v8/test/cctest/test-regexp.cc
Mathias Bynens 62f929ff4c Use nullptr instead of NULL where possible
New code should use nullptr instead of NULL.

This patch updates existing use of NULL to nullptr where applicable,
making the code base more consistent.

BUG=v8:6928,v8:6921

Cq-Include-Trybots: master.tryserver.chromium.linux:linux_chromium_rel_ng;master.tryserver.v8:v8_linux_noi18n_rel_ng
Change-Id: I4687f5b96fcfd88b41fa970a2b937b4f6538777c
Reviewed-on: https://chromium-review.googlesource.com/718338
Commit-Queue: Mathias Bynens <mathias@chromium.org>
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Reviewed-by: Benedikt Meurer <bmeurer@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Toon Verwaest <verwaest@chromium.org>
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Yang Guo <yangguo@chromium.org>
Cr-Commit-Position: refs/heads/master@{#48557}
2017-10-13 17:21:49 +00:00

2023 lines
69 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdlib>
#include <memory>
#include <sstream>
#include "include/v8.h"
#include "src/v8.h"
#include "src/api.h"
#include "src/ast/ast.h"
#include "src/char-predicates-inl.h"
#include "src/objects-inl.h"
#include "src/ostreams.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler-irregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp-parser.h"
#include "src/splay-tree-inl.h"
#include "src/string-stream.h"
#include "src/unicode-inl.h"
#ifdef V8_INTERPRETED_REGEXP
#include "src/regexp/interpreter-irregexp.h"
#else // V8_INTERPRETED_REGEXP
#include "src/macro-assembler.h"
#if V8_TARGET_ARCH_ARM
#include "src/arm/assembler-arm.h" // NOLINT
#include "src/arm/macro-assembler-arm.h"
#include "src/regexp/arm/regexp-macro-assembler-arm.h"
#endif
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/assembler-arm64.h"
#include "src/arm64/macro-assembler-arm64.h"
#include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
#endif
#if V8_TARGET_ARCH_S390
#include "src/regexp/s390/regexp-macro-assembler-s390.h"
#include "src/s390/assembler-s390.h"
#include "src/s390/macro-assembler-s390.h"
#endif
#if V8_TARGET_ARCH_PPC
#include "src/ppc/assembler-ppc.h"
#include "src/ppc/macro-assembler-ppc.h"
#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
#endif
#if V8_TARGET_ARCH_MIPS
#include "src/mips/assembler-mips.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/regexp/mips/regexp-macro-assembler-mips.h"
#endif
#if V8_TARGET_ARCH_MIPS64
#include "src/mips64/assembler-mips64.h"
#include "src/mips64/macro-assembler-mips64.h"
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
#endif
#if V8_TARGET_ARCH_X64
#include "src/regexp/x64/regexp-macro-assembler-x64.h"
#include "src/x64/assembler-x64.h"
#include "src/x64/macro-assembler-x64.h"
#endif
#if V8_TARGET_ARCH_IA32
#include "src/ia32/assembler-ia32.h"
#include "src/ia32/macro-assembler-ia32.h"
#include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
#endif
#endif // V8_INTERPRETED_REGEXP
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace test_regexp {
static bool CheckParse(const char* input) {
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
return v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result);
}
static void CheckParseEq(const char* input, const char* expected,
bool unicode = false) {
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
JSRegExp::Flags flags = JSRegExp::kNone;
if (unicode) flags |= JSRegExp::kUnicode;
CHECK(v8::internal::RegExpParser::ParseRegExp(CcTest::i_isolate(), &zone,
&reader, flags, &result));
CHECK(result.tree != nullptr);
CHECK(result.error.is_null());
std::ostringstream os;
result.tree->Print(os, &zone);
if (strcmp(expected, os.str().c_str()) != 0) {
printf("%s | %s\n", expected, os.str().c_str());
}
CHECK_EQ(0, strcmp(expected, os.str().c_str()));
}
static bool CheckSimple(const char* input) {
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result));
CHECK(result.tree != nullptr);
CHECK(result.error.is_null());
return result.simple;
}
struct MinMaxPair {
int min_match;
int max_match;
};
static MinMaxPair CheckMinMaxMatch(const char* input) {
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result));
CHECK(result.tree != nullptr);
CHECK(result.error.is_null());
int min_match = result.tree->min_match();
int max_match = result.tree->max_match();
MinMaxPair pair = { min_match, max_match };
return pair;
}
#define CHECK_PARSE_ERROR(input) CHECK(!CheckParse(input))
#define CHECK_SIMPLE(input, simple) CHECK_EQ(simple, CheckSimple(input));
#define CHECK_MIN_MAX(input, min, max) \
{ MinMaxPair min_max = CheckMinMaxMatch(input); \
CHECK_EQ(min, min_max.min_match); \
CHECK_EQ(max, min_max.max_match); \
}
void TestRegExpParser(bool lookbehind) {
FLAG_harmony_regexp_lookbehind = lookbehind;
CHECK_PARSE_ERROR("?");
CheckParseEq("abc", "'abc'");
CheckParseEq("", "%");
CheckParseEq("abc|def", "(| 'abc' 'def')");
CheckParseEq("abc|def|ghi", "(| 'abc' 'def' 'ghi')");
CheckParseEq("^xxx$", "(: @^i 'xxx' @$i)");
CheckParseEq("ab\\b\\d\\bcd", "(: 'ab' @b [0-9] @b 'cd')");
CheckParseEq("\\w|\\d", "(| [0-9 A-Z _ a-z] [0-9])");
CheckParseEq("a*", "(# 0 - g 'a')");
CheckParseEq("a*?", "(# 0 - n 'a')");
CheckParseEq("abc+", "(: 'ab' (# 1 - g 'c'))");
CheckParseEq("abc+?", "(: 'ab' (# 1 - n 'c'))");
CheckParseEq("xyz?", "(: 'xy' (# 0 1 g 'z'))");
CheckParseEq("xyz??", "(: 'xy' (# 0 1 n 'z'))");
CheckParseEq("xyz{0,1}", "(: 'xy' (# 0 1 g 'z'))");
CheckParseEq("xyz{0,1}?", "(: 'xy' (# 0 1 n 'z'))");
CheckParseEq("xyz{93}", "(: 'xy' (# 93 93 g 'z'))");
CheckParseEq("xyz{93}?", "(: 'xy' (# 93 93 n 'z'))");
CheckParseEq("xyz{1,32}", "(: 'xy' (# 1 32 g 'z'))");
CheckParseEq("xyz{1,32}?", "(: 'xy' (# 1 32 n 'z'))");
CheckParseEq("xyz{1,}", "(: 'xy' (# 1 - g 'z'))");
CheckParseEq("xyz{1,}?", "(: 'xy' (# 1 - n 'z'))");
CheckParseEq("a\\fb\\nc\\rd\\te\\vf", "'a\\x0cb\\x0ac\\x0dd\\x09e\\x0bf'");
CheckParseEq("a\\nb\\bc", "(: 'a\\x0ab' @b 'c')");
CheckParseEq("(?:foo)", "(?: 'foo')");
CheckParseEq("(?: foo )", "(?: ' foo ')");
CheckParseEq("(foo|bar|baz)", "(^ (| 'foo' 'bar' 'baz'))");
CheckParseEq("foo|(bar|baz)|quux", "(| 'foo' (^ (| 'bar' 'baz')) 'quux')");
CheckParseEq("foo(?=bar)baz", "(: 'foo' (-> + 'bar') 'baz')");
CheckParseEq("foo(?!bar)baz", "(: 'foo' (-> - 'bar') 'baz')");
if (lookbehind) {
CheckParseEq("foo(?<=bar)baz", "(: 'foo' (<- + 'bar') 'baz')");
CheckParseEq("foo(?<!bar)baz", "(: 'foo' (<- - 'bar') 'baz')");
} else {
CHECK_PARSE_ERROR("foo(?<=bar)baz");
CHECK_PARSE_ERROR("foo(?<!bar)baz");
}
CheckParseEq("()", "(^ %)");
CheckParseEq("(?=)", "(-> + %)");
CheckParseEq("[]", "^[\\x00-\\u{10ffff}]"); // Doesn't compile on windows
CheckParseEq("[^]", "[\\x00-\\u{10ffff}]"); // \uffff isn't in codepage 1252
CheckParseEq("[x]", "[x]");
CheckParseEq("[xyz]", "[x y z]");
CheckParseEq("[a-zA-Z0-9]", "[a-z A-Z 0-9]");
CheckParseEq("[-123]", "[- 1 2 3]");
CheckParseEq("[^123]", "^[1 2 3]");
CheckParseEq("]", "']'");
CheckParseEq("}", "'}'");
CheckParseEq("[a-b-c]", "[a-b - c]");
CheckParseEq("[\\d]", "[0-9]");
CheckParseEq("[x\\dz]", "[x 0-9 z]");
CheckParseEq("[\\d-z]", "[0-9 - z]");
CheckParseEq("[\\d-\\d]", "[0-9 0-9 -]");
CheckParseEq("[z-\\d]", "[0-9 z -]");
// Control character outside character class.
