6492686241
R=titzer@chromium.org,aseemgarg@chromium.org BUG= https://code.google.com/p/v8/issues/detail?id=4203 TEST=test-asm-validator, asm-wasm.js LOG=N Review URL: https://codereview.chromium.org/1609893002 Cr-Commit-Position: refs/heads/master@{#33421}
1496 lines
48 KiB
C++
1496 lines
48 KiB
C++
// Copyright 2015 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/typing-asm.h"
|
|
|
|
#include <limits>
|
|
|
|
#include "src/v8.h"
|
|
|
|
#include "src/ast/ast.h"
|
|
#include "src/ast/scopes.h"
|
|
#include "src/codegen.h"
|
|
#include "src/type-cache.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
#define FAIL(node, msg) \
|
|
do { \
|
|
valid_ = false; \
|
|
int line = node->position() == RelocInfo::kNoPosition \
|
|
? -1 \
|
|
: script_->GetLineNumber(node->position()); \
|
|
base::OS::SNPrintF(error_message_, sizeof(error_message_), \
|
|
"asm: line %d: %s\n", line + 1, msg); \
|
|
return; \
|
|
} while (false)
|
|
|
|
|
|
#define RECURSE(call) \
|
|
do { \
|
|
DCHECK(!HasStackOverflow()); \
|
|
call; \
|
|
if (HasStackOverflow()) return; \
|
|
if (!valid_) return; \
|
|
} while (false)
|
|
|
|
|
|
AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script,
|
|
FunctionLiteral* root)
|
|
: zone_(zone),
|
|
isolate_(isolate),
|
|
script_(script),
|
|
root_(root),
|
|
valid_(true),
|
|
allow_simd_(false),
|
|
property_info_(NULL),
|
|
intish_(0),
|
|
stdlib_types_(zone),
|
|
stdlib_heap_types_(zone),
|
|
stdlib_math_types_(zone),
|
|
#define V(NAME, Name, name, lane_count, lane_type) \
|
|
stdlib_simd_##name##_types_(zone),
|
|
SIMD128_TYPES(V)
|
|
#undef V
|
|
global_variable_type_(HashMap::PointersMatch,
|
|
ZoneHashMap::kDefaultHashMapCapacity,
|
|
ZoneAllocationPolicy(zone)),
|
|
local_variable_type_(HashMap::PointersMatch,
|
|
ZoneHashMap::kDefaultHashMapCapacity,
|
|
ZoneAllocationPolicy(zone)),
|
|
in_function_(false),
|
|
building_function_tables_(false),
|
|
cache_(TypeCache::Get()) {
|
|
InitializeAstVisitor(isolate);
|
|
InitializeStdlib();
|
|
}
|
|
|
|
|
|
bool AsmTyper::Validate() {
|
|
VisitAsmModule(root_);
|
|
return valid_ && !HasStackOverflow();
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitAsmModule(FunctionLiteral* fun) {
|
|
Scope* scope = fun->scope();
|
|
if (!scope->is_function_scope()) FAIL(fun, "not at function scope");
|
|
|
|
ExpressionStatement* use_asm = fun->body()->first()->AsExpressionStatement();
|
|
if (use_asm == NULL) FAIL(fun, "missing \"use asm\"");
|
|
Literal* use_asm_literal = use_asm->expression()->AsLiteral();
|
|
if (use_asm_literal == NULL) FAIL(fun, "missing \"use asm\"");
|
|
if (!use_asm_literal->raw_value()->AsString()->IsOneByteEqualTo("use asm"))
|
|
FAIL(fun, "missing \"use asm\"");
|
|
|
|
// Module parameters.
|
|
for (int i = 0; i < scope->num_parameters(); ++i) {
|
|
Variable* param = scope->parameter(i);
|
|
DCHECK(GetType(param) == NULL);
|
|
SetType(param, Type::None(zone()));
|
|
}
|
|
|
|
ZoneList<Declaration*>* decls = scope->declarations();
|
|
|
|
// Set all globals to type Any.
