9af9f1d026
These operators compute the absolute floating point value of some arbitrary input, and are implemented without any branches (i.e. using vabs on arm, and andps/andpd on x86). R=svenpanne@chromium.org Review URL: https://codereview.chromium.org/1066393002 Cr-Commit-Position: refs/heads/master@{#27662}
171 lines
7.8 KiB
C++
171 lines
7.8 KiB
C++
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_CCTEST_COMPILER_VALUE_HELPER_H_
|
|
#define V8_CCTEST_COMPILER_VALUE_HELPER_H_
|
|
|
|
#include "src/v8.h"
|
|
|
|
#include "src/compiler/common-operator.h"
|
|
#include "src/compiler/node.h"
|
|
#include "src/compiler/node-matchers.h"
|
|
#include "src/isolate.h"
|
|
#include "src/objects.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace compiler {
|
|
|
|
// A collection of utilities related to numerical and heap values, including
|
|
// example input values of various types, including int32_t, uint32_t, double,
|
|
// etc.
|
|
class ValueHelper {
|
|
public:
|
|
Isolate* isolate_;
|
|
|
|
ValueHelper() : isolate_(CcTest::InitIsolateOnce()) {}
|
|
|
|
void CheckFloat64Constant(double expected, Node* node) {
|
|
CHECK_EQ(IrOpcode::kFloat64Constant, node->opcode());
|
|
CHECK_EQ(expected, OpParameter<double>(node));
|
|
}
|
|
|
|
void CheckNumberConstant(double expected, Node* node) {
|
|
CHECK_EQ(IrOpcode::kNumberConstant, node->opcode());
|
|
CHECK_EQ(expected, OpParameter<double>(node));
|
|
}
|
|
|
|
void CheckInt32Constant(int32_t expected, Node* node) {
|
|
CHECK_EQ(IrOpcode::kInt32Constant, node->opcode());
|
|
CHECK_EQ(expected, OpParameter<int32_t>(node));
|
|
}
|
|
|
|
void CheckUint32Constant(int32_t expected, Node* node) {
|
|
CHECK_EQ(IrOpcode::kInt32Constant, node->opcode());
|
|
CHECK_EQ(expected, OpParameter<int32_t>(node));
|
|
}
|
|
|
|
void CheckHeapConstant(Object* expected, Node* node) {
|
|
CHECK_EQ(IrOpcode::kHeapConstant, node->opcode());
|
|
CHECK_EQ(expected, *OpParameter<Unique<Object> >(node).handle());
|
|
}
|
|
|
|
void CheckTrue(Node* node) {
|
|
CheckHeapConstant(isolate_->heap()->true_value(), node);
|
|
}
|
|
|
|
void CheckFalse(Node* node) {
|
|
CheckHeapConstant(isolate_->heap()->false_value(), node);
|
|
}
|
|
|
|
static std::vector<float> float32_vector() {
|
|
static const float kValues[] = {
|
|
-std::numeric_limits<float>::infinity(), -2.70497e+38f, -1.4698e+37f,
|
|
-1.22813e+35f, -1.20555e+35f, -1.34584e+34f,
|
|
-1.0079e+32f, -6.49364e+26f, -3.06077e+25f,
|
|
-1.46821e+25f, -1.17658e+23f, -1.9617e+22f,
|
|
-2.7357e+20f, -1.48708e+13f, -1.89633e+12f,
|
|
-4.66622e+11f, -2.22581e+11f, -1.45381e+10f,
|
|
-1.3956e+09f, -1.32951e+09f, -1.30721e+09f,
|
|
-1.19756e+09f, -9.26822e+08f, -6.35647e+08f,
|
|
-4.00037e+08f, -1.81227e+08f, -5.09256e+07f,
|
|
-964300.0f, -192446.0f, -28455.0f,
|
|
-27194.0f, -26401.0f, -20575.0f,
|
|
-17069.0f, -9167.0f, -960.178f,
|
|
-113.0f, -62.0f, -15.0f,
|
|
-7.0f, -0.0256635f, -4.60374e-07f,
|
|
-3.63759e-10f, -4.30175e-14f, -5.27385e-15f,
|
|
-1.48084e-15f, -1.05755e-19f, -3.2995e-21f,
|
|
-1.67354e-23f, -1.11885e-23f, -1.78506e-30f,
|
|
-5.07594e-31f, -3.65799e-31f, -1.43718e-34f,
|
|
-1.27126e-38f, -0.0f, 0.0f,
|
|
1.17549e-38f, 1.56657e-37f, 4.08512e-29f,
|
|
3.31357e-28f, 6.25073e-22f, 4.1723e-13f,
|
|
1.44343e-09f, 5.27004e-08f, 9.48298e-08f,
|
|
5.57888e-07f, 4.89988e-05f, 0.244326f,
|
|
12.4895f, 19.0f, 47.0f,
|
|
106.0f, 538.324f, 564.536f,
|
|
819.124f, 7048.0f, 12611.0f,
|
|
19878.0f, 20309.0f, 797056.0f,
|
|
1.77219e+09f, 1.51116e+11f, 4.18193e+13f,
|
|
3.59167e+16f, 3.38211e+19f, 2.67488e+20f,
