096fefc03a
This is needed to simplify concurrent sweeping for MinorMC. Also: move evacuation verifiers to a separate file so that they can be used from heap.cc as well. Bug: v8:12612 Change-Id: I2a738a31e83a357f4fdded8a30ccb2ff6ba70553 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3932720 Commit-Queue: Omer Katz <omerkatz@chromium.org> Reviewed-by: Michael Lippautz <mlippautz@chromium.org> Reviewed-by: Dominik Inführ <dinfuehr@chromium.org> Reviewed-by: Toon Verwaest <verwaest@chromium.org> Cr-Commit-Position: refs/heads/main@{#83557}
501 lines
20 KiB
C++
501 lines
20 KiB
C++
// Copyright 2015 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/execution/isolate.h"
|
|
#include "src/heap/factory.h"
|
|
#include "src/heap/heap-inl.h"
|
|
#include "src/heap/mark-compact.h"
|
|
#include "src/heap/marking-state-inl.h"
|
|
#include "src/heap/memory-chunk.h"
|
|
#include "src/heap/remembered-set-inl.h"
|
|
#include "src/objects/objects-inl.h"
|
|
#include "test/cctest/cctest.h"
|
|
#include "test/cctest/heap/heap-tester.h"
|
|
#include "test/cctest/heap/heap-utils.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace heap {
|
|
|
|
namespace {
|
|
|
|
void CheckInvariantsOfAbortedPage(Page* page) {
|
|
// Check invariants:
|
|
// 1) Markbits are cleared
|
|
// 2) The page is not marked as evacuation candidate anymore
|
|
// 3) The page is not marked as aborted compaction anymore.
|
|
CHECK(page->heap()->non_atomic_marking_state()->bitmap(page)->IsClean());
|
|
CHECK(!page->IsEvacuationCandidate());
|
|
CHECK(!page->IsFlagSet(Page::COMPACTION_WAS_ABORTED));
|
|
}
|
|
|
|
void CheckAllObjectsOnPage(const std::vector<Handle<FixedArray>>& handles,
|
|
Page* page) {
|
|
for (Handle<FixedArray> fixed_array : handles) {
|
|
CHECK(Page::FromHeapObject(*fixed_array) == page);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
HEAP_TEST(CompactionFullAbortedPage) {
|
|
if (!v8_flags.compact || v8_flags.crash_on_aborted_evacuation) return;
|
|
// Test the scenario where we reach OOM during compaction and the whole page
|
|
// is aborted.
|
|
|
|
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
|
|
// we can reach the state of a half aborted page.
|
|
ManualGCScope manual_gc_scope;
|
|
v8_flags.manual_evacuation_candidates_selection = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
auto reset_oom = [](void* heap, size_t limit, size_t) -> size_t {
|
|
reinterpret_cast<Heap*>(heap)->set_force_oom(false);
|
|
return limit;
|
|
};
|
|
heap->AddNearHeapLimitCallback(reset_oom, heap);
|
|
{
|
|
HandleScope scope1(isolate);
|
|
|
|
heap::SealCurrentObjects(heap);
|
|
|
|
{
|
|
HandleScope scope2(isolate);
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
auto compaction_page_handles = heap::CreatePadding(
|
|
heap,
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
|
|
AllocationType::kOld);
|
|
Page* to_be_aborted_page =
|
|
Page::FromHeapObject(*compaction_page_handles.front());
|
|
to_be_aborted_page->SetFlag(
|
|
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
|
|
CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
|
|
|
|
heap->set_force_oom(true);
|
|
CcTest::CollectAllGarbage();
|
|
heap->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
|
|
// Check that all handles still point to the same page, i.e., compaction
|
|
// has been aborted on the page.
|
|
for (Handle<FixedArray> object : compaction_page_handles) {
|
|
CHECK_EQ(to_be_aborted_page, Page::FromHeapObject(*object));
|
|
}
|
|
CheckInvariantsOfAbortedPage(to_be_aborted_page);
|
|
}
|
|
}
|
|
heap->RemoveNearHeapLimitCallback(reset_oom, 0u);
|
|
}
|
|
|
|
namespace {
|
|
|
|
int GetObjectSize(int objects_per_page) {
|
|
int allocatable =
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage());
|
|
// Make sure that object_size is a multiple of kTaggedSize.
