v8/src/full-codegen.cc
2014-09-19 11:08:04 +00:00

1720 lines
53 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/code-factory.h"
#include "src/codegen.h"
#include "src/compiler.h"
#include "src/debug.h"
#include "src/full-codegen.h"
#include "src/liveedit.h"
#include "src/macro-assembler.h"
#include "src/prettyprinter.h"
#include "src/scopeinfo.h"
#include "src/scopes.h"
#include "src/snapshot.h"
namespace v8 {
namespace internal {
void BreakableStatementChecker::Check(Statement* stmt) {
Visit(stmt);
}
void BreakableStatementChecker::Check(Expression* expr) {
Visit(expr);
}
void BreakableStatementChecker::VisitVariableDeclaration(
VariableDeclaration* decl) {
}
void BreakableStatementChecker::VisitFunctionDeclaration(
FunctionDeclaration* decl) {
}
void BreakableStatementChecker::VisitModuleDeclaration(
ModuleDeclaration* decl) {
}
void BreakableStatementChecker::VisitImportDeclaration(
ImportDeclaration* decl) {
}
void BreakableStatementChecker::VisitExportDeclaration(
ExportDeclaration* decl) {
}
void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) {
}
void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) {
}
void BreakableStatementChecker::VisitModulePath(ModulePath* module) {
}
void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) {
}
void BreakableStatementChecker::VisitModuleStatement(ModuleStatement* stmt) {
}
void BreakableStatementChecker::VisitBlock(Block* stmt) {
}
void BreakableStatementChecker::VisitExpressionStatement(
ExpressionStatement* stmt) {
// Check if expression is breakable.
Visit(stmt->expression());
}
void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
}
void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
// If the condition is breakable the if statement is breakable.
Visit(stmt->condition());
}
void BreakableStatementChecker::VisitContinueStatement(
ContinueStatement* stmt) {
}
void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
}
void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
// Return is breakable if the expression is.
Visit(stmt->expression());
}
void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) {
Visit(stmt->expression());
}
void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
// Switch statements breakable if the tag expression is.
Visit(stmt->tag());
}
void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
// Mark do while as breakable to avoid adding a break slot in front of it.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
// Mark while statements breakable if the condition expression is.
Visit(stmt->cond());
}
void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
// Mark for statements breakable if the condition expression is.
if (stmt->cond() != NULL) {
Visit(stmt->cond());
}
}
void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
// Mark for in statements breakable if the enumerable expression is.
Visit(stmt->enumerable());
}
void BreakableStatementChecker::VisitForOfStatement(ForOfStatement* stmt) {
// For-of is breakable because of the next() call.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitTryCatchStatement(
TryCatchStatement* stmt) {
// Mark try catch as breakable to avoid adding a break slot in front of it.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
// Mark try finally as breakable to avoid adding a break slot in front of it.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitDebuggerStatement(
DebuggerStatement* stmt) {
// The debugger statement is breakable.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitCaseClause(CaseClause* clause) {
}
void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
}
void BreakableStatementChecker::VisitClassLiteral(ClassLiteral* expr) {
if (expr->extends() != NULL) {
Visit(expr->extends());
}
}
void BreakableStatementChecker::VisitNativeFunctionLiteral(
NativeFunctionLiteral* expr) {
}
void BreakableStatementChecker::VisitConditional(Conditional* expr) {
}
void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
}
void BreakableStatementChecker::VisitLiteral(Literal* expr) {
}
void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
}
void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
}
void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
}
void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
// If assigning to a property (including a global property) the assignment is
// breakable.
VariableProxy* proxy = expr->target()->AsVariableProxy();
Property* prop = expr->target()->AsProperty();
if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) {
is_breakable_ = true;
return;
}
// Otherwise the assignment is breakable if the assigned value is.
Visit(expr->value());
}
void BreakableStatementChecker::VisitYield(Yield* expr) {
// Yield is breakable if the expression is.
Visit(expr->expression());
}
void BreakableStatementChecker::VisitThrow(Throw* expr) {
// Throw is breakable if the expression is.
Visit(expr->exception());
}
void BreakableStatementChecker::VisitProperty(Property* expr) {
// Property load is breakable.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitCall(Call* expr) {
// Function calls both through IC and call stub are breakable.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
// Function calls through new are breakable.
is_breakable_ = true;
}
void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
}
void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
Visit(expr->expression());
}
void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
Visit(expr->expression());
}
void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
Visit(expr->left());
if (expr->op() != Token::AND &&
expr->op() != Token::OR) {
Visit(expr->right());
}
}
void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
Visit(expr->left());
Visit(expr->right());
}
void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
}
void BreakableStatementChecker::VisitSuperReference(SuperReference* expr) {}
#define __ ACCESS_MASM(masm())
bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
Isolate* isolate = info->isolate();
TimerEventScope<TimerEventCompileFullCode> timer(info->isolate());
Handle<Script> script = info->script();
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
int len = String::cast(script->source())->length();
isolate->counters()->total_full_codegen_source_size()->Increment(len);
}
CodeGenerator::MakeCodePrologue(info, "full");
const int kInitialBufferSize = 4 * KB;
MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize);
if (info->will_serialize()) masm.enable_serializer();
LOG_CODE_EVENT(isolate,
CodeStartLinePosInfoRecordEvent(masm.positions_recorder()));
FullCodeGenerator cgen(&masm, info);
cgen.Generate();
if (cgen.HasStackOverflow()) {
DCHECK(!isolate->has_pending_exception());
return false;
}
unsigned table_offset = cgen.EmitBackEdgeTable();
Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
code->set_optimizable(info->IsOptimizable() &&
!info->function()->dont_optimize() &&
info->function()->scope()->AllowsLazyCompilation());
cgen.PopulateDeoptimizationData(code);
cgen.PopulateTypeFeedbackInfo(code);
code->set_has_deoptimization_support(info->HasDeoptimizationSupport());
code->set_handler_table(*cgen.handler_table());
code->set_compiled_optimizable(info->IsOptimizable());
code->set_allow_osr_at_loop_nesting_level(0);
code->set_profiler_ticks(0);
code->set_back_edge_table_offset(table_offset);
CodeGenerator::PrintCode(code, info);
info->SetCode(code);
void* line_info = masm.positions_recorder()->DetachJITHandlerData();
LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent(*code, line_info));
return true;
}
unsigned FullCodeGenerator::EmitBackEdgeTable() {
// The back edge table consists of a length (in number of entries)
// field, and then a sequence of entries. Each entry is a pair of AST id
// and code-relative pc offset.