|
|
1.78831e+21f, 9.20914e+21f, 8.35654e+23f,
|
|
1.4495e+24f, 5.94015e+25f, 4.43608e+30f,
|
|
2.44502e+33f, 2.61152e+33f, 1.38178e+37f,
|
|
1.71306e+37f, 3.31899e+38f, 3.40282e+38f,
|
|
std::numeric_limits<float>::infinity()};
|
|
return std::vector<float>(&kValues[0], &kValues[arraysize(kValues)]);
|
|
}
|
|
|
|
static std::vector<double> float64_vector() {
|
|
static const double nan = std::numeric_limits<double>::quiet_NaN();
|
|
static const double values[] = {
|
|
0.125, 0.25, 0.375, 0.5, 1.25, -1.75, 2, 5.125, 6.25, 0.0, -0.0,
|
|
982983.25, 888, 2147483647.0, -999.75, 3.1e7, -2e66, 3e-88,
|
|
-2147483648.0, V8_INFINITY, -V8_INFINITY, -nan, nan, 2147483647.375,
|
|
2147483647.75, 2147483648.0, 2147483648.25, 2147483649.25,
|
|
-2147483647.0, -2147483647.125, -2147483647.875, -2147483648.25,
|
|
-2147483649.5};
|
|
return std::vector<double>(&values[0], &values[arraysize(values)]);
|
|
}
|
|
|
|
static const std::vector<int32_t> int32_vector() {
|
|
std::vector<uint32_t> values = uint32_vector();
|
|
return std::vector<int32_t>(values.begin(), values.end());
|
|
}
|
|
|
|
static const std::vector<uint32_t> uint32_vector() {
|
|
static const uint32_t kValues[] = {
|
|
0x00000000, 0x00000001, 0xffffffff, 0x1b09788b, 0x04c5fce8, 0xcc0de5bf,
|
|
// This row is useful for testing lea optimizations on intel.
|
|
0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009,
|
|
0x273a798e, 0x187937a3, 0xece3af83, 0x5495a16b, 0x0b668ecc, 0x11223344,
|
|
0x0000009e, 0x00000043, 0x0000af73, 0x0000116b, 0x00658ecc, 0x002b3b4c,
|
|
0x88776655, 0x70000000, 0x07200000, 0x7fffffff, 0x56123761, 0x7fffff00,
|
|
0x761c4761, 0x80000000, 0x88888888, 0xa0000000, 0xdddddddd, 0xe0000000,
|
|
0xeeeeeeee, 0xfffffffd, 0xf0000000, 0x007fffff, 0x003fffff, 0x001fffff,
|
|
0x000fffff, 0x0007ffff, 0x0003ffff, 0x0001ffff, 0x0000ffff, 0x00007fff,
|
|
0x00003fff, 0x00001fff, 0x00000fff, 0x000007ff, 0x000003ff, 0x000001ff};
|
|
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
|
|
}
|
|
|
|
static const std::vector<double> nan_vector(size_t limit = 0) {
|
|
static const double nan = std::numeric_limits<double>::quiet_NaN();
|
|
static const double values[] = {-nan, -V8_INFINITY * -0.0,
|
|
-V8_INFINITY * 0.0, V8_INFINITY * -0.0,
|
|
V8_INFINITY * 0.0, nan};
|
|
return std::vector<double>(&values[0], &values[arraysize(values)]);
|
|
}
|
|
|
|
static const std::vector<uint32_t> ror_vector() {
|
|
static const uint32_t kValues[31] = {
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
|
|
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
|
|
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
|
|
}
|
|
};
|
|
|
|
// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
|
|
// Watch out, these macros aren't hygenic; they pollute your scope. Thanks STL.
|
|
#define FOR_INPUTS(ctype, itype, var) \
|
|
std::vector<ctype> var##_vec = ValueHelper::itype##_vector(); \
|
|
for (std::vector<ctype>::iterator var = var##_vec.begin(); \
|
|
var != var##_vec.end(); ++var)
|
|
|
|
#define FOR_INT32_INPUTS(var) FOR_INPUTS(int32_t, int32, var)
|
|
#define FOR_UINT32_INPUTS(var) FOR_INPUTS(uint32_t, uint32, var)
|
|
#define FOR_FLOAT32_INPUTS(var) FOR_INPUTS(float, float32, var)
|
|
#define FOR_FLOAT64_INPUTS(var) FOR_INPUTS(double, float64, var)
|
|
|
|
#define FOR_INT32_SHIFTS(var) for (int32_t var = 0; var < 32; var++)
|
|
|
|
#define FOR_UINT32_SHIFTS(var) for (uint32_t var = 0; var < 32; var++)
|
|
|
|
} // namespace compiler
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_CCTEST_COMPILER_VALUE_HELPER_H_
|