v8/src/mips/codegen-mips.h
ricow@chromium.org 4957326521 Refactor type checks in v8natives.js and runtime.js.
This includes adding a new inline IsSpecObject method to the code
generator.  The old approach was somehow ineffecient since we would
call both IsObject, IsUndetectable and IsFunction to determine if
something was an object according to the spec. This change introduces
a new macro that determines if something is an object according to the
spec (and this does not include null). 

This change also corrects a few places where undetectable objects was
not allowed even when they should be (priorly they would use only
IS_SPEC_OBJECT_OR_NULL, which would return false on an undetectable
object, the new IS_SPEC_OBJECT returns true on an undetectable object.

Review URL: http://codereview.chromium.org/2877018

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5087 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-07-16 11:21:08 +00:00

435 lines
15 KiB
C++

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_MIPS_CODEGEN_MIPS_H_
#define V8_MIPS_CODEGEN_MIPS_H_
namespace v8 {
namespace internal {
// Forward declarations
class CompilationInfo;
class DeferredCode;
class RegisterAllocator;
class RegisterFile;
enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
// -----------------------------------------------------------------------------
// Reference support
// A reference is a C++ stack-allocated object that keeps an ECMA
// reference on the execution stack while in scope. For variables
// the reference is empty, indicating that it isn't necessary to
// store state on the stack for keeping track of references to those.
// For properties, we keep either one (named) or two (indexed) values
// on the execution stack to represent the reference.
class Reference BASE_EMBEDDED {
public:
// The values of the types is important, see size().
enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get = false);
~Reference();
Expression* expression() const { return expression_; }
Type type() const { return type_; }
void set_type(Type value) {
ASSERT_EQ(ILLEGAL, type_);
type_ = value;
}
void set_unloaded() {
ASSERT_NE(ILLEGAL, type_);
ASSERT_NE(UNLOADED, type_);
type_ = UNLOADED;
}
// The size the reference takes up on the stack.
int size() const {
return (type_ < SLOT) ? 0 : type_;
}
bool is_illegal() const { return type_ == ILLEGAL; }
bool is_slot() const { return type_ == SLOT; }
bool is_property() const { return type_ == NAMED || type_ == KEYED; }
bool is_unloaded() const { return type_ == UNLOADED; }
// Return the name. Only valid for named property references.
Handle<String> GetName();
// Generate code to push the value of the reference on top of the
// expression stack. The reference is expected to be already on top of
// the expression stack, and it is consumed by the call unless the
// reference is for a compound assignment.
// If the reference is not consumed, it is left in place under its value.
void GetValue();
// Generate code to pop a reference, push the value of the reference,
// and then spill the stack frame.
inline void GetValueAndSpill();
// Generate code to store the value on top of the expression stack in the
// reference. The reference is expected to be immediately below the value
// on the expression stack. The value is stored in the location specified
// by the reference, and is left on top of the stack, after the reference
// is popped from beneath it (unloaded).
void SetValue(InitState init_state);
private:
CodeGenerator* cgen_;
Expression* expression_;
Type type_;
// Keep the reference on the stack after get, so it can be used by set later.
bool persist_after_get_;
};
// -----------------------------------------------------------------------------
// Code generation state
// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the label pair). It is threaded through the
// call stack. Constructing a state implicitly pushes it on the owning code
// generator's stack of states, and destroying one implicitly pops it.
class CodeGenState BASE_EMBEDDED {
public:
// Create an initial code generator state. Destroying the initial state
// leaves the code generator with a NULL state.
explicit CodeGenState(CodeGenerator* owner);
// Create a code generator state based on a code generator's current
// state. The new state has its own typeof state and pair of branch
// labels.
CodeGenState(CodeGenerator* owner,
JumpTarget* true_target,
JumpTarget* false_target);
// Destroy a code generator state and restore the owning code generator's
// previous state.
~CodeGenState();
