v8/test/cctest/test-double.cc
Clemens Backes 52c7ab5654 [cleanup][test] Remove redundant NOLINT annotations
cpplint rules change over time, and we change the exact rules we enable
for v8. This CL removes NOLINT annotations which are not needed
according to the currently enabled rules.

R=ahaas@chromium.org

Bug: v8:11717
Change-Id: Ica92f4ddc9c351c1c63147cbcf050086ca26cc07
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2859854
Commit-Queue: Clemens Backes <clemensb@chromium.org>
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Cr-Commit-Position: refs/heads/master@{#74297}
2021-04-30 11:46:14 +00:00

230 lines
9.0 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "src/init/v8.h"
#include "src/base/platform/platform.h"
#include "src/numbers/diy-fp.h"
#include "src/numbers/double.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
TEST(Uint64Conversions) {
// Start by checking the byte-order.
uint64_t ordered = 0x0123'4567'89AB'CDEF;
CHECK_EQ(3512700564088504e-318, Double(ordered).value());
uint64_t min_double64 = 0x0000'0000'0000'0001;
CHECK_EQ(5e-324, Double(min_double64).value());
uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF;
CHECK_EQ(1.7976931348623157e308, Double(max_double64).value());
}
TEST(AsDiyFp) {
uint64_t ordered = 0x0123'4567'89AB'CDEF;
DiyFp diy_fp = Double(ordered).AsDiyFp();
CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e());
// The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64.
CHECK(0x0013'4567'89AB'CDEF == diy_fp.f()); // NOLINT
uint64_t min_double64 = 0x0000'0000'0000'0001;
diy_fp = Double(min_double64).AsDiyFp();
CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e());
// This is a denormal; so no hidden bit.
CHECK_EQ(1, diy_fp.f());
uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF;
diy_fp = Double(max_double64).AsDiyFp();
CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e());
CHECK(0x001F'FFFF'FFFF'FFFF == diy_fp.f()); // NOLINT
}
TEST(AsNormalizedDiyFp) {
uint64_t ordered = 0x0123'4567'89AB'CDEF;
DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp();
CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e());
CHECK((uint64_t{0x0013'4567'89AB'CDEF} << 11) == diy_fp.f()); // NOLINT
uint64_t min_double64 = 0x0000'0000'0000'0001;
diy_fp = Double(min_double64).AsNormalizedDiyFp();
CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e());
// This is a denormal; so no hidden bit.
CHECK(0x8000'0000'0000'0000 == diy_fp.f()); // NOLINT
uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF;
diy_fp = Double(max_double64).AsNormalizedDiyFp();
CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e());
CHECK((uint64_t{0x001F'FFFF'FFFF'FFFF} << 11) == diy_fp.f());
}
TEST(IsDenormal) {
uint64_t min_double64 = 0x0000'0000'0000'0001;
CHECK(Double(min_double64).IsDenormal());
uint64_t bits = 0x000F'FFFF'FFFF'FFFF;
CHECK(Double(bits).IsDenormal());
bits = 0x0010'0000'0000'0000;
CHECK(!Double(bits).IsDenormal());
}
TEST(IsSpecial) {
CHECK(Double(V8_INFINITY).IsSpecial());
CHECK(Double(-V8_INFINITY).IsSpecial());
CHECK(Double(std::numeric_limits<double>::quiet_NaN()).IsSpecial());
uint64_t bits = 0xFFF1'2345'0000'0000;
CHECK(Double(bits).IsSpecial());
// Denormals are not special:
CHECK(!Double(5e-324).IsSpecial());
CHECK(!Double(-5e-324).IsSpecial());
// And some random numbers:
CHECK(!Double(0.0).IsSpecial());
CHECK(!Double(-0.0).IsSpecial());
CHECK(!Double(1.0).IsSpecial());
CHECK(!Double(-1.0).IsSpecial());
CHECK(!Double(1000000.0).IsSpecial());
CHECK(!Double(-1000000.0).IsSpecial());
CHECK(!Double(1e23).IsSpecial());
CHECK(!Double(-1e23).IsSpecial());
CHECK(!Double(1.7976931348623157e308).IsSpecial());
CHECK(!Double(-1.7976931348623157e308).IsSpecial());
}
TEST(IsInfinite) {
CHECK(Double(V8_INFINITY).IsInfinite());
CHECK(Double(-V8_INFINITY).IsInfinite());
CHECK(!Double(std::numeric_limits<double>::quiet_NaN()).IsInfinite());
CHECK(!Double(0.0).IsInfinite());
CHECK(!Double(-0.0).IsInfinite());
CHECK(!Double(1.0).IsInfinite());
CHECK(!Double(-1.0).IsInfinite());
uint64_t min_double64 = 0x0000'0000'0000'0001;
CHECK(!Double(min_double64).IsInfinite());
}
TEST(Sign) {
CHECK_EQ(1, Double(1.0).Sign());
CHECK_EQ(1, Double(V8_INFINITY).Sign());
CHECK_EQ(-1, Double(-V8_INFINITY).Sign());
CHECK_EQ(1, Double(0.0).Sign());
CHECK_EQ(-1, Double(-0.0).Sign());
uint64_t min_double64 = 0x0000'0000'0000'0001;
CHECK_EQ(1, Double(min_double64).Sign());
}
TEST(NormalizedBoundaries) {
DiyFp boundary_plus;
DiyFp boundary_minus;
DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp();
Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// 1.5 does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
diy_fp = Double(1.0).AsNormalizedDiyFp();
Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// 1.0 does have a significand of the form 2^p (for some p).
// Therefore its lower boundary is twice as close as the upper boundary.
CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f());
CHECK((1 << 9) == diy_fp.f() - boundary_minus.f());
CHECK((1 << 10) == boundary_plus.f() - diy_fp.f());
uint64_t min_double64 = 0x0000'0000'0000'0001;
diy_fp = Double(min_double64).AsNormalizedDiyFp();
Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// min-value does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
// Denormals have their boundaries much closer.
CHECK((static_cast<uint64_t>(1) << 62) == diy_fp.f() - boundary_minus.f());
uint64_t smallest_normal64 = 0x0010'0000'0000'0000;
diy_fp = Double(smallest_normal64).AsNormalizedDiyFp();
Double(smallest_normal64).NormalizedBoundaries(&boundary_minus,
&boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// Even though the significand is of the form 2^p (for some p), its boundaries
// are at the same distance. (This is the only exception).
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
uint64_t largest_denormal64 = 0x000F'FFFF'FFFF'FFFF;
diy_fp = Double(largest_denormal64).AsNormalizedDiyFp();
Double(largest_denormal64).NormalizedBoundaries(&boundary_minus,
&boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 11) == diy_fp.f() - boundary_minus.f());
uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF;
diy_fp = Double(max_double64).AsNormalizedDiyFp();
Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// max-value does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
}
TEST(NextDouble) {
CHECK_EQ(4e-324, Double(0.0).NextDouble());
CHECK_EQ(0.0, Double(-0.0).NextDouble());
CHECK_EQ(-0.0, Double(-4e-324).NextDouble());
Double d0(-4e-324);
Double d1(d0.NextDouble());
Double d2(d1.NextDouble());
CHECK_EQ(-0.0, d1.value());
CHECK_EQ(0.0, d2.value());
CHECK_EQ(4e-324, d2.NextDouble());
CHECK_EQ(-1.7976931348623157e308, Double(-V8_INFINITY).NextDouble());
CHECK_EQ(V8_INFINITY, Double(uint64_t{0x7FEF'FFFF'FFFF'FFFF}).NextDouble());
}
} // namespace internal
} // namespace v8