b74ab45077
true. The rules are: 1. Heap::AllocateRaw can normally handle allocation requests in new space even when always_allocate() is true. It properly retries failed allocation in the second 'retry' space. 2. Heap::Allocate can normally handle allocation requests in new space. 3. We only need to check always_allocate() when explicitly requesting allocation in new space via Heap::new_space().AllocateRaw(). 4. The exception to these rules is fixed arrays with size such that MaxObjectSizeInPagedSpace < size <= MaxObjectSizeInNewSpace (ie, those that will be allocated in new space and promoted to large object space). They cannot be allocated in new space via Heap::Allocate or Heap::AllocateRaw, because the retry logic does not know to allocate extra remembered set bits when retrying in large object space. Review URL: http://codereview.chromium.org/518007 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3535 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
408 lines
14 KiB
C++
408 lines
14 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_HEAP_INL_H_
|
|
#define V8_HEAP_INL_H_
|
|
|
|
#include "log.h"
|
|
#include "v8-counters.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
int Heap::MaxObjectSizeInPagedSpace() {
|
|
return Page::kMaxHeapObjectSize;
|
|
}
|
|
|
|
|
|
Object* Heap::AllocateSymbol(Vector<const char> str,
|
|
int chars,
|
|
uint32_t hash_field) {
|
|
unibrow::Utf8InputBuffer<> buffer(str.start(),
|
|
static_cast<unsigned>(str.length()));
|
|
return AllocateInternalSymbol(&buffer, chars, hash_field);
|
|
}
|
|
|
|
|
|
Object* Heap::AllocateRaw(int size_in_bytes,
|
|
AllocationSpace space,
|
|
AllocationSpace retry_space) {
|
|
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
|
|
ASSERT(space != NEW_SPACE ||
|
|
retry_space == OLD_POINTER_SPACE ||
|
|
retry_space == OLD_DATA_SPACE ||
|
|
retry_space == LO_SPACE);
|
|
#ifdef DEBUG
|
|
if (FLAG_gc_interval >= 0 &&
|
|
!disallow_allocation_failure_ &&
|
|
Heap::allocation_timeout_-- <= 0) {
|
|
return Failure::RetryAfterGC(size_in_bytes, space);
|
|
}
|
|
Counters::objs_since_last_full.Increment();
|
|
Counters::objs_since_last_young.Increment();
|
|
#endif
|
|
Object* result;
|
|
if (NEW_SPACE == space) {
|
|
result = new_space_.AllocateRaw(size_in_bytes);
|
|
if (always_allocate() && result->IsFailure()) {
|
|
space = retry_space;
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
if (OLD_POINTER_SPACE == space) {
|
|
result = old_pointer_space_->AllocateRaw(size_in_bytes);
|
|
} else if (OLD_DATA_SPACE == space) {
|
|
result = old_data_space_->AllocateRaw(size_in_bytes);
|
|
} else if (CODE_SPACE == space) {
|
|
result = code_space_->AllocateRaw(size_in_bytes);
|
|
} else if (LO_SPACE == space) {
|
|
result = lo_space_->AllocateRaw(size_in_bytes);
|
|
} else if (CELL_SPACE == space) {
|
|
result = cell_space_->AllocateRaw(size_in_bytes);
|
|
} else {
|
|
ASSERT(MAP_SPACE == space);
|
|
result = map_space_->AllocateRaw(size_in_bytes);
|
|
}
|
|
if (result->IsFailure()) old_gen_exhausted_ = true;
|
|
return result;
|
|
}
|
|
|
|
|
|
Object* Heap::NumberFromInt32(int32_t value) {
|
|
if (Smi::IsValid(value)) return Smi::FromInt(value);
|
|
// Bypass NumberFromDouble to avoid various redundant checks.
|
|
return AllocateHeapNumber(FastI2D(value));
|
|
}
|
|
|
|
|
|
Object* Heap::NumberFromUint32(uint32_t value) {
|
|
if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
|
|
return Smi::FromInt((int32_t)value);
|
|
}
|
|
// Bypass NumberFromDouble to avoid various redundant checks.
|
|
return AllocateHeapNumber(FastUI2D(value));
|
|
}
|
|
|
|
|
|
void Heap::FinalizeExternalString(String* string) {
|
|
ASSERT(string->IsExternalString());
|
|
v8::String::ExternalStringResourceBase** resource_addr =
|
|
reinterpret_cast<v8::String::ExternalStringResourceBase**>(
|
|
reinterpret_cast<byte*>(string) +
|
|
ExternalString::kResourceOffset -
|
|
kHeapObjectTag);
|
|
delete *resource_addr;
|
|
// Clear the resource pointer in the string.
|
|
*resource_addr = NULL;
|
|
}
|
|
|
|
|
|
Object* Heap::AllocateRawMap() {
|
|
#ifdef DEBUG
|
|
Counters::objs_since_last_full.Increment();
|
|
Counters::objs_since_last_young.Increment();
|
|
#endif
|
|
Object* result = map_space_->AllocateRaw(Map::kSize);
|
|
if (result->IsFailure()) old_gen_exhausted_ = true;
|
|
#ifdef DEBUG
|
|
if (!result->IsFailure()) {
|
|
// Maps have their own alignment.
