v8/src/gdb-jit.cc
bmeurer 47502a238b [runtime] Replace global object link with native context link in all contexts.
Previously all contexts had a link to the global object, but what is
required in most cases (except for the global load, store and delete
case) is the native context.

This also removes the second dummy global object that was still linked
to every native context. We will add a different mechanism to ensure
that builtins do not pollute the actual global object during
bootstrapping.

Drive-by-fix: Unify some MacroAssembler magic and drop obsolete stuff.

CQ_INCLUDE_TRYBOTS=tryserver.v8:v8_linux_nosnap_rel
R=yangguo@chromium.org,mstarzinger@chromium.org

Committed: https://crrev.com/d290f204938295bfecc5c8e645ccfcff6e80ddb8
Cr-Commit-Position: refs/heads/master@{#32375}

Review URL: https://codereview.chromium.org/1480003002

Cr-Commit-Position: refs/heads/master@{#32381}
2015-11-27 17:00:11 +00:00

2206 lines
63 KiB
C++

// Copyright 2010 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/gdb-jit.h"
#include "src/base/bits.h"
#include "src/base/platform/platform.h"
#include "src/bootstrapper.h"
#include "src/compiler.h"
#include "src/frames-inl.h"
#include "src/frames.h"
#include "src/global-handles.h"
#include "src/messages.h"
#include "src/objects.h"
#include "src/ostreams.h"
#include "src/snapshot/natives.h"
#include "src/splay-tree-inl.h"
namespace v8 {
namespace internal {
namespace GDBJITInterface {
#ifdef ENABLE_GDB_JIT_INTERFACE
#ifdef __APPLE__
#define __MACH_O
class MachO;
class MachOSection;
typedef MachO DebugObject;
typedef MachOSection DebugSection;
#else
#define __ELF
class ELF;
class ELFSection;
typedef ELF DebugObject;
typedef ELFSection DebugSection;
#endif
class Writer BASE_EMBEDDED {
public:
explicit Writer(DebugObject* debug_object)
: debug_object_(debug_object),
position_(0),
capacity_(1024),
buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
}
~Writer() {
free(buffer_);
}
uintptr_t position() const {
return position_;
}
template<typename T>
class Slot {
public:
Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
T* operator-> () {
return w_->RawSlotAt<T>(offset_);
}
void set(const T& value) {
*w_->RawSlotAt<T>(offset_) = value;
}
Slot<T> at(int i) {
return Slot<T>(w_, offset_ + sizeof(T) * i);
}
private:
Writer* w_;
uintptr_t offset_;
};
template<typename T>
void Write(const T& val) {
Ensure(position_ + sizeof(T));
*RawSlotAt<T>(position_) = val;
position_ += sizeof(T);
}
template<typename T>
Slot<T> SlotAt(uintptr_t offset) {
Ensure(offset + sizeof(T));
return Slot<T>(this, offset);
}
template<typename T>
Slot<T> CreateSlotHere() {
return CreateSlotsHere<T>(1);
}
template<typename T>
Slot<T> CreateSlotsHere(uint32_t count) {
uintptr_t slot_position = position_;
position_ += sizeof(T) * count;
Ensure(position_);
return SlotAt<T>(slot_position);
}
void Ensure(uintptr_t pos) {
if (capacity_ < pos) {
while (capacity_ < pos) capacity_ *= 2;
buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
}
}
DebugObject* debug_object() { return debug_object_; }
byte* buffer() { return buffer_; }
void Align(uintptr_t align) {
uintptr_t delta = position_ % align;
if (delta == 0) return;
uintptr_t padding = align - delta;
Ensure(position_ += padding);
DCHECK((position_ % align) == 0);
}
void WriteULEB128(uintptr_t value) {
do {
uint8_t byte = value & 0x7F;
value >>= 7;
if (value != 0) byte |= 0x80;
Write<uint8_t>(byte);
} while (value != 0);
}
void WriteSLEB128(intptr_t value) {
bool more = true;
while (more) {
int8_t byte = value & 0x7F;
bool byte_sign = byte & 0x40;
value >>= 7;
if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
more = false;
} else {
byte |= 0x80;
}
Write<int8_t>(byte);
}
}
void WriteString(const char* str) {
do {
Write<char>(*str);
} while (*str++);
}
private:
template<typename T> friend class Slot;
template<typename T>
T* RawSlotAt(uintptr_t offset) {
DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
return reinterpret_cast<T*>(&buffer_[offset]);
}
DebugObject* debug_object_;
uintptr_t position_;
uintptr_t capacity_;
byte* buffer_;
};
class ELFStringTable;
template<typename THeader>
class DebugSectionBase : public ZoneObject {
public:
virtual ~DebugSectionBase() { }
virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
uintptr_t start = writer->position();
if (WriteBodyInternal(writer)) {
uintptr_t end = writer->position();
header->offset = static_cast<uint32_t>(start);
#if defined(__MACH_O)
header->addr = 0;
#endif
header->size = end - start;
}
}
virtual bool WriteBodyInternal(Writer* writer) {
return false;
}
typedef THeader Header;
};
struct MachOSectionHeader {
char sectname[16];
char segname[16];
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
uint32_t addr;
uint32_t size;
#else
uint64_t addr;
uint64_t size;
#endif
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reserved1;
uint32_t reserved2;
};
class MachOSection : public DebugSectionBase<MachOSectionHeader> {
public:
enum Type {
S_REGULAR = 0x0u,
S_ATTR_COALESCED = 0xbu,
S_ATTR_SOME_INSTRUCTIONS = 0x400u,
S_ATTR_DEBUG = 0x02000000u,
S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
};
MachOSection(const char* name, const char* segment, uint32_t align,
uint32_t flags)
: name_(name), segment_(segment), align_(align), flags_(flags) {
if (align_ != 0) {
DCHECK(base::bits::IsPowerOfTwo32(align));
align_ = WhichPowerOf2(align_);
}
}
virtual ~MachOSection() { }
virtual void PopulateHeader(Writer::Slot<Header> header) {
header->addr = 0;
header->size = 0;
header->offset = 0;
header->align = align_;
header->reloff = 0;
header->nreloc = 0;
header->flags = flags_;
header->reserved1 = 0;
header->reserved2 = 0;
memset(header->sectname, 0, sizeof(header->sectname));
memset(header->segname, 0, sizeof(header->segname));
DCHECK(strlen(name_) < sizeof(header->sectname));
DCHECK(strlen(segment_) < sizeof(header->segname));
strncpy(header->sectname, name_, sizeof(header->sectname));
strncpy(header->segname, segment_, sizeof(header->segname));
}
private:
const char* name_;
const char* segment_;
uint32_t align_;
uint32_t flags_;
};
struct ELFSectionHeader {
uint32_t name;
uint32_t type;
uintptr_t flags;
uintptr_t address;
uintptr_t offset;
uintptr_t size;
uint32_t link;
uint32_t info;
uintptr_t alignment;
uintptr_t entry_size;
};
#if defined(__ELF)
class ELFSection : public DebugSectionBase<ELFSectionHeader> {
public:
enum Type {
TYPE_NULL = 0,
TYPE_PROGBITS = 1,
TYPE_SYMTAB = 2,
TYPE_STRTAB = 3,
TYPE_RELA = 4,
TYPE_HASH = 5,
TYPE_DYNAMIC = 6,
TYPE_NOTE = 7,
TYPE_NOBITS = 8,
TYPE_REL = 9,
TYPE_SHLIB = 10,
TYPE_DYNSYM = 11,
TYPE_LOPROC = 0x70000000,
TYPE_X86_64_UNWIND = 0x70000001,
TYPE_HIPROC = 0x7fffffff,
TYPE_LOUSER = 0x80000000,
TYPE_HIUSER = 0xffffffff
};
enum Flags {
FLAG_WRITE = 1,
FLAG_ALLOC = 2,
FLAG_EXEC = 4
};
enum SpecialIndexes {
INDEX_ABSOLUTE = 0xfff1
};
ELFSection(const char* name, Type type, uintptr_t align)
: name_(name), type_(type), align_(align) { }
virtual ~ELFSection() { }
void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
