysign(*i, *j), r.Call(*i, *j)); }
}
}
TEST(Run_Wasm_F32CopySign) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(copysignf(*i, *j), r.Call(*i, *j)); }
}
}
void CompileCallIndirectMany(LocalType param) {
// Make sure we don't run out of registers when compiling indirect calls
// with many many parameters.
TestSignatures sigs;
for (byte num_params = 0; num_params < 40; num_params++) {
v8::base::AccountingAllocator allocator;
Zone zone(&allocator);
HandleScope scope(CcTest::InitIsolateOnce());
TestingModule module;
FunctionSig* sig = sigs.many(&zone, kAstStmt, param, num_params);
module.AddSignature(sig);
module.AddSignature(sig);
module.AddIndirectFunctionTable(nullptr, 0);
WasmFunctionCompiler t(sig, &module);
std::vector<byte> code;
ADD_CODE(code, kExprCallIndirect, 1);
ADD_CODE(code, kExprI8Const, 0);
for (byte p = 0; p < num_params; p++) {
ADD_CODE(code, kExprGetLocal, p);
}
t.Build(&code[0], &code[0] + code.size());
t.Compile();
}
}
TEST(Compile_Wasm_CallIndirect_Many_i32) { CompileCallIndirectMany(kAstI32); }
#if WASM_64
TEST(Compile_Wasm_CallIndirect_Many_i64) { CompileCallIndirectMany(kAstI64); }
#endif
TEST(Compile_Wasm_CallIndirect_Many_f32) { CompileCallIndirectMany(kAstF32); }
TEST(Compile_Wasm_CallIndirect_Many_f64) { CompileCallIndirectMany(kAstF64); }
TEST(Run_WASM_Int32RemS_dead) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), WASM_ZERO);
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(133, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(0, 1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}