v8/test/unittests/wasm/decoder-unittest.cc
Florian Sattler b2dac95379 [cleanup] Replace 0 and NULL with nullptr for test files.
Fixing clang-tidy warning.

Bug: v8:8015
Change-Id: I2a7a8c8447d2835205f7a506f04efe4d1801b934
Reviewed-on: https://chromium-review.googlesource.com/1224316
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Commit-Queue: Florian Sattler <sattlerf@google.com>
Cr-Commit-Position: refs/heads/master@{#55903}
2018-09-14 12:56:00 +00:00

691 lines
24 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/objects-inl.h"
#include "src/wasm/decoder.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
class DecoderTest : public TestWithZone {
public:
DecoderTest() : decoder(nullptr, nullptr) {}
Decoder decoder;
};
#define CHECK_UINT32V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ( \
static_cast<uint32_t>(expected), \
decoder.read_u32v<Decoder::kValidate>(decoder.start(), &length)); \
EXPECT_EQ(static_cast<unsigned>(expected_length), length); \
EXPECT_EQ(data, decoder.pc()); \
EXPECT_TRUE(decoder.ok()); \
EXPECT_EQ(static_cast<uint32_t>(expected), decoder.consume_u32v()); \
EXPECT_EQ(data + expected_length, decoder.pc()); \
} while (false)
#define CHECK_INT32V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(expected, decoder.read_i32v<Decoder::kValidate>(decoder.start(), \
&length)); \
EXPECT_EQ(static_cast<unsigned>(expected_length), length); \
EXPECT_EQ(data, decoder.pc()); \
EXPECT_TRUE(decoder.ok()); \
EXPECT_EQ(expected, decoder.consume_i32v()); \
EXPECT_EQ(data + expected_length, decoder.pc()); \
} while (false)
#define CHECK_UINT64V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ( \
static_cast<uint64_t>(expected), \
decoder.read_u64v<Decoder::kValidate>(decoder.start(), &length)); \
EXPECT_EQ(static_cast<unsigned>(expected_length), length); \
} while (false)
#define CHECK_INT64V_INLINE(expected, expected_length, ...) \
do { \
const byte data[] = {__VA_ARGS__}; \
decoder.Reset(data, data + sizeof(data)); \
unsigned length; \
EXPECT_EQ(expected, decoder.read_i64v<Decoder::kValidate>(decoder.start(), \
&length)); \
EXPECT_EQ(static_cast<unsigned>(expected_length), length); \
} while (false)
TEST_F(DecoderTest, ReadU32v_OneByte) {
CHECK_UINT32V_INLINE(0, 1, 0);
CHECK_UINT32V_INLINE(5, 1, 5);
CHECK_UINT32V_INLINE(7, 1, 7);
CHECK_UINT32V_INLINE(9, 1, 9);
CHECK_UINT32V_INLINE(37, 1, 37);
CHECK_UINT32V_INLINE(69, 1, 69);
CHECK_UINT32V_INLINE(110, 1, 110);
CHECK_UINT32V_INLINE(125, 1, 125);
CHECK_UINT32V_INLINE(126, 1, 126);
CHECK_UINT32V_INLINE(127, 1, 127);
}
TEST_F(DecoderTest, ReadU32v_TwoByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0);
CHECK_UINT32V_INLINE(444, 2, U32V_2(444));
CHECK_UINT32V_INLINE(544, 2, U32V_2(544));
CHECK_UINT32V_INLINE(1311, 2, U32V_2(1311));
CHECK_UINT32V_INLINE(2333, 2, U32V_2(2333));