masm()->Align(kPointerSize);
unsigned offset = masm()->pc_offset();
unsigned length = back_edges_.length();
__ dd(length);
for (unsigned i = 0; i < length; ++i) {
__ dd(back_edges_[i].id.ToInt());
__ dd(back_edges_[i].pc);
__ dd(back_edges_[i].loop_depth);
}
return offset;
}
void FullCodeGenerator::EnsureSlotContainsAllocationSite(int slot) {
Handle<FixedArray> vector = FeedbackVector();
if (!vector->get(slot)->IsAllocationSite()) {
Handle<AllocationSite> allocation_site =
isolate()->factory()->NewAllocationSite();
vector->set(slot, *allocation_site);
}
}
void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) {
// Fill in the deoptimization information.
DCHECK(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty());
if (!info_->HasDeoptimizationSupport()) return;
int length = bailout_entries_.length();
Handle<DeoptimizationOutputData> data =
DeoptimizationOutputData::New(isolate(), length, TENURED);
for (int i = 0; i < length; i++) {
data->SetAstId(i, bailout_entries_[i].id);
data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state));
}
code->set_deoptimization_data(*data);
}
void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) {
Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo();
info->set_ic_total_count(ic_total_count_);
DCHECK(!isolate()->heap()->InNewSpace(*info));
code->set_type_feedback_info(*info);
}
void FullCodeGenerator::Initialize() {
InitializeAstVisitor(info_->zone());
// The generation of debug code must match between the snapshot code and the
// code that is generated later. This is assumed by the debugger when it is
// calculating PC offsets after generating a debug version of code. Therefore
// we disable the production of debug code in the full compiler if we are
// either generating a snapshot or we booted from a snapshot.
generate_debug_code_ = FLAG_debug_code &&
!masm_->serializer_enabled() &&
!Snapshot::HaveASnapshotToStartFrom();
masm_->set_emit_debug_code(generate_debug_code_);
masm_->set_predictable_code_size(true);
}
void FullCodeGenerator::PrepareForBailout(Expression* node, State state) {
PrepareForBailoutForId(node->id(), state);
}
void FullCodeGenerator::CallLoadIC(ContextualMode contextual_mode,
TypeFeedbackId id) {
Handle<Code> ic = CodeFactory::LoadIC(isolate(), contextual_mode).code();
CallIC(ic, id);
}
void FullCodeGenerator::CallStoreIC(TypeFeedbackId id) {
Handle<Code> ic = CodeFactory::StoreIC(isolate(), strict_mode()).code();
CallIC(ic, id);
}
void FullCodeGenerator::RecordJSReturnSite(Call* call) {
// We record the offset of the function return so we can rebuild the frame
// if the function was inlined, i.e., this is the return address in the
// inlined function's frame.
//
// The state is ignored. We defensively set it to TOS_REG, which is the
// real state of the unoptimized code at the return site.
PrepareForBailoutForId(call->ReturnId(), TOS_REG);
#ifdef DEBUG
// In debug builds, mark the return so we can verify that this function
// was called.
DCHECK(!call->return_is_recorded_);
call->return_is_recorded_ = true;
#endif
}
void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, State state) {
// There's no need to prepare this code for bailouts from already optimized
// code or code that can't be optimized.
if (!info_->HasDeoptimizationSupport()) return;
unsigned pc_and_state =
StateField::encode(state) | PcField::encode(masm_->pc_offset());
DCHECK(Smi::IsValid(pc_and_state));
#ifdef DEBUG
for (int i = 0; i < bailout_entries_.length(); ++i) {
DCHECK(bailout_entries_[i].id != id);
}
#endif
BailoutEntry entry = { id, pc_and_state };
bailout_entries_.Add(entry, zone());
}
void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) {
// The pc offset does not need to be encoded and packed together with a state.
DCHECK(masm_->pc_offset() > 0);
DCHECK(loop_depth() > 0);
uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker);
BackEdgeEntry entry =
{ ast_id, static_cast<unsigned>(masm_->pc_offset()), depth };
back_edges_.Add(entry, zone());
}
bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) {
// Inline smi case inside loops, but not division and modulo which
// are too complicated and take up too much space.
if (op == Token::DIV ||op == Token::MOD) return false;
if (FLAG_always_inline_smi_code) return true;
return loop_depth_ > 0;
}
void FullCodeGenerator::EffectContext::Plug(Register reg) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const {
__ Move(result_register(), reg);
}
void FullCodeGenerator::StackValueContext::Plug(Register reg) const {
__ Push(reg);
}
void FullCodeGenerator::TestContext::Plug(Register reg) const {
// For simplicity we always test the accumulator register.