CheckParseEq("\\cj\\cJ\\ci\\cI\\ck\\cK", "'\\x0a\\x0a\\x09\\x09\\x0b\\x0b'");
CheckParseEq("\\c!", "'\\c!'");
CheckParseEq("\\c_", "'\\c_'");
CheckParseEq("\\c~", "'\\c~'");
CheckParseEq("\\c1", "'\\c1'");
// Control character inside character class.
CheckParseEq("[\\c!]", "[\\ c !]");
CheckParseEq("[\\c_]", "[\\x1f]");
CheckParseEq("[\\c~]", "[\\ c ~]");
CheckParseEq("[\\ca]", "[\\x01]");
CheckParseEq("[\\cz]", "[\\x1a]");
CheckParseEq("[\\cA]", "[\\x01]");
CheckParseEq("[\\cZ]", "[\\x1a]");
CheckParseEq("[\\c1]", "[\\x11]");
CheckParseEq("[a\\]c]", "[a ] c]");
CheckParseEq("\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ", "'[]{}()%^# '");
CheckParseEq("[\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ]", "[[ ] { } ( ) % ^ # ]");
CheckParseEq("\\0", "'\\x00'");
CheckParseEq("\\8", "'8'");
CheckParseEq("\\9", "'9'");
CheckParseEq("\\11", "'\\x09'");
CheckParseEq("\\11a", "'\\x09a'");
CheckParseEq("\\011", "'\\x09'");
CheckParseEq("\\00011", "'\\x0011'");
CheckParseEq("\\118", "'\\x098'");
CheckParseEq("\\111", "'I'");
CheckParseEq("\\1111", "'I1'");
CheckParseEq("(x)(x)(x)\\1", "(: (^ 'x') (^ 'x') (^ 'x') (<- 1))");
CheckParseEq("(x)(x)(x)\\2", "(: (^ 'x') (^ 'x') (^ 'x') (<- 2))");
CheckParseEq("(x)(x)(x)\\3", "(: (^ 'x') (^ 'x') (^ 'x') (<- 3))");
CheckParseEq("(x)(x)(x)\\4", "(: (^ 'x') (^ 'x') (^ 'x') '\\x04')");
CheckParseEq("(x)(x)(x)\\1*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 1)))");
CheckParseEq("(x)(x)(x)\\2*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 2)))");
CheckParseEq("(x)(x)(x)\\3*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g (<- 3)))");
CheckParseEq("(x)(x)(x)\\4*",
"(: (^ 'x') (^ 'x') (^ 'x')"
" (# 0 - g '\\x04'))");
CheckParseEq("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\10",
"(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')"
" (^ 'x') (^ 'x') (^ 'x') (^ 'x') (<- 10))");
CheckParseEq("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\11",
"(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')"
" (^ 'x') (^ 'x') (^ 'x') (^ 'x') '\\x09')");
CheckParseEq("(a)\\1", "(: (^ 'a') (<- 1))");
CheckParseEq("(a\\1)", "(^ 'a')");
CheckParseEq("(\\1a)", "(^ 'a')");
CheckParseEq("(\\2)(\\1)", "(: (^ (<- 2)) (^ (<- 1)))");
CheckParseEq("(?=a)?a", "'a'");
CheckParseEq("(?=a){0,10}a", "'a'");
CheckParseEq("(?=a){1,10}a", "(: (-> + 'a') 'a')");
CheckParseEq("(?=a){9,10}a", "(: (-> + 'a') 'a')");
CheckParseEq("(?!a)?a", "'a'");
CheckParseEq("\\1(a)", "(: (<- 1) (^ 'a'))");
CheckParseEq("(?!(a))\\1", "(: (-> - (^ 'a')) (<- 1))");
CheckParseEq("(?!\\1(a\\1)\\1)\\1",
"(: (-> - (: (<- 1) (^ 'a') (<- 1))) (<- 1))");
CheckParseEq("\\1\\2(a(?:\\1(b\\1\\2))\\2)\\1",
"(: (<- 1) (<- 2) (^ (: 'a' (?: (^ 'b')) (<- 2))) (<- 1))");
if (lookbehind) {
CheckParseEq("\\1\\2(a(?<=\\1(b\\1\\2))\\2)\\1",
"(: (<- 1) (<- 2) (^ (: 'a' (<- + (^ 'b')) (<- 2))) (<- 1))");
}
CheckParseEq("[\\0]", "[\\x00]");
CheckParseEq("[\\11]", "[\\x09]");
CheckParseEq("[\\11a]", "[\\x09 a]");
CheckParseEq("[\\011]", "[\\x09]");
CheckParseEq("[\\00011]", "[\\x00 1 1]");
CheckParseEq("[\\118]", "[\\x09 8]");
CheckParseEq("[\\111]", "[I]");
CheckParseEq("[\\1111]", "[I 1]");
CheckParseEq("\\x34", "'\x34'");
CheckParseEq("\\x60", "'\x60'");
CheckParseEq("\\x3z", "'x3z'");
CheckParseEq("\\c", "'\\c'");
CheckParseEq("\\u0034", "'\x34'");
CheckParseEq("\\u003z", "'u003z'");
CheckParseEq("foo[z]*", "(: 'foo' (# 0 - g [z]))");
CheckParseEq("^^^$$$\\b\\b\\b\\b", "(: @^i @$i @b)");
CheckParseEq("\\b\\b\\b\\b\\B\\B\\B\\B\\b\\b\\b\\b", "(: @b @B @b)");
CheckParseEq("\\b\\B\\b", "(: @b @B @b)");
// Unicode regexps
CheckParseEq("\\u{12345}", "'\\ud808\\udf45'", true);
CheckParseEq("\\u{12345}\\u{23456}", "(! '\\ud808\\udf45' '\\ud84d\\udc56')",
true);
CheckParseEq("\\u{12345}|\\u{23456}", "(| '\\ud808\\udf45' '\\ud84d\\udc56')",
true);
CheckParseEq("\\u{12345}{3}", "(# 3 3 g '\\ud808\\udf45')", true);
CheckParseEq("\\u{12345}*", "(# 0 - g '\\ud808\\udf45')", true);
CheckParseEq("\\ud808\\udf45*", "(# 0 - g '\\ud808\\udf45')", true);
CheckParseEq("[\\ud808\\udf45-\\ud809\\udccc]", "[\\u{012345}-\\u{0124cc}]",
true);
CHECK_SIMPLE("", false);
CHECK_SIMPLE("a", true);
CHECK_SIMPLE("a|b", false);
CHECK_SIMPLE("a\\n", false);
CHECK_SIMPLE("^a", false);
CHECK_SIMPLE("a$", false);
CHECK_SIMPLE("a\\b!", false);
CHECK_SIMPLE("a\\Bb", false);
CHECK_SIMPLE("a*", false);
CHECK_SIMPLE("a*?", false);
CHECK_SIMPLE("a?", false);
CHECK_SIMPLE("a??", false);
CHECK_SIMPLE("a{0,1}?", false);
CHECK_SIMPLE("a{1,1}?", false);
CHECK_SIMPLE("a{1,2}?", false);
CHECK_SIMPLE("a+?", false);
CHECK_SIMPLE("(a)", false);
CHECK_SIMPLE("(a)\\1", false);
CHECK_SIMPLE("(\\1a)", false);
CHECK_SIMPLE("\\1(a)", false);
CHECK_SIMPLE("a\\s", false);
CHECK_SIMPLE("a\\S", false);
CHECK_SIMPLE("a\\d", false);
CHECK_SIMPLE("a\\D", false);
CHECK_SIMPLE("a\\w", false);
CHECK_SIMPLE("a\\W", false);
CHECK_SIMPLE("a.", false);
CHECK_SIMPLE("a\\q", false);
CHECK_SIMPLE("a[a]", false);
CHECK_SIMPLE("a[^a]", false);
CHECK_SIMPLE("a[a-z]", false);
CHECK_SIMPLE("a[\\q]", false);
CHECK_SIMPLE("a(?:b)", false);
CHECK_SIMPLE("a(?=b)", false);
CHECK_SIMPLE("a(?!b)", false);
CHECK_SIMPLE("\\x60", false);
CHECK_SIMPLE("\\u0060", false);
CHECK_SIMPLE("\\cA", false);
