dbff30456e
Introduce a bottleneck for right-trimming an object. In a subsequent CL we will use this method to update the cached size of invalidated objects. This CL also tries to clean-up the various CreateFillerObjectAt methods. CreateFillerObjectAtRaw is now the internal method for all these methods. After moving right-trimming to NotifyObjectSizeChange, both CreateFillerObjectAt and CreateFillerObjectAtBackground don't need those arguments for clearing slots or memory anymore. Bug: v8:12578, chromium:1316289 Change-Id: I6ff0bfaced3e0a1765152700e68a4ad33a155723 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3607992 Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Camillo Bruni <cbruni@chromium.org> Commit-Queue: Dominik Inführ <dinfuehr@chromium.org> Cr-Commit-Position: refs/heads/main@{#80200}
300 lines
12 KiB
C++
300 lines
12 KiB
C++
// Copyright 2017 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/heap/spaces.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "src/common/globals.h"
|
|
#include "src/execution/isolate.h"
|
|
#include "src/heap/heap-inl.h"
|
|
#include "src/heap/heap-write-barrier-inl.h"
|
|
#include "src/heap/heap.h"
|
|
#include "src/heap/large-spaces.h"
|
|
#include "src/heap/memory-chunk.h"
|
|
#include "src/heap/spaces-inl.h"
|
|
#include "test/unittests/test-utils.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
using SpacesTest = TestWithIsolate;
|
|
|
|
TEST_F(SpacesTest, CompactionSpaceMerge) {
|
|
Heap* heap = i_isolate()->heap();
|
|
OldSpace* old_space = heap->old_space();
|
|
EXPECT_TRUE(old_space != nullptr);
|
|
|
|
CompactionSpace* compaction_space =
|
|
new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE,
|
|
CompactionSpaceKind::kCompactionSpaceForMarkCompact);
|
|
EXPECT_TRUE(compaction_space != nullptr);
|
|
|
|
for (Page* p : *old_space) {
|
|
// Unlink free lists from the main space to avoid reusing the memory for
|
|
// compaction spaces.
|
|
old_space->UnlinkFreeListCategories(p);
|
|
}
|
|
|
|
// Cannot loop until "Available()" since we initially have 0 bytes available
|
|
// and would thus neither grow, nor be able to allocate an object.
|
|
const int kNumObjects = 10;
|
|
const int kNumObjectsPerPage =
|
|
compaction_space->AreaSize() / kMaxRegularHeapObjectSize;
|
|
const int kExpectedPages =
|
|
(kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
|
|
for (int i = 0; i < kNumObjects; i++) {
|
|
HeapObject object =
|
|
compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize)
|
|
.ToObjectChecked();
|
|
heap->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize);
|
|
}
|
|
int pages_in_old_space = old_space->CountTotalPages();
|
|
int pages_in_compaction_space = compaction_space->CountTotalPages();
|
|
EXPECT_EQ(kExpectedPages, pages_in_compaction_space);
|
|
old_space->MergeCompactionSpace(compaction_space);
|
|
EXPECT_EQ(pages_in_old_space + pages_in_compaction_space,
|
|
old_space->CountTotalPages());
|
|
|
|
delete compaction_space;
|
|
}
|
|
|
|
TEST_F(SpacesTest, WriteBarrierFromHeapObject) {
|
|
constexpr Address address1 = Page::kPageSize;
|
|
HeapObject object1 = HeapObject::unchecked_cast(Object(address1));
|
|
BasicMemoryChunk* chunk1 = BasicMemoryChunk::FromHeapObject(object1);
|
|
heap_internals::MemoryChunk* slim_chunk1 =
|
|
heap_internals::MemoryChunk::FromHeapObject(object1);
|
|
EXPECT_EQ(static_cast<void*>(chunk1), static_cast<void*>(slim_chunk1));
|
|
constexpr Address address2 = 2 * Page::kPageSize - 1;
|
|
HeapObject object2 = HeapObject::unchecked_cast(Object(address2));
|
|
BasicMemoryChunk* chunk2 = BasicMemoryChunk::FromHeapObject(object2);
|
|
heap_internals::MemoryChunk* slim_chunk2 =
|
|
heap_internals::MemoryChunk::FromHeapObject(object2);
|
|
EXPECT_EQ(static_cast<void*>(chunk2), static_cast<void*>(slim_chunk2));
|
|
}
|
|
|
|
TEST_F(SpacesTest, WriteBarrierIsMarking) {
|
|
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
|
|
char memory[kSizeOfMemoryChunk];
|
|
memset(&memory, 0, kSizeOfMemoryChunk);
|
|
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
|
|
heap_internals::MemoryChunk* slim_chunk =
