v8/src/full-codegen.h
dslomov 6ac4de87a8 harmony-scoping: make assignment to 'const' a late error.
Per TC39 Nov 2014 decision.

This patch also changes behavior for "legacy const": assignments to sloppy const in strict mode is now also a type error. This fixes v8:2243 and also brings us in compliance with other engines re assignment to function names (see updated webkit test), but might have bigger implications.
That change can easily be reverted by changing Variable::IsSignallingAssignmentToConst.

BUG=v8:3713,v8:2243
LOG=N

Review URL: https://codereview.chromium.org/749633002

Cr-Commit-Position: refs/heads/master@{#25516}
2014-11-26 11:21:23 +00:00

1046 lines
36 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_FULL_CODEGEN_H_
#define V8_FULL_CODEGEN_H_
#include "src/v8.h"
#include "src/allocation.h"
#include "src/assert-scope.h"
#include "src/ast.h"
#include "src/bit-vector.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/compiler.h"
#include "src/globals.h"
#include "src/objects.h"
namespace v8 {
namespace internal {
// Forward declarations.
class JumpPatchSite;
// AST node visitor which can tell whether a given statement will be breakable
// when the code is compiled by the full compiler in the debugger. This means
// that there will be an IC (load/store/call) in the code generated for the
// debugger to piggybag on.
class BreakableStatementChecker: public AstVisitor {
public:
explicit BreakableStatementChecker(Zone* zone) : is_breakable_(false) {
InitializeAstVisitor(zone);
}
void Check(Statement* stmt);
void Check(Expression* stmt);
bool is_breakable() { return is_breakable_; }
private:
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node) OVERRIDE;
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
bool is_breakable_;
DEFINE_AST_VISITOR_SUBCLASS_MEMBERS();
DISALLOW_COPY_AND_ASSIGN(BreakableStatementChecker);
};
// -----------------------------------------------------------------------------
// Full code generator.
class FullCodeGenerator: public AstVisitor {
public:
enum State {
NO_REGISTERS,
TOS_REG
};
FullCodeGenerator(MacroAssembler* masm, CompilationInfo* info)
: masm_(masm),
info_(info),
scope_(info->scope()),
nesting_stack_(NULL),
loop_depth_(0),
globals_(NULL),
context_(NULL),
bailout_entries_(info->HasDeoptimizationSupport()
? info->function()->ast_node_count() : 0,
info->zone()),
back_edges_(2, info->zone()),
ic_total_count_(0) {
DCHECK(!info->IsStub());
Initialize();
}
void Initialize();
static bool MakeCode(CompilationInfo* info);
// Encode state and pc-offset as a BitField<type, start, size>.
// Only use 30 bits because we encode the result as a smi.
class StateField : public BitField<State, 0, 1> { };
class PcField : public BitField<unsigned, 1, 30-1> { };
static const char* State2String(State state) {
switch (state) {
case NO_REGISTERS: return "NO_REGISTERS";
case TOS_REG: return "TOS_REG";
}
UNREACHABLE();
return NULL;
}
static const int kMaxBackEdgeWeight = 127;
// Platform-specific code size multiplier.
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
static const int kCodeSizeMultiplier = 105;
static const int kBootCodeSizeMultiplier = 100;
#elif V8_TARGET_ARCH_X64
static const int kCodeSizeMultiplier = 170;
static const int kBootCodeSizeMultiplier = 140;
#elif V8_TARGET_ARCH_ARM
static const int kCodeSizeMultiplier = 149;
static const int kBootCodeSizeMultiplier = 110;
#elif V8_TARGET_ARCH_ARM64
// TODO(all): Copied ARM value. Check this is sensible for ARM64.
static const int kCodeSizeMultiplier = 149;
static const int kBootCodeSizeMultiplier = 110;
#elif V8_TARGET_ARCH_MIPS
static const int kCodeSizeMultiplier = 149;
static const int kBootCodeSizeMultiplier = 120;
#elif V8_TARGET_ARCH_MIPS64
static const int kCodeSizeMultiplier = 149;
static const int kBootCodeSizeMultiplier = 120;
#else
#error Unsupported target architecture.