CHECK_SIMPLE("\\q", false);
CHECK_SIMPLE("\\1112", false);
CHECK_SIMPLE("\\0", false);
CHECK_SIMPLE("(a)\\1", false);
CHECK_SIMPLE("(?=a)?a", false);
CHECK_SIMPLE("(?!a)?a\\1", false);
CHECK_SIMPLE("(?:(?=a))a\\1", false);
CheckParseEq("a{}", "'a{}'");
CheckParseEq("a{,}", "'a{,}'");
CheckParseEq("a{", "'a{'");
CheckParseEq("a{z}", "'a{z}'");
CheckParseEq("a{1z}", "'a{1z}'");
CheckParseEq("a{12z}", "'a{12z}'");
CheckParseEq("a{12,", "'a{12,'");
CheckParseEq("a{12,3b", "'a{12,3b'");
CheckParseEq("{}", "'{}'");
CheckParseEq("{,}", "'{,}'");
CheckParseEq("{", "'{'");
CheckParseEq("{z}", "'{z}'");
CheckParseEq("{1z}", "'{1z}'");
CheckParseEq("{12z}", "'{12z}'");
CheckParseEq("{12,", "'{12,'");
CheckParseEq("{12,3b", "'{12,3b'");
CHECK_MIN_MAX("a", 1, 1);
CHECK_MIN_MAX("abc", 3, 3);
CHECK_MIN_MAX("a[bc]d", 3, 3);
CHECK_MIN_MAX("a|bc", 1, 2);
CHECK_MIN_MAX("ab|c", 1, 2);
CHECK_MIN_MAX("a||bc", 0, 2);
CHECK_MIN_MAX("|", 0, 0);
CHECK_MIN_MAX("(?:ab)", 2, 2);
CHECK_MIN_MAX("(?:ab|cde)", 2, 3);
CHECK_MIN_MAX("(?:ab)|cde", 2, 3);
CHECK_MIN_MAX("(ab)", 2, 2);
CHECK_MIN_MAX("(ab|cde)", 2, 3);
CHECK_MIN_MAX("(ab)\\1", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("(ab|cde)\\1", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab)?", 0, 2);
CHECK_MIN_MAX("(?:ab)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab)+", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("a?", 0, 1);
CHECK_MIN_MAX("a*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a??", 0, 1);
CHECK_MIN_MAX("a*?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+?", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)?", 0, 1);
CHECK_MIN_MAX("(?:a*)?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)?", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)+", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a*)+", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)+", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a?)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a*)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a+)*", 0, RegExpTree::kInfinity);
CHECK_MIN_MAX("a{0}", 0, 0);
CHECK_MIN_MAX("(?:a+){0}", 0, 0);
CHECK_MIN_MAX("(?:a+){0,0}", 0, 0);
CHECK_MIN_MAX("a*b", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+b", 2, RegExpTree::kInfinity);
CHECK_MIN_MAX("a*b|c", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("a+b|c", 1, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:a{5,1000000}){3,1000000}", 15, RegExpTree::kInfinity);
CHECK_MIN_MAX("(?:ab){4,7}", 8, 14);
CHECK_MIN_MAX("a\\bc", 2, 2);
CHECK_MIN_MAX("a\\Bc", 2, 2);
CHECK_MIN_MAX("a\\sc", 3, 3);
CHECK_MIN_MAX("a\\Sc", 3, 3);
CHECK_MIN_MAX("a(?=b)c", 2, 2);
CHECK_MIN_MAX("a(?=bbb|bb)c", 2, 2);
CHECK_MIN_MAX("a(?!bbb|bb)c", 2, 2);
FLAG_harmony_regexp_named_captures = true;
CheckParseEq("(?<a>x)(?<b>x)(?<c>x)\\k<a>",
"(: (^ 'x') (^ 'x') (^ 'x') (<- 1))", true);
CheckParseEq("(?<a>x)(?<b>x)(?<c>x)\\k<b>",
"(: (^ 'x') (^ 'x') (^ 'x') (<- 2))", true);
CheckParseEq("(?<a>x)(?<b>x)(?<c>x)\\k<c>",
"(: (^ 'x') (^ 'x') (^ 'x') (<- 3))", true);
CheckParseEq("(?<a>a)\\k<a>", "(: (^ 'a') (<- 1))", true);
CheckParseEq("(?<a>a\\k<a>)", "(^ 'a')", true);
CheckParseEq("(?<a>\\k<a>a)", "(^ 'a')", true);
CheckParseEq("(?<a>\\k<b>)(?<b>\\k<a>)", "(: (^ (<- 2)) (^ (<- 1)))", true);
CheckParseEq("\\k<a>(?<a>a)", "(: (<- 1) (^ 'a'))", true);
CheckParseEq("(?<\\u{03C0}>a)", "(^ 'a')", true);
CheckParseEq("(?<\\u03C0>a)", "(^ 'a')", true);
FLAG_harmony_regexp_named_captures = false;
}
TEST(ParserWithLookbehind) {
TestRegExpParser(true); // Lookbehind enabled.
}
TEST(ParserWithoutLookbehind) {
TestRegExpParser(true); // Lookbehind enabled.
}
TEST(ParserRegression) {
CheckParseEq("[A-Z$-][x]", "(! [A-Z $ -] [x])");
CheckParseEq("a{3,4*}", "(: 'a{3,' (# 0 - g '4') '}')");
CheckParseEq("{", "'{'");
CheckParseEq("a|", "(| 'a' %)");
}
static void ExpectError(const char* input, const char* expected,
bool unicode = false) {
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
JSRegExp::Flags flags = JSRegExp::kNone;
if (unicode) flags |= JSRegExp::kUnicode;
CHECK(!v8::internal::RegExpParser::ParseRegExp(CcTest::i_isolate(), &zone,
&reader, flags, &result));
CHECK(result.tree == nullptr);
CHECK(!result.error.is_null());
std::unique_ptr<char[]> str = result.error->ToCString(ALLOW_NULLS);
CHECK_EQ(0, strcmp(expected, str.get()));
}
TEST(Errors) {
const char* kEndBackslash = "\\ at end of pattern";
ExpectError("\\", kEndBackslash);
const char* kUnterminatedGroup = "Unterminated group";
ExpectError("(foo", kUnterminatedGroup);
const char* kInvalidGroup = "Invalid group";
ExpectError("(?", kInvalidGroup);
const char* kUnterminatedCharacterClass = "Unterminated character class";
ExpectError("[", kUnterminatedCharacterClass);
ExpectError("[a-", kUnterminatedCharacterClass);
const char* kNothingToRepeat = "Nothing to repeat";
ExpectError("*", kNothingToRepeat);
ExpectError("?", kNothingToRepeat);
ExpectError("+", kNothingToRepeat);
ExpectError("{1}", kNothingToRepeat);
ExpectError("{1,2}", kNothingToRepeat);
ExpectError("{1,}", kNothingToRepeat);
// Check that we don't allow more than kMaxCapture captures
const int kMaxCaptures = 1 << 16; // Must match RegExpParser::kMaxCaptures.
