v8/test/unittests/heap/marking-inner-pointer-resolution-unittest.cc
Clemens Backes 7d3d3a780c [heap] Use v8_flags for accessing flag values
Avoid the deprecated FLAG_* syntax, access flag values via the
{v8_flags} struct instead.

R=mlippautz@chromium.org

Bug: v8:12887
Change-Id: Id12f9d8270dd9fed651e1b3596c06e45aae9d6d1
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3846151
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Commit-Queue: Clemens Backes <clemensb@chromium.org>
Auto-Submit: Clemens Backes <clemensb@chromium.org>
Commit-Queue: Michael Lippautz <mlippautz@chromium.org>
Cr-Commit-Position: refs/heads/main@{#82969}
2022-09-05 10:59:05 +00:00

608 lines
21 KiB
C++

// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/mark-compact.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
#ifdef V8_ENABLE_INNER_POINTER_RESOLUTION_MB
namespace {
class InnerPointerResolutionTest : public TestWithIsolate {
public:
struct ObjectRequest {
int size; // The only required field.
enum { REGULAR, FREE, LARGE } type = REGULAR;
enum { WHITE, GREY, BLACK, BLACK_AREA } marked = WHITE;
// If index_in_cell >= 0, the object is placed at the lowest address s.t.
// Bitmap::IndexInCell(AddressToMarkbitIndex(address)) == index_in_cell.
// To achieve this, padding (i.e., introducing a free-space object of the
// appropriate size) may be necessary. If padding == CONSECUTIVE, no such
// padding is allowed and it is just checked that object layout is as
// intended.
int index_in_cell = -1;
enum { CONSECUTIVE, PAD_WHITE, PAD_BLACK } padding = CONSECUTIVE;
// The id of the page on which the object was allocated and its address are
// stored here.
int page_id = -1;
Address address = kNullAddress;
};
InnerPointerResolutionTest() = default;
~InnerPointerResolutionTest() override {
for (auto [id, page] : pages_)
allocator()->Free(MemoryAllocator::FreeMode::kImmediately, page);
}
InnerPointerResolutionTest(const InnerPointerResolutionTest&) = delete;
InnerPointerResolutionTest& operator=(const InnerPointerResolutionTest&) =
delete;
Heap* heap() { return isolate()->heap(); }
MemoryAllocator* allocator() { return heap()->memory_allocator(); }
MarkCompactCollector* collector() { return heap()->mark_compact_collector(); }
// Create, free and lookup pages, normal or large.
int CreateNormalPage() {
OldSpace* old_space = heap()->old_space();
DCHECK_NE(nullptr, old_space);
auto* page = allocator()->AllocatePage(
MemoryAllocator::AllocationMode::kRegular, old_space, NOT_EXECUTABLE);
EXPECT_NE(nullptr, page);
int page_id = next_page_id_++;
DCHECK_EQ(pages_.end(), pages_.find(page_id));
pages_[page_id] = page;
return page_id;
}
int CreateLargePage(size_t size) {
OldLargeObjectSpace* lo_space = heap()->lo_space();
EXPECT_NE(nullptr, lo_space);
LargePage* page =
allocator()->AllocateLargePage(lo_space, size, NOT_EXECUTABLE);
EXPECT_NE(nullptr, page);
int page_id = next_page_id_++;
DCHECK_EQ(pages_.end(), pages_.find(page_id));
pages_[page_id] = page;
return page_id;
}
void FreePage(int page_id) {
DCHECK_LE(0, page_id);
auto it = pages_.find(page_id);
DCHECK_NE(pages_.end(), it);
allocator()->Free(MemoryAllocator::FreeMode::kImmediately, it->second);
pages_.erase(it);
}
MemoryChunk* LookupPage(int page_id) {
DCHECK_LE(0, page_id);
auto it = pages_.find(page_id);
DCHECK_NE(pages_.end(), it);
return it->second;
}
bool IsPageAlive(int page_id) {
DCHECK_LE(0, page_id);
return pages_.find(page_id) != pages_.end();
}
// Creates a list of objects in a page and ensures that the page is iterable.
int CreateObjectsInPage(const std::vector<ObjectRequest>& objects) {
int page_id = CreateNormalPage();
MemoryChunk* page = LookupPage(page_id);
Address ptr = page->area_start();
for (auto object : objects) {
DCHECK_NE(ObjectRequest::LARGE, object.type);
DCHECK_EQ(0, object.size % kTaggedSize);
// Check if padding is needed.