|
|
int object_size =
|
|
((allocatable / kTaggedSize) / objects_per_page) * kTaggedSize;
|
|
return std::min(kMaxRegularHeapObjectSize, object_size);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
HEAP_TEST(CompactionPartiallyAbortedPage) {
|
|
if (!v8_flags.compact || v8_flags.crash_on_aborted_evacuation) return;
|
|
// Test the scenario where we reach OOM during compaction and parts of the
|
|
// page have already been migrated to a new one.
|
|
|
|
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
|
|
// we can reach the state of a half aborted page.
|
|
ManualGCScope manual_gc_scope;
|
|
v8_flags.manual_evacuation_candidates_selection = true;
|
|
|
|
const int objects_per_page = 10;
|
|
const int object_size = GetObjectSize(objects_per_page);
|
|
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
auto reset_oom = [](void* heap, size_t limit, size_t) -> size_t {
|
|
reinterpret_cast<Heap*>(heap)->set_force_oom(false);
|
|
return limit;
|
|
};
|
|
heap->AddNearHeapLimitCallback(reset_oom, heap);
|
|
{
|
|
HandleScope scope1(isolate);
|
|
|
|
heap::SealCurrentObjects(heap);
|
|
|
|
{
|
|
HandleScope scope2(isolate);
|
|
// Fill another page with objects of size {object_size} (last one is
|
|
// properly adjusted).
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
auto compaction_page_handles = heap::CreatePadding(
|
|
heap,
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
|
|
AllocationType::kOld, object_size);
|
|
Page* to_be_aborted_page =
|
|
Page::FromHeapObject(*compaction_page_handles.front());
|
|
to_be_aborted_page->SetFlag(
|
|
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
|
|
CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
|
|
|
|
{
|
|
// Add another page that is filled with {num_objects} objects of size
|
|
// {object_size}.
|
|
HandleScope scope3(isolate);
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
const int num_objects = 3;
|
|
std::vector<Handle<FixedArray>> page_to_fill_handles =
|
|
heap::CreatePadding(heap, object_size * num_objects,
|
|
AllocationType::kOld, object_size);
|
|
Page* page_to_fill =
|
|
Page::FromAddress(page_to_fill_handles.front()->address());
|
|
|
|
heap->set_force_oom(true);
|
|
CcTest::CollectAllGarbage();
|
|
heap->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
|
|
bool migration_aborted = false;
|
|
for (Handle<FixedArray> object : compaction_page_handles) {
|
|
// Once compaction has been aborted, all following objects still have
|
|
// to be on the initial page.
|
|
CHECK(!migration_aborted ||
|
|
(Page::FromHeapObject(*object) == to_be_aborted_page));
|
|
if (Page::FromHeapObject(*object) == to_be_aborted_page) {
|
|
// This object has not been migrated.
|
|
migration_aborted = true;
|
|
} else {
|
|
CHECK_EQ(Page::FromHeapObject(*object), page_to_fill);
|
|
}
|
|
}
|
|
// Check that we actually created a scenario with a partially aborted
|
|
// page.
|
|
CHECK(migration_aborted);
|
|
CheckInvariantsOfAbortedPage(to_be_aborted_page);
|
|
}
|
|
}
|
|
}
|
|
heap->RemoveNearHeapLimitCallback(reset_oom, 0u);
|
|
}
|
|
|
|
HEAP_TEST(CompactionPartiallyAbortedPageWithInvalidatedSlots) {
|
|
if (!v8_flags.compact || v8_flags.crash_on_aborted_evacuation) return;
|
|
// Test evacuating a page partially when it contains recorded
|
|
// slots and invalidated objects.
|
|
|
|
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
|
|
// we can reach the state of a half aborted page.
|
|
ManualGCScope manual_gc_scope;
|
|
v8_flags.manual_evacuation_candidates_selection = true;
|
|
|
|
const int objects_per_page = 10;
|
|
const int object_size = GetObjectSize(objects_per_page);
|
|
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
auto reset_oom = [](void* heap, size_t limit, size_t) -> size_t {
|
|
reinterpret_cast<Heap*>(heap)->set_force_oom(false);
|
|
return limit;
|
|
};
|
|
heap->AddNearHeapLimitCallback(reset_oom, heap);
|
|
|
|
{
|
|
HandleScope scope1(isolate);
|
|
|
|
heap::SealCurrentObjects(heap);
|
|
|
|
{
|
|
HandleScope scope2(isolate);
|
|
// Fill another page with objects of size {object_size} (last one is
|
|
// properly adjusted).