const char* kTooManyCaptures = "Too many captures";
std::ostringstream os;
for (int i = 0; i <= kMaxCaptures; i++) {
os << "()";
}
ExpectError(os.str().c_str(), kTooManyCaptures);
FLAG_harmony_regexp_named_captures = true;
const char* kInvalidCaptureName = "Invalid capture group name";
ExpectError("(?<>.)", kInvalidCaptureName, true);
ExpectError("(?<1>.)", kInvalidCaptureName, true);
ExpectError("(?<_%>.)", kInvalidCaptureName, true);
ExpectError("\\k<a", kInvalidCaptureName, true);
const char* kDuplicateCaptureName = "Duplicate capture group name";
ExpectError("(?<a>.)(?<a>.)", kDuplicateCaptureName, true);
const char* kInvalidUnicodeEscape = "Invalid Unicode escape sequence";
ExpectError("(?<\\u{FISK}", kInvalidUnicodeEscape, true);
const char* kInvalidCaptureReferenced = "Invalid named capture referenced";
ExpectError("\\k<a>", kInvalidCaptureReferenced, true);
ExpectError("(?<b>)\\k<a>", kInvalidCaptureReferenced, true);
const char* kInvalidNamedReference = "Invalid named reference";
ExpectError("\\ka", kInvalidNamedReference, true);
FLAG_harmony_regexp_named_captures = false;
}
static bool IsDigit(uc16 c) {
return ('0' <= c && c <= '9');
}
static bool NotDigit(uc16 c) {
return !IsDigit(c);
}
static bool IsWhiteSpaceOrLineTerminator(uc16 c) {
// According to ECMA 5.1, 15.10.2.12 the CharacterClassEscape \s includes
// WhiteSpace (7.2) and LineTerminator (7.3) values.
return v8::internal::WhiteSpaceOrLineTerminator::Is(c);
}
static bool NotWhiteSpaceNorLineTermiantor(uc16 c) {
return !IsWhiteSpaceOrLineTerminator(c);
}
static bool NotWord(uc16 c) {
return !IsRegExpWord(c);
}
static void TestCharacterClassEscapes(uc16 c, bool (pred)(uc16 c)) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(2, &zone);
CharacterRange::AddClassEscape(c, ranges, &zone);
for (uc32 i = 0; i < (1 << 16); i++) {
bool in_class = false;
for (int j = 0; !in_class && j < ranges->length(); j++) {
CharacterRange& range = ranges->at(j);
in_class = (range.from() <= i && i <= range.to());
}
CHECK_EQ(pred(i), in_class);
}
}
TEST(CharacterClassEscapes) {
TestCharacterClassEscapes('.', IsRegExpNewline);
TestCharacterClassEscapes('d', IsDigit);
TestCharacterClassEscapes('D', NotDigit);
TestCharacterClassEscapes('s', IsWhiteSpaceOrLineTerminator);
TestCharacterClassEscapes('S', NotWhiteSpaceNorLineTermiantor);
TestCharacterClassEscapes('w', IsRegExpWord);
TestCharacterClassEscapes('W', NotWord);
}
static RegExpNode* Compile(const char* input, bool multiline, bool unicode,
bool is_one_byte, Zone* zone) {
Isolate* isolate = CcTest::i_isolate();
FlatStringReader reader(isolate, CStrVector(input));
RegExpCompileData compile_data;
JSRegExp::Flags flags = JSRegExp::kNone;
if (multiline) flags = JSRegExp::kMultiline;
if (unicode) flags = JSRegExp::kUnicode;
if (!v8::internal::RegExpParser::ParseRegExp(CcTest::i_isolate(), zone,
&reader, flags, &compile_data))
return nullptr;
Handle<String> pattern = isolate->factory()
->NewStringFromUtf8(CStrVector(input))
.ToHandleChecked();
Handle<String> sample_subject =
isolate->factory()->NewStringFromUtf8(CStrVector("")).ToHandleChecked();
RegExpEngine::Compile(isolate, zone, &compile_data, flags, pattern,
sample_subject, is_one_byte);
return compile_data.node;
}
static void Execute(const char* input, bool multiline, bool unicode,
bool is_one_byte, bool dot_output = false) {
v8::HandleScope scope(CcTest::isolate());
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
RegExpNode* node = Compile(input, multiline, unicode, is_one_byte, &zone);
USE(node);
#ifdef DEBUG
if (dot_output) {
RegExpEngine::DotPrint(input, node, false);
}
#endif // DEBUG
}
class TestConfig {
public:
typedef int Key;
typedef int Value;
static const int kNoKey;
static int NoValue() { return 0; }
static inline int Compare(int a, int b) {
if (a < b)
return -1;
else if (a > b)
return 1;
else
return 0;
}
};
const int TestConfig::kNoKey = 0;
static unsigned PseudoRandom(int i, int j) {
return ~(~((i * 781) ^ (j * 329)));
}
TEST(SplayTreeSimple) {
static const unsigned kLimit = 1000;
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneSplayTree<TestConfig> tree(&zone);
bool seen[kLimit];
for (unsigned i = 0; i < kLimit; i++) seen[i] = false;
#define CHECK_MAPS_EQUAL() do { \
for (unsigned k = 0; k < kLimit; k++) \
CHECK_EQ(seen[k], tree.Find(k, &loc)); \
} while (false)
for (int i = 0; i < 50; i++) {
for (int j = 0; j < 50; j++) {
int next = PseudoRandom(i, j) % kLimit;
if (seen[next]) {
// We've already seen this one. Check the value and remove
// it.
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.Find(next, &loc));
CHECK_EQ(next, loc.key());
CHECK_EQ(3 * next, loc.value());
tree.Remove(next);
seen[next] = false;
CHECK_MAPS_EQUAL();
} else {
// Check that it wasn't there already and then add it.
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(!tree.Find(next, &loc));
CHECK(tree.Insert(next, &loc));
CHECK_EQ(next, loc.key());
loc.set_value(3 * next);
seen[next] = true;
CHECK_MAPS_EQUAL();
}
int val = PseudoRandom(j, i) % kLimit;
if (seen[val]) {
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.FindGreatestLessThan(val, &loc));
CHECK_EQ(loc.key(), val);
break;
}
val = PseudoRandom(i + j, i - j) % kLimit;
if (seen[val]) {
ZoneSplayTree<TestConfig>::Locator loc;
CHECK(tree.FindLeastGreaterThan(val, &loc));
CHECK_EQ(loc.key(), val);
break;
}
}
}
}
TEST(DispatchTableConstruction) {
// Initialize test data.
static const int kLimit = 1000;
static const int kRangeCount = 8;
static const int kRangeSize = 16;
uc16 ranges[kRangeCount][2 * kRangeSize];
for (int i = 0; i < kRangeCount; i++) {
Vector<uc16> range(ranges[i], 2 * kRangeSize);
for (int j = 0; j < 2 * kRangeSize; j++) {
range[j] = PseudoRandom(i + 25, j + 87) % kLimit;
}
range.Sort();
for (int j = 1; j < 2 * kRangeSize; j++) {
CHECK(range[j-1] <= range[j]);
}
}
// Enter test data into dispatch table.
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
DispatchTable table(&zone);
for (int i = 0; i < kRangeCount; i++) {
uc16* range = ranges[i];
for (int j = 0; j < 2 * kRangeSize; j += 2)
table.AddRange(CharacterRange::Range(range[j], range[j + 1]), i, &zone);
}
// Check that the table looks as we would expect
for (int p = 0; p < kLimit; p++) {
OutSet* outs = table.Get(p);
for (int j = 0; j < kRangeCount; j++) {
uc16* range = ranges[j];
bool is_on = false;
for (int k = 0; !is_on && (k < 2 * kRangeSize); k += 2)
is_on = (range[k] <= p && p <= range[k + 1]);
CHECK_EQ(is_on, outs->Get(j));
}
}
}
// Test of debug-only syntax.