for (uint32_t i = 0; i < 1 << 14; i = i * 13 + 1) {
CHECK_UINT32V_INLINE(i, 2, U32V_2(i));
}
const uint32_t max = (1 << 14) - 1;
CHECK_UINT32V_INLINE(max, 2, U32V_2(max));
}
TEST_F(DecoderTest, ReadU32v_ThreeByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0);
CHECK_UINT32V_INLINE(11, 3, U32V_3(11));
CHECK_UINT32V_INLINE(101, 3, U32V_3(101));
CHECK_UINT32V_INLINE(446, 3, U32V_3(446));
CHECK_UINT32V_INLINE(546, 3, U32V_3(546));
CHECK_UINT32V_INLINE(1319, 3, U32V_3(1319));
CHECK_UINT32V_INLINE(2338, 3, U32V_3(2338));
CHECK_UINT32V_INLINE(8191, 3, U32V_3(8191));
CHECK_UINT32V_INLINE(9999, 3, U32V_3(9999));
CHECK_UINT32V_INLINE(14444, 3, U32V_3(14444));
CHECK_UINT32V_INLINE(314444, 3, U32V_3(314444));
CHECK_UINT32V_INLINE(614444, 3, U32V_3(614444));
const uint32_t max = (1 << 21) - 1;
for (uint32_t i = 0; i <= max; i = i * 13 + 3) {
CHECK_UINT32V_INLINE(i, 3, U32V_3(i), 0);
}
CHECK_UINT32V_INLINE(max, 3, U32V_3(max));
}
TEST_F(DecoderTest, ReadU32v_FourByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(13, 4, U32V_4(13));
CHECK_UINT32V_INLINE(107, 4, U32V_4(107));
CHECK_UINT32V_INLINE(449, 4, U32V_4(449));
CHECK_UINT32V_INLINE(541, 4, U32V_4(541));
CHECK_UINT32V_INLINE(1317, 4, U32V_4(1317));
CHECK_UINT32V_INLINE(2334, 4, U32V_4(2334));
CHECK_UINT32V_INLINE(8191, 4, U32V_4(8191));
CHECK_UINT32V_INLINE(9994, 4, U32V_4(9994));
CHECK_UINT32V_INLINE(14442, 4, U32V_4(14442));
CHECK_UINT32V_INLINE(314442, 4, U32V_4(314442));
CHECK_UINT32V_INLINE(614442, 4, U32V_4(614442));
CHECK_UINT32V_INLINE(1614442, 4, U32V_4(1614442));
CHECK_UINT32V_INLINE(5614442, 4, U32V_4(5614442));
CHECK_UINT32V_INLINE(19614442, 4, U32V_4(19614442));
const uint32_t max = (1 << 28) - 1;
for (uint32_t i = 0; i <= max; i = i * 13 + 5) {
CHECK_UINT32V_INLINE(i, 4, U32V_4(i), 0);
}
CHECK_UINT32V_INLINE(max, 4, U32V_4(max));
}
TEST_F(DecoderTest, ReadU32v_FiveByte) {
CHECK_UINT32V_INLINE(0, 1, 0, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(10, 1, 10, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(27, 1, 27, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(100, 1, 100, 0, 0, 0, 0);
CHECK_UINT32V_INLINE(13, 5, U32V_5(13));
CHECK_UINT32V_INLINE(107, 5, U32V_5(107));
CHECK_UINT32V_INLINE(449, 5, U32V_5(449));
CHECK_UINT32V_INLINE(541, 5, U32V_5(541));
CHECK_UINT32V_INLINE(1317, 5, U32V_5(1317));
CHECK_UINT32V_INLINE(2334, 5, U32V_5(2334));
CHECK_UINT32V_INLINE(8191, 5, U32V_5(8191));
CHECK_UINT32V_INLINE(9994, 5, U32V_5(9994));
CHECK_UINT32V_INLINE(24442, 5, U32V_5(24442));
CHECK_UINT32V_INLINE(414442, 5, U32V_5(414442));
CHECK_UINT32V_INLINE(714442, 5, U32V_5(714442));
CHECK_UINT32V_INLINE(1614442, 5, U32V_5(1614442));
CHECK_UINT32V_INLINE(6614442, 5, U32V_5(6614442));
CHECK_UINT32V_INLINE(89614442, 5, U32V_5(89614442));
