v8/src/store-buffer.cc
2011-10-25 13:27:46 +00:00

697 lines
23 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "store-buffer.h"
#include "store-buffer-inl.h"
#include "v8-counters.h"
namespace v8 {
namespace internal {
StoreBuffer::StoreBuffer(Heap* heap)
: heap_(heap),
start_(NULL),
limit_(NULL),
old_start_(NULL),
old_limit_(NULL),
old_top_(NULL),
old_buffer_is_sorted_(false),
old_buffer_is_filtered_(false),
during_gc_(false),
store_buffer_rebuilding_enabled_(false),
callback_(NULL),
may_move_store_buffer_entries_(true),
virtual_memory_(NULL),
hash_map_1_(NULL),
hash_map_2_(NULL) {
}
void StoreBuffer::Setup() {
virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3);
uintptr_t start_as_int =
reinterpret_cast<uintptr_t>(virtual_memory_->address());
start_ =
reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
limit_ = start_ + (kStoreBufferSize / sizeof(*start_));
old_top_ = old_start_ = new Address[kOldStoreBufferLength];
old_limit_ = old_start_ + kOldStoreBufferLength;
ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
Address* vm_limit = reinterpret_cast<Address*>(
reinterpret_cast<char*>(virtual_memory_->address()) +
virtual_memory_->size());
ASSERT(start_ <= vm_limit);
ASSERT(limit_ <= vm_limit);
USE(vm_limit);
ASSERT((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
ASSERT((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
0);
virtual_memory_->Commit(reinterpret_cast<Address>(start_),
kStoreBufferSize,
false); // Not executable.
heap_->public_set_store_buffer_top(start_);
hash_map_1_ = new uintptr_t[kHashMapLength];
hash_map_2_ = new uintptr_t[kHashMapLength];
ZapHashTables();
}
void StoreBuffer::TearDown() {
delete virtual_memory_;
delete[] hash_map_1_;
delete[] hash_map_2_;
delete[] old_start_;
old_start_ = old_top_ = old_limit_ = NULL;
start_ = limit_ = NULL;
heap_->public_set_store_buffer_top(start_);
}
void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
isolate->heap()->store_buffer()->Compact();
}
#if V8_TARGET_ARCH_X64
static int CompareAddresses(const void* void_a, const void* void_b) {
intptr_t a =
reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
intptr_t b =
reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
// Unfortunately if int is smaller than intptr_t there is no branch-free
// way to return a number with the same sign as the difference between the
// pointers.
if (a == b) return 0;
if (a < b) return -1;
ASSERT(a > b);
return 1;
}
#else
static int CompareAddresses(const void* void_a, const void* void_b) {
intptr_t a =
reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
intptr_t b =
reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
ASSERT(sizeof(1) == sizeof(a));
// Shift down to avoid wraparound.
return (a >> kPointerSizeLog2) - (b >> kPointerSizeLog2);
}
#endif
void StoreBuffer::Uniq() {
ASSERT(HashTablesAreZapped());
// Remove adjacent duplicates and cells that do not point at new space.
Address previous = NULL;
Address* write = old_start_;
ASSERT(may_move_store_buffer_entries_);
for (Address* read = old_start_; read < old_top_; read++) {
Address current = *read;
if (current != previous) {
if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
*write++ = current;
}
}
previous = current;
}
old_top_ = write;
}
void StoreBuffer::HandleFullness() {
if (old_buffer_is_filtered_) return;
ASSERT(may_move_store_buffer_entries_);
Compact();
old_buffer_is_filtered_ = true;
bool page_has_scan_on_scavenge_flag = false;
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
}
if (page_has_scan_on_scavenge_flag) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
}
// If filtering out the entries from scan_on_scavenge pages got us down to
// less than half full, then we are satisfied with that.
if (old_limit_ - old_top_ > old_top_ - old_start_) return;
// Sample 1 entry in 97 and filter out the pages where we estimate that more
// than 1 in 8 pointers are to new space.
static const int kSampleFinenesses = 5;
static const struct Samples {
int prime_sample_step;
int threshold;
} samples[kSampleFinenesses] = {
{ 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
{ 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
{ 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
{ 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
{ 1, 0}
};
for (int i = kSampleFinenesses - 1; i >= 0; i--) {
ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
// As a last resort we mark all pages as being exempt from the store buffer.