|
|
CHECK((OffsetFrom(result) & kMapAlignmentMask) == kHeapObjectTag);
|
|
}
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
Object* Heap::AllocateRawCell() {
|
|
#ifdef DEBUG
|
|
Counters::objs_since_last_full.Increment();
|
|
Counters::objs_since_last_young.Increment();
|
|
#endif
|
|
Object* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize);
|
|
if (result->IsFailure()) old_gen_exhausted_ = true;
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Heap::InNewSpace(Object* object) {
|
|
return new_space_.Contains(object);
|
|
}
|
|
|
|
|
|
bool Heap::InFromSpace(Object* object) {
|
|
return new_space_.FromSpaceContains(object);
|
|
}
|
|
|
|
|
|
bool Heap::InToSpace(Object* object) {
|
|
return new_space_.ToSpaceContains(object);
|
|
}
|
|
|
|
|
|
bool Heap::ShouldBePromoted(Address old_address, int object_size) {
|
|
// An object should be promoted if:
|
|
// - the object has survived a scavenge operation or
|
|
// - to space is already 25% full.
|
|
return old_address < new_space_.age_mark()
|
|
|| (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2);
|
|
}
|
|
|
|
|
|
void Heap::RecordWrite(Address address, int offset) {
|
|
if (new_space_.Contains(address)) return;
|
|
ASSERT(!new_space_.FromSpaceContains(address));
|
|
SLOW_ASSERT(Contains(address + offset));
|
|
Page::SetRSet(address, offset);
|
|
}
|
|
|
|
|
|
OldSpace* Heap::TargetSpace(HeapObject* object) {
|
|
InstanceType type = object->map()->instance_type();
|
|
AllocationSpace space = TargetSpaceId(type);
|
|
return (space == OLD_POINTER_SPACE)
|
|
? old_pointer_space_
|
|
: old_data_space_;
|
|
}
|
|
|
|
|
|
AllocationSpace Heap::TargetSpaceId(InstanceType type) {
|
|
// Heap numbers and sequential strings are promoted to old data space, all
|
|
// other object types are promoted to old pointer space. We do not use
|
|
// object->IsHeapNumber() and object->IsSeqString() because we already
|
|
// know that object has the heap object tag.
|
|
|
|
// These objects are never allocated in new space.
|
|
ASSERT(type != MAP_TYPE);
|
|
ASSERT(type != CODE_TYPE);
|
|
ASSERT(type != ODDBALL_TYPE);
|
|
ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE);
|
|
|
|
if (type < FIRST_NONSTRING_TYPE) {
|
|
// There are three string representations: sequential strings, cons
|
|
// strings, and external strings. Only cons strings contain
|
|
// non-map-word pointers to heap objects.
|
|
return ((type & kStringRepresentationMask) == kConsStringTag)
|
|
? OLD_POINTER_SPACE
|
|
: OLD_DATA_SPACE;
|
|
} else {
|
|
return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::CopyBlock(Object** dst, Object** src, int byte_size) {
|
|
ASSERT(IsAligned(byte_size, kPointerSize));
|
|
|
|
// Use block copying memcpy if the segment we're copying is
|
|
// enough to justify the extra call/setup overhead.
|
|
static const int kBlockCopyLimit = 16 * kPointerSize;
|
|
|
|
if (byte_size >= kBlockCopyLimit) {
|
|
memcpy(dst, src, byte_size);
|
|
} else {
|
|
int remaining = byte_size / kPointerSize;
|
|
do {
|
|
remaining--;
|
|
*dst++ = *src++;
|
|
} while (remaining > 0);
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
|
|
ASSERT(InFromSpace(object));
|
|
|
|
// We use the first word (where the map pointer usually is) of a heap
|
|
// object to record the forwarding pointer. A forwarding pointer can
|
|
// point to an old space, the code space, or the to space of the new
|
|
// generation.
|
|
MapWord first_word = object->map_word();
|
|
|
|
// If the first word is a forwarding address, the object has already been
|
|
// copied.
|
|
if (first_word.IsForwardingAddress()) {
|
|
*p = first_word.ToForwardingAddress();
|
|
return;
|
|
}
|
|
|
|
// Call the slow part of scavenge object.
|
|
return ScavengeObjectSlow(p, object);
|
|
}
|
|
|
|
|
|
int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) {
|
|
ASSERT(HasBeenSetup());
|
|
int amount = amount_of_external_allocated_memory_ + change_in_bytes;
|
|
if (change_in_bytes >= 0) {
|
|
// Avoid overflow.
|
|
if (amount > amount_of_external_allocated_memory_) {
|
|
amount_of_external_allocated_memory_ = amount;
|
|
}
|
|
int amount_since_last_global_gc =
|
|
amount_of_external_allocated_memory_ -
|
|
amount_of_external_allocated_memory_at_last_global_gc_;
|
|
if (amount_since_last_global_gc > external_allocation_limit_) {
|
|
CollectAllGarbage(false);
|
|
}
|
|
} else {
|
|
// Avoid underflow.