uintptr_t start = w->position();
if (WriteBodyInternal(w)) {
uintptr_t end = w->position();
header->offset = start;
header->size = end - start;
}
}
virtual bool WriteBodyInternal(Writer* w) {
return false;
}
uint16_t index() const { return index_; }
void set_index(uint16_t index) { index_ = index; }
protected:
virtual void PopulateHeader(Writer::Slot<Header> header) {
header->flags = 0;
header->address = 0;
header->offset = 0;
header->size = 0;
header->link = 0;
header->info = 0;
header->entry_size = 0;
}
private:
const char* name_;
Type type_;
uintptr_t align_;
uint16_t index_;
};
#endif // defined(__ELF)
#if defined(__MACH_O)
class MachOTextSection : public MachOSection {
public:
MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
: MachOSection("__text", "__TEXT", align,
MachOSection::S_REGULAR |
MachOSection::S_ATTR_SOME_INSTRUCTIONS |
MachOSection::S_ATTR_PURE_INSTRUCTIONS),
addr_(addr),
size_(size) {}
protected:
virtual void PopulateHeader(Writer::Slot<Header> header) {
MachOSection::PopulateHeader(header);
header->addr = addr_;
header->size = size_;
}
private:
uintptr_t addr_;
uintptr_t size_;
};
#endif // defined(__MACH_O)
#if defined(__ELF)
class FullHeaderELFSection : public ELFSection {
public:
FullHeaderELFSection(const char* name,
Type type,
uintptr_t align,
uintptr_t addr,
uintptr_t offset,
uintptr_t size,
uintptr_t flags)
: ELFSection(name, type, align),
addr_(addr),
offset_(offset),
size_(size),
flags_(flags) { }
protected:
virtual void PopulateHeader(Writer::Slot<Header> header) {
ELFSection::PopulateHeader(header);
header->address = addr_;
header->offset = offset_;
header->size = size_;
header->flags = flags_;
}
private:
uintptr_t addr_;
uintptr_t offset_;
uintptr_t size_;
uintptr_t flags_;
};
class ELFStringTable : public ELFSection {
public:
explicit ELFStringTable(const char* name)
: ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
}
uintptr_t Add(const char* str) {
if (*str == '\0') return 0;
uintptr_t offset = size_;
WriteString(str);
return offset;
}
void AttachWriter(Writer* w) {
writer_ = w;
offset_ = writer_->position();
// First entry in the string table should be an empty string.
WriteString("");
}
void DetachWriter() {
writer_ = NULL;
}
virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
DCHECK(writer_ == NULL);
header->offset = offset_;
header->size = size_;
}
private:
void WriteString(const char* str) {
uintptr_t written = 0;
do {
writer_->Write(*str);
written++;
} while (*str++);
size_ += written;
}
Writer* writer_;
uintptr_t offset_;
uintptr_t size_;
};
void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
ELFStringTable* strtab) {
header->name = static_cast<uint32_t>(strtab->Add(name_));
header->type = type_;
header->alignment = align_;
PopulateHeader(header);
}
#endif // defined(__ELF)
#if defined(__MACH_O)
class MachO BASE_EMBEDDED {
public:
explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
uint32_t AddSection(MachOSection* section) {
sections_.Add(section, zone_);
return sections_.length() - 1;
}
void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
Writer::Slot<MachOHeader> header = WriteHeader(w);
uintptr_t load_command_start = w->position();
Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
code_start,
code_size);
WriteSections(w, cmd, header, load_command_start);
}
private:
struct MachOHeader {
uint32_t magic;
uint32_t cputype;
uint32_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_t sizeofcmds;
uint32_t flags;
#if V8_TARGET_ARCH_X64
uint32_t reserved;
#endif
};
struct MachOSegmentCommand {
uint32_t cmd;
uint32_t cmdsize;
char segname[16];
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
uint32_t vmaddr;
uint32_t vmsize;
uint32_t fileoff;
uint32_t filesize;
#else
uint64_t vmaddr;
uint64_t vmsize;
uint64_t fileoff;
uint64_t filesize;
#endif
uint32_t maxprot;
uint32_t initprot;
uint32_t nsects;
uint32_t flags;
};
enum MachOLoadCommandCmd {
LC_SEGMENT_32 = 0x00000001u,
LC_SEGMENT_64 = 0x00000019u
};
Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
DCHECK(w->position() == 0);
Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
header->magic = 0xFEEDFACEu;
header->cputype = 7; // i386
header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL
#elif V8_TARGET_ARCH_X64
header->magic = 0xFEEDFACFu;
header->cputype = 7 | 0x01000000; // i386 | 64-bit ABI
header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL
header->reserved = 0;
#else
#error Unsupported target architecture.
#endif
header->filetype = 0x1; // MH_OBJECT
header->ncmds = 1;
header->sizeofcmds = 0;
header->flags = 0;
return header;
}
Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
uintptr_t code_start,
uintptr_t code_size) {
Writer::Slot<MachOSegmentCommand> cmd =
w->CreateSlotHere<MachOSegmentCommand>();
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
cmd->cmd = LC_SEGMENT_32;
#else
cmd->cmd = LC_SEGMENT_64;
#endif
cmd->vmaddr = code_start;
cmd->vmsize = code_size;
cmd->fileoff = 0;
cmd->filesize = 0;
cmd->maxprot = 7;
cmd->initprot = 7;
cmd->flags = 0;
cmd->nsects = sections_.length();
memset(cmd->segname, 0, 16);
cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
cmd->nsects;
return cmd;
}
void WriteSections(Writer* w,
Writer::Slot<MachOSegmentCommand> cmd,
Writer::Slot<MachOHeader> header,
uintptr_t load_command_start) {
Writer::Slot<MachOSection::Header> headers =
w->CreateSlotsHere<MachOSection::Header>(sections_.length());
cmd->fileoff = w->position();
header->sizeofcmds =
static_cast<uint32_t>(w->position() - load_command_start);
for (int section = 0; section < sections_.length(); ++section) {
sections_[section]->PopulateHeader(headers.at(section));
sections_[section]->WriteBody(headers.at(section), w);
}
cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
}
Zone* zone_;
ZoneList<MachOSection*> sections_;
};
#endif // defined(__MACH_O)
#if defined(__ELF)
class ELF BASE_EMBEDDED {
public:
explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
}
void Write(Writer* w) {
WriteHeader(w);
WriteSectionTable(w);
WriteSections(w);
}
ELFSection* SectionAt(uint32_t index) {
return sections_[index];
}
uint32_t AddSection(ELFSection* section) {
sections_.Add(section, zone_);
section->set_index(sections_.length() - 1);
return sections_.length() - 1;
}
private:
struct ELFHeader {
uint8_t ident[16];
uint16_t type;
uint16_t machine;
uint32_t version;
uintptr_t entry;
uintptr_t pht_offset;
uintptr_t sht_offset;
uint32_t flags;
uint16_t header_size;
uint16_t pht_entry_size;
uint16_t pht_entry_num;
uint16_t sht_entry_size;
uint16_t sht_entry_num;
uint16_t sht_strtab_index;
};
void WriteHeader(Writer* w) {
DCHECK(w->position() == 0);
Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
const uint8_t ident[16] =
{ 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
(V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
const uint8_t ident[16] =
{ 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0};
#else
#error Unsupported target architecture.
