v8/src/v8.cc
fschneider@chromium.org 48832819b7 Normalize statistics about compilation time and allocation size.
Now we print compilation time and zone allocation per KB of compiled
source code to better compare with previous revisions.

Review URL: http://codereview.chromium.org/6646015

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7128 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-03-10 13:26:51 +00:00

271 lines
7.5 KiB
C++

// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "debug.h"
#include "deoptimizer.h"
#include "heap-profiler.h"
#include "hydrogen.h"
#include "lithium-allocator.h"
#include "log.h"
#include "runtime-profiler.h"
#include "serialize.h"
#include "simulator.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
bool V8::is_running_ = false;
bool V8::has_been_setup_ = false;
bool V8::has_been_disposed_ = false;
bool V8::has_fatal_error_ = false;
bool V8::use_crankshaft_ = true;
bool V8::Initialize(Deserializer* des) {
bool create_heap_objects = des == NULL;
if (has_been_disposed_ || has_fatal_error_) return false;
if (IsRunning()) return true;
#if defined(V8_TARGET_ARCH_ARM) && !defined(USE_ARM_EABI)
use_crankshaft_ = false;
#else
use_crankshaft_ = FLAG_crankshaft;
#endif
// Peephole optimization might interfere with deoptimization.
FLAG_peephole_optimization = !use_crankshaft_;
is_running_ = true;
has_been_setup_ = true;
has_fatal_error_ = false;
has_been_disposed_ = false;
#ifdef DEBUG
// The initialization process does not handle memory exhaustion.
DisallowAllocationFailure disallow_allocation_failure;
#endif
// Enable logging before setting up the heap
Logger::Setup();
CpuProfiler::Setup();
HeapProfiler::Setup();
// Setup the platform OS support.
OS::Setup();
// Initialize other runtime facilities
#if defined(USE_SIMULATOR)
#if defined(V8_TARGET_ARCH_ARM)
Simulator::Initialize();
#elif defined(V8_TARGET_ARCH_MIPS)
::assembler::mips::Simulator::Initialize();
#endif
#endif
{ // NOLINT
// Ensure that the thread has a valid stack guard. The v8::Locker object
// will ensure this too, but we don't have to use lockers if we are only
// using one thread.
ExecutionAccess lock;
StackGuard::InitThread(lock);
}
// Setup the object heap
ASSERT(!Heap::HasBeenSetup());
if (!Heap::Setup(create_heap_objects)) {
SetFatalError();
return false;
}
Bootstrapper::Initialize(create_heap_objects);
Builtins::Setup(create_heap_objects);
Top::Initialize();
if (FLAG_preemption) {
v8::Locker locker;
v8::Locker::StartPreemption(100);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Debug::Setup(create_heap_objects);
#endif
StubCache::Initialize(create_heap_objects);
// If we are deserializing, read the state into the now-empty heap.
if (des != NULL) {
des->Deserialize();
StubCache::Clear();
}
// Deserializing may put strange things in the root array's copy of the
// stack guard.
Heap::SetStackLimits();
// Setup the CPU support. Must be done after heap setup and after
// any deserialization because we have to have the initial heap
// objects in place for creating the code object used for probing.
CPU::Setup();
Deoptimizer::Setup();
LAllocator::Setup();
RuntimeProfiler::Setup();
// If we are deserializing, log non-function code objects and compiled
// functions found in the snapshot.
if (des != NULL && FLAG_log_code) {
HandleScope scope;
LOG(LogCodeObjects());
LOG(LogCompiledFunctions());
}
return true;
}
void V8::SetFatalError() {
is_running_ = false;
has_fatal_error_ = true;
}
void V8::TearDown() {
if (!has_been_setup_ || has_been_disposed_) return;
if (FLAG_hydrogen_stats) HStatistics::Instance()->Print();
// We must stop the logger before we tear down other components.
Logger::EnsureTickerStopped();
Deoptimizer::TearDown();
if (FLAG_preemption) {
v8::Locker locker;
v8::Locker::StopPreemption();
}
Builtins::TearDown();
Bootstrapper::TearDown();
Top::TearDown();
HeapProfiler::TearDown();
CpuProfiler::TearDown();
RuntimeProfiler::TearDown();
Logger::TearDown();
Heap::TearDown();
is_running_ = false;
has_been_disposed_ = true;
}
static uint32_t random_seed() {
if (FLAG_random_seed == 0) {
return random();
}
return FLAG_random_seed;
}
typedef struct {
uint32_t hi;
uint32_t lo;
} random_state;
// Random number generator using George Marsaglia's MWC algorithm.
static uint32_t random_base(random_state *state) {
// Initialize seed using the system random(). If one of the seeds
// should ever become zero again, or if random() returns zero, we
// avoid getting stuck with zero bits in hi or lo by re-initializing
// them on demand.
if (state->hi == 0) state->hi = random_seed();
if (state->lo == 0) state->lo = random_seed();
// Mix the bits.
state->hi = 36969 * (state->hi & 0xFFFF) + (state->hi >> 16);
state->lo = 18273 * (state->lo & 0xFFFF) + (state->lo >> 16);
return (state->hi << 16) + (state->lo & 0xFFFF);
}
// Used by JavaScript APIs
uint32_t V8::Random() {
static random_state state = {0, 0};
return random_base(&state);
}
// Used internally by the JIT and memory allocator for security
// purposes. So, we keep a different state to prevent informations
// leaks that could be used in an exploit.
uint32_t V8::RandomPrivate() {
static random_state state = {0, 0};
return random_base(&state);
}
bool V8::IdleNotification() {
// Returning true tells the caller that there is no need to call
// IdleNotification again.
if (!FLAG_use_idle_notification) return true;
// Tell the heap that it may want to adjust.
return Heap::IdleNotification();
}
// Use a union type to avoid type-aliasing optimizations in GCC.
typedef union {
double double_value;
uint64_t uint64_t_value;
} double_int_union;
Object* V8::FillHeapNumberWithRandom(Object* heap_number) {
uint64_t random_bits = Random();
// Make a double* from address (heap_number + sizeof(double)).
double_int_union* r = reinterpret_cast<double_int_union*>(
reinterpret_cast<char*>(heap_number) +
HeapNumber::kValueOffset - kHeapObjectTag);
// Convert 32 random bits to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
const double binary_million = 1048576.0;
r->double_value = binary_million;
r->uint64_t_value |= random_bits;
r->double_value -= binary_million;
return heap_number;
}
} } // namespace v8::internal