int index_in_cell = Bitmap::IndexInCell(page->AddressToMarkbitIndex(ptr));
if (object.index_in_cell < 0) {
object.index_in_cell = index_in_cell;
} else if (object.padding != ObjectRequest::CONSECUTIVE) {
DCHECK_LE(0, object.index_in_cell);
DCHECK_GT(Bitmap::kBitsPerCell, object.index_in_cell);
const int needed_padding_size =
((Bitmap::kBitsPerCell + object.index_in_cell - index_in_cell) %
Bitmap::kBitsPerCell) *
Bitmap::kBytesPerCell;
if (needed_padding_size > 0) {
ObjectRequest pad{needed_padding_size,
ObjectRequest::FREE,
object.padding == ObjectRequest::PAD_BLACK
? ObjectRequest::BLACK_AREA
: ObjectRequest::WHITE,
index_in_cell,
ObjectRequest::CONSECUTIVE,
page_id,
ptr};
ptr += needed_padding_size;
DCHECK_LE(ptr, page->area_end());
CreateObject(pad);
index_in_cell = Bitmap::IndexInCell(page->AddressToMarkbitIndex(ptr));
}
}
// This will fail if the marking bitmap's implementation parameters change
// (e.g., Bitmap::kBitsPerCell) or the size of the page header changes.
// In this case, the tests will need to be revised accordingly.
EXPECT_EQ(index_in_cell, object.index_in_cell);
object.page_id = page_id;
object.address = ptr;
ptr += object.size;
DCHECK_LE(ptr, page->area_end());
CreateObject(object);
}
// Create one last object that uses the remaining space on the page; this
// simulates freeing the page's LAB.
const int remaining_size = static_cast<int>(page->area_end() - ptr);
const uint32_t index = page->AddressToMarkbitIndex(ptr);
const int index_in_cell = Bitmap::IndexInCell(index);
ObjectRequest last{remaining_size,
ObjectRequest::FREE,
ObjectRequest::WHITE,
index_in_cell,
ObjectRequest::CONSECUTIVE,
page_id,
ptr};
CreateObject(last);
return page_id;
}
std::vector<int> CreateLargeObjects(
const std::vector<ObjectRequest>& objects) {
std::vector<int> result;
for (auto object : objects) {
DCHECK_EQ(ObjectRequest::LARGE, object.type);
int page_id = CreateLargePage(object.size);
MemoryChunk* page = LookupPage(page_id);
object.page_id = page_id;
object.address = page->area_start();
CHECK_EQ(object.address + object.size, page->area_end());
CreateObject(object);
result.push_back(page_id);
}
return result;
}
void CreateObject(const ObjectRequest& object) {
objects_.push_back(object);
// "Allocate" (i.e., manually place) the object in the page, set the map
// and the size.
switch (object.type) {
case ObjectRequest::REGULAR:
case ObjectRequest::LARGE: {
DCHECK_LE(2 * kTaggedSize, object.size);
ReadOnlyRoots roots(heap());
HeapObject heap_object(HeapObject::FromAddress(object.address));
heap_object.set_map_after_allocation(roots.unchecked_fixed_array_map(),
SKIP_WRITE_BARRIER);
FixedArray arr(FixedArray::cast(heap_object));
arr.set_length((object.size - FixedArray::SizeFor(0)) / kTaggedSize);
DCHECK_EQ(object.size, arr.AllocatedSize());
break;
}
case ObjectRequest::FREE:
heap()->CreateFillerObjectAt(object.address, object.size);
break;
}
// Mark the object in the bitmap, if necessary.
switch (object.marked) {
case ObjectRequest::WHITE:
break;
case ObjectRequest::GREY:
collector()->marking_state()->WhiteToGrey(
HeapObject::FromAddress(object.address));
break;
case ObjectRequest::BLACK:
DCHECK_LE(2 * kTaggedSize, object.size);
collector()->marking_state()->WhiteToBlack(
HeapObject::FromAddress(object.address));
break;
case ObjectRequest::BLACK_AREA: {
MemoryChunk* page = LookupPage(object.page_id);
collector()->marking_state()->bitmap(page)->SetRange(
page->AddressToMarkbitIndex(object.address),
page->AddressToMarkbitIndex(object.address + object.size));
break;
}
}
}
// This must be called with a created object and an offset inside it.
