v8/test/cctest/compiler/test-jump-threading.cc
JialuZhang-intel ea97572d47 [turbofan] Improve jump threading phase
Let jump threading phase be able to handle the jump with gap moves instructions.
Record the first occurrence of the gap jump instruction and forward
the same gap jump instructions into the recorded one.

For example:
  In this case, we merge the second instruction into the first one,
  because those two gap jump instructions have the same gap moves.

    -- Before jump threading phase:
    B0:
    1. gap(rdx=rbx)
       ArchJmp imm:3
    B1:
    2. gap(rdx=rbx)
       ArchJmp imm:3

    -- After jump threading phase:
    B0:
    1. gap(rdx=rbx)
       ArchJmp imm:3
    B1:
    2. ArchNop

This can eliminate redundant jump and move instructions.

Design doc: https://docs.google.com/document/d/1SpO7Kw4e6CnCesFT118MUnCufUHZDy3QaVSymcci5jE/edit?usp=sharing

Change-Id: Ie94c8f63e2f758824619f6ed9513cbdff00186c4
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3858528
Reviewed-by: Tobias Tebbi <tebbi@chromium.org>
Commit-Queue: Jialu Zhang <jialu.zhang@intel.com>
Cr-Commit-Position: refs/heads/main@{#83288}
2022-09-19 03:44:11 +00:00

1069 lines
24 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen/source-position.h"
#include "src/compiler/backend/instruction-codes.h"
#include "src/compiler/backend/instruction.h"
#include "src/compiler/backend/jump-threading.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
class TestCode : public HandleAndZoneScope {
public:
explicit TestCode(size_t block_count)
: HandleAndZoneScope(),
blocks_(main_zone()),
sequence_(main_isolate(), main_zone(), &blocks_),
rpo_number_(RpoNumber::FromInt(0)),
current_(nullptr) {
sequence_.IncreaseRpoForTesting(block_count);
}
ZoneVector<InstructionBlock*> blocks_;
InstructionSequence sequence_;
RpoNumber rpo_number_;
InstructionBlock* current_;
int Jump(int target) {
Start();
InstructionOperand ops[] = {UseRpo(target)};
sequence_.AddInstruction(Instruction::New(main_zone(), kArchJmp, 0, nullptr,
1, ops, 0, nullptr));
int pos = static_cast<int>(sequence_.instructions().size() - 1);
End();
return pos;
}
void Fallthru() {
Start();
End();
}
int Branch(int ttarget, int ftarget) {
Start();
InstructionOperand ops[] = {UseRpo(ttarget), UseRpo(ftarget)};
InstructionCode code = 119 | FlagsModeField::encode(kFlags_branch) |
FlagsConditionField::encode(kEqual);
sequence_.AddInstruction(
Instruction::New(main_zone(), code, 0, nullptr, 2, ops, 0, nullptr));
int pos = static_cast<int>(sequence_.instructions().size() - 1);
End();
return pos;
}
int Return(int size, bool defer = false, bool deconstruct_frame = false) {
Start(defer, deconstruct_frame);
InstructionOperand ops[] = {Immediate(size)};
sequence_.AddInstruction(Instruction::New(main_zone(), kArchRet, 0, nullptr,
1, ops, 0, nullptr));
int pos = static_cast<int>(sequence_.instructions().size() - 1);
End();
return pos;
}
void Nop() {
Start();
sequence_.AddInstruction(Instruction::New(main_zone(), kArchNop));
}
void RedundantMoves() {
Start();
sequence_.AddInstruction(Instruction::New(main_zone(), kArchNop));
int index = static_cast<int>(sequence_.instructions().size()) - 1;
AddGapMove(index, AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kWord32, 13),
AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kWord32, 13));
}
void NonRedundantMoves() {
Start();
sequence_.AddInstruction(Instruction::New(main_zone(), kArchNop));
int index = static_cast<int>(sequence_.instructions().size()) - 1;
AddGapMove(index, ConstantOperand(11),
AllocatedOperand(LocationOperand::REGISTER,
MachineRepresentation::kWord32, 11));
}
int JumpWithGapMove(int target, int id = 10) {
Start();
InstructionOperand ops[] = {UseRpo(target)};
sequence_.AddInstruction(Instruction::New(main_zone(), kArchJmp, 0, nullptr,
1, ops, 0, nullptr));
int index = static_cast<int>(sequence_.instructions().size()) - 1;
InstructionOperand from = AllocatedOperand(
LocationOperand::REGISTER, MachineRepresentation::kWord32, id);
InstructionOperand to = AllocatedOperand(
LocationOperand::REGISTER, MachineRepresentation::kWord32, id + 1);
AddGapMove(index, from, to);
End();
return index;
}
void Other() {
Start();
sequence_.AddInstruction(Instruction::New(main_zone(), 155));
}
void End() {
Start();
int end = static_cast<int>(sequence_.instructions().size());
if (current_->code_start() == end) { // Empty block. Insert a nop.
