8d283eddc0
Bonus: fix bitrot in (disabled) Hydrogen-BCH R=yangguo@chromium.org Review URL: https://codereview.chromium.org/623513002 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@24392 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
379 lines
14 KiB
C++
379 lines
14 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/hydrogen-bch.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
/*
|
|
* This class is a table with one element for eack basic block.
|
|
*
|
|
* It is used to check if, inside one loop, all execution paths contain
|
|
* a bounds check for a particular [index, length] combination.
|
|
* The reason is that if there is a path that stays in the loop without
|
|
* executing a check then the check cannot be hoisted out of the loop (it
|
|
* would likely fail and cause a deopt for no good reason).
|
|
* We also check is there are paths that exit the loop early, and if yes we
|
|
* perform the hoisting only if graph()->use_optimistic_licm() is true.
|
|
* The reason is that such paths are realtively common and harmless (like in
|
|
* a "search" method that scans an array until an element is found), but in
|
|
* some cases they could cause a deopt if we hoist the check so this is a
|
|
* situation we need to detect.
|
|
*/
|
|
class InductionVariableBlocksTable BASE_EMBEDDED {
|
|
public:
|
|
class Element {
|
|
public:
|
|
static const int kNoBlock = -1;
|
|
|
|
HBasicBlock* block() { return block_; }
|
|
void set_block(HBasicBlock* block) { block_ = block; }
|
|
bool is_start() { return is_start_; }
|
|
bool is_proper_exit() { return is_proper_exit_; }
|
|
bool is_in_loop() { return is_in_loop_; }
|
|
bool has_check() { return has_check_; }
|
|
void set_has_check() { has_check_ = true; }
|
|
InductionVariableLimitUpdate* additional_limit() {
|
|
return &additional_limit_;
|
|
}
|
|
|
|
/*
|
|
* Initializes the table element for a given loop (identified by its
|
|
* induction variable).
|
|
*/
|
|
void InitializeLoop(InductionVariableData* data) {
|
|
DCHECK(data->limit() != NULL);
|
|
HLoopInformation* loop = data->phi()->block()->current_loop();
|
|
is_start_ = (block() == loop->loop_header());
|
|
is_proper_exit_ = (block() == data->induction_exit_target());
|
|
is_in_loop_ = loop->IsNestedInThisLoop(block()->current_loop());
|
|
has_check_ = false;
|
|
}
|
|
|
|
// Utility methods to iterate over dominated blocks.
|
|
void ResetCurrentDominatedBlock() { current_dominated_block_ = kNoBlock; }
|
|
HBasicBlock* CurrentDominatedBlock() {
|
|
DCHECK(current_dominated_block_ != kNoBlock);
|
|
return current_dominated_block_ < block()->dominated_blocks()->length() ?
|
|
block()->dominated_blocks()->at(current_dominated_block_) : NULL;
|
|
}
|
|
HBasicBlock* NextDominatedBlock() {
|
|
current_dominated_block_++;
|
|
return CurrentDominatedBlock();
|
|
}
|
|
|
|
Element()
|
|
: block_(NULL), is_start_(false), is_proper_exit_(false),
|
|
has_check_(false), additional_limit_(),
|
|
current_dominated_block_(kNoBlock) {}
|
|
|
|
private:
|
|
HBasicBlock* block_;
|
|
bool is_start_;
|
|
bool is_proper_exit_;
|
|
bool is_in_loop_;
|
|
bool has_check_;
|
|
InductionVariableLimitUpdate additional_limit_;
|
|
int current_dominated_block_;
|
|
};
|
|
|
|
HGraph* graph() const { return graph_; }
|
|
Counters* counters() const { return graph()->isolate()->counters(); }
|
|
HBasicBlock* loop_header() const { return loop_header_; }
|
|
Element* at(int index) const { return &(elements_.at(index)); }
|
|
Element* at(HBasicBlock* block) const { return at(block->block_id()); }
|
|
|
|
void AddCheckAt(HBasicBlock* block) {
|
|
at(block->block_id())->set_has_check();
|
|
}
|
|
|
|
/*
|
|
* Initializes the table for a given loop (identified by its induction
|
|
* variable).