|
|
if (amount >= 0) {
|
|
amount_of_external_allocated_memory_ = amount;
|
|
}
|
|
}
|
|
ASSERT(amount_of_external_allocated_memory_ >= 0);
|
|
return amount_of_external_allocated_memory_;
|
|
}
|
|
|
|
|
|
void Heap::SetLastScriptId(Object* last_script_id) {
|
|
roots_[kLastScriptIdRootIndex] = last_script_id;
|
|
}
|
|
|
|
|
|
#define GC_GREEDY_CHECK() \
|
|
ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck())
|
|
|
|
|
|
// Calls the FUNCTION_CALL function and retries it up to three times
|
|
// to guarantee that any allocations performed during the call will
|
|
// succeed if there's enough memory.
|
|
|
|
// Warning: Do not use the identifiers __object__ or __scope__ in a
|
|
// call to this macro.
|
|
|
|
#define CALL_AND_RETRY(FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
|
|
do { \
|
|
GC_GREEDY_CHECK(); \
|
|
Object* __object__ = FUNCTION_CALL; \
|
|
if (!__object__->IsFailure()) RETURN_VALUE; \
|
|
if (__object__->IsOutOfMemoryFailure()) { \
|
|
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0"); \
|
|
} \
|
|
if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \
|
|
Heap::CollectGarbage(Failure::cast(__object__)->requested(), \
|
|
Failure::cast(__object__)->allocation_space()); \
|
|
__object__ = FUNCTION_CALL; \
|
|
if (!__object__->IsFailure()) RETURN_VALUE; \
|
|
if (__object__->IsOutOfMemoryFailure()) { \
|
|
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1"); \
|
|
} \
|
|
if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \
|
|
Counters::gc_last_resort_from_handles.Increment(); \
|
|
Heap::CollectAllGarbage(false); \
|
|
{ \
|
|
AlwaysAllocateScope __scope__; \
|
|
__object__ = FUNCTION_CALL; \
|
|
} \
|
|
if (!__object__->IsFailure()) RETURN_VALUE; \
|
|
if (__object__->IsOutOfMemoryFailure() || \
|
|
__object__->IsRetryAfterGC()) { \
|
|
/* TODO(1181417): Fix this. */ \
|
|
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2"); \
|
|
} \
|
|
RETURN_EMPTY; \
|
|
} while (false)
|
|
|
|
|
|
#define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \
|
|
CALL_AND_RETRY(FUNCTION_CALL, \
|
|
return Handle<TYPE>(TYPE::cast(__object__)), \
|
|
return Handle<TYPE>())
|
|
|
|
|
|
#define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \
|
|
CALL_AND_RETRY(FUNCTION_CALL, return, return)
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
inline bool Heap::allow_allocation(bool new_state) {
|
|
bool old = allocation_allowed_;
|
|
allocation_allowed_ = new_state;
|
|
return old;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
void ExternalStringTable::AddString(String* string) {
|
|
ASSERT(string->IsExternalString());
|
|
if (Heap::InNewSpace(string)) {
|
|
new_space_strings_.Add(string);
|
|
} else {
|
|
old_space_strings_.Add(string);
|
|
}
|
|
}
|
|
|
|
|
|
void ExternalStringTable::Iterate(ObjectVisitor* v) {
|
|
if (!new_space_strings_.is_empty()) {
|
|
Object** start = &new_space_strings_[0];
|
|
v->VisitPointers(start, start + new_space_strings_.length());
|
|
}
|
|
if (!old_space_strings_.is_empty()) {
|
|
Object** start = &old_space_strings_[0];
|
|
v->VisitPointers(start, start + old_space_strings_.length());
|
|
}
|
|
}
|
|
|
|
|
|
// Verify() is inline to avoid ifdef-s around its calls in release
|
|
// mode.
|
|
void ExternalStringTable::Verify() {
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < new_space_strings_.length(); ++i) {
|
|
ASSERT(Heap::InNewSpace(new_space_strings_[i]));
|
|
ASSERT(new_space_strings_[i] != Heap::raw_unchecked_null_value());
|
|
}
|
|
for (int i = 0; i < old_space_strings_.length(); ++i) {
|
|
ASSERT(!Heap::InNewSpace(old_space_strings_[i]));
|
|
ASSERT(old_space_strings_[i] != Heap::raw_unchecked_null_value());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void ExternalStringTable::AddOldString(String* string) {
|
|
ASSERT(string->IsExternalString());
|
|
ASSERT(!Heap::InNewSpace(string));
|
|
old_space_strings_.Add(string);
|
|
}
|
|
|
|
|
|
void ExternalStringTable::ShrinkNewStrings(int position) {
|
|
new_space_strings_.Rewind(position);
|
|
Verify();
|
|
}
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_HEAP_INL_H_
|