__ Move(result_register(), reg);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::PlugTOS() const {
__ Drop(1);
}
void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const {
__ Pop(result_register());
}
void FullCodeGenerator::StackValueContext::PlugTOS() const {
}
void FullCodeGenerator::TestContext::PlugTOS() const {
// For simplicity we always test the accumulator register.
__ Pop(result_register());
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::PrepareTest(
Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const {
// In an effect context, the true and the false case branch to the
// same label.
*if_true = *if_false = *fall_through = materialize_true;
}
void FullCodeGenerator::AccumulatorValueContext::PrepareTest(
Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const {
*if_true = *fall_through = materialize_true;
*if_false = materialize_false;
}
void FullCodeGenerator::StackValueContext::PrepareTest(
Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const {
*if_true = *fall_through = materialize_true;
*if_false = materialize_false;
}
void FullCodeGenerator::TestContext::PrepareTest(
Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const {
*if_true = true_label_;
*if_false = false_label_;
*fall_through = fall_through_;
}
void FullCodeGenerator::DoTest(const TestContext* context) {
DoTest(context->condition(),
context->true_label(),
context->false_label(),
context->fall_through());
}
void FullCodeGenerator::AllocateModules(ZoneList<Declaration*>* declarations) {
DCHECK(scope_->is_global_scope());
for (int i = 0; i < declarations->length(); i++) {
ModuleDeclaration* declaration = declarations->at(i)->AsModuleDeclaration();
if (declaration != NULL) {
ModuleLiteral* module = declaration->module()->AsModuleLiteral();
if (module != NULL) {
Comment cmnt(masm_, "[ Link nested modules");
Scope* scope = module->body()->scope();
Interface* interface = scope->interface();
DCHECK(interface->IsModule() && interface->IsFrozen());
interface->Allocate(scope->module_var()->index());
// Set up module context.
DCHECK(scope->interface()->Index() >= 0);
__ Push(Smi::FromInt(scope->interface()->Index()));
__ Push(scope->GetScopeInfo());
__ CallRuntime(Runtime::kPushModuleContext, 2);
StoreToFrameField(StandardFrameConstants::kContextOffset,
context_register());
AllocateModules(scope->declarations());
// Pop module context.
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset,
context_register());
}
}
}
}
// Modules have their own local scope, represented by their own context.
// Module instance objects have an accessor for every export that forwards
// access to the respective slot from the module's context. (Exports that are
// modules themselves, however, are simple data properties.)
//
// All modules have a _hosting_ scope/context, which (currently) is the
// (innermost) enclosing global scope. To deal with recursion, nested modules
// are hosted by the same scope as global ones.
//
// For every (global or nested) module literal, the hosting context has an
// internal slot that points directly to the respective module context. This
// enables quick access to (statically resolved) module members by 2-dimensional
// access through the hosting context. For example,
//
// module A {
// let x;
// module B { let y; }
// }
// module C { let z; }
//
// allocates contexts as follows:
//
// [header| .A | .B | .C | A | C ] (global)
// | | |
// | | +-- [header| z ] (module)
// | |
// | +------- [header| y ] (module)
// |
// +------------ [header| x | B ] (module)
//
// Here, .A, .B, .C are the internal slots pointing to the hosted module
// contexts, whereas A, B, C hold the actual instance objects (note that every
// module context also points to the respective instance object through its
// extension slot in the header).
//
// To deal with arbitrary recursion and aliases between modules,
// they are created and initialized in several stages. Each stage applies to
// all modules in the hosting global scope, including nested ones.
//
// 1. Allocate: for each module _literal_, allocate the module contexts and
// respective instance object and wire them up. This happens in the
// PushModuleContext runtime function, as generated by AllocateModules
// (invoked by VisitDeclarations in the hosting scope).
//
// 2. Bind: for each module _declaration_ (i.e. literals as well as aliases),
// assign the respective instance object to respective local variables. This
// happens in VisitModuleDeclaration, and uses the instance objects created
// in the previous stage.
// For each module _literal_, this phase also constructs a module descriptor
// for the next stage. This happens in VisitModuleLiteral.
//
// 3. Populate: invoke the DeclareModules runtime function to populate each
// _instance_ object with accessors for it exports. This is generated by
// DeclareModules (invoked by VisitDeclarations in the hosting scope again),
// and uses the descriptors generated in the previous stage.
//
// 4. Initialize: execute the module bodies (and other code) in sequence. This
// happens by the separate statements generated for module bodies. To reenter
// the module scopes properly, the parser inserted ModuleStatements.
void FullCodeGenerator::VisitDeclarations(
ZoneList<Declaration*>* declarations) {
Handle<FixedArray> saved_modules = modules_;
int saved_module_index = module_index_;
ZoneList<Handle<Object> >* saved_globals = globals_;
ZoneList<Handle<Object> > inner_globals(10, zone());
globals_ = &inner_globals;
if (scope_->num_modules() != 0) {
// This is a scope hosting modules. Allocate a descriptor array to pass
// to the runtime for initialization.
Comment cmnt(masm_, "[ Allocate modules");
DCHECK(scope_->is_global_scope());
modules_ =
isolate()->factory()->NewFixedArray(scope_->num_modules(), TENURED);
module_index_ = 0;
// Generate code for allocating all modules, including nested ones.
// The allocated contexts are stored in internal variables in this scope.
AllocateModules(declarations);
}
AstVisitor::VisitDeclarations(declarations);
if (scope_->num_modules() != 0) {
// Initialize modules from descriptor array.