|
|
VariableDeclaration* decl = scope->function();
|
|
if (decl != NULL) SetType(decl->proxy()->var(), Type::None());
|
|
RECURSE(VisitDeclarations(scope->declarations()));
|
|
|
|
// Validate global variables.
|
|
RECURSE(VisitStatements(fun->body()));
|
|
|
|
// Validate function annotations.
|
|
for (int i = 0; i < decls->length(); ++i) {
|
|
FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration();
|
|
if (decl != NULL) {
|
|
RECURSE(VisitFunctionAnnotation(decl->fun()));
|
|
Variable* var = decl->proxy()->var();
|
|
if (property_info_ != NULL) {
|
|
SetVariableInfo(var, property_info_);
|
|
property_info_ = NULL;
|
|
}
|
|
SetType(var, computed_type_);
|
|
DCHECK(GetType(var) != NULL);
|
|
}
|
|
}
|
|
|
|
// Build function tables.
|
|
building_function_tables_ = true;
|
|
RECURSE(VisitStatements(fun->body()));
|
|
building_function_tables_ = false;
|
|
|
|
// Validate function bodies.
|
|
for (int i = 0; i < decls->length(); ++i) {
|
|
FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration();
|
|
if (decl != NULL) {
|
|
RECURSE(
|
|
VisitWithExpectation(decl->fun(), Type::Any(zone()), "UNREACHABLE"));
|
|
if (!computed_type_->IsFunction()) {
|
|
FAIL(decl->fun(), "function literal expected to be a function");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Validate exports.
|
|
ReturnStatement* stmt = fun->body()->last()->AsReturnStatement();
|
|
if (stmt == nullptr) {
|
|
FAIL(fun->body()->last(), "last statement in module is not a return");
|
|
}
|
|
RECURSE(VisitWithExpectation(stmt->expression(), Type::Object(),
|
|
"expected object export"));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitVariableDeclaration(VariableDeclaration* decl) {
|
|
Variable* var = decl->proxy()->var();
|
|
if (var->location() != VariableLocation::PARAMETER) {
|
|
if (GetType(var) == NULL) {
|
|
SetType(var, Type::Any(zone()));
|
|
} else {
|
|
DCHECK(!GetType(var)->IsFunction());
|
|
}
|
|
}
|
|
DCHECK(GetType(var) != NULL);
|
|
intish_ = 0;
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitFunctionDeclaration(FunctionDeclaration* decl) {
|
|
if (in_function_) {
|
|
FAIL(decl, "function declared inside another");
|
|
}
|
|
// Set function type so global references to functions have some type
|
|
// (so they can give a more useful error).
|
|
Variable* var = decl->proxy()->var();
|
|
SetType(var, Type::Function(zone()));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitFunctionAnnotation(FunctionLiteral* fun) {
|
|
// Extract result type.
|
|
ZoneList<Statement*>* body = fun->body();
|
|
Type* result_type = Type::Undefined(zone());
|
|
if (body->length() > 0) {
|
|
ReturnStatement* stmt = body->last()->AsReturnStatement();
|
|
if (stmt != NULL) {
|
|
Literal* literal = stmt->expression()->AsLiteral();
|
|
Type* old_expected = expected_type_;
|
|
expected_type_ = Type::Any();
|
|
if (literal) {
|
|
RECURSE(VisitLiteral(literal, true));
|
|
} else {
|
|
RECURSE(VisitExpressionAnnotation(stmt->expression(), NULL, true));
|
|
}
|
|
expected_type_ = old_expected;
|
|
result_type = computed_type_;
|
|
}
|
|
}
|
|
Type::FunctionType* type =
|
|
Type::Function(result_type, Type::Any(), fun->parameter_count(), zone())
|
|
->AsFunction();
|
|
|
|
// Extract parameter types.