CHECK_UINT32V_INLINE(2219614442u, 5, U32V_5(2219614442u));
CHECK_UINT32V_INLINE(3219614442u, 5, U32V_5(3219614442u));
CHECK_UINT32V_INLINE(4019614442u, 5, U32V_5(4019614442u));
const uint32_t max = 0xFFFFFFFFu;
for (uint32_t i = 1; i < 32; i++) {
uint32_t val = 0x983489AAu << i;
CHECK_UINT32V_INLINE(val, 5, U32V_5(val), 0);
}
CHECK_UINT32V_INLINE(max, 5, U32V_5(max));
}
TEST_F(DecoderTest, ReadU32v_various) {
for (int i = 0; i < 10; i++) {
uint32_t x = 0xCCCCCCCCu * i;
for (int width = 0; width < 32; width++) {
uint32_t val = x >> width;
CHECK_UINT32V_INLINE(val & MASK_7, 1, U32V_1(val));
CHECK_UINT32V_INLINE(val & MASK_14, 2, U32V_2(val));
CHECK_UINT32V_INLINE(val & MASK_21, 3, U32V_3(val));
CHECK_UINT32V_INLINE(val & MASK_28, 4, U32V_4(val));
CHECK_UINT32V_INLINE(val, 5, U32V_5(val));
}
}
}
TEST_F(DecoderTest, ReadI32v_OneByte) {
CHECK_INT32V_INLINE(0, 1, 0);
CHECK_INT32V_INLINE(4, 1, 4);
CHECK_INT32V_INLINE(6, 1, 6);
CHECK_INT32V_INLINE(9, 1, 9);
CHECK_INT32V_INLINE(33, 1, 33);
CHECK_INT32V_INLINE(61, 1, 61);
CHECK_INT32V_INLINE(63, 1, 63);
CHECK_INT32V_INLINE(-1, 1, 127);
CHECK_INT32V_INLINE(-2, 1, 126);
CHECK_INT32V_INLINE(-11, 1, 117);
CHECK_INT32V_INLINE(-62, 1, 66);
CHECK_INT32V_INLINE(-63, 1, 65);
CHECK_INT32V_INLINE(-64, 1, 64);
}
TEST_F(DecoderTest, ReadI32v_TwoByte) {
CHECK_INT32V_INLINE(0, 2, U32V_2(0));
CHECK_INT32V_INLINE(9, 2, U32V_2(9));
CHECK_INT32V_INLINE(61, 2, U32V_2(61));
CHECK_INT32V_INLINE(63, 2, U32V_2(63));
CHECK_INT32V_INLINE(-1, 2, U32V_2(-1));
CHECK_INT32V_INLINE(-2, 2, U32V_2(-2));
CHECK_INT32V_INLINE(-63, 2, U32V_2(-63));
CHECK_INT32V_INLINE(-64, 2, U32V_2(-64));
CHECK_INT32V_INLINE(-200, 2, U32V_2(-200));
CHECK_INT32V_INLINE(-1002, 2, U32V_2(-1002));
CHECK_INT32V_INLINE(-2004, 2, U32V_2(-2004));
CHECK_INT32V_INLINE(-4077, 2, U32V_2(-4077));
CHECK_INT32V_INLINE(207, 2, U32V_2(207));
CHECK_INT32V_INLINE(1009, 2, U32V_2(1009));
CHECK_INT32V_INLINE(2003, 2, U32V_2(2003));
CHECK_INT32V_INLINE(4072, 2, U32V_2(4072));
const int32_t min = 0 - (1 << 13);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 2, U32V_2(i));
}
const int32_t max = (1 << 13) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 2, U32V_2(i));
}
}
TEST_F(DecoderTest, ReadI32v_ThreeByte) {
CHECK_INT32V_INLINE(0, 3, U32V_3(0));
CHECK_INT32V_INLINE(9, 3, U32V_3(9));
CHECK_INT32V_INLINE(61, 3, U32V_3(61));
CHECK_INT32V_INLINE(63, 3, U32V_3(63));
CHECK_INT32V_INLINE(-1, 3, U32V_3(-1));
CHECK_INT32V_INLINE(-2, 3, U32V_3(-2));
CHECK_INT32V_INLINE(-63, 3, U32V_3(-63));
CHECK_INT32V_INLINE(-64, 3, U32V_3(-64));
CHECK_INT32V_INLINE(-207, 3, U32V_3(-207));
CHECK_INT32V_INLINE(-1012, 3, U32V_3(-1012));
CHECK_INT32V_INLINE(-4067, 3, U32V_3(-4067));
CHECK_INT32V_INLINE(-14067, 3, U32V_3(-14067));
CHECK_INT32V_INLINE(-234061, 3, U32V_3(-234061));
CHECK_INT32V_INLINE(237, 3, U32V_3(237));