DCHECK(module_index_ == modules_->length());
DeclareModules(modules_);
modules_ = saved_modules;
module_index_ = saved_module_index;
}
if (!globals_->is_empty()) {
// Invoke the platform-dependent code generator to do the actual
// declaration of the global functions and variables.
Handle<FixedArray> array =
isolate()->factory()->NewFixedArray(globals_->length(), TENURED);
for (int i = 0; i < globals_->length(); ++i)
array->set(i, *globals_->at(i));
DeclareGlobals(array);
}
globals_ = saved_globals;
}
void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) {
Block* block = module->body();
Scope* saved_scope = scope();
scope_ = block->scope();
Interface* interface = scope_->interface();
Comment cmnt(masm_, "[ ModuleLiteral");
SetStatementPosition(block);
DCHECK(!modules_.is_null());
DCHECK(module_index_ < modules_->length());
int index = module_index_++;
// Set up module context.
DCHECK(interface->Index() >= 0);
__ Push(Smi::FromInt(interface->Index()));
__ Push(Smi::FromInt(0));
__ CallRuntime(Runtime::kPushModuleContext, 2);
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
{
Comment cmnt(masm_, "[ Declarations");
VisitDeclarations(scope_->declarations());
}
// Populate the module description.
Handle<ModuleInfo> description =
ModuleInfo::Create(isolate(), interface, scope_);
modules_->set(index, *description);
scope_ = saved_scope;
// Pop module context.
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}
void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) {
// Nothing to do.
// The instance object is resolved statically through the module's interface.
}
void FullCodeGenerator::VisitModulePath(ModulePath* module) {
// Nothing to do.
// The instance object is resolved statically through the module's interface.
}
void FullCodeGenerator::VisitModuleUrl(ModuleUrl* module) {
// TODO(rossberg): dummy allocation for now.
Scope* scope = module->body()->scope();
Interface* interface = scope_->interface();
DCHECK(interface->IsModule() && interface->IsFrozen());
DCHECK(!modules_.is_null());
DCHECK(module_index_ < modules_->length());
interface->Allocate(scope->module_var()->index());
int index = module_index_++;
Handle<ModuleInfo> description =
ModuleInfo::Create(isolate(), interface, scope_);
modules_->set(index, *description);
}
int FullCodeGenerator::DeclareGlobalsFlags() {
DCHECK(DeclareGlobalsStrictMode::is_valid(strict_mode()));
return DeclareGlobalsEvalFlag::encode(is_eval()) |
DeclareGlobalsNativeFlag::encode(is_native()) |
DeclareGlobalsStrictMode::encode(strict_mode());
}
void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
CodeGenerator::RecordPositions(masm_, fun->start_position());
}
void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
CodeGenerator::RecordPositions(masm_, fun->end_position() - 1);
}
void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
if (!info_->is_debug()) {
CodeGenerator::RecordPositions(masm_, stmt->position());
} else {
// Check if the statement will be breakable without adding a debug break
// slot.
BreakableStatementChecker checker(zone());
checker.Check(stmt);
// Record the statement position right here if the statement is not
// breakable. For breakable statements the actual recording of the
// position will be postponed to the breakable code (typically an IC).
bool position_recorded = CodeGenerator::RecordPositions(
masm_, stmt->position(), !checker.is_breakable());
// If the position recording did record a new position generate a debug
// break slot to make the statement breakable.
if (position_recorded) {
DebugCodegen::GenerateSlot(masm_);
}
}
}
void FullCodeGenerator::VisitSuperReference(SuperReference* super) {
__ CallRuntime(Runtime::kThrowUnsupportedSuperError, 0);
}
void FullCodeGenerator::SetExpressionPosition(Expression* expr) {
if (!info_->is_debug()) {
CodeGenerator::RecordPositions(masm_, expr->position());
} else {
// Check if the expression will be breakable without adding a debug break
// slot.
BreakableStatementChecker checker(zone());
checker.Check(expr);
// Record a statement position right here if the expression is not
// breakable. For breakable expressions the actual recording of the
// position will be postponed to the breakable code (typically an IC).
// NOTE this will record a statement position for something which might
// not be a statement. As stepping in the debugger will only stop at
// statement positions this is used for e.g. the condition expression of
// a do while loop.
bool position_recorded = CodeGenerator::RecordPositions(
masm_, expr->position(), !checker.is_breakable());
// If the position recording did record a new position generate a debug
// break slot to make the statement breakable.
if (position_recorded) {
DebugCodegen::GenerateSlot(masm_);
}
}
}
void FullCodeGenerator::SetSourcePosition(int pos) {
if (pos != RelocInfo::kNoPosition) {
masm_->positions_recorder()->RecordPosition(pos);
}
}
// Lookup table for code generators for special runtime calls which are
// generated inline.