|
|
bool good = true;
|
|
for (int i = 0; i < fun->parameter_count(); ++i) {
|
|
good = false;
|
|
if (i >= body->length()) break;
|
|
ExpressionStatement* stmt = body->at(i)->AsExpressionStatement();
|
|
if (stmt == NULL) break;
|
|
Assignment* expr = stmt->expression()->AsAssignment();
|
|
if (expr == NULL || expr->is_compound()) break;
|
|
VariableProxy* proxy = expr->target()->AsVariableProxy();
|
|
if (proxy == NULL) break;
|
|
Variable* var = proxy->var();
|
|
if (var->location() != VariableLocation::PARAMETER || var->index() != i)
|
|
break;
|
|
RECURSE(VisitExpressionAnnotation(expr->value(), var, false));
|
|
if (property_info_ != NULL) {
|
|
SetVariableInfo(var, property_info_);
|
|
property_info_ = NULL;
|
|
}
|
|
SetType(var, computed_type_);
|
|
type->InitParameter(i, computed_type_);
|
|
good = true;
|
|
}
|
|
if (!good) FAIL(fun, "missing parameter type annotations");
|
|
|
|
SetResult(fun, type);
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitExpressionAnnotation(Expression* expr, Variable* var,
|
|
bool is_return) {
|
|
// Normal +x or x|0 annotations.
|
|
BinaryOperation* bin = expr->AsBinaryOperation();
|
|
if (bin != NULL) {
|
|
if (var != NULL) {
|
|
VariableProxy* proxy = bin->left()->AsVariableProxy();
|
|
if (proxy == NULL) {
|
|
FAIL(bin->left(), "expected variable for type annotation");
|
|
}
|
|
if (proxy->var() != var) {
|
|
FAIL(proxy, "annotation source doesn't match destination");
|
|
}
|
|
}
|
|
Literal* right = bin->right()->AsLiteral();
|
|
if (right != NULL) {
|
|
switch (bin->op()) {
|
|
case Token::MUL: // We encode +x as x*1.0
|
|
if (right->raw_value()->ContainsDot() &&
|
|
right->raw_value()->AsNumber() == 1.0) {
|
|
SetResult(expr, cache_.kAsmDouble);
|
|
return;
|
|
}
|
|
break;
|
|
case Token::BIT_OR:
|
|
if (!right->raw_value()->ContainsDot() &&
|
|
right->raw_value()->AsNumber() == 0.0) {
|
|
if (is_return) {
|
|
SetResult(expr, cache_.kAsmSigned);
|
|
} else {
|
|
SetResult(expr, cache_.kAsmInt);
|
|
}
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
FAIL(expr, "invalid type annotation on binary op");
|
|
}
|
|
|
|
// Numbers or the undefined literal (for empty returns).
|
|
if (expr->IsLiteral()) {
|
|
RECURSE(VisitWithExpectation(expr, Type::Any(), "invalid literal"));
|
|
return;
|
|
}
|
|
|
|
Call* call = expr->AsCall();
|
|
if (call != NULL) {
|
|
VariableProxy* proxy = call->expression()->AsVariableProxy();
|
|
if (proxy != NULL) {
|
|
VariableInfo* info = GetVariableInfo(proxy->var(), false);
|
|
if (!info ||
|
|
(!info->is_check_function && !info->is_constructor_function)) {
|
|
if (allow_simd_) {
|
|
FAIL(call->expression(),
|
|
"only fround/SIMD.checks allowed on expression annotations");
|
|
} else {
|
|
FAIL(call->expression(),
|
|
"only fround allowed on expression annotations");
|
|
}
|
|
}
|
|
Type* type = info->type;
|
|
DCHECK(type->IsFunction());
|
|
if (info->is_check_function) {
|
|
DCHECK(type->AsFunction()->Arity() == 1);
|
|
}
|
|
if (call->arguments()->length() != type->AsFunction()->Arity()) {
|
|
FAIL(call, "invalid argument count calling function");
|
|
}
|
|
SetResult(expr, type->AsFunction()->Result());
|
|
return;
|
|
}
|
|
}
|
|
|
|
FAIL(expr, "invalid type annotation");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitStatements(ZoneList<Statement*>* stmts) {
|
|