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
auto compaction_page_handles = heap::CreatePadding(
|
|
heap,
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
|
|
AllocationType::kOld, object_size);
|
|
Page* to_be_aborted_page =
|
|
Page::FromHeapObject(*compaction_page_handles.front());
|
|
for (Handle<FixedArray> object : compaction_page_handles) {
|
|
CHECK_EQ(Page::FromHeapObject(*object), to_be_aborted_page);
|
|
|
|
for (int i = 0; i < object->length(); i++) {
|
|
RememberedSet<OLD_TO_NEW>::Insert<AccessMode::ATOMIC>(
|
|
to_be_aborted_page, object->RawFieldOfElementAt(i).address());
|
|
}
|
|
}
|
|
// First object is going to be evacuated.
|
|
HeapObject front_object = *compaction_page_handles.front();
|
|
to_be_aborted_page->RegisterObjectWithInvalidatedSlots<OLD_TO_NEW>(
|
|
front_object, front_object.Size());
|
|
// Last object is NOT going to be evacuated.
|
|
// This happens since not all objects fit on the only other page in the
|
|
// old space, the GC isn't allowed to allocate another page.
|
|
HeapObject back_object = *compaction_page_handles.back();
|
|
to_be_aborted_page->RegisterObjectWithInvalidatedSlots<OLD_TO_NEW>(
|
|
back_object, back_object.Size());
|
|
to_be_aborted_page->SetFlag(
|
|
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
|
|
|
|
{
|
|
// Add another page that is filled with {num_objects} objects of size
|
|
// {object_size}.
|
|
HandleScope scope3(isolate);
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
const int num_objects = 3;
|
|
std::vector<Handle<FixedArray>> page_to_fill_handles =
|
|
heap::CreatePadding(heap, object_size * num_objects,
|
|
AllocationType::kOld, object_size);
|
|
Page* page_to_fill =
|
|
Page::FromAddress(page_to_fill_handles.front()->address());
|
|
|
|
heap->set_force_oom(true);
|
|
CcTest::CollectAllGarbage();
|
|
heap->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
|
|
CHECK_EQ(Page::FromHeapObject(*compaction_page_handles.front()),
|
|
page_to_fill);
|
|
CHECK_EQ(Page::FromHeapObject(*compaction_page_handles.back()),
|
|
to_be_aborted_page);
|
|
}
|
|
}
|
|
}
|
|
heap->RemoveNearHeapLimitCallback(reset_oom, 0u);
|
|
}
|
|
|
|
HEAP_TEST(CompactionPartiallyAbortedPageIntraAbortedPointers) {
|
|
if (!v8_flags.compact || v8_flags.crash_on_aborted_evacuation) return;
|
|
// Test the scenario where we reach OOM during compaction and parts of the
|
|
// page have already been migrated to a new one. Objects on the aborted page
|
|
// are linked together. This test makes sure that intra-aborted page pointers
|
|
// get properly updated.
|
|
|
|
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
|
|
// we can reach the state of a half aborted page.
|
|
ManualGCScope manual_gc_scope;
|
|
v8_flags.manual_evacuation_candidates_selection = true;
|
|
|
|
const int objects_per_page = 10;
|
|
const int object_size = GetObjectSize(objects_per_page);
|
|
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
auto reset_oom = [](void* heap, size_t limit, size_t) -> size_t {
|
|
reinterpret_cast<Heap*>(heap)->set_force_oom(false);
|
|
return limit;
|
|
};
|
|
heap->AddNearHeapLimitCallback(reset_oom, heap);
|
|
{
|
|
HandleScope scope1(isolate);
|
|
Handle<FixedArray> root_array =
|
|
isolate->factory()->NewFixedArray(10, AllocationType::kOld);
|
|
|
|
heap::SealCurrentObjects(heap);
|
|
|
|
Page* to_be_aborted_page = nullptr;
|
|
{
|
|
HandleScope temporary_scope(isolate);
|
|
// Fill a fresh page with objects of size {object_size} (last one is
|
|
// properly adjusted).