ASSERT(i != 0 || old_top_ == old_start_);
if (old_limit_ - old_top_ > old_top_ - old_start_) return;
}
UNREACHABLE();
}
// Sample the store buffer to see if some pages are taking up a lot of space
// in the store buffer.
void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
chunk->set_store_buffer_counter(0);
}
bool created_new_scan_on_scavenge_pages = false;
MemoryChunk* previous_chunk = NULL;
for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
Address addr = *p;
MemoryChunk* containing_chunk = NULL;
if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
containing_chunk = previous_chunk;
} else {
containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
}
int old_counter = containing_chunk->store_buffer_counter();
if (old_counter == threshold) {
containing_chunk->set_scan_on_scavenge(true);
created_new_scan_on_scavenge_pages = true;
}
containing_chunk->set_store_buffer_counter(old_counter + 1);
previous_chunk = containing_chunk;
}
if (created_new_scan_on_scavenge_pages) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
}
old_buffer_is_filtered_ = true;
}
void StoreBuffer::Filter(int flag) {
Address* new_top = old_start_;
MemoryChunk* previous_chunk = NULL;
for (Address* p = old_start_; p < old_top_; p++) {
Address addr = *p;
MemoryChunk* containing_chunk = NULL;
if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
containing_chunk = previous_chunk;
} else {
containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
previous_chunk = containing_chunk;
}
if (!containing_chunk->IsFlagSet(flag)) {
*new_top++ = addr;
}
}
old_top_ = new_top;
}
void StoreBuffer::SortUniq() {
Compact();
if (old_buffer_is_sorted_) return;
ZapHashTables();
qsort(reinterpret_cast<void*>(old_start_),
old_top_ - old_start_,
sizeof(*old_top_),
&CompareAddresses);
Uniq();
old_buffer_is_sorted_ = true;
}
bool StoreBuffer::PrepareForIteration() {
Compact();
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
bool page_has_scan_on_scavenge_flag = false;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
}
if (page_has_scan_on_scavenge_flag) {
Filter(MemoryChunk::SCAN_ON_SCAVENGE);
}
ZapHashTables();
return page_has_scan_on_scavenge_flag;
}
#ifdef DEBUG
void StoreBuffer::Clean() {
ZapHashTables();
Uniq(); // Also removes things that no longer point to new space.
CheckForFullBuffer();
}
static bool Zapped(char* start, int size) {
for (int i = 0; i < size; i++) {
if (start[i] != 0) return false;
}
return true;
}
bool StoreBuffer::HashTablesAreZapped() {
return Zapped(reinterpret_cast<char*>(hash_map_1_),
sizeof(uintptr_t) * kHashMapLength) &&
Zapped(reinterpret_cast<char*>(hash_map_2_),
sizeof(uintptr_t) * kHashMapLength);
}
static Address* in_store_buffer_1_element_cache = NULL;
bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
if (!FLAG_enable_slow_asserts) return true;
if (in_store_buffer_1_element_cache != NULL &&
*in_store_buffer_1_element_cache == cell_address) {
return true;
}
Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
for (Address* current = top - 1; current >= start_; current--) {
if (*current == cell_address) {
in_store_buffer_1_element_cache = current;
return true;
}
}
for (Address* current = old_top_ - 1; current >= old_start_; current--) {
if (*current == cell_address) {
in_store_buffer_1_element_cache = current;
return true;
}
}
return false;
}
#endif
void StoreBuffer::ZapHashTables() {
memset(reinterpret_cast<void*>(hash_map_1_),
0,
sizeof(uintptr_t) * kHashMapLength);
memset(reinterpret_cast<void*>(hash_map_2_),
0,
sizeof(uintptr_t) * kHashMapLength);
}
void StoreBuffer::GCPrologue() {
ZapHashTables();
during_gc_ = true;
}
#ifdef DEBUG
static void DummyScavengePointer(HeapObject** p, HeapObject* o) {
// Do nothing.
}
void StoreBuffer::VerifyPointers(PagedSpace* space,
RegionCallback region_callback) {
PageIterator it(space);
while (it.has_next()) {
Page* page = it.next();
FindPointersToNewSpaceOnPage(
reinterpret_cast<PagedSpace*>(page->owner()),
page,
region_callback,
&DummyScavengePointer);
}
}
void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
LargeObjectIterator it(space);
for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
if (object->IsFixedArray()) {
Address slot_address = object->address();
Address end = object->address() + object->Size();
while (slot_address < end) {
HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
// When we are not in GC the Heap::InNewSpace() predicate
// checks that pointers which satisfy predicate point into
// the active semispace.