#ifdef DEBUG
TEST(ParsePossessiveRepetition) {
bool old_flag_value = FLAG_regexp_possessive_quantifier;
// Enable possessive quantifier syntax.
FLAG_regexp_possessive_quantifier = true;
CheckParseEq("a*+", "(# 0 - p 'a')");
CheckParseEq("a++", "(# 1 - p 'a')");
CheckParseEq("a?+", "(# 0 1 p 'a')");
CheckParseEq("a{10,20}+", "(# 10 20 p 'a')");
CheckParseEq("za{10,20}+b", "(: 'z' (# 10 20 p 'a') 'b')");
// Disable possessive quantifier syntax.
FLAG_regexp_possessive_quantifier = false;
CHECK_PARSE_ERROR("a*+");
CHECK_PARSE_ERROR("a++");
CHECK_PARSE_ERROR("a?+");
CHECK_PARSE_ERROR("a{10,20}+");
CHECK_PARSE_ERROR("a{10,20}+b");
FLAG_regexp_possessive_quantifier = old_flag_value;
}
#endif
// Tests of interpreter.
#ifndef V8_INTERPRETED_REGEXP
#if V8_TARGET_ARCH_IA32
typedef RegExpMacroAssemblerIA32 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_X64
typedef RegExpMacroAssemblerX64 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_ARM
typedef RegExpMacroAssemblerARM ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_ARM64
typedef RegExpMacroAssemblerARM64 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_S390
typedef RegExpMacroAssemblerS390 ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_PPC
typedef RegExpMacroAssemblerPPC ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_MIPS
typedef RegExpMacroAssemblerMIPS ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_MIPS64
typedef RegExpMacroAssemblerMIPS ArchRegExpMacroAssembler;
#elif V8_TARGET_ARCH_X87
typedef RegExpMacroAssemblerX87 ArchRegExpMacroAssembler;
#endif
class ContextInitializer {
public:
ContextInitializer()
: scope_(CcTest::isolate()),
env_(v8::Context::New(CcTest::isolate())) {
env_->Enter();
}
~ContextInitializer() {
env_->Exit();
}
private:
v8::HandleScope scope_;
v8::Local<v8::Context> env_;
};
static ArchRegExpMacroAssembler::Result Execute(Code* code,
String* input,
int start_offset,
const byte* input_start,
const byte* input_end,
int* captures) {
return NativeRegExpMacroAssembler::Execute(
code,
input,
start_offset,
input_start,
input_end,
captures,
0,
CcTest::i_isolate());
}
TEST(MacroAssemblerNativeSuccess) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
m.Succeed();
Handle<String> source = factory->NewStringFromStaticChars("");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
const byte* start_adr =
reinterpret_cast<const byte*>(seq_input->GetCharsAddress());
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + seq_input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(-1, captures[0]);
CHECK_EQ(-1, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
}
TEST(MacroAssemblerNativeSimple) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
Label fail, backtrack;
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, nullptr);
m.LoadCurrentCharacter(2, nullptr);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(1, nullptr, false);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(0, nullptr, false);
m.CheckNotCharacter('f', nullptr);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.Backtrack();
m.Bind(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^foo");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
input = factory->NewStringFromStaticChars("barbarbar");
seq_input = Handle<SeqOneByteString>::cast(input);
start_adr = seq_input->GetCharsAddress();
result = Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeSimpleUC16) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::UC16,
4);
Label fail, backtrack;
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, nullptr);
m.LoadCurrentCharacter(2, nullptr);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(1, nullptr, false);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(0, nullptr, false);
m.CheckNotCharacter('f', nullptr);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.Backtrack();
m.Bind(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^foo");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
int captures[4] = {42, 37, 87, 117};
const uc16 input_data[6] = {'f', 'o', 'o', 'f', 'o',
static_cast<uc16>(0x2603)};
Handle<String> input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data, 6)).ToHandleChecked();
Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(-1, captures[2]);
CHECK_EQ(-1, captures[3]);
const uc16 input_data2[9] = {'b', 'a', 'r', 'b', 'a', 'r', 'b', 'a',
static_cast<uc16>(0x2603)};
input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data2, 9)).ToHandleChecked();
seq_input = Handle<SeqTwoByteString>::cast(input);
start_adr = seq_input->GetCharsAddress();
result = Execute(*code,
*input,
0,
start_adr,
start_adr + input->length() * 2,
captures);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeBacktrack) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label fail;
Label backtrack;
m.LoadCurrentCharacter(10, &fail);
m.Succeed();
m.Bind(&fail);
m.PushBacktrack(&backtrack);
m.LoadCurrentCharacter(10, nullptr);
m.Succeed();
m.Bind(&backtrack);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("..........");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticChars("foofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*code, *input, 0, start_adr, start_adr + input->length(), nullptr);
CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result);
}
TEST(MacroAssemblerNativeBackReferenceLATIN1) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
m.WriteCurrentPositionToRegister(0, 0);
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(1, 0);
Label nomatch;
m.CheckNotBackReference(0, false, &nomatch);
m.Fail();
m.Bind(&nomatch);
m.AdvanceCurrentPosition(2);
Label missing_match;
m.CheckNotBackReference(0, false, &missing_match);
m.WriteCurrentPositionToRegister(2, 0);
m.Succeed();
m.Bind(&missing_match);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^(..)..\1");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticChars("fooofo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(2, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(-1, output[3]);
}
TEST(MacroAssemblerNativeBackReferenceUC16) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::UC16,
4);
m.WriteCurrentPositionToRegister(0, 0);
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(1, 0);
Label nomatch;
m.CheckNotBackReference(0, false, &nomatch);
m.Fail();
m.Bind(&nomatch);
m.AdvanceCurrentPosition(2);
Label missing_match;
m.CheckNotBackReference(0, false, &missing_match);
m.WriteCurrentPositionToRegister(2, 0);
m.Succeed();
m.Bind(&missing_match);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("^(..)..\1");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
const uc16 input_data[6] = {'f', 0x2028, 'o', 'o', 'f', 0x2028};
Handle<String> input = factory->NewStringFromTwoByte(
Vector<const uc16>(input_data, 6)).ToHandleChecked();
Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length() * 2,
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(2, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(-1, output[3]);
}
TEST(MacroAssemblernativeAtStart) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label not_at_start, newline, fail;
m.CheckNotAtStart(0, &not_at_start);
// Check that prevchar = '\n' and current = 'f'.
m.CheckCharacter('\n', &newline);
m.Bind(&fail);
m.Fail();
m.Bind(&newline);
m.LoadCurrentCharacter(0, &fail);
m.CheckNotCharacter('f', &fail);
m.Succeed();
m.Bind(&not_at_start);
// Check that prevchar = 'o' and current = 'b'.
Label prevo;
m.CheckCharacter('o', &prevo);
m.Fail();
m.Bind(&prevo);
m.LoadCurrentCharacter(0, &fail);
m.CheckNotCharacter('b', &fail);
m.Succeed();
Handle<String> source = factory->NewStringFromStaticChars("(^f|ob)");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticChars("foobar");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*code, *input, 0, start_adr, start_adr + input->length(), nullptr);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
result = Execute(*code, *input, 3, start_adr + 3, start_adr + input->length(),
nullptr);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
}
TEST(MacroAssemblerNativeBackRefNoCase) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
4);
Label fail, succ;
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(2, 0);
m.AdvanceCurrentPosition(3);
m.WriteCurrentPositionToRegister(3, 0);
m.CheckNotBackReferenceIgnoreCase(2, false, false, &fail); // Match "AbC".
m.CheckNotBackReferenceIgnoreCase(2, false, false, &fail); // Match "ABC".