#endif
private:
class Breakable;
class Iteration;
class TestContext;
class NestedStatement BASE_EMBEDDED {
public:
explicit NestedStatement(FullCodeGenerator* codegen) : codegen_(codegen) {
// Link into codegen's nesting stack.
previous_ = codegen->nesting_stack_;
codegen->nesting_stack_ = this;
}
virtual ~NestedStatement() {
// Unlink from codegen's nesting stack.
DCHECK_EQ(this, codegen_->nesting_stack_);
codegen_->nesting_stack_ = previous_;
}
virtual Breakable* AsBreakable() { return NULL; }
virtual Iteration* AsIteration() { return NULL; }
virtual bool IsContinueTarget(Statement* target) { return false; }
virtual bool IsBreakTarget(Statement* target) { return false; }
// Notify the statement that we are exiting it via break, continue, or
// return and give it a chance to generate cleanup code. Return the
// next outer statement in the nesting stack. We accumulate in
// *stack_depth the amount to drop the stack and in *context_length the
// number of context chain links to unwind as we traverse the nesting
// stack from an exit to its target.
virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
return previous_;
}
protected:
MacroAssembler* masm() { return codegen_->masm(); }
FullCodeGenerator* codegen_;
NestedStatement* previous_;
private:
DISALLOW_COPY_AND_ASSIGN(NestedStatement);
};
// A breakable statement such as a block.
class Breakable : public NestedStatement {
public:
Breakable(FullCodeGenerator* codegen, BreakableStatement* statement)
: NestedStatement(codegen), statement_(statement) {
}
virtual ~Breakable() {}
virtual Breakable* AsBreakable() { return this; }
virtual bool IsBreakTarget(Statement* target) {
return statement() == target;
}
BreakableStatement* statement() { return statement_; }
Label* break_label() { return &break_label_; }
private:
BreakableStatement* statement_;
Label break_label_;
};
// An iteration statement such as a while, for, or do loop.
class Iteration : public Breakable {
public:
Iteration(FullCodeGenerator* codegen, IterationStatement* statement)
: Breakable(codegen, statement) {
}
virtual ~Iteration() {}
virtual Iteration* AsIteration() { return this; }
virtual bool IsContinueTarget(Statement* target) {
return statement() == target;
}
Label* continue_label() { return &continue_label_; }
private:
Label continue_label_;
};
// A nested block statement.
class NestedBlock : public Breakable {
public:
NestedBlock(FullCodeGenerator* codegen, Block* block)
: Breakable(codegen, block) {
}
virtual ~NestedBlock() {}
virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
if (statement()->AsBlock()->scope() != NULL) {
++(*context_length);
}
return previous_;
}
};
// The try block of a try/catch statement.
class TryCatch : public NestedStatement {
public:
explicit TryCatch(FullCodeGenerator* codegen) : NestedStatement(codegen) {
}
virtual ~TryCatch() {}
virtual NestedStatement* Exit(int* stack_depth, int* context_length);
};
// The try block of a try/finally statement.
class TryFinally : public NestedStatement {
public:
TryFinally(FullCodeGenerator* codegen, Label* finally_entry)
: NestedStatement(codegen), finally_entry_(finally_entry) {
}
virtual ~TryFinally() {}
virtual NestedStatement* Exit(int* stack_depth, int* context_length);
private:
Label* finally_entry_;
};
// The finally block of a try/finally statement.
class Finally : public NestedStatement {
public:
static const int kElementCount = 5;
explicit Finally(FullCodeGenerator* codegen) : NestedStatement(codegen) { }
virtual ~Finally() {}
virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
*stack_depth += kElementCount;
return previous_;
}
};
// The body of a for/in loop.
class ForIn : public Iteration {
public:
static const int kElementCount = 5;
ForIn(FullCodeGenerator* codegen, ForInStatement* statement)
: Iteration(codegen, statement) {
}
virtual ~ForIn() {}
virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
*stack_depth += kElementCount;
return previous_;
}
};
// The body of a with or catch.
