v8/src/wasm/wasm-linkage.h
Clemens Backes 629db0a6cd [no-wasm] Forbid including wasm headers in no-wasm builds
This will make accidental includes much easier to see and fix. Without
this, you might get compiler or linker errors instead.

R=jkummerow@chromium.org

Bug: v8:11238
Cq-Include-Trybots: luci.v8.try:v8_linux64_no_wasm_compile_rel
Change-Id: I235d779f9c1ed3af5d736f1554ded427935ddc9b
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2756531
Commit-Queue: Clemens Backes <clemensb@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Cr-Commit-Position: refs/heads/master@{#73422}
2021-03-16 08:48:55 +00:00

258 lines
11 KiB
C++

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if !V8_ENABLE_WEBASSEMBLY
#error This header should only be included if WebAssembly is enabled.
#endif // !V8_ENABLE_WEBASSEMBLY
#ifndef V8_WASM_WASM_LINKAGE_H_
#define V8_WASM_WASM_LINKAGE_H_
#include "src/codegen/aligned-slot-allocator.h"
#include "src/codegen/assembler-arch.h"
#include "src/codegen/machine-type.h"
#include "src/codegen/signature.h"
#include "src/wasm/value-type.h"
namespace v8 {
namespace internal {
namespace wasm {
// TODO(wasm): optimize calling conventions to be both closer to C++ (to
// reduce adapter costs for fast Wasm <-> C++ calls) and to be more efficient
// in general.
#if V8_TARGET_ARCH_IA32
// ===========================================================================
// == ia32 ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {esi, eax, edx, ecx};
constexpr Register kGpReturnRegisters[] = {eax, edx};
constexpr DoubleRegister kFpParamRegisters[] = {xmm1, xmm2, xmm3,
xmm4, xmm5, xmm6};
constexpr DoubleRegister kFpReturnRegisters[] = {xmm1, xmm2};
#elif V8_TARGET_ARCH_X64
// ===========================================================================
// == x64 ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {rsi, rax, rdx, rcx, rbx, r9};
constexpr Register kGpReturnRegisters[] = {rax, rdx};
constexpr DoubleRegister kFpParamRegisters[] = {xmm1, xmm2, xmm3,
xmm4, xmm5, xmm6};
constexpr DoubleRegister kFpReturnRegisters[] = {xmm1, xmm2};
#elif V8_TARGET_ARCH_ARM
// ===========================================================================
// == arm ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r3, r0, r2, r6};
constexpr Register kGpReturnRegisters[] = {r0, r1};
// ARM d-registers must be in even/odd D-register pairs for correct allocation.
constexpr DoubleRegister kFpParamRegisters[] = {d0, d1, d2, d3, d4, d5, d6, d7};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d1};
#elif V8_TARGET_ARCH_ARM64
// ===========================================================================
// == arm64 ====================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {x7, x0, x2, x3, x4, x5, x6};
constexpr Register kGpReturnRegisters[] = {x0, x1};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d1, d2, d3, d4, d5, d6, d7};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d1};
#elif V8_TARGET_ARCH_MIPS
// ===========================================================================
// == mips ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {a0, a2, a3};
constexpr Register kGpReturnRegisters[] = {v0, v1};
constexpr DoubleRegister kFpParamRegisters[] = {f2, f4, f6, f8, f10, f12, f14};
constexpr DoubleRegister kFpReturnRegisters[] = {f2, f4};
#elif V8_TARGET_ARCH_MIPS64
// ===========================================================================
// == mips64 =================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {a0, a2, a3, a4, a5, a6, a7};
constexpr Register kGpReturnRegisters[] = {v0, v1};
constexpr DoubleRegister kFpParamRegisters[] = {f2, f4, f6, f8, f10, f12, f14};
constexpr DoubleRegister kFpReturnRegisters[] = {f2, f4};
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
// ===========================================================================
// == ppc & ppc64 ============================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r10, r3, r5, r6, r7, r8, r9};
constexpr Register kGpReturnRegisters[] = {r3, r4};
constexpr DoubleRegister kFpParamRegisters[] = {d1, d2, d3, d4, d5, d6, d7, d8};
constexpr DoubleRegister kFpReturnRegisters[] = {d1, d2};
#elif V8_TARGET_ARCH_S390X
// ===========================================================================
// == s390x ==================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r6, r2, r4, r5};
constexpr Register kGpReturnRegisters[] = {r2, r3};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d2, d4, d6};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d2, d4, d6};
#elif V8_TARGET_ARCH_S390
// ===========================================================================
// == s390 ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {r6, r2, r4, r5};
constexpr Register kGpReturnRegisters[] = {r2, r3};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d2};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d2};