#endif
memcpy(header->ident, ident, 16);
header->type = 1;
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
header->machine = 3;
#elif V8_TARGET_ARCH_X64
// Processor identification value for x64 is 62 as defined in
// System V ABI, AMD64 Supplement
// http://www.x86-64.org/documentation/abi.pdf
header->machine = 62;
#elif V8_TARGET_ARCH_ARM
// Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
// infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
header->machine = 40;
#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
// Set to EM_PPC64, defined as 21, in Power ABI,
// Join the next 4 lines, omitting the spaces and double-slashes.
// https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
// ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
// id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
// c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
header->machine = 21;
#else
#error Unsupported target architecture.
#endif
header->version = 1;
header->entry = 0;
header->pht_offset = 0;
header->sht_offset = sizeof(ELFHeader); // Section table follows header.
header->flags = 0;
header->header_size = sizeof(ELFHeader);
header->pht_entry_size = 0;
header->pht_entry_num = 0;
header->sht_entry_size = sizeof(ELFSection::Header);
header->sht_entry_num = sections_.length();
header->sht_strtab_index = 1;
}
void WriteSectionTable(Writer* w) {
// Section headers table immediately follows file header.
DCHECK(w->position() == sizeof(ELFHeader));
Writer::Slot<ELFSection::Header> headers =
w->CreateSlotsHere<ELFSection::Header>(sections_.length());
// String table for section table is the first section.
ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
strtab->AttachWriter(w);
for (int i = 0, length = sections_.length();
i < length;
i++) {
sections_[i]->PopulateHeader(headers.at(i), strtab);
}
strtab->DetachWriter();
}
int SectionHeaderPosition(uint32_t section_index) {
return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
}
void WriteSections(Writer* w) {
Writer::Slot<ELFSection::Header> headers =
w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
for (int i = 0, length = sections_.length();
i < length;
i++) {
sections_[i]->WriteBody(headers.at(i), w);
}
}
Zone* zone_;
ZoneList<ELFSection*> sections_;
};
class ELFSymbol BASE_EMBEDDED {
public:
enum Type {
TYPE_NOTYPE = 0,
TYPE_OBJECT = 1,
TYPE_FUNC = 2,
TYPE_SECTION = 3,
TYPE_FILE = 4,
TYPE_LOPROC = 13,
TYPE_HIPROC = 15
};
enum Binding {
BIND_LOCAL = 0,
BIND_GLOBAL = 1,
BIND_WEAK = 2,
BIND_LOPROC = 13,
BIND_HIPROC = 15
};
ELFSymbol(const char* name,
uintptr_t value,
uintptr_t size,
Binding binding,
Type type,
uint16_t section)
: name(name),
value(value),
size(size),
info((binding << 4) | type),
other(0),
section(section) {
}
Binding binding() const {
return static_cast<Binding>(info >> 4);
}
#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
struct SerializedLayout {
SerializedLayout(uint32_t name,
uintptr_t value,
uintptr_t size,
Binding binding,
Type type,
uint16_t section)
: name(name),
value(value),
size(size),
info((binding << 4) | type),
other(0),
section(section) {
}
uint32_t name;
uintptr_t value;
uintptr_t size;
uint8_t info;
uint8_t other;
uint16_t section;
};
#elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
(V8_TARGET_ARCH_PPC64 && V8_OS_LINUX)
struct SerializedLayout {
SerializedLayout(uint32_t name,
uintptr_t value,
uintptr_t size,
Binding binding,
Type type,
uint16_t section)
: name(name),
info((binding << 4) | type),
other(0),
section(section),
value(value),
size(size) {
}
uint32_t name;
uint8_t info;
uint8_t other;
uint16_t section;
uintptr_t value;
uintptr_t size;
};
#endif
void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
// Convert symbol names from strings to indexes in the string table.
s->name = static_cast<uint32_t>(t->Add(name));
s->value = value;
s->size = size;
s->info = info;
s->other = other;
s->section = section;
}
private:
const char* name;
uintptr_t value;
uintptr_t size;
uint8_t info;
uint8_t other;
uint16_t section;
};
class ELFSymbolTable : public ELFSection {
public:
ELFSymbolTable(const char* name, Zone* zone)
: ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
locals_(1, zone),
globals_(1, zone) {
}
virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
w->Align(header->alignment);
int total_symbols = locals_.length() + globals_.length() + 1;
header->offset = w->position();
Writer::Slot<ELFSymbol::SerializedLayout> symbols =
w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
header->size = w->position() - header->offset;
// String table for this symbol table should follow it in the section table.
ELFStringTable* strtab =
static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
strtab->AttachWriter(w);
symbols.at(0).set(ELFSymbol::SerializedLayout(0,
0,
0,
ELFSymbol::BIND_LOCAL,
ELFSymbol::TYPE_NOTYPE,
0));
WriteSymbolsList(&locals_, symbols.at(1), strtab);
WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
strtab->DetachWriter();
}
void Add(const ELFSymbol& symbol, Zone* zone) {
if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
locals_.Add(symbol, zone);
} else {
globals_.Add(symbol, zone);
}
}
protected:
virtual void PopulateHeader(Writer::Slot<Header> header) {
ELFSection::PopulateHeader(header);
// We are assuming that string table will follow symbol table.