sequence_.AddInstruction(Instruction::New(main_zone(), kArchNop));
}
sequence_.EndBlock(current_->rpo_number());
current_ = nullptr;
rpo_number_ = RpoNumber::FromInt(rpo_number_.ToInt() + 1);
}
InstructionOperand UseRpo(int num) {
return sequence_.AddImmediate(Constant(RpoNumber::FromInt(num)));
}
InstructionOperand Immediate(int num) {
return sequence_.AddImmediate(Constant(num));
}
void Start(bool deferred = false, bool deconstruct_frame = false) {
if (current_ == nullptr) {
current_ = main_zone()->New<InstructionBlock>(
main_zone(), rpo_number_, RpoNumber::Invalid(), RpoNumber::Invalid(),
RpoNumber::Invalid(), deferred, false);
if (deconstruct_frame) {
current_->mark_must_deconstruct_frame();
}
blocks_.push_back(current_);
sequence_.StartBlock(rpo_number_);
}
}
void Defer() {
CHECK_NULL(current_);
Start(true);
}
void AddGapMove(int index, const InstructionOperand& from,
const InstructionOperand& to) {
sequence_.InstructionAt(index)
->GetOrCreateParallelMove(Instruction::START, main_zone())
->AddMove(from, to);
}
};
void VerifyForwarding(TestCode* code, int count, int* expected) {
v8::internal::AccountingAllocator allocator;
Zone local_zone(&allocator, ZONE_NAME);
ZoneVector<RpoNumber> result(&local_zone);
JumpThreading::ComputeForwarding(&local_zone, &result, &code->sequence_,
true);
CHECK(count == static_cast<int>(result.size()));
for (int i = 0; i < count; i++) {
CHECK_EQ(expected[i], result[i].ToInt());
}
}
TEST(FwEmpty1) {
constexpr size_t kBlockCount = 3;
TestCode code(kBlockCount);
// B0
code.Jump(1);
// B1
code.Jump(2);
// B2
code.End();
static int expected[] = {2, 2, 2};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwEmptyN) {
constexpr size_t kBlockCount = 3;
for (int i = 0; i < 9; i++) {
TestCode code(kBlockCount);
// B0
code.Jump(1);
// B1
for (int j = 0; j < i; j++) code.Nop();
code.Jump(2);
// B2
code.End();
static int expected[] = {2, 2, 2};
VerifyForwarding(&code, kBlockCount, expected);
}
}
TEST(FwNone1) {
constexpr size_t kBlockCount = 1;
TestCode code(kBlockCount);
// B0
code.End();
static int expected[] = {0};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwMoves1) {
constexpr size_t kBlockCount = 1;
TestCode code(kBlockCount);
// B0
code.RedundantMoves();
code.End();
static int expected[] = {0};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwMoves2) {
constexpr size_t kBlockCount = 2;
TestCode code(kBlockCount);
// B0
code.RedundantMoves();
code.Fallthru();
// B1
code.End();
static int expected[] = {1, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwMoves2b) {
constexpr size_t kBlockCount = 2;
TestCode code(kBlockCount);
// B0
code.NonRedundantMoves();
code.Fallthru();
// B1
code.End();
static int expected[] = {0, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwMoves3a) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
code.JumpWithGapMove(3, 10);
// B1 (merge B1 into B0, because they have the same gap moves.)
code.JumpWithGapMove(3, 10);
// B2 (can not merge B2 into B0, because they have different gap moves.)
