v8/test/cctest/compiler/test-gap-resolver.cc
dcarney 81345f1a2c Reland: [turbofan] add MachineType to AllocatedOperand
- allows the optimization of emitted gap move code since the representation of the value in the register is known
- necessary preparation for vector register allocation
- prepare for slot sharing for any value of the same byte width

TBR=jarin@chromium.org
BUG=

Review URL: https://codereview.chromium.org/1111323003

Cr-Commit-Position: refs/heads/master@{#28140}
2015-04-29 19:36:25 +00:00

226 lines
6.4 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/gap-resolver.h"
#include "src/base/utils/random-number-generator.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
// The state of our move interpreter is the mapping of operands to values. Note
// that the actual values don't really matter, all we care about is equality.
class InterpreterState {
public:
void ExecuteInParallel(const ParallelMove* moves) {
InterpreterState copy(*this);
for (const auto m : *moves) {
if (!m->IsRedundant()) write(m->destination(), copy.read(m->source()));
}
}
bool operator==(const InterpreterState& other) const {
return values_ == other.values_;
}
bool operator!=(const InterpreterState& other) const {
return values_ != other.values_;
}
private:
struct Key {
bool is_constant;
AllocatedOperand::AllocatedKind kind;
int index;
bool operator<(const Key& other) const {
if (this->is_constant != other.is_constant) {
return this->is_constant;
}
if (this->kind != other.kind) {
return this->kind < other.kind;
}
return this->index < other.index;
}
bool operator==(const Key& other) const {
return this->is_constant == other.is_constant &&
this->kind == other.kind && this->index == other.index;
}
};
// Internally, the state is a normalized permutation of (kind,index) pairs.
typedef Key Value;
typedef std::map<Key, Value> OperandMap;
Value read(const InstructionOperand& op) const {
OperandMap::const_iterator it = values_.find(KeyFor(op));
return (it == values_.end()) ? ValueFor(op) : it->second;
}
void write(const InstructionOperand& op, Value v) {
if (v == ValueFor(op)) {
values_.erase(KeyFor(op));
} else {
values_[KeyFor(op)] = v;
}
}
static Key KeyFor(const InstructionOperand& op) {
bool is_constant = op.IsConstant();
AllocatedOperand::AllocatedKind kind;
int index;
if (!is_constant) {
index = AllocatedOperand::cast(op).index();
kind = AllocatedOperand::cast(op).allocated_kind();
} else {
index = ConstantOperand::cast(op).virtual_register();
kind = AllocatedOperand::REGISTER;
}
Key key = {is_constant, kind, index};
return key;
}
static Value ValueFor(const InstructionOperand& op) { return KeyFor(op); }
static InstructionOperand FromKey(Key key) {
if (key.is_constant) {
return ConstantOperand(key.index);
}
return AllocatedOperand(
key.kind, InstructionSequence::DefaultRepresentation(), key.index);
}
friend std::ostream& operator<<(std::ostream& os,
const InterpreterState& is) {
for (OperandMap::const_iterator it = is.values_.begin();
it != is.values_.end(); ++it) {
if (it != is.values_.begin()) os << " ";
InstructionOperand source = FromKey(it->first);
InstructionOperand destination = FromKey(it->second);
MoveOperands mo(source, destination);
PrintableMoveOperands pmo = {RegisterConfiguration::ArchDefault(), &mo};
os << pmo;
}
return os;
}
OperandMap values_;
};
// An abstract interpreter for moves, swaps and parallel moves.
class MoveInterpreter : public GapResolver::Assembler {
public:
explicit MoveInterpreter(Zone* zone) : zone_(zone) {}
virtual void AssembleMove(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = new (zone_) ParallelMove(zone_);
moves->AddMove(*source, *destination);
state_.ExecuteInParallel(moves);
}
virtual void AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = new (zone_) ParallelMove(zone_);
moves->AddMove(*source, *destination);
moves->AddMove(*destination, *source);
state_.ExecuteInParallel(moves);
}
void AssembleParallelMove(const ParallelMove* moves) {
state_.ExecuteInParallel(moves);
}
InterpreterState state() const { return state_; }
private:
Zone* const zone_;
InterpreterState state_;
};
class ParallelMoveCreator : public HandleAndZoneScope {
public:
ParallelMoveCreator() : rng_(CcTest::random_number_generator()) {}
ParallelMove* Create(int size) {
ParallelMove* parallel_move = new (main_zone()) ParallelMove(main_zone());
std::set<InstructionOperand, CompareOperandModuloType> seen;
for (int i = 0; i < size; ++i) {
MoveOperands mo(CreateRandomOperand(true), CreateRandomOperand(false));
if (!mo.IsRedundant() && seen.find(mo.destination()) == seen.end()) {
parallel_move->AddMove(mo.source(), mo.destination());
seen.insert(mo.destination());
}
}
return parallel_move;
}
private:
MachineType RandomType() {
int index = rng_->NextInt(3);
switch (index) {
case 0:
return kRepWord32;
case 1:
return kRepWord64;
case 2:
return kRepTagged;
}
UNREACHABLE();
return kMachNone;
}
MachineType RandomDoubleType() {
int index = rng_->NextInt(2);
if (index == 0) return kRepFloat64;
return kRepFloat32;
}
InstructionOperand CreateRandomOperand(bool is_source) {
int index = rng_->NextInt(6);
// destination can't be Constant.
switch (rng_->NextInt(is_source ? 5 : 4)) {
case 0:
return StackSlotOperand(RandomType(), index);
case 1:
return DoubleStackSlotOperand(RandomDoubleType(), index);
case 2:
return RegisterOperand(RandomType(), index);
case 3:
return DoubleRegisterOperand(RandomDoubleType(), index);
case 4:
return ConstantOperand(index);
}
UNREACHABLE();
return InstructionOperand();
}
private:
v8::base::RandomNumberGenerator* rng_;
};
TEST(FuzzResolver) {
ParallelMoveCreator pmc;
for (int size = 0; size < 20; ++size) {
for (int repeat = 0; repeat < 50; ++repeat) {
ParallelMove* pm = pmc.Create(size);
// Note: The gap resolver modifies the ParallelMove, so interpret first.
MoveInterpreter mi1(pmc.main_zone());
mi1.AssembleParallelMove(pm);
MoveInterpreter mi2(pmc.main_zone());
GapResolver resolver(&mi2);
resolver.Resolve(pm);
CHECK(mi1.state() == mi2.state());
}
}
}