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
&FullCodeGenerator::Emit##Name,
const FullCodeGenerator::InlineFunctionGenerator
FullCodeGenerator::kInlineFunctionGenerators[] = {
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
};
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
FullCodeGenerator::InlineFunctionGenerator
FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) {
int lookup_index =
static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction);
DCHECK(lookup_index >= 0);
DCHECK(static_cast<size_t>(lookup_index) <
arraysize(kInlineFunctionGenerators));
return kInlineFunctionGenerators[lookup_index];
}
void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
const Runtime::Function* function = expr->function();
DCHECK(function != NULL);
DCHECK(function->intrinsic_type == Runtime::INLINE);
InlineFunctionGenerator generator =
FindInlineFunctionGenerator(function->function_id);
((*this).*(generator))(expr);
}
void FullCodeGenerator::EmitGeneratorNext(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::NEXT);
}
void FullCodeGenerator::EmitGeneratorThrow(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::THROW);
}
void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) {
context()->Plug(handle(Smi::FromInt(0), isolate()));
}
void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
switch (expr->op()) {
case Token::COMMA:
return VisitComma(expr);
case Token::OR:
case Token::AND:
return VisitLogicalExpression(expr);
default:
return VisitArithmeticExpression(expr);
}
}
void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) {
if (context()->IsEffect()) {
VisitForEffect(expr);
} else if (context()->IsAccumulatorValue()) {
VisitForAccumulatorValue(expr);
} else if (context()->IsStackValue()) {
VisitForStackValue(expr);
} else if (context()->IsTest()) {
const TestContext* test = TestContext::cast(context());
VisitForControl(expr, test->true_label(), test->false_label(),
test->fall_through());
}
}
void FullCodeGenerator::VisitComma(BinaryOperation* expr) {
Comment cmnt(masm_, "[ Comma");
VisitForEffect(expr->left());
VisitInDuplicateContext(expr->right());
}
void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) {
bool is_logical_and = expr->op() == Token::AND;
Comment cmnt(masm_, is_logical_and ? "[ Logical AND" : "[ Logical OR");
Expression* left = expr->left();
Expression* right = expr->right();
BailoutId right_id = expr->RightId();
Label done;
if (context()->IsTest()) {
Label eval_right;
const TestContext* test = TestContext::cast(context());
if (is_logical_and) {
VisitForControl(left, &eval_right, test->false_label(), &eval_right);
} else {
VisitForControl(left, test->true_label(), &eval_right, &eval_right);
}
PrepareForBailoutForId(right_id, NO_REGISTERS);
__ bind(&eval_right);
} else if (context()->IsAccumulatorValue()) {
VisitForAccumulatorValue(left);
// We want the value in the accumulator for the test, and on the stack in
// case we need it.
__ Push(result_register());
Label discard, restore;
if (is_logical_and) {
DoTest(left, &discard, &restore, &restore);
} else {
DoTest(left, &restore, &discard, &restore);
}
__ bind(&restore);
__ Pop(result_register());
__ jmp(&done);
__ bind(&discard);
__ Drop(1);
PrepareForBailoutForId(right_id, NO_REGISTERS);
} else if (context()->IsStackValue()) {
VisitForAccumulatorValue(left);
// We want the value in the accumulator for the test, and on the stack in
// case we need it.
__ Push(result_register());
Label discard;
if (is_logical_and) {
DoTest(left, &discard, &done, &discard);
} else {
DoTest(left, &done, &discard, &discard);
}
__ bind(&discard);
__ Drop(1);
PrepareForBailoutForId(right_id, NO_REGISTERS);
} else {
DCHECK(context()->IsEffect());
Label eval_right;
if (is_logical_and) {
VisitForControl(left, &eval_right, &done, &eval_right);
} else {
VisitForControl(left, &done, &eval_right, &eval_right);
}
PrepareForBailoutForId(right_id, NO_REGISTERS);
__ bind(&eval_right);
}
VisitInDuplicateContext(right);
__ bind(&done);
}
void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) {
Token::Value op = expr->op();
Comment cmnt(masm_, "[ ArithmeticExpression");
Expression* left = expr->left();
Expression* right = expr->right();
OverwriteMode mode =
left->ResultOverwriteAllowed()
? OVERWRITE_LEFT
: (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE);
VisitForStackValue(left);
VisitForAccumulatorValue(right);
SetSourcePosition(expr->position());
if (ShouldInlineSmiCase(op)) {
EmitInlineSmiBinaryOp(expr, op, mode, left, right);
} else {
EmitBinaryOp(expr, op, mode);
}
}
void FullCodeGenerator::VisitBlock(Block* stmt) {
Comment cmnt(masm_, "[ Block");
NestedBlock nested_block(this, stmt);
SetStatementPosition(stmt);
Scope* saved_scope = scope();
// Push a block context when entering a block with block scoped variables.
if (stmt->scope() == NULL) {
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
} else {
scope_ = stmt->scope();
DCHECK(!scope_->is_module_scope());
{ Comment cmnt(masm_, "[ Extend block context");
__ Push(scope_->GetScopeInfo());
PushFunctionArgumentForContextAllocation();
__ CallRuntime(Runtime::kPushBlockContext, 2);
// Replace the context stored in the frame.
StoreToFrameField(StandardFrameConstants::kContextOffset,
context_register());
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
}
{ Comment cmnt(masm_, "[ Declarations");
VisitDeclarations(scope_->declarations());
PrepareForBailoutForId(stmt->DeclsId(), NO_REGISTERS);
}
}
VisitStatements(stmt->statements());
scope_ = saved_scope;
__ bind(nested_block.break_label());
// Pop block context if necessary.