code.JumpWithGapMove(3, 11);
// B3
code.End();
static int expected[] = {0, 0, 2, 3};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwMoves3b) {
constexpr size_t kBlockCount = 7;
TestCode code(kBlockCount);
// B0
code.JumpWithGapMove(6);
// B1
code.Jump(2);
// B2
code.Jump(3);
// B3
code.JumpWithGapMove(6);
// B4
code.Jump(3);
// B5
code.Jump(2);
// B6
code.End();
static int expected[] = {0, 0, 0, 0, 0, 0, 6};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwOther2) {
constexpr size_t kBlockCount = 2;
TestCode code(kBlockCount);
// B0
code.Other();
code.Fallthru();
// B1
code.End();
static int expected[] = {0, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwNone2a) {
constexpr size_t kBlockCount = 2;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.End();
static int expected[] = {1, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwNone2b) {
constexpr size_t kBlockCount = 2;
TestCode code(kBlockCount);
// B0
code.Jump(1);
// B1
code.End();
static int expected[] = {1, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop1) {
constexpr size_t kBlockCount = 1;
TestCode code(kBlockCount);
// B0
code.Jump(0);
static int expected[] = {0};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop2) {
constexpr size_t kBlockCount = 2;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Jump(0);
static int expected[] = {0, 0};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop3) {
constexpr size_t kBlockCount = 3;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Fallthru();
// B2
code.Jump(0);
static int expected[] = {0, 0, 0};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop1b) {
constexpr size_t kBlockCount = 2;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Jump(1);
static int expected[] = {1, 1};
VerifyForwarding(&code, 2, expected);
}
TEST(FwLoop2b) {
constexpr size_t kBlockCount = 3;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Fallthru();
// B2
code.Jump(1);
static int expected[] = {1, 1, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop3b) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Fallthru();
// B2
code.Fallthru();
// B3
code.Jump(1);
static int expected[] = {1, 1, 1, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop2_1a) {
constexpr size_t kBlockCount = 5;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Fallthru();
// B2
code.Fallthru();
// B3
code.Jump(1);
// B4
code.Jump(2);
static int expected[] = {1, 1, 1, 1, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop2_1b) {
constexpr size_t kBlockCount = 5;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Fallthru();
// B2
code.Jump(4);
// B3
code.Jump(1);
// B4
code.Jump(2);
static int expected[] = {2, 2, 2, 2, 2};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop2_1c) {
constexpr size_t kBlockCount = 5;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Fallthru();
// B2
code.Jump(4);
// B3
code.Jump(2);
// B4
code.Jump(1);
static int expected[] = {1, 1, 1, 1, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop2_1d) {
constexpr size_t kBlockCount = 5;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Fallthru();
// B2
code.Jump(1);
// B3
code.Jump(1);
// B4
code.Jump(1);
static int expected[] = {1, 1, 1, 1, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop3_1a) {
constexpr size_t kBlockCount = 6;
TestCode code(kBlockCount);
// B0
code.Fallthru();
// B1
code.Fallthru();
// B2
code.Fallthru();
// B3
code.Jump(2);
// B4
code.Jump(1);
// B5
code.Jump(0);
static int expected[] = {2, 2, 2, 2, 2, 2};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop4a) {
constexpr size_t kBlockCount = 2;
TestCode code(kBlockCount);
// B0
code.JumpWithGapMove(1);