TypeofState typeof_state() const { return typeof_state_; }
JumpTarget* true_target() const { return true_target_; }
JumpTarget* false_target() const { return false_target_; }
private:
// The owning code generator.
CodeGenerator* owner_;
// A flag indicating whether we are compiling the immediate subexpression
// of a typeof expression.
TypeofState typeof_state_;
JumpTarget* true_target_;
JumpTarget* false_target_;
// The previous state of the owning code generator, restored when
// this state is destroyed.
CodeGenState* previous_;
};
// -----------------------------------------------------------------------------
// CodeGenerator
class CodeGenerator: public AstVisitor {
public:
// Compilation mode. Either the compiler is used as the primary
// compiler and needs to setup everything or the compiler is used as
// the secondary compiler for split compilation and has to handle
// bailouts.
enum Mode {
PRIMARY,
SECONDARY
};
// Takes a function literal, generates code for it. This function should only
// be called by compiler.cc.
static Handle<Code> MakeCode(CompilationInfo* info);
// Printing of AST, etc. as requested by flags.
static void MakeCodePrologue(CompilationInfo* info);
// Allocate and install the code.
static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
Code::Flags flags,
CompilationInfo* info);
#ifdef ENABLE_LOGGING_AND_PROFILING
static bool ShouldGenerateLog(Expression* type);
#endif
static void SetFunctionInfo(Handle<JSFunction> fun,
FunctionLiteral* lit,
bool is_toplevel,
Handle<Script> script);
static void RecordPositions(MacroAssembler* masm, int pos);
// Accessors
MacroAssembler* masm() { return masm_; }
VirtualFrame* frame() const { return frame_; }
inline Handle<Script> script();
bool has_valid_frame() const { return frame_ != NULL; }
// Set the virtual frame to be new_frame, with non-frame register
// reference counts given by non_frame_registers. The non-frame
// register reference counts of the old frame are returned in
// non_frame_registers.
void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
void DeleteFrame();
RegisterAllocator* allocator() const { return allocator_; }
CodeGenState* state() { return state_; }
void set_state(CodeGenState* state) { state_ = state; }
void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
static const int kUnknownIntValue = -1;
// Number of instructions used for the JS return sequence. The constant is
// used by the debugger to patch the JS return sequence.
static const int kJSReturnSequenceLength = 7;
// If the name is an inline runtime function call return the number of
// expected arguments. Otherwise return -1.
static int InlineRuntimeCallArgumentsCount(Handle<String> name);
private:
// Construction/Destruction.
explicit CodeGenerator(MacroAssembler* masm);
// Accessors.
inline bool is_eval();
inline Scope* scope();
// Generating deferred code.
void ProcessDeferred();
// State
bool has_cc() const { return cc_reg_ != cc_always; }
TypeofState typeof_state() const { return state_->typeof_state(); }
JumpTarget* true_target() const { return state_->true_target(); }
JumpTarget* false_target() const { return state_->false_target(); }
// We don't track loop nesting level on mips yet.
int loop_nesting() const { return 0; }
// Node visitors.
void VisitStatements(ZoneList<Statement*>* statements);
#define DEF_VISIT(type) \
void Visit##type(type* node);
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
// Visit a statement and then spill the virtual frame if control flow can
// reach the end of the statement (ie, it does not exit via break,
// continue, return, or throw). This function is used temporarily while
// the code generator is being transformed.
inline void VisitAndSpill(Statement* statement);
// Visit a list of statements and then spill the virtual frame if control
// flow can reach the end of the list.
inline void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
// Main code generation function
void Generate(CompilationInfo* info);
// The following are used by class Reference.
void LoadReference(Reference* ref);
void UnloadReference(Reference* ref);
MemOperand ContextOperand(Register context, int index) const {
return MemOperand(context, Context::SlotOffset(index));
}
MemOperand SlotOperand(Slot* slot, Register tmp);
// Expressions
MemOperand GlobalObject() const {
return ContextOperand(cp, Context::GLOBAL_INDEX);
}
void LoadCondition(Expression* x,
JumpTarget* true_target,
JumpTarget* false_target,
bool force_cc);
void Load(Expression* x);
void LoadGlobal();
// Generate code to push the value of an expression on top of the frame