class WithOrCatch : public NestedStatement {
public:
explicit WithOrCatch(FullCodeGenerator* codegen)
: NestedStatement(codegen) {
}
virtual ~WithOrCatch() {}
virtual NestedStatement* Exit(int* stack_depth, int* context_length) {
++(*context_length);
return previous_;
}
};
// Type of a member function that generates inline code for a native function.
typedef void (FullCodeGenerator::*InlineFunctionGenerator)(CallRuntime* expr);
static const InlineFunctionGenerator kInlineFunctionGenerators[];
// A platform-specific utility to overwrite the accumulator register
// with a GC-safe value.
void ClearAccumulator();
// Determine whether or not to inline the smi case for the given
// operation.
bool ShouldInlineSmiCase(Token::Value op);
// Helper function to convert a pure value into a test context. The value
// is expected on the stack or the accumulator, depending on the platform.
// See the platform-specific implementation for details.
void DoTest(Expression* condition,
Label* if_true,
Label* if_false,
Label* fall_through);
void DoTest(const TestContext* context);
// Helper function to split control flow and avoid a branch to the
// fall-through label if it is set up.
#if V8_TARGET_ARCH_MIPS
void Split(Condition cc,
Register lhs,
const Operand& rhs,
Label* if_true,
Label* if_false,
Label* fall_through);
#elif V8_TARGET_ARCH_MIPS64
void Split(Condition cc,
Register lhs,
const Operand& rhs,
Label* if_true,
Label* if_false,
Label* fall_through);
#else // All non-mips arch.
void Split(Condition cc,
Label* if_true,
Label* if_false,
Label* fall_through);
#endif // V8_TARGET_ARCH_MIPS
// Load the value of a known (PARAMETER, LOCAL, or CONTEXT) variable into
// a register. Emits a context chain walk if if necessary (so does
// SetVar) so avoid calling both on the same variable.
void GetVar(Register destination, Variable* var);
// Assign to a known (PARAMETER, LOCAL, or CONTEXT) variable. If it's in
// the context, the write barrier will be emitted and source, scratch0,
// scratch1 will be clobbered. Emits a context chain walk if if necessary
// (so does GetVar) so avoid calling both on the same variable.
void SetVar(Variable* var,
Register source,
Register scratch0,
Register scratch1);
// An operand used to read/write a stack-allocated (PARAMETER or LOCAL)
// variable. Writing does not need the write barrier.
MemOperand StackOperand(Variable* var);
// An operand used to read/write a known (PARAMETER, LOCAL, or CONTEXT)
// variable. May emit code to traverse the context chain, loading the
// found context into the scratch register. Writing to this operand will
// need the write barrier if location is CONTEXT.
MemOperand VarOperand(Variable* var, Register scratch);
void VisitForEffect(Expression* expr) {
EffectContext context(this);
Visit(expr);
PrepareForBailout(expr, NO_REGISTERS);
}
void VisitForAccumulatorValue(Expression* expr) {
AccumulatorValueContext context(this);
Visit(expr);
PrepareForBailout(expr, TOS_REG);
}
void VisitForStackValue(Expression* expr) {
StackValueContext context(this);
Visit(expr);
PrepareForBailout(expr, NO_REGISTERS);
}
void VisitForControl(Expression* expr,
Label* if_true,
Label* if_false,
Label* fall_through) {
TestContext context(this, expr, if_true, if_false, fall_through);
Visit(expr);
// For test contexts, we prepare for bailout before branching, not at
// the end of the entire expression. This happens as part of visiting
// the expression.
}
void VisitInDuplicateContext(Expression* expr);
void VisitDeclarations(ZoneList<Declaration*>* declarations) OVERRIDE;
void DeclareModules(Handle<FixedArray> descriptions);
void DeclareGlobals(Handle<FixedArray> pairs);
int DeclareGlobalsFlags();
// Generate code to allocate all (including nested) modules and contexts.