void RunTestInside(const ObjectRequest& object, int offset) {
DCHECK_LE(0, offset);
DCHECK_GT(object.size, offset);
Address base_ptr =
collector()->FindBasePtrForMarking(object.address + offset);
bool should_return_null =
!IsPageAlive(object.page_id) || (object.type == ObjectRequest::FREE) ||
(object.type == ObjectRequest::REGULAR &&
(object.marked == ObjectRequest::BLACK_AREA ||
(object.marked == ObjectRequest::BLACK && offset < 2 * kTaggedSize) ||
(object.marked == ObjectRequest::GREY && offset < kTaggedSize)));
if (should_return_null)
EXPECT_EQ(kNullAddress, base_ptr);
else
EXPECT_EQ(object.address, base_ptr);
}
// This must be called with an address not contained in any created object.
void RunTestOutside(Address ptr) {
Address base_ptr = collector()->FindBasePtrForMarking(ptr);
EXPECT_EQ(kNullAddress, base_ptr);
}
void TestAll() {
for (auto object : objects_) {
RunTestInside(object, 0);
RunTestInside(object, 1);
RunTestInside(object, object.size / 2);
RunTestInside(object, object.size - 1);
}
for (auto [id, page] : pages_) {
const Address outside_ptr = page->area_start() - 42;
DCHECK_LE(page->address(), outside_ptr);
RunTestOutside(outside_ptr);
}
RunTestOutside(kNullAddress);
RunTestOutside(static_cast<Address>(42));
RunTestOutside(static_cast<Address>(kZapValue));
}
private:
std::map<int, MemoryChunk*> pages_;
int next_page_id_ = 0;
std::vector<ObjectRequest> objects_;
};
} // namespace
TEST_F(InnerPointerResolutionTest, EmptyPage) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({});
TestAll();
}
// Tests with some objects laid out randomly.
TEST_F(InnerPointerResolutionTest, NothingMarked) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{64},
{48},
{52},
{512},
{4, ObjectRequest::FREE},
{60},
{8, ObjectRequest::FREE},
{8},
{42176},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, AllMarked) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{64, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{48, ObjectRequest::REGULAR, ObjectRequest::GREY},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{512, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{4, ObjectRequest::FREE, ObjectRequest::GREY},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{8, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{42176, ObjectRequest::REGULAR, ObjectRequest::BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, SomeMarked) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{48, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{512, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{4, ObjectRequest::FREE, ObjectRequest::GREY},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{8, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{42176, ObjectRequest::REGULAR, ObjectRequest::GREY},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, BlackAreas) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{48, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{512, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{4, ObjectRequest::FREE, ObjectRequest::GREY},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{8, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{42176, ObjectRequest::REGULAR, ObjectRequest::GREY},
});
TestAll();
}
// Tests with specific object layout, to cover interesting and corner cases.
TEST_F(InnerPointerResolutionTest, ThreeMarkedObjectsInSameCell) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
// Some initial large unmarked object, followed by a small marked object
// towards the end of the cell.
{512},
{20, ObjectRequest::REGULAR, ObjectRequest::BLACK, 20,
ObjectRequest::PAD_WHITE},
// Then three marked objects in the same cell.
{32, ObjectRequest::REGULAR, ObjectRequest::BLACK, 3,
ObjectRequest::PAD_WHITE},
{48, ObjectRequest::REGULAR, ObjectRequest::BLACK, 11},
{20, ObjectRequest::REGULAR, ObjectRequest::BLACK, 23},
// This marked object is in the next cell.
{64, ObjectRequest::REGULAR, ObjectRequest::BLACK, 17,
ObjectRequest::PAD_WHITE},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, ThreeBlackAreasInSameCell) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
// Some initial large unmarked object, followed by a small black area
// towards the end of the cell.
{512},
{20, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 20,
ObjectRequest::PAD_WHITE},
// Then three black areas in the same cell.
{32, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 3,
ObjectRequest::PAD_WHITE},
{48, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 11},
{20, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 23},
// This black area is in the next cell.