CHECK_INT32V_INLINE(1309, 3, U32V_3(1309));
CHECK_INT32V_INLINE(4372, 3, U32V_3(4372));
CHECK_INT32V_INLINE(64372, 3, U32V_3(64372));
CHECK_INT32V_INLINE(374372, 3, U32V_3(374372));
const int32_t min = 0 - (1 << 20);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 3, U32V_3(i));
}
const int32_t max = (1 << 20) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 3, U32V_3(i));
}
}
TEST_F(DecoderTest, ReadI32v_FourByte) {
CHECK_INT32V_INLINE(0, 4, U32V_4(0));
CHECK_INT32V_INLINE(9, 4, U32V_4(9));
CHECK_INT32V_INLINE(61, 4, U32V_4(61));
CHECK_INT32V_INLINE(63, 4, U32V_4(63));
CHECK_INT32V_INLINE(-1, 4, U32V_4(-1));
CHECK_INT32V_INLINE(-2, 4, U32V_4(-2));
CHECK_INT32V_INLINE(-63, 4, U32V_4(-63));
CHECK_INT32V_INLINE(-64, 4, U32V_4(-64));
CHECK_INT32V_INLINE(-267, 4, U32V_4(-267));
CHECK_INT32V_INLINE(-1612, 4, U32V_4(-1612));
CHECK_INT32V_INLINE(-4667, 4, U32V_4(-4667));
CHECK_INT32V_INLINE(-16067, 4, U32V_4(-16067));
CHECK_INT32V_INLINE(-264061, 4, U32V_4(-264061));
CHECK_INT32V_INLINE(-1264061, 4, U32V_4(-1264061));
CHECK_INT32V_INLINE(-6264061, 4, U32V_4(-6264061));
CHECK_INT32V_INLINE(-8264061, 4, U32V_4(-8264061));
CHECK_INT32V_INLINE(277, 4, U32V_4(277));
CHECK_INT32V_INLINE(1709, 4, U32V_4(1709));
CHECK_INT32V_INLINE(4772, 4, U32V_4(4772));
CHECK_INT32V_INLINE(67372, 4, U32V_4(67372));
CHECK_INT32V_INLINE(374372, 4, U32V_4(374372));
CHECK_INT32V_INLINE(2374372, 4, U32V_4(2374372));
CHECK_INT32V_INLINE(7374372, 4, U32V_4(7374372));
CHECK_INT32V_INLINE(9374372, 4, U32V_4(9374372));
const int32_t min = 0 - (1 << 27);
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 4, U32V_4(i));
}
const int32_t max = (1 << 27) - 1;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 4, U32V_4(i));
}
}
TEST_F(DecoderTest, ReadI32v_FiveByte) {
CHECK_INT32V_INLINE(0, 5, U32V_5(0));
CHECK_INT32V_INLINE(16, 5, U32V_5(16));
CHECK_INT32V_INLINE(94, 5, U32V_5(94));
CHECK_INT32V_INLINE(127, 5, U32V_5(127));
CHECK_INT32V_INLINE(-1, 5, U32V_5(-1));
CHECK_INT32V_INLINE(-2, 5, U32V_5(-2));
CHECK_INT32V_INLINE(-63, 5, U32V_5(-63));
CHECK_INT32V_INLINE(-64, 5, U32V_5(-64));
CHECK_INT32V_INLINE(-257, 5, U32V_5(-257));
CHECK_INT32V_INLINE(-1512, 5, U32V_5(-1512));
CHECK_INT32V_INLINE(-4567, 5, U32V_5(-4567));
CHECK_INT32V_INLINE(-15067, 5, U32V_5(-15067));
CHECK_INT32V_INLINE(-254061, 5, U32V_5(-254061));
CHECK_INT32V_INLINE(-1364061, 5, U32V_5(-1364061));
CHECK_INT32V_INLINE(-6364061, 5, U32V_5(-6364061));
CHECK_INT32V_INLINE(-8364061, 5, U32V_5(-8364061));
CHECK_INT32V_INLINE(-28364061, 5, U32V_5(-28364061));
CHECK_INT32V_INLINE(-228364061, 5, U32V_5(-228364061));
CHECK_INT32V_INLINE(227, 5, U32V_5(227));
CHECK_INT32V_INLINE(1209, 5, U32V_5(1209));
CHECK_INT32V_INLINE(4272, 5, U32V_5(4272));
CHECK_INT32V_INLINE(62372, 5, U32V_5(62372));