// Because of recursive linking and the presence of module alias declarations,
// this has to be a separate pass _before_ populating or executing any module.
void AllocateModules(ZoneList<Declaration*>* declarations);
// Generate code to create an iterator result object. The "value" property is
// set to a value popped from the stack, and "done" is set according to the
// argument. The result object is left in the result register.
void EmitCreateIteratorResult(bool done);
// Try to perform a comparison as a fast inlined literal compare if
// the operands allow it. Returns true if the compare operations
// has been matched and all code generated; false otherwise.
bool TryLiteralCompare(CompareOperation* compare);
// Platform-specific code for comparing the type of a value with
// a given literal string.
void EmitLiteralCompareTypeof(Expression* expr,
Expression* sub_expr,
Handle<String> check);
// Platform-specific code for equality comparison with a nil-like value.
void EmitLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil);
// Bailout support.
void PrepareForBailout(Expression* node, State state);
void PrepareForBailoutForId(BailoutId id, State state);
// Feedback slot support. The feedback vector will be cleared during gc and
// collected by the type-feedback oracle.
Handle<TypeFeedbackVector> FeedbackVector() const {
return info_->feedback_vector();
}
void EnsureSlotContainsAllocationSite(FeedbackVectorSlot slot);
void EnsureSlotContainsAllocationSite(FeedbackVectorICSlot slot);
// Returns a smi for the index into the FixedArray that backs the feedback
// vector
Smi* SmiFromSlot(FeedbackVectorSlot slot) const {
return Smi::FromInt(FeedbackVector()->GetIndex(slot));
}
Smi* SmiFromSlot(FeedbackVectorICSlot slot) const {
return Smi::FromInt(FeedbackVector()->GetIndex(slot));
}
// Record a call's return site offset, used to rebuild the frame if the
// called function was inlined at the site.
void RecordJSReturnSite(Call* call);
// Prepare for bailout before a test (or compare) and branch. If
// should_normalize, then the following comparison will not handle the
// canonical JS true value so we will insert a (dead) test against true at
// the actual bailout target from the optimized code. If not
// should_normalize, the true and false labels are ignored.
void PrepareForBailoutBeforeSplit(Expression* expr,
bool should_normalize,
Label* if_true,
Label* if_false);
// If enabled, emit debug code for checking that the current context is
// neither a with nor a catch context.
void EmitDebugCheckDeclarationContext(Variable* variable);
// This is meant to be called at loop back edges, |back_edge_target| is
// the jump target of the back edge and is used to approximate the amount
// of code inside the loop.
void EmitBackEdgeBookkeeping(IterationStatement* stmt,
Label* back_edge_target);
// Record the OSR AST id corresponding to a back edge in the code.
void RecordBackEdge(BailoutId osr_ast_id);
// Emit a table of back edge ids, pcs and loop depths into the code stream.
// Return the offset of the start of the table.
unsigned EmitBackEdgeTable();
void EmitProfilingCounterDecrement(int delta);
void EmitProfilingCounterReset();
// Emit code to pop values from the stack associated with nested statements
// like try/catch, try/finally, etc, running the finallies and unwinding the
// handlers as needed.
void EmitUnwindBeforeReturn();
// Platform-specific return sequence
void EmitReturnSequence();
// Platform-specific code sequences for calls
void EmitCall(Call* expr, CallICState::CallType = CallICState::FUNCTION);
void EmitCallWithLoadIC(Call* expr);
void EmitSuperCallWithLoadIC(Call* expr);
void EmitKeyedCallWithLoadIC(Call* expr, Expression* key);
void EmitKeyedSuperCallWithLoadIC(Call* expr);
// Platform-specific code for inline runtime calls.
InlineFunctionGenerator FindInlineFunctionGenerator(Runtime::FunctionId id);
void EmitInlineRuntimeCall(CallRuntime* expr);
#define EMIT_INLINE_RUNTIME_CALL(name, x, y) \
void Emit##name(CallRuntime* expr);
INLINE_FUNCTION_LIST(EMIT_INLINE_RUNTIME_CALL)
#undef EMIT_INLINE_RUNTIME_CALL
// Platform-specific code for resuming generators.
void EmitGeneratorResume(Expression *generator,
Expression *value,
JSGeneratorObject::ResumeMode resume_mode);
// Platform-specific code for loading variables.
void EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
TypeofState typeof_state,
Label* slow);
MemOperand ContextSlotOperandCheckExtensions(Variable* var, Label* slow);
void EmitDynamicLookupFastCase(VariableProxy* proxy,
TypeofState typeof_state,
Label* slow,
Label* done);
void EmitVariableLoad(VariableProxy* proxy);
void EmitAccessor(Expression* expression);
// Expects the arguments and the function already pushed.
void EmitResolvePossiblyDirectEval(int arg_count);
// Platform-specific support for allocating a new closure based on
// the given function info.
void EmitNewClosure(Handle<SharedFunctionInfo> info, bool pretenure);
// Platform-specific support for compiling assignments.
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind {
VARIABLE,
NAMED_PROPERTY,
KEYED_PROPERTY,
NAMED_SUPER_PROPERTY,
KEYED_SUPER_PROPERTY
};
static LhsKind GetAssignType(Property* property) {
if (property == NULL) return VARIABLE;
bool super_access = property->IsSuperAccess();
return (property->key()->IsPropertyName())
? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY)
: (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY);
}
// Load a value from a named property.
// The receiver is left on the stack by the IC.
void EmitNamedPropertyLoad(Property* expr);
// Load a value from super.named property.
// Expect receiver ('this' value) and home_object on the stack.
void EmitNamedSuperPropertyLoad(Property* expr);
// Load a value from super[keyed] property.
// Expect receiver ('this' value), home_object and key on the stack.
void EmitKeyedSuperPropertyLoad(Property* expr);
// Load a value from a keyed property.
// The receiver and the key is left on the stack by the IC.
void EmitKeyedPropertyLoad(Property* expr);
// Adds the properties to the class (function) object and to its prototype.
// Expects the class (function) in the accumulator. The class (function) is
// in the accumulator after installing all the properties.
void EmitClassDefineProperties(ClassLiteral* lit);
// Apply the compound assignment operator. Expects the left operand on top
// of the stack and the right one in the accumulator.
void EmitBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode);
// Helper functions for generating inlined smi code for certain
// binary operations.
void EmitInlineSmiBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode,
Expression* left,
Expression* right);
// Assign to the given expression as if via '='. The right-hand-side value
// is expected in the accumulator.
void EmitAssignment(Expression* expr);
// Shall an error be thrown if assignment with 'op' operation is perfomed
// on this variable in given language mode?
static bool IsSignallingAssignmentToConst(Variable* var, Token::Value op,
StrictMode strict_mode) {
if (var->mode() == CONST) return op != Token::INIT_CONST;
if (var->mode() == CONST_LEGACY) {
return strict_mode == STRICT && op != Token::INIT_CONST_LEGACY;
}
return false;
}
// Complete a variable assignment. The right-hand-side value is expected
// in the accumulator.
void EmitVariableAssignment(Variable* var,
Token::Value op);
// Helper functions to EmitVariableAssignment
void EmitStoreToStackLocalOrContextSlot(Variable* var,
MemOperand location);
// Complete a named property assignment. The receiver is expected on top
// of the stack and the right-hand-side value in the accumulator.
void EmitNamedPropertyAssignment(Assignment* expr);
// Complete a super named property assignment. The right-hand-side value
// is expected in accumulator.
void EmitNamedSuperPropertyStore(Property* prop);
// Complete a super named property assignment. The right-hand-side value
// is expected in accumulator.
void EmitKeyedSuperPropertyStore(Property* prop);
// Complete a keyed property assignment. The receiver and key are
// expected on top of the stack and the right-hand-side value in the
// accumulator.
void EmitKeyedPropertyAssignment(Assignment* expr);
void EmitLoadHomeObject(SuperReference* expr);
static bool NeedsHomeObject(Expression* expr) {
return FunctionLiteral::NeedsHomeObject(expr);
}
// Adds the [[HomeObject]] to |initializer| if it is a FunctionLiteral.
// The value of the initializer is expected to be at the top of the stack.