|
|
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
|
|
EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
|
|
EXPECT_FALSE(slim_chunk->IsMarking());
|
|
chunk->SetFlag(MemoryChunk::INCREMENTAL_MARKING);
|
|
EXPECT_TRUE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
|
|
EXPECT_TRUE(slim_chunk->IsMarking());
|
|
chunk->ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
|
|
EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
|
|
EXPECT_FALSE(slim_chunk->IsMarking());
|
|
}
|
|
|
|
TEST_F(SpacesTest, WriteBarrierInYoungGenerationToSpace) {
|
|
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
|
|
char memory[kSizeOfMemoryChunk];
|
|
memset(&memory, 0, kSizeOfMemoryChunk);
|
|
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
|
|
heap_internals::MemoryChunk* slim_chunk =
|
|
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
|
|
EXPECT_FALSE(chunk->InYoungGeneration());
|
|
EXPECT_FALSE(slim_chunk->InYoungGeneration());
|
|
chunk->SetFlag(MemoryChunk::TO_PAGE);
|
|
EXPECT_TRUE(chunk->InYoungGeneration());
|
|
EXPECT_TRUE(slim_chunk->InYoungGeneration());
|
|
chunk->ClearFlag(MemoryChunk::TO_PAGE);
|
|
EXPECT_FALSE(chunk->InYoungGeneration());
|
|
EXPECT_FALSE(slim_chunk->InYoungGeneration());
|
|
}
|
|
|
|
TEST_F(SpacesTest, WriteBarrierInYoungGenerationFromSpace) {
|
|
const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
|
|
char memory[kSizeOfMemoryChunk];
|
|
memset(&memory, 0, kSizeOfMemoryChunk);
|
|
MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
|
|
heap_internals::MemoryChunk* slim_chunk =
|
|
reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
|
|
EXPECT_FALSE(chunk->InYoungGeneration());
|
|
EXPECT_FALSE(slim_chunk->InYoungGeneration());
|
|
chunk->SetFlag(MemoryChunk::FROM_PAGE);
|
|
EXPECT_TRUE(chunk->InYoungGeneration());
|
|
EXPECT_TRUE(slim_chunk->InYoungGeneration());
|
|
chunk->ClearFlag(MemoryChunk::FROM_PAGE);
|
|
EXPECT_FALSE(chunk->InYoungGeneration());
|
|
EXPECT_FALSE(slim_chunk->InYoungGeneration());
|
|
}
|
|
|
|
TEST_F(SpacesTest, CodeRangeAddressReuse) {
|
|
CodeRangeAddressHint hint;
|
|
const size_t kAnyBaseAlignment = 1;
|
|
// Create code ranges.
|
|
Address code_range1 = hint.GetAddressHint(100, kAnyBaseAlignment);
|
|
Address code_range2 = hint.GetAddressHint(200, kAnyBaseAlignment);
|
|
Address code_range3 = hint.GetAddressHint(100, kAnyBaseAlignment);
|
|
|
|
// Since the addresses are random, we cannot check that they are different.
|
|
|
|
// Free two code ranges.
|
|
hint.NotifyFreedCodeRange(code_range1, 100);
|
|
hint.NotifyFreedCodeRange(code_range2, 200);
|
|
|
|
// The next two code ranges should reuse the freed addresses.
|
|
Address code_range4 = hint.GetAddressHint(100, kAnyBaseAlignment);
|
|
EXPECT_EQ(code_range4, code_range1);
|
|
Address code_range5 = hint.GetAddressHint(200, kAnyBaseAlignment);
|
|
EXPECT_EQ(code_range5, code_range2);
|
|
|
|
// Free the third code range and check address reuse.
|
|
hint.NotifyFreedCodeRange(code_range3, 100);
|
|
Address code_range6 = hint.GetAddressHint(100, kAnyBaseAlignment);
|
|
EXPECT_EQ(code_range6, code_range3);
|
|
}
|
|
|
|
// Tests that FreeListMany::SelectFreeListCategoryType returns what it should.
|
|
TEST_F(SpacesTest, FreeListManySelectFreeListCategoryType) {
|
|
FreeListMany free_list;
|
|
|
|
// Testing that all sizes below 256 bytes get assigned the correct category
|
|
for (size_t size = 0; size <= FreeListMany::kPreciseCategoryMaxSize; size++) {
|
|
FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
|
|
if (cat == 0) {
|
|
// If cat == 0, then we make sure that |size| doesn't fit in the 2nd
|
|
// category.
|
|
EXPECT_LT(size, free_list.categories_min[1]);
|
|
} else {
|
|
// Otherwise, size should fit in |cat|, but not in |cat+1|.
|
|
EXPECT_LE(free_list.categories_min[cat], size);
|
|
EXPECT_LT(size, free_list.categories_min[cat + 1]);
|
|
}
|
|
}
|
|
|
|
// Testing every size above 256 would take long time, so test only some
|
|
// "interesting cases": picking some number in the middle of the categories,
|
|
// as well as at the categories' bounds.