#elif V8_TARGET_ARCH_RISCV64
// ===========================================================================
// == riscv64 =================================================================
// ===========================================================================
// Note that kGpParamRegisters and kFpParamRegisters are used in
// Builtins::Generate_WasmCompileLazy (builtins-riscv64.cc)
constexpr Register kGpParamRegisters[] = {a0, a2, a3, a4, a5, a6};
constexpr Register kGpReturnRegisters[] = {a0, a1};
constexpr DoubleRegister kFpParamRegisters[] = {fa0, fa1, fa2, fa3,
fa4, fa5, fa6};
constexpr DoubleRegister kFpReturnRegisters[] = {fa0, fa1};
#else
// ===========================================================================
// == unknown ================================================================
// ===========================================================================
// Do not use any registers, we will just always use the stack.
constexpr Register kGpParamRegisters[] = {};
constexpr Register kGpReturnRegisters[] = {};
constexpr DoubleRegister kFpParamRegisters[] = {};
constexpr DoubleRegister kFpReturnRegisters[] = {};
#endif
// The parameter index where the instance parameter should be placed in wasm
// call descriptors. This is used by the Int64Lowering::LowerNode method.
constexpr int kWasmInstanceParameterIndex = 0;
class LinkageAllocator {
public:
template <size_t kNumGpRegs, size_t kNumFpRegs>
constexpr LinkageAllocator(const Register (&gp)[kNumGpRegs],
const DoubleRegister (&fp)[kNumFpRegs])
: LinkageAllocator(gp, kNumGpRegs, fp, kNumFpRegs) {}
constexpr LinkageAllocator(const Register* gp, int gpc,
const DoubleRegister* fp, int fpc)
: gp_count_(gpc), gp_regs_(gp), fp_count_(fpc), fp_regs_(fp) {}
bool CanAllocateGP() const { return gp_offset_ < gp_count_; }
bool CanAllocateFP(MachineRepresentation rep) const {
#if V8_TARGET_ARCH_ARM
switch (rep) {
case MachineRepresentation::kFloat32: {
// Get the next D-register (Liftoff only uses the even S-registers).
int next = fp_allocator_.NextSlot(2) / 2;
// Only the lower 16 D-registers alias S-registers.
return next < fp_count_ && fp_regs_[next].code() < 16;
}
case MachineRepresentation::kFloat64: {
int next = fp_allocator_.NextSlot(2) / 2;
return next < fp_count_;
}
case MachineRepresentation::kSimd128: {
int next = fp_allocator_.NextSlot(4) / 2;
return next < fp_count_ - 1; // 2 D-registers are required.
}
default:
UNREACHABLE();
return false;
}
#else
return fp_offset_ < fp_count_;
#endif
}
int NextGpReg() {
DCHECK_LT(gp_offset_, gp_count_);
return gp_regs_[gp_offset_++].code();
}
int NextFpReg(MachineRepresentation rep) {
DCHECK(CanAllocateFP(rep));
#if V8_TARGET_ARCH_ARM
switch (rep) {
case MachineRepresentation::kFloat32: {
// Liftoff uses only even-numbered S-registers, and encodes them using
// the code of the corresponding D-register. This limits the calling
// interface to only using the even-numbered S-registers.
int d_reg_code = NextFpReg(MachineRepresentation::kFloat64);
DCHECK_GT(16, d_reg_code); // D16 - D31 don't alias S-registers.
return d_reg_code * 2;
}
case MachineRepresentation::kFloat64: {
int next = fp_allocator_.Allocate(2) / 2;
return fp_regs_[next].code();
}
case MachineRepresentation::kSimd128: {
int next = fp_allocator_.Allocate(4) / 2;
int d_reg_code = fp_regs_[next].code();
// Check that result and the next D-register pair.
DCHECK_EQ(0, d_reg_code % 2);
DCHECK_EQ(d_reg_code + 1, fp_regs_[next + 1].code());
return d_reg_code / 2;
}
default:
UNREACHABLE();
}
#else
return fp_regs_[fp_offset_++].code();
#endif
}
// Stackslots are counted upwards starting from 0 (or the offset set by
// {SetStackOffset}. If {type} needs more than one stack slot, the lowest
// used stack slot is returned.
int NextStackSlot(MachineRepresentation type) {
int num_slots =
AlignedSlotAllocator::NumSlotsForWidth(ElementSizeInBytes(type));
int slot = slot_allocator_.Allocate(num_slots);
return slot;
}
// Set an offset for the stack slots returned by {NextStackSlot} and
// {NumStackSlots}. Can only be called before any call to {NextStackSlot}.
void SetStackOffset(int offset) {
DCHECK_LE(0, offset);
DCHECK_EQ(0, slot_allocator_.Size());
slot_allocator_.AllocateUnaligned(offset);
}
int NumStackSlots() const { return slot_allocator_.Size(); }
void EndSlotArea() { slot_allocator_.AllocateUnaligned(0); }
private:
const int gp_count_;
int gp_offset_ = 0;
const Register* const gp_regs_;
const int fp_count_;
#if V8_TARGET_ARCH_ARM
// Use an aligned slot allocator to model ARM FP register aliasing. The slots
// are 32 bits, so 2 slots are required for a D-register, 4 for a Q-register.
AlignedSlotAllocator fp_allocator_;
#else
int fp_offset_ = 0;
#endif
const DoubleRegister* const fp_regs_;
AlignedSlotAllocator slot_allocator_;
};
} // namespace wasm
} // namespace internal
} // namespace v8
#endif // V8_WASM_WASM_LINKAGE_H_