// and then spill the frame fully to memory. This function is used
// temporarily while the code generator is being transformed.
inline void LoadAndSpill(Expression* expression);
// Read a value from a slot and leave it on top of the expression stack.
void LoadFromSlot(Slot* slot, TypeofState typeof_state);
// Store the value on top of the stack to a slot.
void StoreToSlot(Slot* slot, InitState init_state);
struct InlineRuntimeLUT {
void (CodeGenerator::*method)(ZoneList<Expression*>*);
const char* name;
int nargs;
};
static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
bool CheckForInlineRuntimeCall(CallRuntime* node);
static bool PatchInlineRuntimeEntry(Handle<String> name,
const InlineRuntimeLUT& new_entry,
InlineRuntimeLUT* old_entry);
static Handle<Code> ComputeLazyCompile(int argc);
void ProcessDeclarations(ZoneList<Declaration*>* declarations);
Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
// Declare global variables and functions in the given array of
// name/value pairs.
void DeclareGlobals(Handle<FixedArray> pairs);
// Support for type checks.
void GenerateIsSmi(ZoneList<Expression*>* args);
void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
void GenerateIsArray(ZoneList<Expression*>* args);
void GenerateIsRegExp(ZoneList<Expression*>* args);
// Support for construct call checks.
void GenerateIsConstructCall(ZoneList<Expression*>* args);
// Support for arguments.length and arguments[?].
void GenerateArgumentsLength(ZoneList<Expression*>* args);
void GenerateArguments(ZoneList<Expression*>* args);
// Support for accessing the class and value fields of an object.
void GenerateClassOf(ZoneList<Expression*>* args);
void GenerateValueOf(ZoneList<Expression*>* args);
void GenerateSetValueOf(ZoneList<Expression*>* args);
// Fast support for charCodeAt(n).
void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
// Fast support for string.charAt(n) and string[n].
void GenerateCharFromCode(ZoneList<Expression*>* args);
// Fast support for object equality testing.
void GenerateObjectEquals(ZoneList<Expression*>* args);
void GenerateLog(ZoneList<Expression*>* args);
// Fast support for Math.random().
void GenerateRandomHeapNumber(ZoneList<Expression*>* args);
void GenerateIsObject(ZoneList<Expression*>* args);
void GenerateIsSpecObject(ZoneList<Expression*>* args);
void GenerateIsFunction(ZoneList<Expression*>* args);
void GenerateIsUndetectableObject(ZoneList<Expression*>* args);
void GenerateStringAdd(ZoneList<Expression*>* args);
void GenerateSubString(ZoneList<Expression*>* args);
void GenerateStringCompare(ZoneList<Expression*>* args);
void GenerateRegExpExec(ZoneList<Expression*>* args);
void GenerateNumberToString(ZoneList<Expression*>* args);
// Fast call to math functions.
void GenerateMathPow(ZoneList<Expression*>* args);
void GenerateMathSin(ZoneList<Expression*>* args);
void GenerateMathCos(ZoneList<Expression*>* args);
void GenerateMathSqrt(ZoneList<Expression*>* args);
// Simple condition analysis.
enum ConditionAnalysis {
ALWAYS_TRUE,
ALWAYS_FALSE,
DONT_KNOW
};
ConditionAnalysis AnalyzeCondition(Expression* cond);
// Methods used to indicate which source code is generated for. Source
// positions are collected by the assembler and emitted with the relocation
// information.
void CodeForFunctionPosition(FunctionLiteral* fun);
void CodeForReturnPosition(FunctionLiteral* fun);
void CodeForStatementPosition(Statement* node);
void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
void CodeForSourcePosition(int pos);
#ifdef DEBUG
// True if the registers are valid for entry to a block.
bool HasValidEntryRegisters();
#endif
bool is_eval_; // Tells whether code is generated for eval.
Handle<Script> script_;
List<DeferredCode*> deferred_;
// Assembler
MacroAssembler* masm_; // to generate code
CompilationInfo* info_;
// Code generation state
VirtualFrame* frame_;
RegisterAllocator* allocator_;
Condition cc_reg_;
CodeGenState* state_;
// Jump targets
BreakTarget function_return_;
// True if the function return is shadowed (ie, jumping to the target
// function_return_ does not jump to the true function return, but rather
// to some unlinking code).
bool function_return_is_shadowed_;
static InlineRuntimeLUT kInlineRuntimeLUT[];
friend class VirtualFrame;
friend class JumpTarget;
friend class Reference;
friend class FastCodeGenerator;
friend class FullCodeGenerator;
friend class FullCodeGenSyntaxChecker;
DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};
} } // namespace v8::internal
#endif // V8_MIPS_CODEGEN_MIPS_H_