header->link = index() + 1;
header->info = locals_.length() + 1;
header->entry_size = sizeof(ELFSymbol::SerializedLayout);
}
private:
void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
Writer::Slot<ELFSymbol::SerializedLayout> dst,
ELFStringTable* strtab) {
for (int i = 0, len = src->length();
i < len;
i++) {
src->at(i).Write(dst.at(i), strtab);
}
}
ZoneList<ELFSymbol> locals_;
ZoneList<ELFSymbol> globals_;
};
#endif // defined(__ELF)
class LineInfo : public Malloced {
public:
LineInfo() : pc_info_(10) {}
void SetPosition(intptr_t pc, int pos, bool is_statement) {
AddPCInfo(PCInfo(pc, pos, is_statement));
}
struct PCInfo {
PCInfo(intptr_t pc, int pos, bool is_statement)
: pc_(pc), pos_(pos), is_statement_(is_statement) {}
intptr_t pc_;
int pos_;
bool is_statement_;
};
List<PCInfo>* pc_info() { return &pc_info_; }
private:
void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }
List<PCInfo> pc_info_;
};
class CodeDescription BASE_EMBEDDED {
public:
#if V8_TARGET_ARCH_X64
enum StackState {
POST_RBP_PUSH,
POST_RBP_SET,
POST_RBP_POP,
STACK_STATE_MAX
};
#endif
CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
LineInfo* lineinfo)
: name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
const char* name() const {
return name_;
}
LineInfo* lineinfo() const { return lineinfo_; }
bool is_function() const {
Code::Kind kind = code_->kind();
return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION;
}
bool has_scope_info() const { return shared_info_ != NULL; }
ScopeInfo* scope_info() const {
DCHECK(has_scope_info());
return shared_info_->scope_info();
}
uintptr_t CodeStart() const {
return reinterpret_cast<uintptr_t>(code_->instruction_start());
}
uintptr_t CodeEnd() const {
return reinterpret_cast<uintptr_t>(code_->instruction_end());
}
uintptr_t CodeSize() const {
return CodeEnd() - CodeStart();
}
bool has_script() {
return shared_info_ != NULL && shared_info_->script()->IsScript();
}
Script* script() { return Script::cast(shared_info_->script()); }
bool IsLineInfoAvailable() {
return has_script() && script()->source()->IsString() &&
script()->HasValidSource() && script()->name()->IsString() &&
lineinfo_ != NULL;
}
#if V8_TARGET_ARCH_X64
uintptr_t GetStackStateStartAddress(StackState state) const {
DCHECK(state < STACK_STATE_MAX);
return stack_state_start_addresses_[state];
}
void SetStackStateStartAddress(StackState state, uintptr_t addr) {
DCHECK(state < STACK_STATE_MAX);
stack_state_start_addresses_[state] = addr;
}
#endif
base::SmartArrayPointer<char> GetFilename() {
return String::cast(script()->name())->ToCString();
}
int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; }
private:
const char* name_;
Code* code_;
SharedFunctionInfo* shared_info_;
LineInfo* lineinfo_;
#if V8_TARGET_ARCH_X64
uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
#endif
};
#if defined(__ELF)
static void CreateSymbolsTable(CodeDescription* desc,
Zone* zone,
ELF* elf,
int text_section_index) {
ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
// Symbol table should be followed by the linked string table.
elf->AddSection(symtab);
elf->AddSection(strtab);
symtab->Add(ELFSymbol("V8 Code",
0,
0,
ELFSymbol::BIND_LOCAL,
ELFSymbol::TYPE_FILE,
ELFSection::INDEX_ABSOLUTE),
zone);
symtab->Add(ELFSymbol(desc->name(),
0,
desc->CodeSize(),
ELFSymbol::BIND_GLOBAL,
ELFSymbol::TYPE_FUNC,
text_section_index),
zone);
}
#endif // defined(__ELF)
class DebugInfoSection : public DebugSection {
public:
explicit DebugInfoSection(CodeDescription* desc)
#if defined(__ELF)
: ELFSection(".debug_info", TYPE_PROGBITS, 1),
#else
: MachOSection("__debug_info",
"__DWARF",
1,
MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
desc_(desc) { }
// DWARF2 standard
enum DWARF2LocationOp {
DW_OP_reg0 = 0x50,
DW_OP_reg1 = 0x51,
DW_OP_reg2 = 0x52,
DW_OP_reg3 = 0x53,
DW_OP_reg4 = 0x54,
DW_OP_reg5 = 0x55,
DW_OP_reg6 = 0x56,
DW_OP_reg7 = 0x57,
DW_OP_reg8 = 0x58,
DW_OP_reg9 = 0x59,
DW_OP_reg10 = 0x5a,
DW_OP_reg11 = 0x5b,
DW_OP_reg12 = 0x5c,
DW_OP_reg13 = 0x5d,
DW_OP_reg14 = 0x5e,
DW_OP_reg15 = 0x5f,
DW_OP_reg16 = 0x60,
DW_OP_reg17 = 0x61,
DW_OP_reg18 = 0x62,
DW_OP_reg19 = 0x63,
DW_OP_reg20 = 0x64,
DW_OP_reg21 = 0x65,
DW_OP_reg22 = 0x66,
DW_OP_reg23 = 0x67,
DW_OP_reg24 = 0x68,
DW_OP_reg25 = 0x69,
DW_OP_reg26 = 0x6a,
DW_OP_reg27 = 0x6b,
DW_OP_reg28 = 0x6c,
DW_OP_reg29 = 0x6d,
DW_OP_reg30 = 0x6e,
DW_OP_reg31 = 0x6f,
DW_OP_fbreg = 0x91 // 1 param: SLEB128 offset
};
enum DWARF2Encoding {
DW_ATE_ADDRESS = 0x1,
DW_ATE_SIGNED = 0x5
};
bool WriteBodyInternal(Writer* w) {
uintptr_t cu_start = w->position();
Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
uintptr_t start = w->position();
w->Write<uint16_t>(2); // DWARF version.
w->Write<uint32_t>(0); // Abbreviation table offset.
w->Write<uint8_t>(sizeof(intptr_t));
w->WriteULEB128(1); // Abbreviation code.
w->WriteString(desc_->GetFilename().get());
w->Write<intptr_t>(desc_->CodeStart());
w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
w->Write<uint32_t>(0);
uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
w->WriteULEB128(3);
w->Write<uint8_t>(kPointerSize);
w->WriteString("v8value");
if (desc_->has_scope_info()) {
ScopeInfo* scope = desc_->scope_info();
w->WriteULEB128(2);
w->WriteString(desc_->name());
w->Write<intptr_t>(desc_->CodeStart());
w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
uintptr_t fb_block_start = w->position();
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
w->Write<uint8_t>(DW_OP_reg5); // The frame pointer's here on ia32
#elif V8_TARGET_ARCH_X64
w->Write<uint8_t>(DW_OP_reg6); // and here on x64.
#elif V8_TARGET_ARCH_ARM
UNIMPLEMENTED();
#elif V8_TARGET_ARCH_MIPS
UNIMPLEMENTED();
#elif V8_TARGET_ARCH_MIPS64
UNIMPLEMENTED();
#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
w->Write<uint8_t>(DW_OP_reg31); // The frame pointer is here on PPC64.
#else
#error Unsupported target architecture.
#endif
fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
int params = scope->ParameterCount();
int slots = scope->StackLocalCount();
int context_slots = scope->ContextLocalCount();
// The real slot ID is internal_slots + context_slot_id.
int internal_slots = Context::MIN_CONTEXT_SLOTS;
int locals = scope->StackLocalCount();
int current_abbreviation = 4;
for (int param = 0; param < params; ++param) {
w->WriteULEB128(current_abbreviation++);
w->WriteString(
scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get());
w->Write<uint32_t>(ty_offset);
Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
uintptr_t block_start = w->position();
w->Write<uint8_t>(DW_OP_fbreg);
w->WriteSLEB128(
JavaScriptFrameConstants::kLastParameterOffset +
kPointerSize * (params - param - 1));
block_size.set(static_cast<uint32_t>(w->position() - block_start));
}
EmbeddedVector<char, 256> buffer;
StringBuilder builder(buffer.start(), buffer.length());
for (int slot = 0; slot < slots; ++slot) {
w->WriteULEB128(current_abbreviation++);
builder.Reset();
builder.AddFormatted("slot%d", slot);
w->WriteString(builder.Finalize());
}
// See contexts.h for more information.
DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
DCHECK(Context::CLOSURE_INDEX == 0);
DCHECK(Context::PREVIOUS_INDEX == 1);
DCHECK(Context::EXTENSION_INDEX == 2);
DCHECK(Context::NATIVE_CONTEXT_INDEX == 3);
w->WriteULEB128(current_abbreviation++);
w->WriteString(".closure");
w->WriteULEB128(current_abbreviation++);
w->WriteString(".previous");
w->WriteULEB128(current_abbreviation++);
w->WriteString(".extension");
w->WriteULEB128(current_abbreviation++);
w->WriteString(".native_context");
for (int context_slot = 0;
context_slot < context_slots;
++context_slot) {
w->WriteULEB128(current_abbreviation++);
builder.Reset();
builder.AddFormatted("context_slot%d", context_slot + internal_slots);
w->WriteString(builder.Finalize());
}
for (int local = 0; local < locals; ++local) {
w->WriteULEB128(current_abbreviation++);
w->WriteString(
scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get());
w->Write<uint32_t>(ty_offset);
Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
uintptr_t block_start = w->position();
w->Write<uint8_t>(DW_OP_fbreg);
w->WriteSLEB128(
JavaScriptFrameConstants::kLocal0Offset -
kPointerSize * local);
block_size.set(static_cast<uint32_t>(w->position() - block_start));
}
{
w->WriteULEB128(current_abbreviation++);
w->WriteString("__function");
w->Write<uint32_t>(ty_offset);
Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
uintptr_t block_start = w->position();
w->Write<uint8_t>(DW_OP_fbreg);
w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
block_size.set(static_cast<uint32_t>(w->position() - block_start));
}
{
w->WriteULEB128(current_abbreviation++);
w->WriteString("__context");
w->Write<uint32_t>(ty_offset);
Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
uintptr_t block_start = w->position();
w->Write<uint8_t>(DW_OP_fbreg);
w->WriteSLEB128(StandardFrameConstants::kContextOffset);
block_size.set(static_cast<uint32_t>(w->position() - block_start));
}
w->WriteULEB128(0); // Terminate the sub program.
}
w->WriteULEB128(0); // Terminate the compile unit.
size.set(static_cast<uint32_t>(w->position() - start));
return true;
}
private:
CodeDescription* desc_;
};
class DebugAbbrevSection : public DebugSection {
public:
explicit DebugAbbrevSection(CodeDescription* desc)
#ifdef __ELF
: ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
#else
: MachOSection("__debug_abbrev",
"__DWARF",
1,
MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
desc_(desc) { }
// DWARF2 standard, figure 14.
enum DWARF2Tags {
DW_TAG_FORMAL_PARAMETER = 0x05,
DW_TAG_POINTER_TYPE = 0xf,
DW_TAG_COMPILE_UNIT = 0x11,
DW_TAG_STRUCTURE_TYPE = 0x13,
DW_TAG_BASE_TYPE = 0x24,
DW_TAG_SUBPROGRAM = 0x2e,
DW_TAG_VARIABLE = 0x34
};
// DWARF2 standard, figure 16.
enum DWARF2ChildrenDetermination {
DW_CHILDREN_NO = 0,
DW_CHILDREN_YES = 1
};
// DWARF standard, figure 17.
enum DWARF2Attribute {
DW_AT_LOCATION = 0x2,
DW_AT_NAME = 0x3,
DW_AT_BYTE_SIZE = 0xb,
DW_AT_STMT_LIST = 0x10,
DW_AT_LOW_PC = 0x11,
DW_AT_HIGH_PC = 0x12,
DW_AT_ENCODING = 0x3e,
DW_AT_FRAME_BASE = 0x40,
DW_AT_TYPE = 0x49
};
// DWARF2 standard, figure 19.
enum DWARF2AttributeForm {
DW_FORM_ADDR = 0x1,
DW_FORM_BLOCK4 = 0x4,
DW_FORM_STRING = 0x8,
DW_FORM_DATA4 = 0x6,
DW_FORM_BLOCK = 0x9,
DW_FORM_DATA1 = 0xb,
DW_FORM_FLAG = 0xc,
DW_FORM_REF4 = 0x13
};
void WriteVariableAbbreviation(Writer* w,
int abbreviation_code,
bool has_value,
bool is_parameter) {
w->WriteULEB128(abbreviation_code);
w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
w->Write<uint8_t>(DW_CHILDREN_NO);
w->WriteULEB128(DW_AT_NAME);
w->WriteULEB128(DW_FORM_STRING);
if (has_value) {
w->WriteULEB128(DW_AT_TYPE);
w->WriteULEB128(DW_FORM_REF4);
w->WriteULEB128(DW_AT_LOCATION);
w->WriteULEB128(DW_FORM_BLOCK4);
}
w->WriteULEB128(0);
w->WriteULEB128(0);
}
bool WriteBodyInternal(Writer* w) {
int current_abbreviation = 1;
bool extra_info = desc_->has_scope_info();
DCHECK(desc_->IsLineInfoAvailable());
w->WriteULEB128(current_abbreviation++);
w->WriteULEB128(DW_TAG_COMPILE_UNIT);
w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
w->WriteULEB128(DW_AT_NAME);
w->WriteULEB128(DW_FORM_STRING);
w->WriteULEB128(DW_AT_LOW_PC);
w->WriteULEB128(DW_FORM_ADDR);
w->WriteULEB128(DW_AT_HIGH_PC);
w->WriteULEB128(DW_FORM_ADDR);
w->WriteULEB128(DW_AT_STMT_LIST);
w->WriteULEB128(DW_FORM_DATA4);
w->WriteULEB128(0);
w->WriteULEB128(0);
if (extra_info) {
ScopeInfo* scope = desc_->scope_info();
int params = scope->ParameterCount();
int slots = scope->StackLocalCount();
int context_slots = scope->ContextLocalCount();
// The real slot ID is internal_slots + context_slot_id.
int internal_slots = Context::MIN_CONTEXT_SLOTS;
int locals = scope->StackLocalCount();
// Total children is params + slots + context_slots + internal_slots +
// locals + 2 (__function and __context).
// The extra duplication below seems to be necessary to keep
// gdb from getting upset on OSX.
w->WriteULEB128(current_abbreviation++); // Abbreviation code.
w->WriteULEB128(DW_TAG_SUBPROGRAM);
w->Write<uint8_t>(DW_CHILDREN_YES);
w->WriteULEB128(DW_AT_NAME);
w->WriteULEB128(DW_FORM_STRING);
w->WriteULEB128(DW_AT_LOW_PC);
w->WriteULEB128(DW_FORM_ADDR);
w->WriteULEB128(DW_AT_HIGH_PC);
w->WriteULEB128(DW_FORM_ADDR);
w->WriteULEB128(DW_AT_FRAME_BASE);
w->WriteULEB128(DW_FORM_BLOCK4);
w->WriteULEB128(0);
w->WriteULEB128(0);
w->WriteULEB128(current_abbreviation++);
w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
w->Write<uint8_t>(DW_CHILDREN_NO);
w->WriteULEB128(DW_AT_BYTE_SIZE);
w->WriteULEB128(DW_FORM_DATA1);
w->WriteULEB128(DW_AT_NAME);
w->WriteULEB128(DW_FORM_STRING);
w->WriteULEB128(0);
w->WriteULEB128(0);
for (int param = 0; param < params; ++param) {
WriteVariableAbbreviation(w, current_abbreviation++, true, true);
}
for (int slot = 0; slot < slots; ++slot) {
WriteVariableAbbreviation(w, current_abbreviation++, false, false);
}
for (int internal_slot = 0;
internal_slot < internal_slots;
++internal_slot) {
WriteVariableAbbreviation(w, current_abbreviation++, false, false);
}
for (int context_slot = 0;
context_slot < context_slots;
++context_slot) {
WriteVariableAbbreviation(w, current_abbreviation++, false, false);
}
for (int local = 0; local < locals; ++local) {
WriteVariableAbbreviation(w, current_abbreviation++, true, false);
}
// The function.
