31a3cfbc10
BUG=v8:8801 Change-Id: I9d9d9824c6c9ad0176bbfd3723da1b578b17c256 Reviewed-on: https://chromium-review.googlesource.com/c/1495555 Commit-Queue: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Mythri Alle <mythria@chromium.org> Cr-Commit-Position: refs/heads/master@{#60001}
205 lines
5.3 KiB
JavaScript
205 lines
5.3 KiB
JavaScript
// Copyright 2018 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// Flags: --allow-natives-syntax --opt
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberOperation()
|
|
// TurboFan optimization for the case of SpeculativeNumberAdd with
|
|
// Number feedback.
|
|
(function() {
|
|
function bar(i) {
|
|
return ++i;
|
|
}
|
|
bar(0.1);
|
|
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
const y = a[bar(i)];
|
|
return x + y;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(3, foo([1, 2], 0));
|
|
assertEquals(3, foo([1, 2], 0));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(3, foo([1, 2], 0));
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberOperation()
|
|
// TurboFan optimization for the case of SpeculativeNumberAdd with
|
|
// NumberOrOddball feedback.
|
|
(function() {
|
|
function bar(i) {
|
|
return ++i;
|
|
}
|
|
assertEquals(NaN, bar(undefined));
|
|
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
const y = a[bar(i)];
|
|
return x + y;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(3, foo([1, 2], 0));
|
|
assertEquals(3, foo([1, 2], 0));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(3, foo([1, 2], 0));
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberOperation()
|
|
// TurboFan optimization for the case of SpeculativeNumberSubtract with
|
|
// Number feedback.
|
|
(function() {
|
|
function bar(i) {
|
|
return --i;
|
|
}
|
|
assertEquals(-0.9, bar(0.1));
|
|
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
const y = a[bar(i)];
|
|
return x + y;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(3, foo([1, 2], 1));
|
|
assertEquals(3, foo([1, 2], 1));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(3, foo([1, 2], 1));
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberOperation()
|
|
// TurboFan optimization for the case of SpeculativeNumberSubtract with
|
|
// NumberOrOddball feedback.
|
|
(function() {
|
|
function bar(i) {
|
|
return --i;
|
|
}
|
|
assertEquals(NaN, bar(undefined));
|
|
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
const y = a[bar(i)];
|
|
return x + y;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(3, foo([1, 2], 1));
|
|
assertEquals(3, foo([1, 2], 1));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(3, foo([1, 2], 1));
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberOperation()
|
|
// TurboFan optimization for the case of SpeculativeToNumber.
|
|
(function() {
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
const y = i++;
|
|
return x + y;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(1, foo([1, 2], 0));
|
|
assertEquals(1, foo([1, 2], 0));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(1, foo([1, 2], 0));
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberOperation()
|
|
// TurboFan optimization for the case of SpeculativeSafeIntegerAdd.
|
|
(function() {
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
const y = a[++i];
|
|
return x + y;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(3, foo([1, 2], 0));
|
|
assertEquals(3, foo([1, 2], 0));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(3, foo([1, 2], 0));
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberOperation()
|
|
// TurboFan optimization for the case of SpeculativeSafeIntegerSubtract.
|
|
(function() {
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
const y = a[--i];
|
|
return x + y;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(3, foo([1, 2], 1));
|
|
assertEquals(3, foo([1, 2], 1));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(3, foo([1, 2], 1));
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberComparison()
|
|
// TurboFan optimization for the case of SpeculativeNumberEqual.
|
|
(function() {
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
if (i === 0) return x;
|
|
return i;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(1, foo([1, 2], 0));
|
|
assertEquals(1, foo([1, 2], 1));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(1, foo([1, 2], 0));
|
|
assertEquals(1, foo([1, 2], 1));
|
|
// Even passing -0 should not deoptimize and
|
|
// of course still pass the equality test above.
|
|
assertEquals(9, foo([9, 2], -0));
|
|
assertOptimized(foo);
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberComparison()
|
|
// TurboFan optimization for the case of SpeculativeNumberLessThan.
|
|
(function() {
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
if (i < 1) return x;
|
|
return i;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(1, foo([1, 2], 0));
|
|
assertEquals(1, foo([1, 2], 1));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(1, foo([1, 2], 0));
|
|
assertEquals(1, foo([1, 2], 1));
|
|
// Even passing -0 should not deoptimize and
|
|
// of course still pass the equality test above.
|
|
assertEquals(9, foo([9, 2], -0));
|
|
assertOptimized(foo);
|
|
})();
|
|
|
|
// Test the RedundancyElimination::ReduceSpeculativeNumberComparison()
|
|
// TurboFan optimization for the case of SpeculativeNumberLessThanOrEqual.
|
|
(function() {
|
|
function foo(a, i) {
|
|
const x = a[i];
|
|
if (i <= 0) return x;
|
|
return i;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(1, foo([1, 2], 0));
|
|
assertEquals(1, foo([1, 2], 1));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(1, foo([1, 2], 0));
|
|
assertEquals(1, foo([1, 2], 1));
|
|
// Even passing -0 should not deoptimize and
|
|
// of course still pass the equality test above.
|
|
assertEquals(9, foo([9, 2], -0));
|
|
assertOptimized(foo);
|
|
})();
|