heap_->InNewSpace(*slot);
slot_address += kPointerSize;
}
}
}
}
#endif
void StoreBuffer::Verify() {
#ifdef DEBUG
VerifyPointers(heap_->old_pointer_space(),
&StoreBuffer::FindPointersToNewSpaceInRegion);
VerifyPointers(heap_->map_space(),
&StoreBuffer::FindPointersToNewSpaceInMapsRegion);
VerifyPointers(heap_->lo_space());
#endif
}
void StoreBuffer::GCEpilogue() {
during_gc_ = false;
if (FLAG_verify_heap) {
Verify();
}
}
void StoreBuffer::FindPointersToNewSpaceInRegion(
Address start, Address end, ObjectSlotCallback slot_callback) {
for (Address slot_address = start;
slot_address < end;
slot_address += kPointerSize) {
Object** slot = reinterpret_cast<Object**>(slot_address);
if (heap_->InNewSpace(*slot)) {
HeapObject* object = reinterpret_cast<HeapObject*>(*slot);
ASSERT(object->IsHeapObject());
slot_callback(reinterpret_cast<HeapObject**>(slot), object);
if (heap_->InNewSpace(*slot)) {
EnterDirectlyIntoStoreBuffer(slot_address);
}
}
}
}
// Compute start address of the first map following given addr.
static inline Address MapStartAlign(Address addr) {
Address page = Page::FromAddress(addr)->ObjectAreaStart();
return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
}
// Compute end address of the first map preceding given addr.
static inline Address MapEndAlign(Address addr) {
Address page = Page::FromAllocationTop(addr)->ObjectAreaStart();
return page + ((addr - page) / Map::kSize * Map::kSize);
}
void StoreBuffer::FindPointersToNewSpaceInMaps(
Address start,
Address end,
ObjectSlotCallback slot_callback) {
ASSERT(MapStartAlign(start) == start);
ASSERT(MapEndAlign(end) == end);
Address map_address = start;
while (map_address < end) {
ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address)));
ASSERT(Memory::Object_at(map_address)->IsMap());
Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
FindPointersToNewSpaceInRegion(pointer_fields_start,
pointer_fields_end,
slot_callback);
map_address += Map::kSize;
}
}
void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
Address start,
Address end,
ObjectSlotCallback slot_callback) {
Address map_aligned_start = MapStartAlign(start);
Address map_aligned_end = MapEndAlign(end);
ASSERT(map_aligned_start == start);
ASSERT(map_aligned_end == end);
FindPointersToNewSpaceInMaps(map_aligned_start,
map_aligned_end,
slot_callback);
}
// This function iterates over all the pointers in a paged space in the heap,
// looking for pointers into new space. Within the pages there may be dead
// objects that have not been overwritten by free spaces or fillers because of
// lazy sweeping. These dead objects may not contain pointers to new space.
// The garbage areas that have been swept properly (these will normally be the
// large ones) will be marked with free space and filler map words. In
// addition any area that has never been used at all for object allocation must
// be marked with a free space or filler. Because the free space and filler
// maps do not move we can always recognize these even after a compaction.
// Normal objects like FixedArrays and JSObjects should not contain references
// to these maps. The special garbage section (see comment in spaces.h) is
// skipped since it can contain absolutely anything. Any objects that are
// allocated during iteration may or may not be visited by the iteration, but
// they will not be partially visited.
void StoreBuffer::FindPointersToNewSpaceOnPage(
PagedSpace* space,
Page* page,
RegionCallback region_callback,
ObjectSlotCallback slot_callback) {
Address visitable_start = page->ObjectAreaStart();
Address end_of_page = page->ObjectAreaEnd();
Address visitable_end = visitable_start;
Object* free_space_map = heap_->free_space_map();
Object* two_pointer_filler_map = heap_->two_pointer_filler_map();
while (visitable_end < end_of_page) {
Object* o = *reinterpret_cast<Object**>(visitable_end);
// Skip fillers but not things that look like fillers in the special
// garbage section which can contain anything.
if (o == free_space_map ||
o == two_pointer_filler_map ||
(visitable_end == space->top() && visitable_end != space->limit())) {
if (visitable_start != visitable_end) {
// After calling this the special garbage section may have moved.
(this->*region_callback)(visitable_start,
visitable_end,
slot_callback);
if (visitable_end >= space->top() && visitable_end < space->limit()) {
visitable_end = space->limit();
visitable_start = visitable_end;
continue;
}
}
if (visitable_end == space->top() && visitable_end != space->limit()) {
visitable_start = visitable_end = space->limit();
} else {
// At this point we are either at the start of a filler or we are at
// the point where the space->top() used to be before the
// visit_pointer_region call above. Either way we can skip the
// object at the current spot: We don't promise to visit objects
// allocated during heap traversal, and if space->top() moved then it
// must be because an object was allocated at this point.