for (int i = 0; i < stmts->length(); ++i) {
|
|
Statement* stmt = stmts->at(i);
|
|
RECURSE(Visit(stmt));
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitBlock(Block* stmt) {
|
|
RECURSE(VisitStatements(stmt->statements()));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitExpressionStatement(ExpressionStatement* stmt) {
|
|
RECURSE(VisitWithExpectation(stmt->expression(), Type::Any(),
|
|
"expression statement expected to be any"));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitEmptyStatement(EmptyStatement* stmt) {}
|
|
|
|
|
|
void AsmTyper::VisitSloppyBlockFunctionStatement(
|
|
SloppyBlockFunctionStatement* stmt) {
|
|
Visit(stmt->statement());
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitEmptyParentheses(EmptyParentheses* expr) { UNREACHABLE(); }
|
|
|
|
|
|
void AsmTyper::VisitIfStatement(IfStatement* stmt) {
|
|
if (!in_function_) {
|
|
FAIL(stmt, "if statement inside module body");
|
|
}
|
|
RECURSE(VisitWithExpectation(stmt->condition(), cache_.kAsmSigned,
|
|
"if condition expected to be integer"));
|
|
RECURSE(Visit(stmt->then_statement()));
|
|
RECURSE(Visit(stmt->else_statement()));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitContinueStatement(ContinueStatement* stmt) {
|
|
if (!in_function_) {
|
|
FAIL(stmt, "continue statement inside module body");
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitBreakStatement(BreakStatement* stmt) {
|
|
if (!in_function_) {
|
|
FAIL(stmt, "continue statement inside module body");
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitReturnStatement(ReturnStatement* stmt) {
|
|
// Handle module return statement in VisitAsmModule.
|
|
if (!in_function_) {
|
|
return;
|
|
}
|
|
Literal* literal = stmt->expression()->AsLiteral();
|
|
if (literal) {
|
|
VisitLiteral(literal, true);
|
|
} else {
|
|
RECURSE(
|
|
VisitWithExpectation(stmt->expression(), Type::Any(),
|
|
"return expression expected to have return type"));
|
|
}
|
|
if (!computed_type_->Is(return_type_) || !return_type_->Is(computed_type_)) {
|
|
FAIL(stmt->expression(), "return type does not match function signature");
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitWithStatement(WithStatement* stmt) {
|
|
FAIL(stmt, "bad with statement");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
if (!in_function_) {
|
|
FAIL(stmt, "switch statement inside module body");
|
|
}
|
|
RECURSE(VisitWithExpectation(stmt->tag(), cache_.kAsmSigned,
|
|
"switch expression non-integer"));
|
|
ZoneList<CaseClause*>* clauses = stmt->cases();
|
|
ZoneSet<int32_t> cases(zone());
|
|
for (int i = 0; i < clauses->length(); ++i) {
|
|
CaseClause* clause = clauses->at(i);
|
|
if (clause->is_default()) {
|
|
if (i != clauses->length() - 1) {
|
|
FAIL(clause, "default case out of order");
|
|
}
|
|
} else {
|
|
Expression* label = clause->label();
|
|
RECURSE(VisitWithExpectation(label, cache_.kAsmSigned,
|
|
"case label non-integer"));
|
|
if (!label->IsLiteral()) FAIL(label, "non-literal case label");
|
|
Handle<Object> value = label->AsLiteral()->value();
|
|
int32_t value32;
|
|
if (!value->ToInt32(&value32)) FAIL(label, "illegal case label value");
|
|
if (cases.find(value32) != cases.end()) {
|
|
FAIL(label, "duplicate case value");
|
|
}
|
|
cases.insert(value32);
|
|
}
|
|
// TODO(bradnelson): Detect duplicates.