// B1
code.JumpWithGapMove(0);
static int expected[] = {0, 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwLoop4b) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
code.Jump(3);
// B1
code.JumpWithGapMove(2);
// B2
code.Jump(0);
// B3
code.JumpWithGapMove(2);
static int expected[] = {3, 3, 3, 3};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwDiamonds) {
constexpr size_t kBlockCount = 4;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
TestCode code(kBlockCount);
// B0
code.Branch(1, 2);
// B1
if (i) code.Other();
code.Jump(3);
// B2
if (j) code.Other();
code.Jump(3);
// B3
code.End();
int expected[] = {0, i ? 1 : 3, j ? 2 : 3, 3};
VerifyForwarding(&code, kBlockCount, expected);
}
}
}
TEST(FwDiamonds2) {
constexpr size_t kBlockCount = 5;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int k = 0; k < 2; k++) {
TestCode code(kBlockCount);
// B0
code.Branch(1, 2);
// B1
if (i) code.Other();
code.Jump(3);
// B2
if (j) code.Other();
code.Jump(3);
// B3
if (k) code.NonRedundantMoves();
code.Jump(4);
// B4
code.End();
int merge = k ? 3 : 4;
int expected[] = {0, i ? 1 : merge, j ? 2 : merge, merge, 4};
VerifyForwarding(&code, kBlockCount, expected);
}
}
}
}
TEST(FwDoubleDiamonds) {
constexpr size_t kBlockCount = 7;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int x = 0; x < 2; x++) {
for (int y = 0; y < 2; y++) {
TestCode code(kBlockCount);
// B0
code.Branch(1, 2);
// B1
if (i) code.Other();
code.Jump(3);
// B2
if (j) code.Other();
code.Jump(3);
// B3
code.Branch(4, 5);
// B4
if (x) code.Other();
code.Jump(6);
// B5
if (y) code.Other();
code.Jump(6);
// B6
code.End();
int expected[] = {0, i ? 1 : 3, j ? 2 : 3, 3,
x ? 4 : 6, y ? 5 : 6, 6};
VerifyForwarding(&code, kBlockCount, expected);
}
}
}
}
}
template <int kSize>
void RunPermutationsRecursive(int outer[kSize], int start,
void (*run)(int*, int)) {
int permutation[kSize];
for (int i = 0; i < kSize; i++) permutation[i] = outer[i];
int count = kSize - start;
if (count == 0) return run(permutation, kSize);
for (int i = start; i < kSize; i++) {
permutation[start] = outer[i];
permutation[i] = outer[start];
RunPermutationsRecursive<kSize>(permutation, start + 1, run);
permutation[i] = outer[i];
permutation[start] = outer[start];
}
}
template <int kSize>
void RunAllPermutations(void (*run)(int*, int)) {
int permutation[kSize];
for (int i = 0; i < kSize; i++) permutation[i] = i;
RunPermutationsRecursive<kSize>(permutation, 0, run);
}
void PrintPermutation(int* permutation, int size) {
printf("{ ");
for (int i = 0; i < size; i++) {
if (i > 0) printf(", ");
printf("%d", permutation[i]);
}
printf(" }\n");
}
int find(int x, int* permutation, int size) {
for (int i = 0; i < size; i++) {
if (permutation[i] == x) return i;
}
return size;
}
void RunPermutedChain(int* permutation, int size) {
const int kBlockCount = size + 2;
TestCode code(kBlockCount);
int cur = -1;
for (int i = 0; i < size; i++) {
code.Jump(find(cur + 1, permutation, size) + 1);
cur = permutation[i];
}
code.Jump(find(cur + 1, permutation, size) + 1);
code.End();
int expected[] = {size + 1, size + 1, size + 1, size + 1,
size + 1, size + 1, size + 1};
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwPermuted_chain) {
RunAllPermutations<3>(RunPermutedChain);
RunAllPermutations<4>(RunPermutedChain);
RunAllPermutations<5>(RunPermutedChain);
}
void RunPermutedDiamond(int* permutation, int size) {
constexpr size_t kBlockCount = 6;
TestCode code(kBlockCount);
int br = 1 + find(0, permutation, size);
code.Jump(br);
for (int i = 0; i < size; i++) {
switch (permutation[i]) {
case 0:
code.Branch(1 + find(1, permutation, size),
1 + find(2, permutation, size));