|
|
*/
|
|
void InitializeLoop(InductionVariableData* data) {
|
|
for (int i = 0; i < graph()->blocks()->length(); i++) {
|
|
at(i)->InitializeLoop(data);
|
|
}
|
|
loop_header_ = data->phi()->block()->current_loop()->loop_header();
|
|
}
|
|
|
|
|
|
enum Hoistability {
|
|
HOISTABLE,
|
|
OPTIMISTICALLY_HOISTABLE,
|
|
NOT_HOISTABLE
|
|
};
|
|
|
|
/*
|
|
* This method checks if it is appropriate to hoist the bounds checks on an
|
|
* induction variable out of the loop.
|
|
* The problem is that in the loop code graph there could be execution paths
|
|
* where the check is not performed, but hoisting the check has the same
|
|
* semantics as performing it at every loop iteration, which could cause
|
|
* unnecessary check failures (which would mean unnecessary deoptimizations).
|
|
* The method returns OK if there are no paths that perform an iteration
|
|
* (loop back to the header) without meeting a check, or UNSAFE is set if
|
|
* early exit paths are found.
|
|
*/
|
|
Hoistability CheckHoistability() {
|
|
for (int i = 0; i < elements_.length(); i++) {
|
|
at(i)->ResetCurrentDominatedBlock();
|
|
}
|
|
bool unsafe = false;
|
|
|
|
HBasicBlock* current = loop_header();
|
|
while (current != NULL) {
|
|
HBasicBlock* next;
|
|
|
|
if (at(current)->has_check() || !at(current)->is_in_loop()) {
|
|
// We found a check or we reached a dominated block out of the loop,
|
|
// therefore this block is safe and we can backtrack.
|
|
next = NULL;
|
|
} else {
|
|
for (int i = 0; i < current->end()->SuccessorCount(); i ++) {
|
|
Element* successor = at(current->end()->SuccessorAt(i));
|
|
|
|
if (!successor->is_in_loop()) {
|
|
if (!successor->is_proper_exit()) {
|
|
// We found a path that exits the loop early, and is not the exit
|
|
// related to the induction limit, therefore hoisting checks is
|
|
// an optimistic assumption.
|
|
unsafe = true;
|
|
}
|
|
}
|
|
|
|
if (successor->is_start()) {
|
|
// We found a path that does one loop iteration without meeting any
|
|
// check, therefore hoisting checks would be likely to cause
|
|
// unnecessary deopts.
|
|
return NOT_HOISTABLE;
|
|
}
|
|
}
|
|
|
|
next = at(current)->NextDominatedBlock();
|
|
}
|
|
|
|
// If we have no next block we need to backtrack the tree traversal.
|
|
while (next == NULL) {
|
|
current = current->dominator();
|
|
if (current != NULL) {
|
|
next = at(current)->NextDominatedBlock();
|
|
} else {
|
|
// We reached the root: next stays NULL.
|
|
next = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
current = next;
|
|
}
|
|
|
|
return unsafe ? OPTIMISTICALLY_HOISTABLE : HOISTABLE;
|
|
}
|
|
|
|
explicit InductionVariableBlocksTable(HGraph* graph)
|
|
: graph_(graph), loop_header_(NULL),
|
|
elements_(graph->blocks()->length(), graph->zone()) {
|
|
for (int i = 0; i < graph->blocks()->length(); i++) {
|
|
Element element;
|
|
element.set_block(graph->blocks()->at(i));
|
|
elements_.Add(element, graph->zone());
|
|
DCHECK(at(i)->block()->block_id() == i);
|
|
}
|
|
}
|
|
|
|
// Tries to hoist a check out of its induction loop.