visitable_start =
visitable_end + HeapObject::FromAddress(visitable_end)->Size();
visitable_end = visitable_start;
}
} else {
ASSERT(o != free_space_map);
ASSERT(o != two_pointer_filler_map);
ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
visitable_end += kPointerSize;
}
}
ASSERT(visitable_end == end_of_page);
if (visitable_start != visitable_end) {
(this->*region_callback)(visitable_start,
visitable_end,
slot_callback);
}
}
void StoreBuffer::IteratePointersInStoreBuffer(
ObjectSlotCallback slot_callback) {
Address* limit = old_top_;
old_top_ = old_start_;
{
DontMoveStoreBufferEntriesScope scope(this);
for (Address* current = old_start_; current < limit; current++) {
#ifdef DEBUG
Address* saved_top = old_top_;
#endif
Object** slot = reinterpret_cast<Object**>(*current);
Object* object = *slot;
if (heap_->InFromSpace(object)) {
HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
if (heap_->InNewSpace(*slot)) {
EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
}
}
ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top);
}
}
}
void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
// We do not sort or remove duplicated entries from the store buffer because
// we expect that callback will rebuild the store buffer thus removing
// all duplicates and pointers to old space.
bool some_pages_to_scan = PrepareForIteration();
// TODO(gc): we want to skip slots on evacuation candidates
// but we can't simply figure that out from slot address
// because slot can belong to a large object.
IteratePointersInStoreBuffer(slot_callback);
// We are done scanning all the pointers that were in the store buffer, but
// there may be some pages marked scan_on_scavenge that have pointers to new
// space that are not in the store buffer. We must scan them now. As we
// scan, the surviving pointers to new space will be added to the store
// buffer. If there are still a lot of pointers to new space then we will
// keep the scan_on_scavenge flag on the page and discard the pointers that
// were added to the store buffer. If there are not many pointers to new
// space left on the page we will keep the pointers in the store buffer and
// remove the flag from the page.
if (some_pages_to_scan) {
if (callback_ != NULL) {
(*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
}
PointerChunkIterator it(heap_);
MemoryChunk* chunk;
while ((chunk = it.next()) != NULL) {
if (chunk->scan_on_scavenge()) {
chunk->set_scan_on_scavenge(false);
if (callback_ != NULL) {
(*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
}
if (chunk->owner() == heap_->lo_space()) {
LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
HeapObject* array = large_page->GetObject();
ASSERT(array->IsFixedArray());
Address start = array->address();
Address end = start + array->Size();
FindPointersToNewSpaceInRegion(start, end, slot_callback);
} else {
Page* page = reinterpret_cast<Page*>(chunk);
PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
FindPointersToNewSpaceOnPage(
owner,
page,
(owner == heap_->map_space() ?
&StoreBuffer::FindPointersToNewSpaceInMapsRegion :
&StoreBuffer::FindPointersToNewSpaceInRegion),
slot_callback);
}
}
}
if (callback_ != NULL) {
(*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
}
}
}
void StoreBuffer::Compact() {
Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
if (top == start_) return;
// There's no check of the limit in the loop below so we check here for
// the worst case (compaction doesn't eliminate any pointers).
ASSERT(top <= limit_);
heap_->public_set_store_buffer_top(start_);
if (top - start_ > old_limit_ - old_top_) {
HandleFullness();
}
ASSERT(may_move_store_buffer_entries_);
// Goes through the addresses in the store buffer attempting to remove
// duplicates. In the interest of speed this is a lossy operation. Some
// duplicates will remain. We have two hash tables with different hash
// functions to reduce the number of unnecessary clashes.
for (Address* current = start_; current < top; current++) {
ASSERT(!heap_->cell_space()->Contains(*current));
ASSERT(!heap_->code_space()->Contains(*current));
ASSERT(!heap_->old_data_space()->Contains(*current));
uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
// Shift out the last bits including any tags.
int_addr >>= kPointerSizeLog2;
int hash1 =
((int_addr ^ (int_addr >> kHashMapLengthLog2)) & (kHashMapLength - 1));
if (hash_map_1_[hash1] == int_addr) continue;
int hash2 =
((int_addr - (int_addr >> kHashMapLengthLog2)) & (kHashMapLength - 1));
hash2 ^= hash2 >> (kHashMapLengthLog2 * 2);
if (hash_map_2_[hash2] == int_addr) continue;
if (hash_map_1_[hash1] == 0) {
hash_map_1_[hash1] = int_addr;
} else if (hash_map_2_[hash2] == 0) {
hash_map_2_[hash2] = int_addr;
} else {
// Rather than slowing down we just throw away some entries. This will
// cause some duplicates to remain undetected.
hash_map_1_[hash1] = int_addr;
hash_map_2_[hash2] = 0;
}
old_buffer_is_sorted_ = false;
old_buffer_is_filtered_ = false;
*old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
ASSERT(old_top_ <= old_limit_);
}
heap_->isolate()->counters()->store_buffer_compactions()->Increment();
CheckForFullBuffer();
}
void StoreBuffer::CheckForFullBuffer() {
if (old_limit_ - old_top_ < kStoreBufferSize * 2) {
HandleFullness();
}
}
} } // namespace v8::internal