Label expected_fail;
m.CheckNotBackReferenceIgnoreCase(2, false, false, &expected_fail);
m.Bind(&fail);
m.Fail();
m.Bind(&expected_fail);
m.AdvanceCurrentPosition(3); // Skip "xYz"
m.CheckNotBackReferenceIgnoreCase(2, false, false, &succ);
m.Fail();
m.Bind(&succ);
m.WriteCurrentPositionToRegister(1, 0);
m.Succeed();
Handle<String> source =
factory->NewStringFromStaticChars("^(abc)\1\1(?!\1)...(?!\1)");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
Handle<String> input = factory->NewStringFromStaticChars("aBcAbCABCxYzab");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[4];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(12, output[1]);
CHECK_EQ(0, output[2]);
CHECK_EQ(3, output[3]);
}
TEST(MacroAssemblerNativeRegisters) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
6);
uc16 foo_chars[3] = {'f', 'o', 'o'};
Vector<const uc16> foo(foo_chars, 3);
enum registers { out1, out2, out3, out4, out5, out6, sp, loop_cnt };
Label fail;
Label backtrack;
m.WriteCurrentPositionToRegister(out1, 0); // Output: [0]
m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushBacktrack(&backtrack);
m.WriteStackPointerToRegister(sp);
// Fill stack and registers
m.AdvanceCurrentPosition(2);
m.WriteCurrentPositionToRegister(out1, 0);
m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushBacktrack(&fail);
// Drop backtrack stack frames.
m.ReadStackPointerFromRegister(sp);
// And take the first backtrack (to &backtrack)
m.Backtrack();
m.PushCurrentPosition();
m.AdvanceCurrentPosition(2);
m.PopCurrentPosition();
m.Bind(&backtrack);
m.PopRegister(out1);
m.ReadCurrentPositionFromRegister(out1);
m.AdvanceCurrentPosition(3);
m.WriteCurrentPositionToRegister(out2, 0); // [0,3]
Label loop;
m.SetRegister(loop_cnt, 0); // loop counter
m.Bind(&loop);
m.AdvanceRegister(loop_cnt, 1);
m.AdvanceCurrentPosition(1);
m.IfRegisterLT(loop_cnt, 3, &loop);
m.WriteCurrentPositionToRegister(out3, 0); // [0,3,6]
Label loop2;
m.SetRegister(loop_cnt, 2); // loop counter
m.Bind(&loop2);
m.AdvanceRegister(loop_cnt, -1);
m.AdvanceCurrentPosition(1);
m.IfRegisterGE(loop_cnt, 0, &loop2);
m.WriteCurrentPositionToRegister(out4, 0); // [0,3,6,9]
Label loop3;
Label exit_loop3;
m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck);
m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck);
m.ReadCurrentPositionFromRegister(out3);
m.Bind(&loop3);
m.AdvanceCurrentPosition(1);
m.CheckGreedyLoop(&exit_loop3);
m.GoTo(&loop3);
m.Bind(&exit_loop3);
m.PopCurrentPosition();
m.WriteCurrentPositionToRegister(out5, 0); // [0,3,6,9,9,-1]
m.Succeed();
m.Bind(&fail);
m.Fail();
Handle<String> source = factory->NewStringFromStaticChars("<loop test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("foofoofoofoofoo");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int output[6];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
output);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, output[0]);
CHECK_EQ(3, output[1]);
CHECK_EQ(6, output[2]);
CHECK_EQ(9, output[3]);
CHECK_EQ(9, output[4]);
CHECK_EQ(-1, output[5]);
}
TEST(MacroAssemblerStackOverflow) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
0);
Label loop;
m.Bind(&loop);
m.PushBacktrack(&loop);
m.GoTo(&loop);
Handle<String> source =
factory->NewStringFromStaticChars("<stack overflow test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("dummy");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
NativeRegExpMacroAssembler::Result result = Execute(
*code, *input, 0, start_adr, start_adr + input->length(), nullptr);
CHECK_EQ(NativeRegExpMacroAssembler::EXCEPTION, result);
CHECK(isolate->has_pending_exception());
isolate->clear_pending_exception();
}
TEST(MacroAssemblerNativeLotsOfRegisters) {
v8::V8::Initialize();
ContextInitializer initializer;
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ArchRegExpMacroAssembler m(isolate, &zone, NativeRegExpMacroAssembler::LATIN1,
2);
// At least 2048, to ensure the allocated space for registers
// span one full page.
const int large_number = 8000;
m.WriteCurrentPositionToRegister(large_number, 42);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 1);
Label done;
m.CheckNotBackReference(0, false, &done); // Performs a system-stack push.
m.Bind(&done);
m.PushRegister(large_number, RegExpMacroAssembler::kNoStackLimitCheck);
m.PopRegister(1);
m.Succeed();
Handle<String> source =
factory->NewStringFromStaticChars("<huge register space test>");
Handle<Object> code_object = m.GetCode(source);
Handle<Code> code = Handle<Code>::cast(code_object);
// String long enough for test (content doesn't matter).
Handle<String> input = factory->NewStringFromStaticChars("sample text");
Handle<SeqOneByteString> seq_input = Handle<SeqOneByteString>::cast(input);
Address start_adr = seq_input->GetCharsAddress();
int captures[2];
NativeRegExpMacroAssembler::Result result =
Execute(*code,
*input,
0,
start_adr,
start_adr + input->length(),
captures);
CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result);
CHECK_EQ(0, captures[0]);
CHECK_EQ(42, captures[1]);
isolate->clear_pending_exception();
}
#else // V8_INTERPRETED_REGEXP
TEST(MacroAssembler) {
byte codes[1024];
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
RegExpMacroAssemblerIrregexp m(CcTest::i_isolate(), Vector<byte>(codes, 1024),
&zone);
// ^f(o)o.