|
|
void ProcessRelatedChecks(
|
|
InductionVariableData::InductionVariableCheck* check,
|
|
InductionVariableData* data) {
|
|
HValue* length = check->check()->length();
|
|
check->set_processed();
|
|
HBasicBlock* header =
|
|
data->phi()->block()->current_loop()->loop_header();
|
|
HBasicBlock* pre_header = header->predecessors()->at(0);
|
|
// Check that the limit is defined in the loop preheader.
|
|
if (!data->limit()->IsInteger32Constant()) {
|
|
HBasicBlock* limit_block = data->limit()->block();
|
|
if (limit_block != pre_header &&
|
|
!limit_block->Dominates(pre_header)) {
|
|
return;
|
|
}
|
|
}
|
|
// Check that the length and limit have compatible representations.
|
|
if (!(data->limit()->representation().Equals(
|
|
length->representation()) ||
|
|
data->limit()->IsInteger32Constant())) {
|
|
return;
|
|
}
|
|
// Check that the length is defined in the loop preheader.
|
|
if (check->check()->length()->block() != pre_header &&
|
|
!check->check()->length()->block()->Dominates(pre_header)) {
|
|
return;
|
|
}
|
|
|
|
// Add checks to the table.
|
|
for (InductionVariableData::InductionVariableCheck* current_check = check;
|
|
current_check != NULL;
|
|
current_check = current_check->next()) {
|
|
if (current_check->check()->length() != length) continue;
|
|
|
|
AddCheckAt(current_check->check()->block());
|
|
current_check->set_processed();
|
|
}
|
|
|
|
// Check that we will not cause unwanted deoptimizations.
|
|
Hoistability hoistability = CheckHoistability();
|
|
if (hoistability == NOT_HOISTABLE ||
|
|
(hoistability == OPTIMISTICALLY_HOISTABLE &&
|
|
!graph()->use_optimistic_licm())) {
|
|
return;
|
|
}
|
|
|
|
// We will do the hoisting, but we must see if the limit is "limit" or if
|
|
// all checks are done on constants: if all check are done against the same
|
|
// constant limit we will use that instead of the induction limit.
|
|
bool has_upper_constant_limit = true;
|
|
int32_t upper_constant_limit =
|
|
check->HasUpperLimit() ? check->upper_limit() : 0;
|
|
for (InductionVariableData::InductionVariableCheck* current_check = check;
|
|
current_check != NULL;
|
|
current_check = current_check->next()) {
|
|
has_upper_constant_limit =
|
|
has_upper_constant_limit && current_check->HasUpperLimit() &&
|
|
current_check->upper_limit() == upper_constant_limit;
|
|
counters()->bounds_checks_eliminated()->Increment();
|
|
current_check->check()->set_skip_check();
|
|
}
|
|
|
|
// Choose the appropriate limit.
|
|
Zone* zone = graph()->zone();
|
|
HValue* context = graph()->GetInvalidContext();
|
|
HValue* limit = data->limit();
|
|
if (has_upper_constant_limit) {
|
|
HConstant* new_limit = HConstant::New(zone, context,
|
|
upper_constant_limit);
|
|
new_limit->InsertBefore(pre_header->end());
|
|
limit = new_limit;
|
|
}
|
|
|
|
// If necessary, redefine the limit in the preheader.
|
|
if (limit->IsInteger32Constant() &&
|
|
limit->block() != pre_header &&
|
|
!limit->block()->Dominates(pre_header)) {
|
|
HConstant* new_limit = HConstant::New(zone, context,
|
|
limit->GetInteger32Constant());
|
|
new_limit->InsertBefore(pre_header->end());
|
|
limit = new_limit;
|
|
}
|
|
|
|
// Do the hoisting.