// |offset| is the offset in the stack where the home object can be found.
void EmitSetHomeObjectIfNeeded(Expression* initializer, int offset);
void EmitLoadSuperConstructor(SuperReference* expr);
void CallIC(Handle<Code> code,
TypeFeedbackId id = TypeFeedbackId::None());
void CallLoadIC(ContextualMode mode,
TypeFeedbackId id = TypeFeedbackId::None());
void CallStoreIC(TypeFeedbackId id = TypeFeedbackId::None());
void SetFunctionPosition(FunctionLiteral* fun);
void SetReturnPosition(FunctionLiteral* fun);
void SetStatementPosition(Statement* stmt);
void SetExpressionPosition(Expression* expr);
void SetSourcePosition(int pos);
// Non-local control flow support.
void EnterFinallyBlock();
void ExitFinallyBlock();
// Loop nesting counter.
int loop_depth() { return loop_depth_; }
void increment_loop_depth() { loop_depth_++; }
void decrement_loop_depth() {
DCHECK(loop_depth_ > 0);
loop_depth_--;
}
MacroAssembler* masm() { return masm_; }
class ExpressionContext;
const ExpressionContext* context() { return context_; }
void set_new_context(const ExpressionContext* context) { context_ = context; }
Handle<Script> script() { return info_->script(); }
bool is_eval() { return info_->is_eval(); }
bool is_native() { return info_->is_native(); }
StrictMode strict_mode() { return function()->strict_mode(); }
FunctionLiteral* function() { return info_->function(); }
Scope* scope() { return scope_; }
static Register result_register();
static Register context_register();
// Set fields in the stack frame. Offsets are the frame pointer relative
// offsets defined in, e.g., StandardFrameConstants.
void StoreToFrameField(int frame_offset, Register value);
// Load a value from the current context. Indices are defined as an enum
// in v8::internal::Context.
void LoadContextField(Register dst, int context_index);
// Push the function argument for the runtime functions PushWithContext
// and PushCatchContext.
void PushFunctionArgumentForContextAllocation();
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node) OVERRIDE;
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
void VisitComma(BinaryOperation* expr);
void VisitLogicalExpression(BinaryOperation* expr);
void VisitArithmeticExpression(BinaryOperation* expr);
void VisitForTypeofValue(Expression* expr);
void Generate();
void PopulateDeoptimizationData(Handle<Code> code);
void PopulateTypeFeedbackInfo(Handle<Code> code);
Handle<FixedArray> handler_table() { return handler_table_; }
struct BailoutEntry {
BailoutId id;
unsigned pc_and_state;
};
struct BackEdgeEntry {
BailoutId id;
unsigned pc;
uint32_t loop_depth;
};
class ExpressionContext BASE_EMBEDDED {
public:
explicit ExpressionContext(FullCodeGenerator* codegen)
: masm_(codegen->masm()), old_(codegen->context()), codegen_(codegen) {
codegen->set_new_context(this);
}
virtual ~ExpressionContext() {
codegen_->set_new_context(old_);
}
Isolate* isolate() const { return codegen_->isolate(); }
// Convert constant control flow (true or false) to the result expected for
// this expression context.
virtual void Plug(bool flag) const = 0;
// Emit code to convert a pure value (in a register, known variable
// location, as a literal, or on top of the stack) into the result
// expected according to this expression context.
virtual void Plug(Register reg) const = 0;
virtual void Plug(Variable* var) const = 0;
virtual void Plug(Handle<Object> lit) const = 0;
virtual void Plug(Heap::RootListIndex index) const = 0;
virtual void PlugTOS() const = 0;
// Emit code to convert pure control flow to a pair of unbound labels into
// the result expected according to this expression context. The
// implementation will bind both labels unless it's a TestContext, which
// won't bind them at this point.
virtual void Plug(Label* materialize_true,
Label* materialize_false) const = 0;
// Emit code to discard count elements from the top of stack, then convert
// a pure value into the result expected according to this expression
// context.
virtual void DropAndPlug(int count, Register reg) const = 0;
// Set up branch labels for a test expression. The three Label** parameters
// are output parameters.