break;
case 1:
code.Jump(1 + find(3, permutation, size));
break;
case 2:
code.Jump(1 + find(3, permutation, size));
break;
case 3:
code.Jump(5);
break;
}
}
code.End();
int expected[] = {br, 5, 5, 5, 5, 5};
expected[br] = br;
VerifyForwarding(&code, kBlockCount, expected);
}
TEST(FwPermuted_diamond) { RunAllPermutations<4>(RunPermutedDiamond); }
void ApplyForwarding(TestCode* code, int size, int* forward) {
code->sequence_.RecomputeAssemblyOrderForTesting();
ZoneVector<RpoNumber> vector(code->main_zone());
for (int i = 0; i < size; i++) {
vector.push_back(RpoNumber::FromInt(forward[i]));
}
JumpThreading::ApplyForwarding(code->main_zone(), vector, &code->sequence_);
}
void CheckJump(TestCode* code, int pos, int target) {
Instruction* instr = code->sequence_.InstructionAt(pos);
CHECK_EQ(kArchJmp, instr->arch_opcode());
CHECK_EQ(1, static_cast<int>(instr->InputCount()));
CHECK_EQ(0, static_cast<int>(instr->OutputCount()));
CHECK_EQ(0, static_cast<int>(instr->TempCount()));
CHECK_EQ(target, code->sequence_.InputRpo(instr, 0).ToInt());
}
void CheckRet(TestCode* code, int pos) {
Instruction* instr = code->sequence_.InstructionAt(pos);
CHECK_EQ(kArchRet, instr->arch_opcode());
CHECK_EQ(1, static_cast<int>(instr->InputCount()));
CHECK_EQ(0, static_cast<int>(instr->OutputCount()));
CHECK_EQ(0, static_cast<int>(instr->TempCount()));
}
void CheckNop(TestCode* code, int pos) {
Instruction* instr = code->sequence_.InstructionAt(pos);
CHECK_EQ(kArchNop, instr->arch_opcode());
CHECK_EQ(0, static_cast<int>(instr->InputCount()));
CHECK_EQ(0, static_cast<int>(instr->OutputCount()));
CHECK_EQ(0, static_cast<int>(instr->TempCount()));
}
void CheckBranch(TestCode* code, int pos, int t1, int t2) {
Instruction* instr = code->sequence_.InstructionAt(pos);
CHECK_EQ(2, static_cast<int>(instr->InputCount()));
CHECK_EQ(0, static_cast<int>(instr->OutputCount()));
CHECK_EQ(0, static_cast<int>(instr->TempCount()));
CHECK_EQ(t1, code->sequence_.InputRpo(instr, 0).ToInt());
CHECK_EQ(t2, code->sequence_.InputRpo(instr, 1).ToInt());
}
void CheckAssemblyOrder(TestCode* code, int size, int* expected) {
int i = 0;
for (auto const block : code->sequence_.instruction_blocks()) {
CHECK_EQ(expected[i++], block->ao_number().ToInt());
}
}
TEST(Rewire1) {
constexpr size_t kBlockCount = 3;
TestCode code(kBlockCount);
// B0
int j1 = code.Jump(1);
// B1
int j2 = code.Jump(2);
// B2
code.End();
static int forward[] = {2, 2, 2};
ApplyForwarding(&code, kBlockCount, forward);
CheckJump(&code, j1, 2);
CheckNop(&code, j2);
static int assembly[] = {0, 1, 1};
CheckAssemblyOrder(&code, kBlockCount, assembly);
}
TEST(Rewire1_deferred) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
int j1 = code.Jump(1);
// B1
int j2 = code.Jump(2);
// B2
code.Defer();
int j3 = code.Jump(3);
// B3
code.Return(0);
static int forward[] = {3, 3, 3, 3};
ApplyForwarding(&code, kBlockCount, forward);
CheckJump(&code, j1, 3);
CheckNop(&code, j2);
CheckNop(&code, j3);
static int assembly[] = {0, 1, 2, 1};
CheckAssemblyOrder(&code, kBlockCount, assembly);
}
TEST(Rewire2_deferred) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
code.Other();
int j1 = code.Jump(1);
// B1
code.Defer();
code.Fallthru();
// B2
code.Defer();
int j2 = code.Jump(3);
// B3
code.End();
static int forward[] = {0, 1, 2, 3};
ApplyForwarding(&code, kBlockCount, forward);
CheckJump(&code, j1, 1);
CheckJump(&code, j2, 3);
static int assembly[] = {0, 2, 3, 1};
CheckAssemblyOrder(&code, kBlockCount, assembly);
}
TEST(Rewire_deferred_diamond) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
int b1 = code.Branch(1, 2);
// B1
code.Fallthru(); // To B3
// B2
code.Defer();