if (stmt->scope() != NULL) {
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset,
context_register());
}
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitModuleStatement(ModuleStatement* stmt) {
Comment cmnt(masm_, "[ Module context");
__ Push(Smi::FromInt(stmt->proxy()->interface()->Index()));
__ Push(Smi::FromInt(0));
__ CallRuntime(Runtime::kPushModuleContext, 2);
StoreToFrameField(
StandardFrameConstants::kContextOffset, context_register());
Scope* saved_scope = scope_;
scope_ = stmt->body()->scope();
VisitStatements(stmt->body()->statements());
scope_ = saved_scope;
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset,
context_register());
}
void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
Comment cmnt(masm_, "[ ExpressionStatement");
SetStatementPosition(stmt);
VisitForEffect(stmt->expression());
}
void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
Comment cmnt(masm_, "[ EmptyStatement");
SetStatementPosition(stmt);
}
void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
Comment cmnt(masm_, "[ IfStatement");
SetStatementPosition(stmt);
Label then_part, else_part, done;
if (stmt->HasElseStatement()) {
VisitForControl(stmt->condition(), &then_part, &else_part, &then_part);
PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
__ bind(&then_part);
Visit(stmt->then_statement());
__ jmp(&done);
PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
__ bind(&else_part);
Visit(stmt->else_statement());
} else {
VisitForControl(stmt->condition(), &then_part, &done, &then_part);
PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
__ bind(&then_part);
Visit(stmt->then_statement());
PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
}
__ bind(&done);
PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
Comment cmnt(masm_, "[ ContinueStatement");
SetStatementPosition(stmt);
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
int context_length = 0;
// When continuing, we clobber the unpredictable value in the accumulator
// with one that's safe for GC. If we hit an exit from the try block of
// try...finally on our way out, we will unconditionally preserve the
// accumulator on the stack.
ClearAccumulator();
while (!current->IsContinueTarget(stmt->target())) {
current = current->Exit(&stack_depth, &context_length);
}
__ Drop(stack_depth);
if (context_length > 0) {
while (context_length > 0) {
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
--context_length;
}
StoreToFrameField(StandardFrameConstants::kContextOffset,
context_register());
}
__ jmp(current->AsIteration()->continue_label());
}
void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
Comment cmnt(masm_, "[ BreakStatement");
SetStatementPosition(stmt);
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
int context_length = 0;
// When breaking, we clobber the unpredictable value in the accumulator
// with one that's safe for GC. If we hit an exit from the try block of
// try...finally on our way out, we will unconditionally preserve the
// accumulator on the stack.
ClearAccumulator();
while (!current->IsBreakTarget(stmt->target())) {
current = current->Exit(&stack_depth, &context_length);
}
__ Drop(stack_depth);
if (context_length > 0) {
while (context_length > 0) {
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
--context_length;
}
StoreToFrameField(StandardFrameConstants::kContextOffset,
context_register());
}
__ jmp(current->AsBreakable()->break_label());
}
void FullCodeGenerator::EmitUnwindBeforeReturn() {
NestedStatement* current = nesting_stack_;
int stack_depth = 0;
int context_length = 0;
while (current != NULL) {
current = current->Exit(&stack_depth, &context_length);
}
__ Drop(stack_depth);
}
void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
Comment cmnt(masm_, "[ ReturnStatement");
SetStatementPosition(stmt);
Expression* expr = stmt->expression();
VisitForAccumulatorValue(expr);
EmitUnwindBeforeReturn();
EmitReturnSequence();
}
void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) {
Comment cmnt(masm_, "[ WithStatement");
SetStatementPosition(stmt);
VisitForStackValue(stmt->expression());
PushFunctionArgumentForContextAllocation();
__ CallRuntime(Runtime::kPushWithContext, 2);
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
Scope* saved_scope = scope();
scope_ = stmt->scope();
{ WithOrCatch body(this);
Visit(stmt->statement());
}
scope_ = saved_scope;
// Pop context.
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
// Update local stack frame context field.
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}
void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
Comment cmnt(masm_, "[ DoWhileStatement");
SetStatementPosition(stmt);
Label body, book_keeping;
Iteration loop_statement(this, stmt);
increment_loop_depth();
__ bind(&body);
Visit(stmt->body());
// Record the position of the do while condition and make sure it is
// possible to break on the condition.
__ bind(loop_statement.continue_label());
PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
SetExpressionPosition(stmt->cond());
VisitForControl(stmt->cond(),
&book_keeping,
loop_statement.break_label(),
&book_keeping);
// Check stack before looping.
PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
__ bind(&book_keeping);
EmitBackEdgeBookkeeping(stmt, &body);
__ jmp(&body);
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(loop_statement.break_label());
decrement_loop_depth();
}
void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
Comment cmnt(masm_, "[ WhileStatement");
Label loop, body;
Iteration loop_statement(this, stmt);
increment_loop_depth();
__ bind(&loop);
SetExpressionPosition(stmt->cond());
VisitForControl(stmt->cond(),
&body,
loop_statement.break_label(),
&body);
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
__ bind(&body);
Visit(stmt->body());
__ bind(loop_statement.continue_label());
// Check stack before looping.
EmitBackEdgeBookkeeping(stmt, &loop);
__ jmp(&loop);
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(loop_statement.break_label());
decrement_loop_depth();
}
void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
Comment cmnt(masm_, "[ ForStatement");
Label test, body;
Iteration loop_statement(this, stmt);
// Set statement position for a break slot before entering the for-body.
SetStatementPosition(stmt);
if (stmt->init() != NULL) {
Visit(stmt->init());
}
increment_loop_depth();
// Emit the test at the bottom of the loop (even if empty).
__ jmp(&test);
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
__ bind(&body);
Visit(stmt->body());
PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
__ bind(loop_statement.continue_label());
if (stmt->next() != NULL) {
Visit(stmt->next());
}
// Emit the statement position here as this is where the for
// statement code starts.
SetStatementPosition(stmt);
// Check stack before looping.
EmitBackEdgeBookkeeping(stmt, &body);
__ bind(&test);
if (stmt->cond() != NULL) {
VisitForControl(stmt->cond(),
&body,
loop_statement.break_label(),
loop_statement.break_label());
} else {
__ jmp(&body);
}
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(loop_statement.break_label());
decrement_loop_depth();
}
void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
Comment cmnt(masm_, "[ TryCatchStatement");
SetStatementPosition(stmt);
// The try block adds a handler to the exception handler chain before
// entering, and removes it again when exiting normally. If an exception
// is thrown during execution of the try block, the handler is consumed
// and control is passed to the catch block with the exception in the
// result register.