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const = 0;
// Returns true if we are evaluating only for side effects (i.e. if the
// result will be discarded).
virtual bool IsEffect() const { return false; }
// Returns true if we are evaluating for the value (in accu/on stack).
virtual bool IsAccumulatorValue() const { return false; }
virtual bool IsStackValue() const { return false; }
// Returns true if we are branching on the value rather than materializing
// it. Only used for asserts.
virtual bool IsTest() const { return false; }
protected:
FullCodeGenerator* codegen() const { return codegen_; }
MacroAssembler* masm() const { return masm_; }
MacroAssembler* masm_;
private:
const ExpressionContext* old_;
FullCodeGenerator* codegen_;
};
class AccumulatorValueContext : public ExpressionContext {
public:
explicit AccumulatorValueContext(FullCodeGenerator* codegen)
: ExpressionContext(codegen) { }
virtual void Plug(bool flag) const;
virtual void Plug(Register reg) const;
virtual void Plug(Label* materialize_true, Label* materialize_false) const;
virtual void Plug(Variable* var) const;
virtual void Plug(Handle<Object> lit) const;
virtual void Plug(Heap::RootListIndex) const;
virtual void PlugTOS() const;
virtual void DropAndPlug(int count, Register reg) const;
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const;
virtual bool IsAccumulatorValue() const { return true; }
};
class StackValueContext : public ExpressionContext {
public:
explicit StackValueContext(FullCodeGenerator* codegen)
: ExpressionContext(codegen) { }
virtual void Plug(bool flag) const;
virtual void Plug(Register reg) const;
virtual void Plug(Label* materialize_true, Label* materialize_false) const;
virtual void Plug(Variable* var) const;
virtual void Plug(Handle<Object> lit) const;
virtual void Plug(Heap::RootListIndex) const;
virtual void PlugTOS() const;
virtual void DropAndPlug(int count, Register reg) const;
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const;
virtual bool IsStackValue() const { return true; }
};
class TestContext : public ExpressionContext {
public:
TestContext(FullCodeGenerator* codegen,
Expression* condition,
Label* true_label,
Label* false_label,
Label* fall_through)
: ExpressionContext(codegen),
condition_(condition),
true_label_(true_label),
false_label_(false_label),
fall_through_(fall_through) { }
static const TestContext* cast(const ExpressionContext* context) {
DCHECK(context->IsTest());
return reinterpret_cast<const TestContext*>(context);
}
Expression* condition() const { return condition_; }
Label* true_label() const { return true_label_; }
Label* false_label() const { return false_label_; }
Label* fall_through() const { return fall_through_; }
virtual void Plug(bool flag) const;
virtual void Plug(Register reg) const;
virtual void Plug(Label* materialize_true, Label* materialize_false) const;
virtual void Plug(Variable* var) const;
virtual void Plug(Handle<Object> lit) const;
virtual void Plug(Heap::RootListIndex) const;
virtual void PlugTOS() const;
virtual void DropAndPlug(int count, Register reg) const;
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const;
virtual bool IsTest() const { return true; }
private:
Expression* condition_;
Label* true_label_;
Label* false_label_;
Label* fall_through_;
};
class EffectContext : public ExpressionContext {
public:
explicit EffectContext(FullCodeGenerator* codegen)
: ExpressionContext(codegen) { }
virtual void Plug(bool flag) const;
virtual void Plug(Register reg) const;
virtual void Plug(Label* materialize_true, Label* materialize_false) const;
virtual void Plug(Variable* var) const;
virtual void Plug(Handle<Object> lit) const;
virtual void Plug(Heap::RootListIndex) const;
virtual void PlugTOS() const;
virtual void DropAndPlug(int count, Register reg) const;
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const;
virtual bool IsEffect() const { return true; }
};
class EnterBlockScopeIfNeeded {
public:
EnterBlockScopeIfNeeded(FullCodeGenerator* codegen, Scope* scope,
BailoutId entry_id, BailoutId declarations_id,
BailoutId exit_id);
~EnterBlockScopeIfNeeded();
private:
MacroAssembler* masm() const { return codegen_->masm(); }
FullCodeGenerator* codegen_;
Scope* scope_;
Scope* saved_scope_;
BailoutId exit_id_;
};
MacroAssembler* masm_;
CompilationInfo* info_;
Scope* scope_;
Label return_label_;
NestedStatement* nesting_stack_;
int loop_depth_;
ZoneList<Handle<Object> >* globals_;
Handle<FixedArray> modules_;
int module_index_;
const ExpressionContext* context_;
ZoneList<BailoutEntry> bailout_entries_;
ZoneList<BackEdgeEntry> back_edges_;
int ic_total_count_;
Handle<FixedArray> handler_table_;
Handle<Cell> profiling_counter_;
bool generate_debug_code_;
friend class NestedStatement;
DEFINE_AST_VISITOR_SUBCLASS_MEMBERS();
DISALLOW_COPY_AND_ASSIGN(FullCodeGenerator);
};
// A map from property names to getter/setter pairs allocated in the zone.