|
|
ZoneList<Statement*>* stmts = clause->statements();
|
|
RECURSE(VisitStatements(stmts));
|
|
}
|
|
if (cases.size() > 0) {
|
|
int64_t min_case = *cases.begin();
|
|
int64_t max_case = *cases.rbegin();
|
|
if (max_case - min_case > std::numeric_limits<int32_t>::max()) {
|
|
FAIL(stmt, "case range too large");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); }
|
|
|
|
|
|
void AsmTyper::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
if (!in_function_) {
|
|
FAIL(stmt, "do statement inside module body");
|
|
}
|
|
RECURSE(Visit(stmt->body()));
|
|
RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned,
|
|
"do condition expected to be integer"));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitWhileStatement(WhileStatement* stmt) {
|
|
if (!in_function_) {
|
|
FAIL(stmt, "while statement inside module body");
|
|
}
|
|
RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned,
|
|
"while condition expected to be integer"));
|
|
RECURSE(Visit(stmt->body()));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitForStatement(ForStatement* stmt) {
|
|
if (!in_function_) {
|
|
FAIL(stmt, "for statement inside module body");
|
|
}
|
|
if (stmt->init() != NULL) {
|
|
RECURSE(Visit(stmt->init()));
|
|
}
|
|
if (stmt->cond() != NULL) {
|
|
RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned,
|
|
"for condition expected to be integer"));
|
|
}
|
|
if (stmt->next() != NULL) {
|
|
RECURSE(Visit(stmt->next()));
|
|
}
|
|
RECURSE(Visit(stmt->body()));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitForInStatement(ForInStatement* stmt) {
|
|
FAIL(stmt, "for-in statement encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitForOfStatement(ForOfStatement* stmt) {
|
|
FAIL(stmt, "for-of statement encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
|
FAIL(stmt, "try statement encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
|
|
FAIL(stmt, "try statement encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitDebuggerStatement(DebuggerStatement* stmt) {
|
|
FAIL(stmt, "debugger statement encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
Scope* scope = expr->scope();
|
|
DCHECK(scope->is_function_scope());
|
|
if (in_function_) {
|
|
FAIL(expr, "invalid nested function");
|
|
}
|
|
|
|
if (!expr->bounds().upper->IsFunction()) {
|
|
FAIL(expr, "invalid function literal");
|
|
}
|
|
|
|
Type::FunctionType* type = expr->bounds().upper->AsFunction();
|
|
Type* save_return_type = return_type_;
|
|
return_type_ = type->Result();
|
|
in_function_ = true;
|
|
local_variable_type_.Clear();
|
|
RECURSE(VisitDeclarations(scope->declarations()));
|
|
RECURSE(VisitStatements(expr->body()));
|
|
in_function_ = false;
|
|
return_type_ = save_return_type;
|
|
IntersectResult(expr, type);
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitNativeFunctionLiteral(NativeFunctionLiteral* expr) {
|
|
FAIL(expr, "function info literal encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitDoExpression(DoExpression* expr) {
|
|
FAIL(expr, "do-expression encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitConditional(Conditional* expr) {
|
|
RECURSE(VisitWithExpectation(expr->condition(), Type::Number(),
|
|
"condition expected to be integer"));
|
|
if (!computed_type_->Is(cache_.kAsmInt)) {
|
|
FAIL(expr->condition(), "condition must be of type int");
|
|
}
|
|
|
|
RECURSE(VisitWithExpectation(
|
|
expr->then_expression(), expected_type_,
|
|
"conditional then branch type mismatch with enclosing expression"));
|
|
Type* then_type = StorageType(computed_type_);
|
|
if (intish_ != 0 || !then_type->Is(cache_.kAsmComparable)) {
|
|
FAIL(expr->then_expression(), "invalid type in ? then expression");
|
|
}
|
|
|
|
RECURSE(VisitWithExpectation(
|
|
expr->else_expression(), expected_type_,
|
|
"conditional else branch type mismatch with enclosing expression"));
|
|
Type* else_type = StorageType(computed_type_);
