v8/src/compiler/redundancy-elimination.cc
bmeurer cf4b9307ad [turbofan] Consume SignedSmall feedback for number operations.
So far we treated SignedSmall and Signed32 feedback the same for number
operations. However it would be beneficial to generate (a lot) less code
if we only do a Smi check on the inputs instead of doing the full Smi +
HeapNumber + conversion check that we need to do for Signed32 feedback.

R=epertoso@chromium.org
BUG=v8:4583

Review-Url: https://codereview.chromium.org/2207893002
Cr-Commit-Position: refs/heads/master@{#38290}
2016-08-03 12:47:53 +00:00

240 lines
7.9 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/redundancy-elimination.h"
#include "src/compiler/node-properties.h"
namespace v8 {
namespace internal {
namespace compiler {
RedundancyElimination::RedundancyElimination(Editor* editor, Zone* zone)
: AdvancedReducer(editor), node_checks_(zone), zone_(zone) {}
RedundancyElimination::~RedundancyElimination() {}
Reduction RedundancyElimination::Reduce(Node* node) {
switch (node->opcode()) {
case IrOpcode::kCheckBounds:
case IrOpcode::kCheckFloat64Hole:
case IrOpcode::kCheckIf:
case IrOpcode::kCheckNumber:
case IrOpcode::kCheckString:
case IrOpcode::kCheckTaggedHole:
case IrOpcode::kCheckTaggedPointer:
case IrOpcode::kCheckTaggedSigned:
case IrOpcode::kCheckedFloat64ToInt32:
case IrOpcode::kCheckedInt32Add:
case IrOpcode::kCheckedInt32Sub:
case IrOpcode::kCheckedInt32Div:
case IrOpcode::kCheckedInt32Mod:
case IrOpcode::kCheckedInt32Mul:
case IrOpcode::kCheckedTaggedToFloat64:
case IrOpcode::kCheckedTaggedSignedToInt32:
case IrOpcode::kCheckedTaggedToInt32:
case IrOpcode::kCheckedUint32ToInt32:
return ReduceCheckNode(node);
case IrOpcode::kEffectPhi:
return ReduceEffectPhi(node);
case IrOpcode::kDead:
break;
case IrOpcode::kStart:
return ReduceStart(node);
default:
return ReduceOtherNode(node);
}
return NoChange();
}
// static
RedundancyElimination::EffectPathChecks*
RedundancyElimination::EffectPathChecks::Copy(Zone* zone,
EffectPathChecks const* checks) {
return new (zone->New(sizeof(EffectPathChecks))) EffectPathChecks(*checks);
}
// static
RedundancyElimination::EffectPathChecks const*
RedundancyElimination::EffectPathChecks::Empty(Zone* zone) {
return new (zone->New(sizeof(EffectPathChecks))) EffectPathChecks(nullptr, 0);
}
bool RedundancyElimination::EffectPathChecks::Equals(
EffectPathChecks const* that) const {
if (this->size_ != that->size_) return false;
Check* this_head = this->head_;
Check* that_head = that->head_;
while (this_head != that_head) {
if (this_head->node != that_head->node) return false;
this_head = this_head->next;
that_head = that_head->next;
}
return true;
}
void RedundancyElimination::EffectPathChecks::Merge(
EffectPathChecks const* that) {
// Change the current check list to a longest common tail of this check
// list and the other list.
// First, we throw away the prefix of the longer list, so that
// we have lists of the same length.
Check* that_head = that->head_;
size_t that_size = that->size_;
while (that_size > size_) {
that_head = that_head->next;
that_size--;
}
while (size_ > that_size) {
head_ = head_->next;
size_--;
}
// Then we go through both lists in lock-step until we find
// the common tail.
while (head_ != that_head) {
DCHECK_LT(0u, size_);
DCHECK_NOT_NULL(head_);
size_--;
head_ = head_->next;
that_head = that_head->next;
}
}
RedundancyElimination::EffectPathChecks const*
RedundancyElimination::EffectPathChecks::AddCheck(Zone* zone,
Node* node) const {
Check* head = new (zone->New(sizeof(Check))) Check(node, head_);
return new (zone->New(sizeof(EffectPathChecks)))
EffectPathChecks(head, size_ + 1);
}
namespace {
bool IsCompatibleCheck(Node const* a, Node const* b) {
if (a->op() != b->op()) return false;
for (int i = a->op()->ValueInputCount(); --i >= 0;) {
if (a->InputAt(i) != b->InputAt(i)) return false;
}
return true;
}
} // namespace
Node* RedundancyElimination::EffectPathChecks::LookupCheck(Node* node) const {