class AccessorTable: public TemplateHashMap<Literal,
ObjectLiteral::Accessors,
ZoneAllocationPolicy> {
public:
explicit AccessorTable(Zone* zone) :
TemplateHashMap<Literal, ObjectLiteral::Accessors,
ZoneAllocationPolicy>(Literal::Match,
ZoneAllocationPolicy(zone)),
zone_(zone) { }
Iterator lookup(Literal* literal) {
Iterator it = find(literal, true, ZoneAllocationPolicy(zone_));
if (it->second == NULL) it->second = new(zone_) ObjectLiteral::Accessors();
return it;
}
private:
Zone* zone_;
};
class BackEdgeTable {
public:
BackEdgeTable(Code* code, DisallowHeapAllocation* required) {
DCHECK(code->kind() == Code::FUNCTION);
instruction_start_ = code->instruction_start();
Address table_address = instruction_start_ + code->back_edge_table_offset();
length_ = Memory::uint32_at(table_address);
start_ = table_address + kTableLengthSize;
}
uint32_t length() { return length_; }
BailoutId ast_id(uint32_t index) {
return BailoutId(static_cast<int>(
Memory::uint32_at(entry_at(index) + kAstIdOffset)));
}
uint32_t loop_depth(uint32_t index) {
return Memory::uint32_at(entry_at(index) + kLoopDepthOffset);
}
uint32_t pc_offset(uint32_t index) {
return Memory::uint32_at(entry_at(index) + kPcOffsetOffset);
}
Address pc(uint32_t index) {
return instruction_start_ + pc_offset(index);
}
enum BackEdgeState {
INTERRUPT,
ON_STACK_REPLACEMENT,
OSR_AFTER_STACK_CHECK
};
// Increase allowed loop nesting level by one and patch those matching loops.
static void Patch(Isolate* isolate, Code* unoptimized_code);
// Patch the back edge to the target state, provided the correct callee.
static void PatchAt(Code* unoptimized_code,
Address pc,
BackEdgeState target_state,
Code* replacement_code);
// Change all patched back edges back to normal interrupts.
static void Revert(Isolate* isolate,
Code* unoptimized_code);
// Change a back edge patched for on-stack replacement to perform a
// stack check first.
static void AddStackCheck(Handle<Code> code, uint32_t pc_offset);
// Revert the patch by AddStackCheck.
static void RemoveStackCheck(Handle<Code> code, uint32_t pc_offset);
// Return the current patch state of the back edge.
static BackEdgeState GetBackEdgeState(Isolate* isolate,
Code* unoptimized_code,
Address pc_after);
#ifdef DEBUG
// Verify that all back edges of a certain loop depth are patched.
static bool Verify(Isolate* isolate, Code* unoptimized_code);
#endif // DEBUG
private:
Address entry_at(uint32_t index) {
DCHECK(index < length_);
return start_ + index * kEntrySize;
}
static const int kTableLengthSize = kIntSize;
static const int kAstIdOffset = 0 * kIntSize;
static const int kPcOffsetOffset = 1 * kIntSize;
static const int kLoopDepthOffset = 2 * kIntSize;
static const int kEntrySize = 3 * kIntSize;
Address start_;
Address instruction_start_;
uint32_t length_;
};
} } // namespace v8::internal
#endif // V8_FULL_CODEGEN_H_