98c6c367b5
This is a reland of commit 80fb281561
This CL fixes the signedness of rematerialized Numbers from immediates, which was introduced by the original change. Besides, BigInt truncation to zero bits is lowered to Int64Constant instead of NumberConstant of zero, which will flow into the state values directly.
Original change's description:
> [turbofan] Rematerialize BigInt64 in deopt
>
> This CL introduces two MachineTypes - SignedBigInt64 and UnsignedBigInt64, which are represented as Word64 but will be rematerialized to BigInt in deoptimization. This will avoid unnecessary conversions for BigInt64s when they are passed to StateValues.
>
> Bug: v8:9407
> Change-Id: I65fdee3e028ed8f9920b1c20ff78993c7784de48
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3858238
> Reviewed-by: Tobias Tebbi <tebbi@chromium.org>
> Reviewed-by: Nico Hartmann <nicohartmann@chromium.org>
> Commit-Queue: Qifan Pan <panq@google.com>
> Cr-Commit-Position: refs/heads/main@{#83230}
Bug: v8:9407, chromium:1364319, chromium:1364400
Change-Id: I0b4e077b52f64af46018b6c045893bbd56153f32
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3899258
Commit-Queue: Qifan Pan <panq@google.com>
Reviewed-by: Nico Hartmann <nicohartmann@chromium.org>
Cr-Commit-Position: refs/heads/main@{#83384}
157 lines
4.0 KiB
JavaScript
157 lines
4.0 KiB
JavaScript
// Copyright 2022 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// Flags: --allow-natives-syntax --turbofan --no-always-turbofan
|
|
|
|
(function OptimizeAndTestAsUintN() {
|
|
function f(x) {
|
|
// Will be lowered to Int64Constant(-1) and stored as an immediate.
|
|
let y = BigInt.asUintN(64, -1n);
|
|
try {
|
|
return x + y;
|
|
} catch(_) {
|
|
return y;
|
|
}
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(f);
|
|
assertEquals(2n ** 64n, f(1n));
|
|
assertEquals(2n ** 64n + 1n, f(2n));
|
|
%OptimizeFunctionOnNextCall(f);
|
|
assertEquals(2n ** 64n, f(1n));
|
|
assertOptimized(f);
|
|
// Should be rematerialized to 2n ** 64n - 1n in code generation.
|
|
assertEquals(2n ** 64n - 1n, f(0));
|
|
if (%Is64Bit()) {
|
|
assertUnoptimized(f);
|
|
}
|
|
})();
|
|
|
|
(function OptimizeAndTestAsUintN() {
|
|
function f(x) {
|
|
// Will be lowered to Int64Sub because exponentiation is not truncated and
|
|
// stored in a register.
|
|
let y = BigInt.asUintN(64, -(2n ** 0n));
|
|
try {
|
|
return x + y;
|
|
} catch(_) {
|
|
return y;
|
|
}
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(f);
|
|
assertEquals(2n ** 64n, f(1n));
|
|
assertEquals(2n ** 64n + 1n, f(2n));
|
|
%OptimizeFunctionOnNextCall(f);
|
|
assertEquals(2n ** 64n, f(1n));
|
|
assertOptimized(f);
|
|
// Should be rematerialized to 2n ** 64n - 1n in deoptimization.
|
|
assertEquals(2n ** 64n - 1n, f(0));
|
|
if (%Is64Bit()) {
|
|
assertUnoptimized(f);
|
|
}
|
|
})();
|
|
|
|
(function OptimizeAndTestAsUintN() {
|
|
function f(x) {
|
|
// Will be lowered to Int64Sub because exponentiation is not truncated and
|
|
// stored in a stack slot.
|
|
let y = BigInt.asUintN(64, -(2n ** 0n));
|
|
try {
|
|
// The recursion is used to make sure `y` is stored on the stack.
|
|
return (x < 3n) ? (x + y) : f(x - 1n);
|
|
} catch(_) {
|
|
return y;
|
|
}
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(f);
|
|
assertEquals(2n ** 64n, f(1n));
|
|
assertEquals(2n ** 64n + 1n, f(2n));
|
|
%OptimizeFunctionOnNextCall(f);
|
|
assertEquals(2n ** 64n, f(1n));
|
|
assertOptimized(f);
|
|
// Should be rematerialized to 2n ** 64n - 1n in deoptimization.
|
|
assertEquals(2n ** 64n - 1n, f(0));
|
|
if (%Is64Bit()) {
|
|
assertUnoptimized(f);
|
|
}
|
|
})();
|
|
|
|
(function OptimizeAndTestAsIntN() {
|
|
function f(x) {
|
|
// Will be lowered to Int64Constant(-1) and stored as an immediate.
|
|
let y = BigInt.asIntN(64, -1n);
|
|
try {
|
|
return x + y;
|
|
} catch (_) {
|
|
return y;
|
|
}
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(f);
|
|
assertEquals(0n, f(1n));
|
|
assertEquals(1n, f(2n));
|
|
%OptimizeFunctionOnNextCall(f);
|
|
assertEquals(0n, f(1n));
|
|
assertOptimized(f);
|
|
// Should be rematerialized to -1n in code generation.
|
|
assertEquals(-1n, f(0));
|
|
if (%Is64Bit()) {
|
|
assertUnoptimized(f);
|
|
}
|
|
})();
|
|
|
|
(function OptimizeAndTestAsIntN() {
|
|
function f(x) {
|
|
// Will be lowered to Int64Sub because exponentiation is not truncated and
|
|
// stored in a register.
|
|
let y = BigInt.asIntN(64, -(2n ** 0n));
|
|
try {
|
|
return x + y;
|
|
} catch(_) {
|
|
return y;
|
|
}
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(f);
|
|
assertEquals(0n, f(1n));
|
|
assertEquals(1n, f(2n));
|
|
%OptimizeFunctionOnNextCall(f);
|
|
assertEquals(0n, f(1n));
|
|
assertOptimized(f);
|
|
// Should be rematerialized to -1n in deoptimization.
|
|
assertEquals(-1n, f(0));
|
|
if (%Is64Bit()) {
|
|
assertUnoptimized(f);
|
|
}
|
|
})();
|
|
|
|
(function OptimizeAndTestAsIntN() {
|
|
|
|
function f(x) {
|
|
// Will be lowered to Int64Sub because exponentiation is not truncated and
|
|
// stored in a stack slot.
|
|
let y = BigInt.asIntN(64, -(2n ** 0n));
|
|
try {
|
|
// The recursion is used to make sure `y` is stored on the stack.
|
|
return (x < 3n) ? (x + y) : f(x - 1n);
|
|
} catch(_) {
|
|
return y;
|
|
}
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(f);
|
|
assertEquals(0n, f(1n));
|
|
assertEquals(1n, f(2n));
|
|
%OptimizeFunctionOnNextCall(f);
|
|
assertEquals(0n, f(1n));
|
|
assertOptimized(f);
|
|
// Should be rematerialized to -1n in deoptimization.
|
|
assertEquals(-1n, f(0));
|
|
if (%Is64Bit()) {
|
|
assertUnoptimized(f);
|
|
}
|
|
})();
|