for (Check const* check = head_; check != nullptr; check = check->next) {
if (IsCompatibleCheck(check->node, node)) {
DCHECK(!check->node->IsDead());
return check->node;
}
}
return nullptr;
}
RedundancyElimination::EffectPathChecks const*
RedundancyElimination::PathChecksForEffectNodes::Get(Node* node) const {
size_t const id = node->id();
if (id < info_for_node_.size()) return info_for_node_[id];
return nullptr;
}
void RedundancyElimination::PathChecksForEffectNodes::Set(
Node* node, EffectPathChecks const* checks) {
size_t const id = node->id();
if (id >= info_for_node_.size()) info_for_node_.resize(id + 1, nullptr);
info_for_node_[id] = checks;
}
Reduction RedundancyElimination::ReduceCheckNode(Node* node) {
Node* const effect = NodeProperties::GetEffectInput(node);
EffectPathChecks const* checks = node_checks_.Get(effect);
// If we do not know anything about the predecessor, do not propagate just yet
// because we will have to recompute anyway once we compute the predecessor.
if (checks == nullptr) return NoChange();
// See if we have another check that dominates us.
if (Node* check = checks->LookupCheck(node)) {
ReplaceWithValue(node, check);
return Replace(check);
}
// Learn from this check.
return UpdateChecks(node, checks->AddCheck(zone(), node));
}
Reduction RedundancyElimination::ReduceEffectPhi(Node* node) {
Node* const control = NodeProperties::GetControlInput(node);
if (control->opcode() == IrOpcode::kLoop) {
// Here we rely on having only reducible loops:
// The loop entry edge always dominates the header, so we can just use
// the information from the loop entry edge.
return TakeChecksFromFirstEffect(node);
}
DCHECK_EQ(IrOpcode::kMerge, control->opcode());
// Shortcut for the case when we do not know anything about some input.
int const input_count = node->op()->EffectInputCount();
for (int i = 0; i < input_count; ++i) {
Node* const effect = NodeProperties::GetEffectInput(node, i);
if (node_checks_.Get(effect) == nullptr) return NoChange();
}
// Make a copy of the first input's checks and merge with the checks
// from other inputs.
EffectPathChecks* checks = EffectPathChecks::Copy(
zone(), node_checks_.Get(NodeProperties::GetEffectInput(node, 0)));
for (int i = 1; i < input_count; ++i) {
Node* const input = NodeProperties::GetEffectInput(node, i);
checks->Merge(node_checks_.Get(input));
}
return UpdateChecks(node, checks);
}
Reduction RedundancyElimination::ReduceStart(Node* node) {
return UpdateChecks(node, EffectPathChecks::Empty(zone()));
}
Reduction RedundancyElimination::ReduceOtherNode(Node* node) {
if (node->op()->EffectInputCount() == 1) {
if (node->op()->EffectOutputCount() == 1) {
return TakeChecksFromFirstEffect(node);
} else {
// Effect terminators should be handled specially.
return NoChange();
}
}
DCHECK_EQ(0, node->op()->EffectInputCount());
DCHECK_EQ(0, node->op()->EffectOutputCount());
return NoChange();
}
Reduction RedundancyElimination::TakeChecksFromFirstEffect(Node* node) {
DCHECK_EQ(1, node->op()->EffectOutputCount());
Node* const effect = NodeProperties::GetEffectInput(node);
EffectPathChecks const* checks = node_checks_.Get(effect);
// If we do not know anything about the predecessor, do not propagate just yet
// because we will have to recompute anyway once we compute the predecessor.
if (checks == nullptr) return NoChange();
// We just propagate the information from the effect input (ideally,
// we would only revisit effect uses if there is change).
return UpdateChecks(node, checks);
}
Reduction RedundancyElimination::UpdateChecks(Node* node,
EffectPathChecks const* checks) {
EffectPathChecks const* original = node_checks_.Get(node);
// Only signal that the {node} has Changed, if the information about {checks}
// has changed wrt. the {original}.
if (checks != original) {
if (original == nullptr || !checks->Equals(original)) {
node_checks_.Set(node, checks);
return Changed(node);
}
}
return NoChange();
}
} // namespace compiler
} // namespace internal
} // namespace v8