|
|
HBoundsCheck* hoisted_check = HBoundsCheck::New(
|
|
zone, context, limit, check->check()->length());
|
|
hoisted_check->InsertBefore(pre_header->end());
|
|
hoisted_check->set_allow_equality(true);
|
|
counters()->bounds_checks_hoisted()->Increment();
|
|
}
|
|
|
|
void CollectInductionVariableData(HBasicBlock* bb) {
|
|
bool additional_limit = false;
|
|
|
|
for (int i = 0; i < bb->phis()->length(); i++) {
|
|
HPhi* phi = bb->phis()->at(i);
|
|
phi->DetectInductionVariable();
|
|
}
|
|
|
|
additional_limit = InductionVariableData::ComputeInductionVariableLimit(
|
|
bb, at(bb)->additional_limit());
|
|
|
|
if (additional_limit) {
|
|
at(bb)->additional_limit()->updated_variable->
|
|
UpdateAdditionalLimit(at(bb)->additional_limit());
|
|
}
|
|
|
|
for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
|
|
if (!i->IsBoundsCheck()) continue;
|
|
HBoundsCheck* check = HBoundsCheck::cast(i);
|
|
InductionVariableData::BitwiseDecompositionResult decomposition;
|
|
InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
|
|
if (!decomposition.base->IsPhi()) continue;
|
|
HPhi* phi = HPhi::cast(decomposition.base);
|
|
|
|
if (!phi->IsInductionVariable()) continue;
|
|
InductionVariableData* data = phi->induction_variable_data();
|
|
|
|
// For now ignore loops decrementing the index.
|
|
if (data->increment() <= 0) continue;
|
|
if (!data->LowerLimitIsNonNegativeConstant()) continue;
|
|
|
|
// TODO(mmassi): skip OSR values for check->length().
|
|
if (check->length() == data->limit() ||
|
|
check->length() == data->additional_upper_limit()) {
|
|
counters()->bounds_checks_eliminated()->Increment();
|
|
check->set_skip_check();
|
|
continue;
|
|
}
|
|
|
|
if (!phi->IsLimitedInductionVariable()) continue;
|
|
|
|
int32_t limit = data->ComputeUpperLimit(decomposition.and_mask,
|
|
decomposition.or_mask);
|
|
phi->induction_variable_data()->AddCheck(check, limit);
|
|
}
|
|
|
|
for (int i = 0; i < bb->dominated_blocks()->length(); i++) {
|
|
CollectInductionVariableData(bb->dominated_blocks()->at(i));
|
|
}
|
|
|
|
if (additional_limit) {
|
|
at(bb->block_id())->additional_limit()->updated_variable->
|
|
UpdateAdditionalLimit(at(bb->block_id())->additional_limit());
|
|
}
|
|
}
|
|
|
|
void EliminateRedundantBoundsChecks(HBasicBlock* bb) {
|
|
for (int i = 0; i < bb->phis()->length(); i++) {
|
|
HPhi* phi = bb->phis()->at(i);
|
|
if (!phi->IsLimitedInductionVariable()) continue;
|
|
|
|
InductionVariableData* induction_data = phi->induction_variable_data();
|
|
InductionVariableData::ChecksRelatedToLength* current_length_group =
|
|
induction_data->checks();
|
|
while (current_length_group != NULL) {
|
|
current_length_group->CloseCurrentBlock();
|
|
InductionVariableData::InductionVariableCheck* current_base_check =
|
|
current_length_group->checks();
|
|
InitializeLoop(induction_data);
|
|
|
|
while (current_base_check != NULL) {
|
|
ProcessRelatedChecks(current_base_check, induction_data);
|
|
while (current_base_check != NULL &&
|
|
current_base_check->processed()) {
|
|
current_base_check = current_base_check->next();
|
|
}
|
|
}
|
|
|
|
current_length_group = current_length_group->next();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
HGraph* graph_;
|
|
HBasicBlock* loop_header_;
|
|
ZoneList<Element> elements_;
|
|
};
|
|
|
|
|
|
void HBoundsCheckHoistingPhase::HoistRedundantBoundsChecks() {
|
|
InductionVariableBlocksTable table(graph());
|
|
table.CollectInductionVariableData(graph()->entry_block());
|
|
for (int i = 0; i < graph()->blocks()->length(); i++) {
|
|
table.EliminateRedundantBoundsChecks(graph()->blocks()->at(i));
|
|
}
|
|
}
|
|
|
|
} } // namespace v8::internal
|