|
|
for (int cat = kFirstCategory + 1; cat <= free_list.last_category_; cat++) {
|
|
std::vector<size_t> sizes;
|
|
// Adding size less than this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat] - 8);
|
|
// Adding size equal to this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat]);
|
|
// Adding size greater than this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat] + 8);
|
|
// Adding size between this category's minimum and the next category
|
|
if (cat != free_list.last_category_) {
|
|
sizes.push_back(
|
|
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
|
|
2);
|
|
}
|
|
|
|
for (size_t size : sizes) {
|
|
FreeListCategoryType selected =
|
|
free_list.SelectFreeListCategoryType(size);
|
|
if (selected == free_list.last_category_) {
|
|
// If selected == last_category, then we make sure that |size| indeeds
|
|
// fits in the last category.
|
|
EXPECT_LE(free_list.categories_min[selected], size);
|
|
} else {
|
|
// Otherwise, size should fit in |selected|, but not in |selected+1|.
|
|
EXPECT_LE(free_list.categories_min[selected], size);
|
|
EXPECT_LT(size, free_list.categories_min[selected + 1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that FreeListMany::GuaranteedAllocatable returns what it should.
|
|
TEST_F(SpacesTest, FreeListManyGuaranteedAllocatable) {
|
|
FreeListMany free_list;
|
|
|
|
for (int cat = kFirstCategory; cat < free_list.last_category_; cat++) {
|
|
std::vector<size_t> sizes;
|
|
// Adding size less than this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat] - 8);
|
|
// Adding size equal to this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat]);
|
|
// Adding size greater than this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat] + 8);
|
|
if (cat != free_list.last_category_) {
|
|
// Adding size between this category's minimum and the next category
|
|
sizes.push_back(
|
|
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
|
|
2);
|
|
}
|
|
|
|
for (size_t size : sizes) {
|
|
FreeListCategoryType cat_free =
|
|
free_list.SelectFreeListCategoryType(size);
|
|
size_t guaranteed_allocatable = free_list.GuaranteedAllocatable(size);
|
|
if (cat_free == free_list.last_category_) {
|
|
// If |cat_free| == last_category, then guaranteed_allocatable must
|
|
// return the last category, because when allocating, the last category
|
|
// is searched entirely.
|
|
EXPECT_EQ(free_list.SelectFreeListCategoryType(guaranteed_allocatable),
|
|
free_list.last_category_);
|
|
} else if (size < free_list.categories_min[0]) {
|
|
// If size < free_list.categories_min[0], then the bytes are wasted, and
|
|
// guaranteed_allocatable should return 0.
|
|
EXPECT_EQ(guaranteed_allocatable, 0ul);
|
|
} else {
|
|
// Otherwise, |guaranteed_allocatable| is equal to the minimum of
|
|
// |size|'s category (|cat_free|);
|
|
EXPECT_EQ(free_list.categories_min[cat_free], guaranteed_allocatable);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that
|
|
// FreeListManyCachedFastPath::SelectFastAllocationFreeListCategoryType returns
|
|
// what it should.
|
|
TEST_F(SpacesTest,
|
|
FreeListManyCachedFastPathSelectFastAllocationFreeListCategoryType) {
|
|
FreeListManyCachedFastPath free_list;
|
|
|
|
for (int cat = kFirstCategory; cat <= free_list.last_category_; cat++) {
|
|
std::vector<size_t> sizes;
|
|
// Adding size less than this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat] - 8);
|
|
// Adding size equal to this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat]);
|
|
// Adding size greater than this category's minimum
|
|
sizes.push_back(free_list.categories_min[cat] + 8);
|
|
// Adding size between this category's minimum and the next category
|
|
if (cat != free_list.last_category_) {
|
|
sizes.push_back(
|
|
(free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
|
|
2);
|
|
}
|
|
|
|
for (size_t size : sizes) {
|
|
FreeListCategoryType selected =
|
|
free_list.SelectFastAllocationFreeListCategoryType(size);
|
|
if (size <= FreeListManyCachedFastPath::kTinyObjectMaxSize) {
|
|
// For tiny objects, the first category of the fast path should be
|
|
// chosen.
|
|
EXPECT_TRUE(selected ==
|
|
FreeListManyCachedFastPath::kFastPathFirstCategory);
|
|
} else if (size >= free_list.categories_min[free_list.last_category_] -
|
|
FreeListManyCachedFastPath::kFastPathOffset) {
|
|
// For objects close to the minimum of the last category, the last
|
|
// category is chosen.
|
|
EXPECT_EQ(selected, free_list.last_category_);
|
|
} else {
|
|
// For other objects, the chosen category must satisfy that its minimum
|
|
// is at least |size|+1.85k.
|
|
EXPECT_GE(free_list.categories_min[selected],
|
|
size + FreeListManyCachedFastPath::kFastPathOffset);
|
|
// And the smaller categoriy's minimum is less than |size|+1.85k
|
|
// (otherwise it would have been chosen instead).
|
|
EXPECT_LT(free_list.categories_min[selected - 1],
|
|
size + FreeListManyCachedFastPath::kFastPathOffset);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|