WriteVariableAbbreviation(w, current_abbreviation++, true, false);
// The context.
WriteVariableAbbreviation(w, current_abbreviation++, true, false);
w->WriteULEB128(0); // Terminate the sibling list.
}
w->WriteULEB128(0); // Terminate the table.
return true;
}
private:
CodeDescription* desc_;
};
class DebugLineSection : public DebugSection {
public:
explicit DebugLineSection(CodeDescription* desc)
#ifdef __ELF
: ELFSection(".debug_line", TYPE_PROGBITS, 1),
#else
: MachOSection("__debug_line",
"__DWARF",
1,
MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
#endif
desc_(desc) { }
// DWARF2 standard, figure 34.
enum DWARF2Opcodes {
DW_LNS_COPY = 1,
DW_LNS_ADVANCE_PC = 2,
DW_LNS_ADVANCE_LINE = 3,
DW_LNS_SET_FILE = 4,
DW_LNS_SET_COLUMN = 5,
DW_LNS_NEGATE_STMT = 6
};
// DWARF2 standard, figure 35.
enum DWARF2ExtendedOpcode {
DW_LNE_END_SEQUENCE = 1,
DW_LNE_SET_ADDRESS = 2,
DW_LNE_DEFINE_FILE = 3
};
bool WriteBodyInternal(Writer* w) {
// Write prologue.
Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
uintptr_t start = w->position();
// Used for special opcodes
const int8_t line_base = 1;
const uint8_t line_range = 7;
const int8_t max_line_incr = (line_base + line_range - 1);
const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
w->Write<uint16_t>(2); // Field version.
Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
uintptr_t prologue_start = w->position();
w->Write<uint8_t>(1); // Field minimum_instruction_length.
w->Write<uint8_t>(1); // Field default_is_stmt.
w->Write<int8_t>(line_base); // Field line_base.
w->Write<uint8_t>(line_range); // Field line_range.
w->Write<uint8_t>(opcode_base); // Field opcode_base.
w->Write<uint8_t>(0); // DW_LNS_COPY operands count.
w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count.
w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count.
w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count.
w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count.
w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count.
w->Write<uint8_t>(0); // Empty include_directories sequence.
w->WriteString(desc_->GetFilename().get()); // File name.
w->WriteULEB128(0); // Current directory.
w->WriteULEB128(0); // Unknown modification time.
w->WriteULEB128(0); // Unknown file size.
w->Write<uint8_t>(0);
prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
w->Write<intptr_t>(desc_->CodeStart());
w->Write<uint8_t>(DW_LNS_COPY);
intptr_t pc = 0;
intptr_t line = 1;
bool is_statement = true;
List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
pc_info->Sort(&ComparePCInfo);
int pc_info_length = pc_info->length();
for (int i = 0; i < pc_info_length; i++) {
LineInfo::PCInfo* info = &pc_info->at(i);
DCHECK(info->pc_ >= pc);
// Reduce bloating in the debug line table by removing duplicate line
// entries (per DWARF2 standard).
intptr_t new_line = desc_->GetScriptLineNumber(info->pos_);
if (new_line == line) {
continue;
}
// Mark statement boundaries. For a better debugging experience, mark
// the last pc address in the function as a statement (e.g. "}"), so that
// a user can see the result of the last line executed in the function,
// should control reach the end.
if ((i+1) == pc_info_length) {
if (!is_statement) {
w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
}
} else if (is_statement != info->is_statement_) {
w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
is_statement = !is_statement;
}
// Generate special opcodes, if possible. This results in more compact
// debug line tables. See the DWARF 2.0 standard to learn more about
// special opcodes.
uintptr_t pc_diff = info->pc_ - pc;
intptr_t line_diff = new_line - line;
// Compute special opcode (see DWARF 2.0 standard)
intptr_t special_opcode = (line_diff - line_base) +
(line_range * pc_diff) + opcode_base;
// If special_opcode is less than or equal to 255, it can be used as a
// special opcode. If line_diff is larger than the max line increment
// allowed for a special opcode, or if line_diff is less than the minimum
// line that can be added to the line register (i.e. line_base), then
// special_opcode can't be used.
if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
(line_diff <= max_line_incr) && (line_diff >= line_base)) {
w->Write<uint8_t>(special_opcode);
} else {
w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
w->WriteSLEB128(pc_diff);
w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
w->WriteSLEB128(line_diff);
w->Write<uint8_t>(DW_LNS_COPY);
}
// Increment the pc and line operands.
pc += pc_diff;
line += line_diff;
}
// Advance the pc to the end of the routine, since the end sequence opcode
// requires this.
w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
w->WriteSLEB128(desc_->CodeSize() - pc);
WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
total_length.set(static_cast<uint32_t>(w->position() - start));
return true;
}
private:
void WriteExtendedOpcode(Writer* w,
DWARF2ExtendedOpcode op,
size_t operands_size) {
w->Write<uint8_t>(0);
w->WriteULEB128(operands_size + 1);
w->Write<uint8_t>(op);
}
static int ComparePCInfo(const LineInfo::PCInfo* a,
const LineInfo::PCInfo* b) {
if (a->pc_ == b->pc_) {
if (a->is_statement_ != b->is_statement_) {
return b->is_statement_ ? +1 : -1;
}
return 0;
} else if (a->pc_ > b->pc_) {
return +1;
} else {
return -1;
}
}
CodeDescription* desc_;
};
#if V8_TARGET_ARCH_X64
class UnwindInfoSection : public DebugSection {
public:
explicit UnwindInfoSection(CodeDescription* desc);
virtual bool WriteBodyInternal(Writer* w);
int WriteCIE(Writer* w);
void WriteFDE(Writer* w, int);
void WriteFDEStateOnEntry(Writer* w);
void WriteFDEStateAfterRBPPush(Writer* w);
void WriteFDEStateAfterRBPSet(Writer* w);
void WriteFDEStateAfterRBPPop(Writer* w);
void WriteLength(Writer* w,
Writer::Slot<uint32_t>* length_slot,
int initial_position);
private:
CodeDescription* desc_;
// DWARF3 Specification, Table 7.23
enum CFIInstructions {
DW_CFA_ADVANCE_LOC = 0x40,
DW_CFA_OFFSET = 0x80,
DW_CFA_RESTORE = 0xC0,
DW_CFA_NOP = 0x00,
DW_CFA_SET_LOC = 0x01,
DW_CFA_ADVANCE_LOC1 = 0x02,
DW_CFA_ADVANCE_LOC2 = 0x03,
DW_CFA_ADVANCE_LOC4 = 0x04,
DW_CFA_OFFSET_EXTENDED = 0x05,
DW_CFA_RESTORE_EXTENDED = 0x06,
DW_CFA_UNDEFINED = 0x07,
DW_CFA_SAME_VALUE = 0x08,
DW_CFA_REGISTER = 0x09,
DW_CFA_REMEMBER_STATE = 0x0A,
DW_CFA_RESTORE_STATE = 0x0B,
DW_CFA_DEF_CFA = 0x0C,
DW_CFA_DEF_CFA_REGISTER = 0x0D,
DW_CFA_DEF_CFA_OFFSET = 0x0E,
DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
DW_CFA_EXPRESSION = 0x10,
DW_CFA_OFFSET_EXTENDED_SF = 0x11,
DW_CFA_DEF_CFA_SF = 0x12,
DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
DW_CFA_VAL_OFFSET = 0x14,
DW_CFA_VAL_OFFSET_SF = 0x15,
DW_CFA_VAL_EXPRESSION = 0x16
};
// System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
enum RegisterMapping {
// Only the relevant ones have been added to reduce clutter.