Label try_entry, handler_entry, exit;
__ jmp(&try_entry);
__ bind(&handler_entry);
handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
// Exception handler code, the exception is in the result register.
// Extend the context before executing the catch block.
{ Comment cmnt(masm_, "[ Extend catch context");
__ Push(stmt->variable()->name());
__ Push(result_register());
PushFunctionArgumentForContextAllocation();
__ CallRuntime(Runtime::kPushCatchContext, 3);
StoreToFrameField(StandardFrameConstants::kContextOffset,
context_register());
}
Scope* saved_scope = scope();
scope_ = stmt->scope();
DCHECK(scope_->declarations()->is_empty());
{ WithOrCatch catch_body(this);
Visit(stmt->catch_block());
}
// Restore the context.
LoadContextField(context_register(), Context::PREVIOUS_INDEX);
StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
scope_ = saved_scope;
__ jmp(&exit);
// Try block code. Sets up the exception handler chain.
__ bind(&try_entry);
__ PushTryHandler(StackHandler::CATCH, stmt->index());
{ TryCatch try_body(this);
Visit(stmt->try_block());
}
__ PopTryHandler();
__ bind(&exit);
}
void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
Comment cmnt(masm_, "[ TryFinallyStatement");
SetStatementPosition(stmt);
// Try finally is compiled by setting up a try-handler on the stack while
// executing the try body, and removing it again afterwards.
//
// The try-finally construct can enter the finally block in three ways:
// 1. By exiting the try-block normally. This removes the try-handler and
// calls the finally block code before continuing.
// 2. By exiting the try-block with a function-local control flow transfer
// (break/continue/return). The site of the, e.g., break removes the
// try handler and calls the finally block code before continuing
// its outward control transfer.
// 3. By exiting the try-block with a thrown exception.
// This can happen in nested function calls. It traverses the try-handler
// chain and consumes the try-handler entry before jumping to the
// handler code. The handler code then calls the finally-block before
// rethrowing the exception.
//
// The finally block must assume a return address on top of the stack
// (or in the link register on ARM chips) and a value (return value or
// exception) in the result register (rax/eax/r0), both of which must
// be preserved. The return address isn't GC-safe, so it should be
// cooked before GC.
Label try_entry, handler_entry, finally_entry;
// Jump to try-handler setup and try-block code.
__ jmp(&try_entry);
__ bind(&handler_entry);
handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
// Exception handler code. This code is only executed when an exception
// is thrown. The exception is in the result register, and must be
// preserved by the finally block. Call the finally block and then
// rethrow the exception if it returns.
__ Call(&finally_entry);
__ Push(result_register());
__ CallRuntime(Runtime::kReThrow, 1);
// Finally block implementation.
__ bind(&finally_entry);
EnterFinallyBlock();
{ Finally finally_body(this);
Visit(stmt->finally_block());
}
ExitFinallyBlock(); // Return to the calling code.
// Set up try handler.
__ bind(&try_entry);
__ PushTryHandler(StackHandler::FINALLY, stmt->index());
{ TryFinally try_body(this, &finally_entry);
Visit(stmt->try_block());
}
__ PopTryHandler();
// Execute the finally block on the way out. Clobber the unpredictable
// value in the result register with one that's safe for GC because the
// finally block will unconditionally preserve the result register on the
// stack.
ClearAccumulator();
__ Call(&finally_entry);
}
void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
Comment cmnt(masm_, "[ DebuggerStatement");
SetStatementPosition(stmt);
__ DebugBreak();
// Ignore the return value.
PrepareForBailoutForId(stmt->DebugBreakId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitCaseClause(CaseClause* clause) {
UNREACHABLE();
}
void FullCodeGenerator::VisitConditional(Conditional* expr) {
Comment cmnt(masm_, "[ Conditional");
Label true_case, false_case, done;
VisitForControl(expr->condition(), &true_case, &false_case, &true_case);
PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS);
__ bind(&true_case);
SetExpressionPosition(expr->then_expression());
if (context()->IsTest()) {
const TestContext* for_test = TestContext::cast(context());
VisitForControl(expr->then_expression(),
for_test->true_label(),
for_test->false_label(),
NULL);
} else {
VisitInDuplicateContext(expr->then_expression());
__ jmp(&done);
}
PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS);
__ bind(&false_case);
SetExpressionPosition(expr->else_expression());
VisitInDuplicateContext(expr->else_expression());
// If control flow falls through Visit, merge it with true case here.
if (!context()->IsTest()) {
__ bind(&done);
}
}
void FullCodeGenerator::VisitLiteral(Literal* expr) {
Comment cmnt(masm_, "[ Literal");
context()->Plug(expr->value());
}
void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<SharedFunctionInfo> function_info =
Compiler::BuildFunctionInfo(expr, script(), info_);
if (function_info.is_null()) {
SetStackOverflow();
return;
}
EmitNewClosure(function_info, expr->pretenure());
}
void FullCodeGenerator::VisitClassLiteral(ClassLiteral* expr) {
// TODO(arv): Implement
Comment cmnt(masm_, "[ ClassLiteral");
if (expr->extends() != NULL) {
VisitForEffect(expr->extends());
}
context()->Plug(isolate()->factory()->undefined_value());
}
void FullCodeGenerator::VisitNativeFunctionLiteral(
NativeFunctionLiteral* expr) {
Comment cmnt(masm_, "[ NativeFunctionLiteral");
// Compute the function template for the native function.