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
std::vector<Handle<FixedArray>> compaction_page_handles =
|
|
heap::CreatePadding(
|
|
heap,
|
|
static_cast<int>(
|
|
MemoryChunkLayout::AllocatableMemoryInDataPage()),
|
|
AllocationType::kOld, object_size);
|
|
to_be_aborted_page =
|
|
Page::FromHeapObject(*compaction_page_handles.front());
|
|
to_be_aborted_page->SetFlag(
|
|
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
|
|
for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) {
|
|
compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]);
|
|
}
|
|
root_array->set(0, *compaction_page_handles.back());
|
|
CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
|
|
}
|
|
{
|
|
// Add another page that is filled with {num_objects} objects of size
|
|
// {object_size}.
|
|
HandleScope scope3(isolate);
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
const int num_objects = 2;
|
|
int used_memory = object_size * num_objects;
|
|
std::vector<Handle<FixedArray>> page_to_fill_handles =
|
|
heap::CreatePadding(heap, used_memory, AllocationType::kOld,
|
|
object_size);
|
|
Page* page_to_fill = Page::FromHeapObject(*page_to_fill_handles.front());
|
|
|
|
heap->set_force_oom(true);
|
|
CcTest::CollectAllGarbage();
|
|
heap->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
|
|
// The following check makes sure that we compacted "some" objects, while
|
|
// leaving others in place.
|
|
bool in_place = true;
|
|
Handle<FixedArray> current = root_array;
|
|
while (current->get(0) != ReadOnlyRoots(heap).undefined_value()) {
|
|
current =
|
|
Handle<FixedArray>(FixedArray::cast(current->get(0)), isolate);
|
|
CHECK(current->IsFixedArray());
|
|
if (Page::FromHeapObject(*current) != to_be_aborted_page) {
|
|
in_place = false;
|
|
}
|
|
bool on_aborted_page =
|
|
Page::FromHeapObject(*current) == to_be_aborted_page;
|
|
bool on_fill_page = Page::FromHeapObject(*current) == page_to_fill;
|
|
CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page));
|
|
}
|
|
// Check that we at least migrated one object, as otherwise the test would
|
|
// not trigger.
|
|
CHECK(!in_place);
|
|
CheckInvariantsOfAbortedPage(to_be_aborted_page);
|
|
}
|
|
}
|
|
heap->RemoveNearHeapLimitCallback(reset_oom, 0u);
|
|
}
|
|
|
|
HEAP_TEST(CompactionPartiallyAbortedPageWithRememberedSetEntries) {
|
|
if (!v8_flags.compact || v8_flags.single_generation) return;
|
|
// Test the scenario where we reach OOM during compaction and parts of the
|
|
// page have already been migrated to a new one. Objects on the aborted page
|
|
// are linked together and the very first object on the aborted page points
|
|
// into new space. The test verifies that the remembered set entries are
|
|
// properly cleared and rebuilt after aborting a page. Failing to do so can
|
|
// result in other objects being allocated in the free space where their
|
|
// payload looks like a valid new space pointer.
|
|
|
|
// Disable concurrent sweeping to ensure memory is in an expected state, i.e.,
|
|
// we can reach the state of a half aborted page.
|
|
ManualGCScope manual_gc_scope;
|
|
v8_flags.manual_evacuation_candidates_selection = true;
|
|
|
|
const int objects_per_page = 10;
|
|
const int object_size = GetObjectSize(objects_per_page);
|
|
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
auto reset_oom = [](void* heap, size_t limit, size_t) -> size_t {
|
|
reinterpret_cast<Heap*>(heap)->set_force_oom(false);
|
|
return limit;
|
|
};
|
|
heap->AddNearHeapLimitCallback(reset_oom, heap);
|
|
{
|
|
HandleScope scope1(isolate);
|
|
Handle<FixedArray> root_array =
|
|
isolate->factory()->NewFixedArray(10, AllocationType::kOld);
|
|
heap::SealCurrentObjects(heap);
|
|
|
|
Page* to_be_aborted_page = nullptr;
|
|
{
|
|
HandleScope temporary_scope(isolate);
|
|
// Fill another page with objects of size {object_size} (last one is
|
|
// properly adjusted).