Label start, fail, backtrack;
m.SetRegister(4, 42);
m.PushRegister(4, RegExpMacroAssembler::kNoStackLimitCheck);
m.AdvanceRegister(4, 42);
m.GoTo(&start);
m.Fail();
m.Bind(&start);
m.PushBacktrack(&fail);
m.CheckNotAtStart(0, nullptr);
m.LoadCurrentCharacter(0, nullptr);
m.CheckNotCharacter('f', nullptr);
m.LoadCurrentCharacter(1, nullptr);
m.CheckNotCharacter('o', nullptr);
m.LoadCurrentCharacter(2, nullptr);
m.CheckNotCharacter('o', nullptr);
m.WriteCurrentPositionToRegister(0, 0);
m.WriteCurrentPositionToRegister(1, 3);
m.WriteCurrentPositionToRegister(2, 1);
m.WriteCurrentPositionToRegister(3, 2);
m.AdvanceCurrentPosition(3);
m.PushBacktrack(&backtrack);
m.Succeed();
m.Bind(&backtrack);
m.ClearRegisters(2, 3);
m.Backtrack();
m.Bind(&fail);
m.PopRegister(0);
m.Fail();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<String> source = factory->NewStringFromStaticChars("^f(o)o");
Handle<ByteArray> array = Handle<ByteArray>::cast(m.GetCode(source));
int captures[5];
const uc16 str1[] = {'f', 'o', 'o', 'b', 'a', 'r'};
Handle<String> f1_16 = factory->NewStringFromTwoByte(
Vector<const uc16>(str1, 6)).ToHandleChecked();
CHECK(IrregexpInterpreter::Match(isolate, array, f1_16, captures, 0));
CHECK_EQ(0, captures[0]);
CHECK_EQ(3, captures[1]);
CHECK_EQ(1, captures[2]);
CHECK_EQ(2, captures[3]);
CHECK_EQ(84, captures[4]);
const uc16 str2[] = {'b', 'a', 'r', 'f', 'o', 'o'};
Handle<String> f2_16 = factory->NewStringFromTwoByte(
Vector<const uc16>(str2, 6)).ToHandleChecked();
CHECK(!IrregexpInterpreter::Match(isolate, array, f2_16, captures, 0));
CHECK_EQ(42, captures[0]);
}
#endif // V8_INTERPRETED_REGEXP
TEST(AddInverseToTable) {
static const int kLimit = 1000;
static const int kRangeCount = 16;
for (int t = 0; t < 10; t++) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(kRangeCount, &zone);
for (int i = 0; i < kRangeCount; i++) {
int from = PseudoRandom(t + 87, i + 25) % kLimit;
int to = from + (PseudoRandom(i + 87, t + 25) % (kLimit / 20));
if (to > kLimit) to = kLimit;
ranges->Add(CharacterRange::Range(from, to), &zone);
}
DispatchTable table(&zone);
DispatchTableConstructor cons(&table, false, &zone);
cons.set_choice_index(0);
cons.AddInverse(ranges);
for (int i = 0; i < kLimit; i++) {
bool is_on = false;
for (int j = 0; !is_on && j < kRangeCount; j++)
is_on = ranges->at(j).Contains(i);
OutSet* set = table.Get(i);
CHECK_EQ(is_on, set->Get(0) == false);
}
}
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(1, &zone);
ranges->Add(CharacterRange::Range(0xFFF0, 0xFFFE), &zone);
DispatchTable table(&zone);
DispatchTableConstructor cons(&table, false, &zone);
cons.set_choice_index(0);
cons.AddInverse(ranges);
CHECK(!table.Get(0xFFFE)->Get(0));
CHECK(table.Get(0xFFFF)->Get(0));
}
static uc32 canonicalize(uc32 c) {
unibrow::uchar canon[unibrow::Ecma262Canonicalize::kMaxWidth];
int count = unibrow::Ecma262Canonicalize::Convert(c, '\0', canon, nullptr);
if (count == 0) {
return c;
} else {
CHECK_EQ(1, count);
return canon[0];
}
}
TEST(LatinCanonicalize) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
for (unibrow::uchar lower = 'a'; lower <= 'z'; lower++) {
unibrow::uchar upper = lower + ('A' - 'a');
CHECK_EQ(canonicalize(lower), canonicalize(upper));
unibrow::uchar uncanon[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int length = un_canonicalize.get(lower, '\0', uncanon);
CHECK_EQ(2, length);
CHECK_EQ(upper, uncanon[0]);
CHECK_EQ(lower, uncanon[1]);
}
for (uc32 c = 128; c < (1 << 21); c++)
CHECK_GE(canonicalize(c), 128);
#ifndef V8_INTL_SUPPORT
unibrow::Mapping<unibrow::ToUppercase> to_upper;
// Canonicalization is only defined for the Basic Multilingual Plane.
for (uc32 c = 0; c < (1 << 16); c++) {
unibrow::uchar upper[unibrow::ToUppercase::kMaxWidth];
int length = to_upper.get(c, '\0', upper);
if (length == 0) {
length = 1;
upper[0] = c;
}
uc32 u = upper[0];
if (length > 1 || (c >= 128 && u < 128))
u = c;
CHECK_EQ(u, canonicalize(c));
}
#endif
}
static uc32 CanonRangeEnd(uc32 c) {
unibrow::uchar canon[unibrow::CanonicalizationRange::kMaxWidth];
int count = unibrow::CanonicalizationRange::Convert(c, '\0', canon, nullptr);
if (count == 0) {
return c;
} else {
CHECK_EQ(1, count);
return canon[0];
}
}
TEST(RangeCanonicalization) {
// Check that we arrive at the same result when using the basic
// range canonicalization primitives as when using immediate
// canonicalization.
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
int block_start = 0;
while (block_start <= 0xFFFF) {
uc32 block_end = CanonRangeEnd(block_start);
unsigned block_length = block_end - block_start + 1;
if (block_length > 1) {
unibrow::uchar first[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int first_length = un_canonicalize.get(block_start, '\0', first);
for (unsigned i = 1; i < block_length; i++) {
unibrow::uchar succ[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int succ_length = un_canonicalize.get(block_start + i, '\0', succ);
CHECK_EQ(first_length, succ_length);
for (int j = 0; j < succ_length; j++) {
int calc = first[j] + i;
int found = succ[j];
CHECK_EQ(calc, found);
}
}
}
block_start = block_start + block_length;
}
}
TEST(UncanonicalizeEquivalence) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize;
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
for (int i = 0; i < (1 << 16); i++) {
int length = un_canonicalize.get(i, '\0', chars);
for (int j = 0; j < length; j++) {
unibrow::uchar chars2[unibrow::Ecma262UnCanonicalize::kMaxWidth];
int length2 = un_canonicalize.get(chars[j], '\0', chars2);
CHECK_EQ(length, length2);
for (int k = 0; k < length; k++)
CHECK_EQ(static_cast<int>(chars[k]), static_cast<int>(chars2[k]));
}
}
}
static void TestRangeCaseIndependence(Isolate* isolate, CharacterRange input,
Vector<CharacterRange> expected) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
int count = expected.length();
ZoneList<CharacterRange>* list =
new(&zone) ZoneList<CharacterRange>(count, &zone);
list->Add(input, &zone);
CharacterRange::AddCaseEquivalents(isolate, &zone, list, false);
list->Remove(0); // Remove the input before checking results.
CHECK_EQ(count, list->length());
for (int i = 0; i < list->length(); i++) {
CHECK_EQ(expected[i].from(), list->at(i).from());
CHECK_EQ(expected[i].to(), list->at(i).to());
}
}
static void TestSimpleRangeCaseIndependence(Isolate* isolate,
CharacterRange input,
CharacterRange expected) {
EmbeddedVector<CharacterRange, 1> vector;
vector[0] = expected;
TestRangeCaseIndependence(isolate, input, vector);
}
TEST(CharacterRangeCaseIndependence) {
Isolate* isolate = CcTest::i_isolate();
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Singleton('a'),
CharacterRange::Singleton('A'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Singleton('z'),
CharacterRange::Singleton('Z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('a', 'z'),
CharacterRange::Range('A', 'Z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('c', 'f'),
CharacterRange::Range('C', 'F'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('a', 'b'),
CharacterRange::Range('A', 'B'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('y', 'z'),
CharacterRange::Range('Y', 'Z'));
TestSimpleRangeCaseIndependence(isolate,
CharacterRange::Range('a' - 1, 'z' + 1),
CharacterRange::Range('A', 'Z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('A', 'Z'),
CharacterRange::Range('a', 'z'));
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('C', 'F'),
CharacterRange::Range('c', 'f'));
TestSimpleRangeCaseIndependence(isolate,
CharacterRange::Range('A' - 1, 'Z' + 1),
CharacterRange::Range('a', 'z'));
// Here we need to add [l-z] to complete the case independence of
// [A-Za-z] but we expect [a-z] to be added since we always add a
// whole block at a time.