Handle<String> name = expr->name();
v8::Handle<v8::FunctionTemplate> fun_template =
expr->extension()->GetNativeFunctionTemplate(
reinterpret_cast<v8::Isolate*>(isolate()), v8::Utils::ToLocal(name));
DCHECK(!fun_template.IsEmpty());
// Instantiate the function and create a shared function info from it.
Handle<JSFunction> fun = Utils::OpenHandle(*fun_template->GetFunction());
const int literals = fun->NumberOfLiterals();
Handle<Code> code = Handle<Code>(fun->shared()->code());
Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub());
Handle<SharedFunctionInfo> shared =
isolate()->factory()->NewSharedFunctionInfo(
name, literals, FunctionKind::kNormalFunction, code,
Handle<ScopeInfo>(fun->shared()->scope_info()),
Handle<TypeFeedbackVector>(fun->shared()->feedback_vector()));
shared->set_construct_stub(*construct_stub);
// Copy the function data to the shared function info.
shared->set_function_data(fun->shared()->function_data());
int parameters = fun->shared()->formal_parameter_count();
shared->set_formal_parameter_count(parameters);
EmitNewClosure(shared, false);
}
void FullCodeGenerator::VisitThrow(Throw* expr) {
Comment cmnt(masm_, "[ Throw");
VisitForStackValue(expr->exception());
__ CallRuntime(Runtime::kThrow, 1);
// Never returns here.
}
FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit(
int* stack_depth,
int* context_length) {
// The macros used here must preserve the result register.
__ Drop(*stack_depth);
__ PopTryHandler();
*stack_depth = 0;
return previous_;
}
bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) {
Expression* sub_expr;
Handle<String> check;
if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
EmitLiteralCompareTypeof(expr, sub_expr, check);
return true;
}
if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue);
return true;
}
if (expr->IsLiteralCompareNull(&sub_expr)) {
EmitLiteralCompareNil(expr, sub_expr, kNullValue);
return true;
}
return false;
}
void BackEdgeTable::Patch(Isolate* isolate, Code* unoptimized) {
DisallowHeapAllocation no_gc;
Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
// Increment loop nesting level by one and iterate over the back edge table
// to find the matching loops to patch the interrupt
// call to an unconditional call to the replacement code.
int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level() + 1;
if (loop_nesting_level > Code::kMaxLoopNestingMarker) return;
BackEdgeTable back_edges(unoptimized, &no_gc);
for (uint32_t i = 0; i < back_edges.length(); i++) {
if (static_cast<int>(back_edges.loop_depth(i)) == loop_nesting_level) {
DCHECK_EQ(INTERRUPT, GetBackEdgeState(isolate,
unoptimized,
back_edges.pc(i)));
PatchAt(unoptimized, back_edges.pc(i), ON_STACK_REPLACEMENT, patch);
}
}
unoptimized->set_allow_osr_at_loop_nesting_level(loop_nesting_level);
DCHECK(Verify(isolate, unoptimized));
}
void BackEdgeTable::Revert(Isolate* isolate, Code* unoptimized) {
DisallowHeapAllocation no_gc;
Code* patch = isolate->builtins()->builtin(Builtins::kInterruptCheck);
// Iterate over the back edge table and revert the patched interrupt calls.
int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
BackEdgeTable back_edges(unoptimized, &no_gc);
for (uint32_t i = 0; i < back_edges.length(); i++) {
if (static_cast<int>(back_edges.loop_depth(i)) <= loop_nesting_level) {
DCHECK_NE(INTERRUPT, GetBackEdgeState(isolate,
unoptimized,
back_edges.pc(i)));
PatchAt(unoptimized, back_edges.pc(i), INTERRUPT, patch);
}
}
unoptimized->set_allow_osr_at_loop_nesting_level(0);
// Assert that none of the back edges are patched anymore.
DCHECK(Verify(isolate, unoptimized));
}
void BackEdgeTable::AddStackCheck(Handle<Code> code, uint32_t pc_offset) {
DisallowHeapAllocation no_gc;
Isolate* isolate = code->GetIsolate();
Address pc = code->instruction_start() + pc_offset;
Code* patch = isolate->builtins()->builtin(Builtins::kOsrAfterStackCheck);
PatchAt(*code, pc, OSR_AFTER_STACK_CHECK, patch);
}
void BackEdgeTable::RemoveStackCheck(Handle<Code> code, uint32_t pc_offset) {
DisallowHeapAllocation no_gc;
Isolate* isolate = code->GetIsolate();
Address pc = code->instruction_start() + pc_offset;
if (OSR_AFTER_STACK_CHECK == GetBackEdgeState(isolate, *code, pc)) {
Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
PatchAt(*code, pc, ON_STACK_REPLACEMENT, patch);
}
}
#ifdef DEBUG
bool BackEdgeTable::Verify(Isolate* isolate, Code* unoptimized) {
DisallowHeapAllocation no_gc;
int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
BackEdgeTable back_edges(unoptimized, &no_gc);
for (uint32_t i = 0; i < back_edges.length(); i++) {
uint32_t loop_depth = back_edges.loop_depth(i);
CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker);
// Assert that all back edges for shallower loops (and only those)
// have already been patched.
CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level),
GetBackEdgeState(isolate,
unoptimized,
back_edges.pc(i)) != INTERRUPT);
}
return true;
}
#endif // DEBUG
#undef __
} } // namespace v8::internal