AMD64_RBP = 6,
AMD64_RSP = 7,
AMD64_RA = 16
};
enum CFIConstants {
CIE_ID = 0,
CIE_VERSION = 1,
CODE_ALIGN_FACTOR = 1,
DATA_ALIGN_FACTOR = 1,
RETURN_ADDRESS_REGISTER = AMD64_RA
};
};
void UnwindInfoSection::WriteLength(Writer* w,
Writer::Slot<uint32_t>* length_slot,
int initial_position) {
uint32_t align = (w->position() - initial_position) % kPointerSize;
if (align != 0) {
for (uint32_t i = 0; i < (kPointerSize - align); i++) {
w->Write<uint8_t>(DW_CFA_NOP);
}
}
DCHECK((w->position() - initial_position) % kPointerSize == 0);
length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
}
UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
#ifdef __ELF
: ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
#else
: MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
MachOSection::S_REGULAR),
#endif
desc_(desc) { }
int UnwindInfoSection::WriteCIE(Writer* w) {
Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
uint32_t cie_position = static_cast<uint32_t>(w->position());
// Write out the CIE header. Currently no 'common instructions' are
// emitted onto the CIE; every FDE has its own set of instructions.
w->Write<uint32_t>(CIE_ID);
w->Write<uint8_t>(CIE_VERSION);
w->Write<uint8_t>(0); // Null augmentation string.
w->WriteSLEB128(CODE_ALIGN_FACTOR);
w->WriteSLEB128(DATA_ALIGN_FACTOR);
w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
WriteLength(w, &cie_length_slot, cie_position);
return cie_position;
}
void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
// The only FDE for this function. The CFA is the current RBP.
Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
int fde_position = static_cast<uint32_t>(w->position());
w->Write<int32_t>(fde_position - cie_position + 4);
w->Write<uintptr_t>(desc_->CodeStart());
w->Write<uintptr_t>(desc_->CodeSize());
WriteFDEStateOnEntry(w);
WriteFDEStateAfterRBPPush(w);
WriteFDEStateAfterRBPSet(w);
WriteFDEStateAfterRBPPop(w);
WriteLength(w, &fde_length_slot, fde_position);
}
void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
// The first state, just after the control has been transferred to the the
// function.
// RBP for this function will be the value of RSP after pushing the RBP
// for the previous function. The previous RBP has not been pushed yet.
w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
w->WriteULEB128(AMD64_RSP);
w->WriteSLEB128(-kPointerSize);
// The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
// and hence omitted from the next states.
w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
w->WriteULEB128(AMD64_RA);
w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
// The RBP of the previous function is still in RBP.
w->Write<uint8_t>(DW_CFA_SAME_VALUE);
w->WriteULEB128(AMD64_RBP);
// Last location described by this entry.
w->Write<uint8_t>(DW_CFA_SET_LOC);
w->Write<uint64_t>(
desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
}
void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
// The second state, just after RBP has been pushed.
// RBP / CFA for this function is now the current RSP, so just set the
// offset from the previous rule (from -8) to 0.
w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
w->WriteULEB128(0);
// The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
// in this and the next state, and hence omitted in the next state.
w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
w->WriteULEB128(AMD64_RBP);
w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
// Last location described by this entry.
w->Write<uint8_t>(DW_CFA_SET_LOC);
w->Write<uint64_t>(
desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
}
void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
// The third state, after the RBP has been set.
// The CFA can now directly be set to RBP.
w->Write<uint8_t>(DW_CFA_DEF_CFA);
w->WriteULEB128(AMD64_RBP);
w->WriteULEB128(0);
// Last location described by this entry.
w->Write<uint8_t>(DW_CFA_SET_LOC);
w->Write<uint64_t>(
desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
}
void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
// The fourth (final) state. The RBP has been popped (just before issuing a
// return).
// The CFA can is now calculated in the same way as in the first state.
w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
w->WriteULEB128(AMD64_RSP);
w->WriteSLEB128(-kPointerSize);
// The RBP
w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
w->WriteULEB128(AMD64_RBP);
w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
// Last location described by this entry.
w->Write<uint8_t>(DW_CFA_SET_LOC);
w->Write<uint64_t>(desc_->CodeEnd());
}
bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
uint32_t cie_position = WriteCIE(w);
WriteFDE(w, cie_position);
return true;
}
#endif // V8_TARGET_ARCH_X64
static void CreateDWARFSections(CodeDescription* desc,
Zone* zone,
DebugObject* obj) {
if (desc->IsLineInfoAvailable()) {
obj->AddSection(new(zone) DebugInfoSection(desc));
obj->AddSection(new(zone) DebugAbbrevSection(desc));
obj->AddSection(new(zone) DebugLineSection(desc));
}
#if V8_TARGET_ARCH_X64
obj->AddSection(new(zone) UnwindInfoSection(desc));
#endif
}
// -------------------------------------------------------------------
// Binary GDB JIT Interface as described in
// http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
extern "C" {
typedef enum {
JIT_NOACTION = 0,
JIT_REGISTER_FN,
JIT_UNREGISTER_FN
} JITAction;
struct JITCodeEntry {
JITCodeEntry* next_;
JITCodeEntry* prev_;
Address symfile_addr_;
uint64_t symfile_size_;
};
struct JITDescriptor {
uint32_t version_;
uint32_t action_flag_;
JITCodeEntry* relevant_entry_;
JITCodeEntry* first_entry_;
};
// GDB will place breakpoint into this function.
// To prevent GCC from inlining or removing it we place noinline attribute
// and inline assembler statement inside.
void __attribute__((noinline)) __jit_debug_register_code() {
__asm__("");
}
// GDB will inspect contents of this descriptor.
// Static initialization is necessary to prevent GDB from seeing
// uninitialized descriptor.
JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
#ifdef OBJECT_PRINT
void __gdb_print_v8_object(Object* object) {
OFStream os(stdout);
object->Print(os);
os << std::flush;
}
#endif
}
static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
uintptr_t symfile_size) {
JITCodeEntry* entry = static_cast<JITCodeEntry*>(
malloc(sizeof(JITCodeEntry) + symfile_size));
entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
entry->symfile_size_ = symfile_size;
MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
entry->prev_ = entry->next_ = NULL;
return entry;
}
static void DestroyCodeEntry(JITCodeEntry* entry) {
free(entry);
}
static void RegisterCodeEntry(JITCodeEntry* entry) {
entry->next_ = __jit_debug_descriptor.first_entry_;
if (entry->next_ != NULL) entry->next_->prev_ = entry;
__jit_debug_descriptor.first_entry_ =
__jit_debug_descriptor.relevant_entry_ = entry;
__jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
__jit_debug_register_code();
}
static void UnregisterCodeEntry(JITCodeEntry* entry) {
if (entry->prev_ != NULL) {
entry->prev_->next_ = entry->next_;
} else {
__jit_debug_descriptor.first_entry_ = entry->next_;
}
if (entry->next_ != NULL) {
entry->next_->prev_ = entry->prev_;
}
__jit_debug_descriptor.relevant_entry_ = entry;
__jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
__jit_debug_register_code();
}
static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
#ifdef __MACH_O
Zone zone;
MachO mach_o(&zone);
Writer w(&mach_o);
mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
desc->CodeStart(),
desc->CodeSize()));
CreateDWARFSections(desc, &zone, &mach_o);
mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
#else
Zone zone;
ELF elf(&zone);
Writer w(&elf);
int text_section_index = elf.AddSection(
new(&zone) FullHeaderELFSection(
".text",
ELFSection::TYPE_NOBITS,
kCodeAlignment,
desc->CodeStart(),
0,
desc->CodeSize(),
ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
CreateSymbolsTable(desc, &zone, &elf, text_section_index);
CreateDWARFSections(desc, &zone, &elf);
elf.Write(&w);
#endif
return CreateCodeEntry(w.buffer(), w.position());
}
struct AddressRange {
Address start;
Address end;
};
struct SplayTreeConfig {
typedef AddressRange Key;
typedef JITCodeEntry* Value;
static const AddressRange kNoKey;
static Value NoValue() { return NULL; }
static int Compare(const AddressRange& a, const AddressRange& b) {
// ptrdiff_t probably doesn't fit in an int.
if (a.start < b.start) return -1;
if (a.start == b.start) return 0;
return 1;
}
};
const AddressRange SplayTreeConfig::kNoKey = {0, 0};
typedef SplayTree<SplayTreeConfig> CodeMap;
static CodeMap* GetCodeMap() {
static CodeMap* code_map = NULL;
if (code_map == NULL) code_map = new CodeMap();
return code_map;
}
static uint32_t HashCodeAddress(Address addr) {
static const uintptr_t kGoldenRatio = 2654435761u;
uintptr_t offset = OffsetFrom(addr);
return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio);
}
static HashMap* GetLineMap() {
static HashMap* line_map = NULL;
if (line_map == NULL) line_map = new HashMap(&HashMap::PointersMatch);
return line_map;
}
static void PutLineInfo(Address addr, LineInfo* info) {
HashMap* line_map = GetLineMap();
HashMap::Entry* e = line_map->LookupOrInsert(addr, HashCodeAddress(addr));
if (e->value != NULL) delete static_cast<LineInfo*>(e->value);
e->value = info;
}
static LineInfo* GetLineInfo(Address addr) {
void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr));
return static_cast<LineInfo*>(value);
}
static void AddUnwindInfo(CodeDescription* desc) {
#if V8_TARGET_ARCH_X64
if (desc->is_function()) {
// To avoid propagating unwinding information through
// compilation pipeline we use an approximation.
// For most use cases this should not affect usability.
static const int kFramePointerPushOffset = 1;
static const int kFramePointerSetOffset = 4;
static const int kFramePointerPopOffset = -3;
uintptr_t frame_pointer_push_address =
desc->CodeStart() + kFramePointerPushOffset;
uintptr_t frame_pointer_set_address =
desc->CodeStart() + kFramePointerSetOffset;
uintptr_t frame_pointer_pop_address =
desc->CodeEnd() + kFramePointerPopOffset;
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
frame_pointer_push_address);
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
frame_pointer_set_address);
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
frame_pointer_pop_address);
} else {
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
desc->CodeStart());
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
desc->CodeStart());
desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
desc->CodeEnd());
}
#endif // V8_TARGET_ARCH_X64
}
static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
// Remove entries from the splay tree that intersect the given address range,
// and deregister them from GDB.
static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
DCHECK(range.start < range.end);
CodeMap::Locator cur;
if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
// Skip entries that are entirely less than the range of interest.
while (cur.key().end <= range.start) {
// CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
// than _or equal to_ the given key, so we have to advance our key to get
// the next one.
AddressRange new_key;
new_key.start = cur.key().end;
new_key.end = 0;
if (!map->FindLeastGreaterThan(new_key, &cur)) return;
}
// Evict intersecting ranges.
while (cur.key().start < range.end) {
AddressRange old_range = cur.key();
JITCodeEntry* old_entry = cur.value();
UnregisterCodeEntry(old_entry);
DestroyCodeEntry(old_entry);
CHECK(map->Remove(old_range));
if (!map->FindLeastGreaterThan(old_range, &cur)) return;
}
}
}
// Insert the entry into the splay tree and register it with GDB.
static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
JITCodeEntry* entry, bool dump_if_enabled,
const char* name_hint) {
#if defined(DEBUG) && !V8_OS_WIN
static int file_num = 0;
if (FLAG_gdbjit_dump && dump_if_enabled) {
static const int kMaxFileNameSize = 64;
char file_name[64];
SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
(name_hint != NULL) ? name_hint : "", file_num++);
WriteBytes(file_name, entry->symfile_addr_,
static_cast<int>(entry->symfile_size_));
}
#endif
CodeMap::Locator cur;
CHECK(map->Insert(range, &cur));
cur.set_value(entry);
RegisterCodeEntry(entry);
}
static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
LineInfo* lineinfo) {
DisallowHeapAllocation no_gc;
CodeMap* code_map = GetCodeMap();
AddressRange range;
range.start = code->address();
range.end = code->address() + code->CodeSize();
RemoveJITCodeEntries(code_map, range);
CodeDescription code_desc(name, code, shared, lineinfo);
if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
delete lineinfo;
return;
}
AddUnwindInfo(&code_desc);
Isolate* isolate = code->GetIsolate();
JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
delete lineinfo;
const char* name_hint = NULL;
bool should_dump = false;
if (FLAG_gdbjit_dump) {
if (strlen(FLAG_gdbjit_dump_filter) == 0) {
name_hint = name;
should_dump = true;
} else if (name != NULL) {
name_hint = strstr(name, FLAG_gdbjit_dump_filter);
should_dump = (name_hint != NULL);
}
}
AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
}
void EventHandler(const v8::JitCodeEvent* event) {
if (!FLAG_gdbjit) return;
base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
switch (event->type) {
case v8::JitCodeEvent::CODE_ADDED: {
Address addr = reinterpret_cast<Address>(event->code_start);
Code* code = Code::GetCodeFromTargetAddress(addr);
LineInfo* lineinfo = GetLineInfo(addr);
EmbeddedVector<char, 256> buffer;
StringBuilder builder(buffer.start(), buffer.length());
builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
// It's called UnboundScript in the API but it's a SharedFunctionInfo.
SharedFunctionInfo* shared =
event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script);
AddCode(builder.Finalize(), code, shared, lineinfo);
break;
}
case v8::JitCodeEvent::CODE_MOVED:
// Enabling the GDB JIT interface should disable code compaction.
UNREACHABLE();
break;
case v8::JitCodeEvent::CODE_REMOVED:
// Do nothing. Instead, adding code causes eviction of any entry whose
// address range intersects the address range of the added code.
break;
case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
static_cast<int>(event->line_info.pos),
event->line_info.position_type ==
v8::JitCodeEvent::STATEMENT_POSITION);
break;
}
case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
mutable_event->user_data = new LineInfo();
break;
}
case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
break;
}
}
}
#endif
} // namespace GDBJITInterface
} // namespace internal
} // namespace v8