CHECK_INT32V_INLINE(324372, 5, U32V_5(324372));
CHECK_INT32V_INLINE(2274372, 5, U32V_5(2274372));
CHECK_INT32V_INLINE(7274372, 5, U32V_5(7274372));
CHECK_INT32V_INLINE(9274372, 5, U32V_5(9274372));
CHECK_INT32V_INLINE(42374372, 5, U32V_5(42374372));
CHECK_INT32V_INLINE(429374372, 5, U32V_5(429374372));
const int32_t min = kMinInt;
for (int i = min; i < min + 10; i++) {
CHECK_INT32V_INLINE(i, 5, U32V_5(i));
}
const int32_t max = kMaxInt;
for (int i = max; i > max - 10; i--) {
CHECK_INT32V_INLINE(i, 5, U32V_5(i));
}
}
TEST_F(DecoderTest, ReadU32v_off_end1) {
static const byte data[] = {U32V_1(11)};
unsigned length = 0;
decoder.Reset(data, data);
decoder.read_u32v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(0u, length);
EXPECT_FALSE(decoder.ok());
}
TEST_F(DecoderTest, ReadU32v_off_end2) {
static const byte data[] = {U32V_2(1111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.read_u32v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(i, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end3) {
static const byte data[] = {U32V_3(111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.read_u32v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(i, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end4) {
static const byte data[] = {U32V_4(11111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.read_u32v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(i, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_off_end5) {
static const byte data[] = {U32V_5(111111111)};
for (size_t i = 0; i < sizeof(data); i++) {
unsigned length = 0;
decoder.Reset(data, data + i);
decoder.read_u32v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(i, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadU32v_extra_bits) {
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x00};
for (int i = 1; i < 16; i++) {
data[4] = static_cast<byte>(i << 4);
unsigned length = 0;
decoder.Reset(data, data + sizeof(data));
decoder.read_u32v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(5u, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadI32v_extra_bits_negative) {
// OK for negative signed values to have extra ones.
unsigned length = 0;
byte data[] = {0xFF, 0xFF, 0xFF, 0xFF, 0x7F};
decoder.Reset(data, data + sizeof(data));
decoder.read_i32v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(5u, length);
EXPECT_TRUE(decoder.ok());
}
TEST_F(DecoderTest, ReadI32v_extra_bits_positive) {
// Not OK for positive signed values to have extra ones.
unsigned length = 0;
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x77};
decoder.Reset(data, data + sizeof(data));
decoder.read_i32v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(5u, length);
EXPECT_FALSE(decoder.ok());
}
TEST_F(DecoderTest, ReadU32v_Bits) {
// A more exhaustive test.