TestSimpleRangeCaseIndependence(isolate, CharacterRange::Range('A', 'k'),
CharacterRange::Range('a', 'z'));
}
static bool InClass(uc32 c, ZoneList<CharacterRange>* ranges) {
if (ranges == nullptr) return false;
for (int i = 0; i < ranges->length(); i++) {
CharacterRange range = ranges->at(i);
if (range.from() <= c && c <= range.to())
return true;
}
return false;
}
TEST(UnicodeRangeSplitter) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange>* base =
new(&zone) ZoneList<CharacterRange>(1, &zone);
base->Add(CharacterRange::Everything(), &zone);
UnicodeRangeSplitter splitter(&zone, base);
// BMP
for (uc32 c = 0; c < 0xd800; c++) {
CHECK(InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Lead surrogates
for (uc32 c = 0xd800; c < 0xdbff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Trail surrogates
for (uc32 c = 0xdc00; c < 0xdfff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// BMP
for (uc32 c = 0xe000; c < 0xffff; c++) {
CHECK(InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Non-BMP
for (uc32 c = 0x10000; c < 0x10ffff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(InClass(c, splitter.non_bmp()));
}
}
TEST(CanonicalizeCharacterSets) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange>* list =
new(&zone) ZoneList<CharacterRange>(4, &zone);
CharacterSet set(list);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(30, 40), &zone);
list->Add(CharacterRange::Range(50, 60), &zone);
set.Canonicalize();
CHECK_EQ(3, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(20, list->at(0).to());
CHECK_EQ(30, list->at(1).from());
CHECK_EQ(40, list->at(1).to());
CHECK_EQ(50, list->at(2).from());
CHECK_EQ(60, list->at(2).to());
list->Rewind(0);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(50, 60), &zone);
list->Add(CharacterRange::Range(30, 40), &zone);
set.Canonicalize();
CHECK_EQ(3, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(20, list->at(0).to());
CHECK_EQ(30, list->at(1).from());
CHECK_EQ(40, list->at(1).to());
CHECK_EQ(50, list->at(2).from());
CHECK_EQ(60, list->at(2).to());
list->Rewind(0);
list->Add(CharacterRange::Range(30, 40), &zone);
list->Add(CharacterRange::Range(10, 20), &zone);
list->Add(CharacterRange::Range(25, 25), &zone);
list->Add(CharacterRange::Range(100, 100), &zone);
list->Add(CharacterRange::Range(1, 1), &zone);
set.Canonicalize();
CHECK_EQ(5, list->length());
CHECK_EQ(1, list->at(0).from());
CHECK_EQ(1, list->at(0).to());
CHECK_EQ(10, list->at(1).from());
CHECK_EQ(20, list->at(1).to());
CHECK_EQ(25, list->at(2).from());
CHECK_EQ(25, list->at(2).to());
CHECK_EQ(30, list->at(3).from());
CHECK_EQ(40, list->at(3).to());
CHECK_EQ(100, list->at(4).from());
CHECK_EQ(100, list->at(4).to());
list->Rewind(0);
list->Add(CharacterRange::Range(10, 19), &zone);
list->Add(CharacterRange::Range(21, 30), &zone);
list->Add(CharacterRange::Range(20, 20), &zone);
set.Canonicalize();
CHECK_EQ(1, list->length());
CHECK_EQ(10, list->at(0).from());
CHECK_EQ(30, list->at(0).to());
}
TEST(CharacterRangeMerge) {
Zone zone(CcTest::i_isolate()->allocator(), ZONE_NAME);
ZoneList<CharacterRange> l1(4, &zone);
ZoneList<CharacterRange> l2(4, &zone);
// Create all combinations of intersections of ranges, both singletons and
// longer.
int offset = 0;
// The five kinds of singleton intersections:
// X
// Y - outside before
// Y - outside touching start
// Y - overlap
// Y - outside touching end
// Y - outside after
for (int i = 0; i < 5; i++) {
l1.Add(CharacterRange::Singleton(offset + 2), &zone);
l2.Add(CharacterRange::Singleton(offset + i), &zone);
offset += 6;
}
// The seven kinds of singleton/non-singleton intersections:
// XXX
// Y - outside before
// Y - outside touching start
// Y - inside touching start
// Y - entirely inside
// Y - inside touching end
// Y - outside touching end
// Y - disjoint after
for (int i = 0; i < 7; i++) {
l1.Add(CharacterRange::Range(offset + 2, offset + 4), &zone);
l2.Add(CharacterRange::Singleton(offset + i), &zone);
offset += 8;
}
// The eleven kinds of non-singleton intersections:
//
// XXXXXXXX
// YYYY - outside before.
// YYYY - outside touching start.
// YYYY - overlapping start
// YYYY - inside touching start
// YYYY - entirely inside
// YYYY - inside touching end
// YYYY - overlapping end
// YYYY - outside touching end
// YYYY - outside after
// YYYYYYYY - identical
// YYYYYYYYYYYY - containing entirely.
for (int i = 0; i < 9; i++) {
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone); // Length 8.
l2.Add(CharacterRange::Range(offset + 2 * i, offset + 2 * i + 3), &zone);
offset += 22;
}
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
l2.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
offset += 22;
l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone);
l2.Add(CharacterRange::Range(offset + 4, offset + 17), &zone);
offset += 22;
// Different kinds of multi-range overlap:
// XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX
// YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y
l1.Add(CharacterRange::Range(offset, offset + 21), &zone);
l1.Add(CharacterRange::Range(offset + 31, offset + 52), &zone);
for (int i = 0; i < 6; i++) {
l2.Add(CharacterRange::Range(offset + 2, offset + 5), &zone);
l2.Add(CharacterRange::Singleton(offset + 8), &zone);
offset += 9;
}
CHECK(CharacterRange::IsCanonical(&l1));
CHECK(CharacterRange::IsCanonical(&l2));
ZoneList<CharacterRange> first_only(4, &zone);
ZoneList<CharacterRange> second_only(4, &zone);
ZoneList<CharacterRange> both(4, &zone);
}
TEST(Graph) {
Execute("\\b\\w+\\b", false, true, true);
}
namespace {
int* global_use_counts = nullptr;
void MockUseCounterCallback(v8::Isolate* isolate,
v8::Isolate::UseCounterFeature feature) {
++global_use_counts[feature];
}
}
// Test that ES2015 RegExp compatibility fixes are in place, that they
// are not overly broad, and the appropriate UseCounters are incremented
TEST(UseCountRegExp) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
LocalContext env;
int use_counts[v8::Isolate::kUseCounterFeatureCount] = {};
global_use_counts = use_counts;
CcTest::isolate()->SetUseCounterCallback(MockUseCounterCallback);
// Compat fix: RegExp.prototype.sticky == undefined; UseCounter tracks it
v8::Local<v8::Value> resultSticky = CompileRun("RegExp.prototype.sticky");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultSticky->IsUndefined());
// re.sticky has approriate value and doesn't touch UseCounter
v8::Local<v8::Value> resultReSticky = CompileRun("/a/.sticky");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultReSticky->IsFalse());
// When the getter is caleld on another object, throw an exception
// and don't increment the UseCounter
v8::Local<v8::Value> resultStickyError = CompileRun(
"var exception;"
"try { "
" Object.getOwnPropertyDescriptor(RegExp.prototype, 'sticky')"
" .get.call(null);"
"} catch (e) {"
" exception = e;"
"}"
"exception");
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultStickyError->IsObject());
// RegExp.prototype.toString() returns '/(?:)/' as a compatibility fix;
// a UseCounter is incremented to track it.
v8::Local<v8::Value> resultToString =
CompileRun("RegExp.prototype.toString().length");
CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultToString->IsInt32());
CHECK_EQ(6,
resultToString->Int32Value(isolate->GetCurrentContext()).FromJust());
// .toString() works on normal RegExps
v8::Local<v8::Value> resultReToString = CompileRun("/a/.toString().length");
CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultReToString->IsInt32());
CHECK_EQ(
3, resultReToString->Int32Value(isolate->GetCurrentContext()).FromJust());
// .toString() throws on non-RegExps that aren't RegExp.prototype
v8::Local<v8::Value> resultToStringError = CompileRun(
"var exception;"
"try { RegExp.prototype.toString.call(null) }"
"catch (e) { exception = e; }"
"exception");
CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]);
CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]);
CHECK(resultToStringError->IsObject());
}
class UncachedExternalString
: public v8::String::ExternalOneByteStringResource {
public:
const char* data() const override { return "abcdefghijklmnopqrstuvwxyz"; }
size_t length() const override { return 26; }
bool IsCompressible() const override { return true; }
};
TEST(UncachedExternalString) {
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
LocalContext env;
v8::Local<v8::String> external =
v8::String::NewExternalOneByte(isolate, new UncachedExternalString())
.ToLocalChecked();
CHECK(v8::Utils::OpenHandle(*external)->map() ==
CcTest::i_isolate()->heap()->short_external_one_byte_string_map());
v8::Local<v8::Object> global = env->Global();
global->Set(env.local(), v8_str("external"), external).FromJust();
CompileRun("var re = /y(.)/; re.test('ab');");
ExpectString("external.substring(1).match(re)[1]", "z");
}
} // namespace test_regexp
} // namespace internal
} // namespace v8