{64, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 17,
ObjectRequest::PAD_WHITE},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, SmallBlackAreaAtPageStart) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE, 30,
ObjectRequest::PAD_BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, SmallBlackAreaAtPageStartUntilCellBoundary) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{8, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE, 0,
ObjectRequest::PAD_BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, LargeBlackAreaAtPageStart) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{42 * Bitmap::kBitsPerCell * Bitmap::kBytesPerCell,
ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE, 30,
ObjectRequest::PAD_BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, LargeBlackAreaAtPageStartUntilCellBoundary) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{42 * Bitmap::kBitsPerCell * Bitmap::kBytesPerCell,
ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE, 0,
ObjectRequest::PAD_BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, SmallBlackAreaStartingAtCellBoundary) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{512},
{20, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 0,
ObjectRequest::PAD_WHITE},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, LargeBlackAreaStartingAtCellBoundary) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{512},
{42 * Bitmap::kBitsPerCell * Bitmap::kBytesPerCell + 64,
ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 0,
ObjectRequest::PAD_WHITE},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, SmallBlackAreaEndingAtCellBoundary) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{512},
{8, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 13,
ObjectRequest::PAD_WHITE},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE, 0,
ObjectRequest::PAD_BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, LargeBlackAreaEndingAtCellBoundary) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{512},
{42 * Bitmap::kBitsPerCell * Bitmap::kBytesPerCell + 64,
ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 0,
ObjectRequest::PAD_WHITE},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE, 0,
ObjectRequest::PAD_BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, TwoSmallBlackAreasAtCellBoundaries) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{512},
{24, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 0,
ObjectRequest::PAD_WHITE},
{8, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 25,
ObjectRequest::PAD_WHITE},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE, 0,
ObjectRequest::PAD_BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, BlackAreaOfOneCell) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{512},
{Bitmap::kBitsPerCell * Bitmap::kBytesPerCell, ObjectRequest::REGULAR,
ObjectRequest::BLACK_AREA, 0, ObjectRequest::PAD_WHITE},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, BlackAreaOfManyCells) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{512},
{17 * Bitmap::kBitsPerCell * Bitmap::kBytesPerCell,
ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA, 0,
ObjectRequest::PAD_WHITE},
});
TestAll();
}
// Test with more pages, normal and large.
TEST_F(InnerPointerResolutionTest, TwoPages) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{512, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{42176, ObjectRequest::REGULAR, ObjectRequest::GREY},
});
CreateObjectsInPage({
{512, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{48, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{4, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, OneLargePage) {
if (v8_flags.enable_third_party_heap) return;
CreateLargeObjects({
{1 * MB, ObjectRequest::LARGE, ObjectRequest::WHITE},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, SeveralLargePages) {
if (v8_flags.enable_third_party_heap) return;
CreateLargeObjects({
{1 * MB, ObjectRequest::LARGE, ObjectRequest::WHITE},
{32 * MB, ObjectRequest::LARGE, ObjectRequest::BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, PagesOfBothKind) {
if (v8_flags.enable_third_party_heap) return;
CreateObjectsInPage({
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{512, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{42176, ObjectRequest::REGULAR, ObjectRequest::GREY},
});
CreateObjectsInPage({
{512, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{48, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{4, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
});
CreateLargeObjects({
{1 * MB, ObjectRequest::LARGE, ObjectRequest::WHITE},
{32 * MB, ObjectRequest::LARGE, ObjectRequest::BLACK},
});
TestAll();
}
TEST_F(InnerPointerResolutionTest, FreePages) {
if (v8_flags.enable_third_party_heap) return;
int some_normal_page = CreateObjectsInPage({
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{512, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{42176, ObjectRequest::REGULAR, ObjectRequest::GREY},
});
CreateObjectsInPage({
{512, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{64, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{48, ObjectRequest::REGULAR, ObjectRequest::BLACK_AREA},
{52, ObjectRequest::REGULAR, ObjectRequest::BLACK},
{4, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::FREE, ObjectRequest::GREY},
{8, ObjectRequest::REGULAR, ObjectRequest::WHITE},
{60, ObjectRequest::REGULAR, ObjectRequest::BLACK},
});
auto large_pages = CreateLargeObjects({
{1 * MB, ObjectRequest::LARGE, ObjectRequest::WHITE},
{32 * MB, ObjectRequest::LARGE, ObjectRequest::BLACK},
});
TestAll();
FreePage(some_normal_page);
TestAll();
FreePage(large_pages[0]);
TestAll();
}
#endif // V8_ENABLE_INNER_POINTER_RESOLUTION_MB
} // namespace internal
} // namespace v8