const int kMaxSize = 5;
const uint32_t kVals[] = {
0xAABBCCDD, 0x11223344, 0x33445566, 0xFFEEDDCC, 0xF0F0F0F0, 0x0F0F0F0F,
0xEEEEEEEE, 0xAAAAAAAA, 0x12345678, 0x9ABCDEF0, 0x80309488, 0x729ED997,
0xC4A0CF81, 0x16C6EB85, 0x4206DB8E, 0xF3B089D5, 0xAA2E223E, 0xF99E29C8,
0x4A4357D8, 0x1890B1C1, 0x8D80A085, 0xACB6AE4C, 0x1B827E10, 0xEB5C7BD9,
0xBB1BC146, 0xDF57A33l};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...32
for (int i = 1; i <= 32; i++) {
uint32_t val = kVals[v];
if (i < 32) val &= ((1 << i) - 1);
unsigned length = 1 + i / 7;
for (unsigned j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (unsigned j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...5
for (unsigned limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
uint32_t result = decoder.read_u32v<Decoder::kValidate>(data, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadU64v_OneByte) {
CHECK_UINT64V_INLINE(0, 1, 0);
CHECK_UINT64V_INLINE(6, 1, 6);
CHECK_UINT64V_INLINE(8, 1, 8);
CHECK_UINT64V_INLINE(12, 1, 12);
CHECK_UINT64V_INLINE(33, 1, 33);
CHECK_UINT64V_INLINE(59, 1, 59);
CHECK_UINT64V_INLINE(110, 1, 110);
CHECK_UINT64V_INLINE(125, 1, 125);
CHECK_UINT64V_INLINE(126, 1, 126);
CHECK_UINT64V_INLINE(127, 1, 127);
}
TEST_F(DecoderTest, ReadI64v_OneByte) {
CHECK_INT64V_INLINE(0, 1, 0);
CHECK_INT64V_INLINE(4, 1, 4);
CHECK_INT64V_INLINE(6, 1, 6);
CHECK_INT64V_INLINE(9, 1, 9);
CHECK_INT64V_INLINE(33, 1, 33);
CHECK_INT64V_INLINE(61, 1, 61);
CHECK_INT64V_INLINE(63, 1, 63);
CHECK_INT64V_INLINE(-1, 1, 127);
CHECK_INT64V_INLINE(-2, 1, 126);
CHECK_INT64V_INLINE(-11, 1, 117);
CHECK_INT64V_INLINE(-62, 1, 66);
CHECK_INT64V_INLINE(-63, 1, 65);
CHECK_INT64V_INLINE(-64, 1, 64);
}
TEST_F(DecoderTest, ReadU64v_PowerOf2) {
const int kMaxSize = 10;
byte data[kMaxSize];
for (unsigned i = 0; i < 64; i++) {
const uint64_t val = 1ull << i;
unsigned index = i / 7;
data[index] = 1 << (i % 7);
memset(data, 0x80, index);
for (unsigned limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned length;
uint64_t result = decoder.read_u64v<Decoder::kValidate>(data, &length);
if (limit <= index) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(index + 1, length);
}
}
}
}
TEST_F(DecoderTest, ReadU64v_Bits) {
const int kMaxSize = 10;
const uint64_t kVals[] = {
0xAABBCCDD11223344ull, 0x33445566FFEEDDCCull, 0xF0F0F0F0F0F0F0F0ull,
0x0F0F0F0F0F0F0F0Full, 0xEEEEEEEEEEEEEEEEull, 0xAAAAAAAAAAAAAAAAull,
0x123456789ABCDEF0ull, 0x80309488729ED997ull, 0xC4A0CF8116C6EB85ull,
0x4206DB8EF3B089D5ull, 0xAA2E223EF99E29C8ull, 0x4A4357D81890B1C1ull,
0x8D80A085ACB6AE4Cull, 0x1B827E10EB5C7BD9ull, 0xBB1BC146DF57A338ull};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...64
for (int i = 1; i <= 64; i++) {
uint64_t val = kVals[v];
if (i < 64) val &= ((1ull << i) - 1);
unsigned length = 1 + i / 7;
for (unsigned j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (unsigned j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...10
for (unsigned limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
uint64_t result = decoder.read_u64v<Decoder::kValidate>(data, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadI64v_Bits) {
const int kMaxSize = 10;
// Exhaustive signedness test.