int j1 = code.Jump(3);
// B3
code.Return(0);
static int forward[] = {0, 3, 3, 3};
VerifyForwarding(&code, kBlockCount, forward);
ApplyForwarding(&code, kBlockCount, forward);
CheckBranch(&code, b1, 3, 3);
CheckNop(&code, j1);
static int assembly[] = {0, 1, 2, 1};
CheckAssemblyOrder(&code, kBlockCount, assembly);
}
TEST(Rewire_diamond) {
constexpr size_t kBlockCount = 5;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
TestCode code(kBlockCount);
// B0
int j1 = code.Jump(1);
// B1
int b1 = code.Branch(2, 3);
// B2
int j2 = code.Jump(4);
// B3
int j3 = code.Jump(4);
// B5
code.End();
int forward[] = {0, 1, i ? 4 : 2, j ? 4 : 3, 4};
ApplyForwarding(&code, kBlockCount, forward);
CheckJump(&code, j1, 1);
CheckBranch(&code, b1, i ? 4 : 2, j ? 4 : 3);
if (i) {
CheckNop(&code, j2);
} else {
CheckJump(&code, j2, 4);
}
if (j) {
CheckNop(&code, j3);
} else {
CheckJump(&code, j3, 4);
}
int assembly[] = {0, 1, 2, 3, 4};
if (i) {
for (int k = 3; k < 5; k++) assembly[k]--;
}
if (j) {
for (int k = 4; k < 5; k++) assembly[k]--;
}
CheckAssemblyOrder(&code, kBlockCount, assembly);
}
}
}
TEST(RewireRet) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
code.Branch(1, 2);
// B1
int j1 = code.Return(0);
// B2
int j2 = code.Return(0);
// B3
code.End();
int forward[] = {0, 1, 1, 3};
VerifyForwarding(&code, 4, forward);
ApplyForwarding(&code, 4, forward);
CheckRet(&code, j1);
CheckNop(&code, j2);
}
TEST(RewireRet1) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
code.Branch(1, 2);
// B1
int j1 = code.Return(0);
// B2
int j2 = code.Return(0, true, true);
// B3
code.End();
int forward[] = {0, 1, 2, 3};
VerifyForwarding(&code, kBlockCount, forward);
ApplyForwarding(&code, kBlockCount, forward);
CheckRet(&code, j1);
CheckRet(&code, j2);
}
TEST(RewireRet2) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
code.Branch(1, 2);
// B1
int j1 = code.Return(0, true, true);
// B2
int j2 = code.Return(0, true, true);
// B3
code.End();
int forward[] = {0, 1, 1, 3};
VerifyForwarding(&code, kBlockCount, forward);
ApplyForwarding(&code, kBlockCount, forward);
CheckRet(&code, j1);
CheckNop(&code, j2);
}
TEST(DifferentSizeRet) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
code.Branch(1, 2);
// B1
int j1 = code.Return(0);
// B2
int j2 = code.Return(1);
// B3
code.End();
int forward[] = {0, 1, 2, 3};
VerifyForwarding(&code, kBlockCount, forward);
ApplyForwarding(&code, kBlockCount, forward);
CheckRet(&code, j1);
CheckRet(&code, j2);
}
TEST(RewireGapJump1) {
constexpr size_t kBlockCount = 4;
TestCode code(kBlockCount);
// B0
int j1 = code.JumpWithGapMove(3);
// B1
int j2 = code.JumpWithGapMove(3);
// B2
int j3 = code.JumpWithGapMove(3);
// B3
code.End();
int forward[] = {0, 0, 0, 3};
VerifyForwarding(&code, kBlockCount, forward);
ApplyForwarding(&code, kBlockCount, forward);
CheckJump(&code, j1, 3);
CheckNop(&code, j2);
CheckNop(&code, j3);
static int assembly[] = {0, 1, 1, 1};
CheckAssemblyOrder(&code, kBlockCount, assembly);
}
TEST(RewireGapJump2) {
constexpr size_t kBlockCount = 6;
TestCode code(kBlockCount);
// B0
int j1 = code.JumpWithGapMove(4);
// B1
int j2 = code.JumpWithGapMove(4);
// B2
code.Other();
int j3 = code.Jump(3);
// B3
int j4 = code.Jump(1);
// B4
int j5 = code.Jump(5);
// B5
code.End();
int forward[] = {0, 0, 2, 0, 5, 5};
VerifyForwarding(&code, kBlockCount, forward);
ApplyForwarding(&code, kBlockCount, forward);
CheckJump(&code, j1, 5);
CheckNop(&code, j2);
CheckJump(&code, j3, 0);
CheckNop(&code, j4);
CheckNop(&code, j5);
static int assembly[] = {0, 1, 1, 2, 2, 2};
CheckAssemblyOrder(&code, kBlockCount, assembly);
}
} // namespace compiler
} // namespace internal
} // namespace v8