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
auto compaction_page_handles = heap::CreatePadding(
|
|
heap,
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()),
|
|
AllocationType::kOld, object_size);
|
|
// Sanity check that we have enough space for linking up arrays.
|
|
CHECK_GE(compaction_page_handles.front()->length(), 2);
|
|
to_be_aborted_page =
|
|
Page::FromHeapObject(*compaction_page_handles.front());
|
|
to_be_aborted_page->SetFlag(
|
|
MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
|
|
|
|
for (size_t i = compaction_page_handles.size() - 1; i > 0; i--) {
|
|
compaction_page_handles[i]->set(0, *compaction_page_handles[i - 1]);
|
|
}
|
|
root_array->set(0, *compaction_page_handles.back());
|
|
Handle<FixedArray> new_space_array =
|
|
isolate->factory()->NewFixedArray(1, AllocationType::kYoung);
|
|
CHECK(Heap::InYoungGeneration(*new_space_array));
|
|
compaction_page_handles.front()->set(1, *new_space_array);
|
|
CheckAllObjectsOnPage(compaction_page_handles, to_be_aborted_page);
|
|
}
|
|
|
|
{
|
|
// Add another page that is filled with {num_objects} objects of size
|
|
// {object_size}.
|
|
HandleScope scope3(isolate);
|
|
CHECK(heap->old_space()->TryExpandImpl());
|
|
const int num_objects = 2;
|
|
int used_memory = object_size * num_objects;
|
|
std::vector<Handle<FixedArray>> page_to_fill_handles =
|
|
heap::CreatePadding(heap, used_memory, AllocationType::kOld,
|
|
object_size);
|
|
Page* page_to_fill = Page::FromHeapObject(*page_to_fill_handles.front());
|
|
|
|
heap->set_force_oom(true);
|
|
CcTest::CollectAllGarbage();
|
|
heap->EnsureSweepingCompleted(
|
|
Heap::SweepingForcedFinalizationMode::kV8Only);
|
|
|
|
// The following check makes sure that we compacted "some" objects, while
|
|
// leaving others in place.
|
|
bool in_place = true;
|
|
Handle<FixedArray> current = root_array;
|
|
while (current->get(0) != ReadOnlyRoots(heap).undefined_value()) {
|
|
current =
|
|
Handle<FixedArray>(FixedArray::cast(current->get(0)), isolate);
|
|
CHECK(!Heap::InYoungGeneration(*current));
|
|
CHECK(current->IsFixedArray());
|
|
if (Page::FromHeapObject(*current) != to_be_aborted_page) {
|
|
in_place = false;
|
|
}
|
|
bool on_aborted_page =
|
|
Page::FromHeapObject(*current) == to_be_aborted_page;
|
|
bool on_fill_page = Page::FromHeapObject(*current) == page_to_fill;
|
|
CHECK((in_place && on_aborted_page) || (!in_place && on_fill_page));
|
|
}
|
|
// Check that we at least migrated one object, as otherwise the test would
|
|
// not trigger.
|
|
CHECK(!in_place);
|
|
CheckInvariantsOfAbortedPage(to_be_aborted_page);
|
|
|
|
// Allocate a new object in new space.
|
|
Handle<FixedArray> holder =
|
|
isolate->factory()->NewFixedArray(10, AllocationType::kYoung);
|
|
// Create a broken address that looks like a tagged pointer to a new space
|
|
// object.
|
|
Address broken_address = holder->address() + 2 * kTaggedSize + 1;
|
|
// Convert it to a vector to create a string from it.
|
|
base::Vector<const uint8_t> string_to_broken_addresss(
|
|
reinterpret_cast<const uint8_t*>(&broken_address), kTaggedSize);
|
|
|
|
Handle<String> string;
|
|
do {
|
|
// We know that the interesting slot will be on the aborted page and
|
|
// hence we allocate until we get our string on the aborted page.
|
|
// We used slot 1 in the fixed size array which corresponds to the
|
|
// the first word in the string. Since the first object definitely
|
|
// migrated we can just allocate until we hit the aborted page.
|
|
string = isolate->factory()
|
|
->NewStringFromOneByte(string_to_broken_addresss,
|
|
AllocationType::kOld)
|
|
.ToHandleChecked();
|
|
} while (Page::FromHeapObject(*string) != to_be_aborted_page);
|
|
|
|
// If remembered set entries are not properly filtered/reset for aborted
|
|
// pages we have now a broken address at an object slot in old space and
|
|
// the following scavenge will crash.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
}
|
|
}
|
|
heap->RemoveNearHeapLimitCallback(reset_oom, 0u);
|
|
}
|
|
|
|
} // namespace heap
|
|
} // namespace internal
|
|
} // namespace v8
|