const uint64_t kVals[] = {
0xAABBCCDD11223344ull, 0x33445566FFEEDDCCull, 0xF0F0F0F0F0F0F0F0ull,
0x0F0F0F0F0F0F0F0Full, 0xEEEEEEEEEEEEEEEEull, 0xAAAAAAAAAAAAAAAAull,
0x123456789ABCDEF0ull, 0x80309488729ED997ull, 0xC4A0CF8116C6EB85ull,
0x4206DB8EF3B089D5ull, 0xAA2E223EF99E29C8ull, 0x4A4357D81890B1C1ull,
0x8D80A085ACB6AE4Cull, 0x1B827E10EB5C7BD9ull, 0xBB1BC146DF57A338ull};
byte data[kMaxSize];
// foreach value in above array
for (size_t v = 0; v < arraysize(kVals); v++) {
// foreach length 1...64
for (int i = 1; i <= 64; i++) {
const int64_t val = bit_cast<int64_t>(kVals[v] << (64 - i)) >> (64 - i);
unsigned length = 1 + i / 7;
for (unsigned j = 0; j < kMaxSize; j++) {
data[j] = static_cast<byte>((val >> (7 * j)) & MASK_7);
}
for (unsigned j = 0; j < length - 1; j++) {
data[j] |= 0x80;
}
// foreach buffer size 0...10
for (unsigned limit = 0; limit <= kMaxSize; limit++) {
decoder.Reset(data, data + limit);
unsigned rlen;
int64_t result = decoder.read_i64v<Decoder::kValidate>(data, &rlen);
if (limit < length) {
EXPECT_FALSE(decoder.ok());
} else {
EXPECT_TRUE(decoder.ok());
EXPECT_EQ(val, result);
EXPECT_EQ(length, rlen);
}
}
}
}
}
TEST_F(DecoderTest, ReadU64v_extra_bits) {
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00};
for (int i = 1; i < 128; i++) {
data[9] = static_cast<byte>(i << 1);
unsigned length = 0;
decoder.Reset(data, data + sizeof(data));
decoder.read_u64v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(10u, length);
EXPECT_FALSE(decoder.ok());
}
}
TEST_F(DecoderTest, ReadI64v_extra_bits_negative) {
// OK for negative signed values to have extra ones.
unsigned length = 0;
byte data[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F};
decoder.Reset(data, data + sizeof(data));
decoder.read_i64v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(10u, length);
EXPECT_TRUE(decoder.ok());
}
TEST_F(DecoderTest, ReadI64v_extra_bits_positive) {
// Not OK for positive signed values to have extra ones.
unsigned length = 0;
byte data[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x77};
decoder.Reset(data, data + sizeof(data));
decoder.read_i64v<Decoder::kValidate>(decoder.start(), &length);
EXPECT_EQ(10u, length);
EXPECT_FALSE(decoder.ok());
}
TEST_F(DecoderTest, FailOnNullData) {
decoder.Reset(nullptr, nullptr);
decoder.checkAvailable(1);
EXPECT_FALSE(decoder.ok());
EXPECT_FALSE(decoder.toResult(nullptr).ok());
}
#undef CHECK_UINT32V_INLINE
#undef CHECK_INT32V_INLINE
#undef CHECK_UINT64V_INLINE
#undef CHECK_INT64V_INLINE
} // namespace wasm
} // namespace internal
} // namespace v8