|
|
if (intish_ != 0 || !else_type->Is(cache_.kAsmComparable)) {
|
|
FAIL(expr->else_expression(), "invalid type in ? else expression");
|
|
}
|
|
|
|
if (!then_type->Is(else_type) || !else_type->Is(then_type)) {
|
|
FAIL(expr, "then and else expressions in ? must have the same type");
|
|
}
|
|
|
|
IntersectResult(expr, then_type);
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitVariableProxy(VariableProxy* expr) {
|
|
Variable* var = expr->var();
|
|
VariableInfo* info = GetVariableInfo(var, false);
|
|
if (info == NULL || info->type == NULL) {
|
|
if (var->mode() == TEMPORARY) {
|
|
SetType(var, Type::Any(zone()));
|
|
info = GetVariableInfo(var, false);
|
|
} else {
|
|
FAIL(expr, "unbound variable");
|
|
}
|
|
}
|
|
if (property_info_ != NULL) {
|
|
SetVariableInfo(var, property_info_);
|
|
property_info_ = NULL;
|
|
}
|
|
Type* type = Type::Intersect(info->type, expected_type_, zone());
|
|
if (type->Is(cache_.kAsmInt)) {
|
|
type = cache_.kAsmInt;
|
|
}
|
|
info->type = type;
|
|
intish_ = 0;
|
|
IntersectResult(expr, type);
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitLiteral(Literal* expr, bool is_return) {
|
|
intish_ = 0;
|
|
Handle<Object> value = expr->value();
|
|
if (value->IsNumber()) {
|
|
int32_t i;
|
|
uint32_t u;
|
|
if (expr->raw_value()->ContainsDot()) {
|
|
IntersectResult(expr, cache_.kAsmDouble);
|
|
} else if (!is_return && value->ToUint32(&u)) {
|
|
if (u <= 0x7fffffff) {
|
|
IntersectResult(expr, cache_.kAsmFixnum);
|
|
} else {
|
|
IntersectResult(expr, cache_.kAsmUnsigned);
|
|
}
|
|
} else if (value->ToInt32(&i)) {
|
|
IntersectResult(expr, cache_.kAsmSigned);
|
|
} else {
|
|
FAIL(expr, "illegal number");
|
|
}
|
|
} else if (!is_return && value->IsString()) {
|
|
IntersectResult(expr, Type::String());
|
|
} else if (value->IsUndefined()) {
|
|
IntersectResult(expr, Type::Undefined());
|
|
} else {
|
|
FAIL(expr, "illegal literal");
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitLiteral(Literal* expr) { VisitLiteral(expr, false); }
|
|
|
|
|
|
void AsmTyper::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
FAIL(expr, "regular expression encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
if (in_function_) {
|
|
FAIL(expr, "object literal in function");
|
|
}
|
|
// Allowed for asm module's export declaration.
|
|
ZoneList<ObjectLiteralProperty*>* props = expr->properties();
|
|
for (int i = 0; i < props->length(); ++i) {
|
|
ObjectLiteralProperty* prop = props->at(i);
|
|
RECURSE(VisitWithExpectation(prop->value(), Type::Any(zone()),
|
|
"object property expected to be a function"));
|
|
if (!computed_type_->IsFunction()) {
|
|
FAIL(prop->value(), "non-function in function table");
|
|
}
|
|
}
|
|
IntersectResult(expr, Type::Object(zone()));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
if (in_function_) {
|
|
FAIL(expr, "array literal inside a function");
|
|
}
|
|
// Allowed for function tables.
|
|
ZoneList<Expression*>* values = expr->values();
|
|
Type* elem_type = Type::None(zone());
|
|
for (int i = 0; i < values->length(); ++i) {
|
|
Expression* value = values->at(i);
|
|
RECURSE(VisitWithExpectation(value, Type::Any(), "UNREACHABLE"));
|
|
if (!computed_type_->IsFunction()) {
|
|
FAIL(value, "array component expected to be a function");
|
|
}
|
|
elem_type = Type::Union(elem_type, computed_type_, zone());
|
|
}
|
|
array_size_ = values->length();
|
|
IntersectResult(expr, Type::Array(elem_type, zone()));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitAssignment(Assignment* expr) {
|
|
// Handle function tables and everything else in different passes.
|
|
if (!in_function_) {
|
|
if (expr->value()->IsArrayLiteral()) {
|
|
if (!building_function_tables_) {
|
|
return;
|
|
}
|
|
} else {
|
|
if (building_function_tables_) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if (expr->is_compound()) FAIL(expr, "compound assignment encountered");
|
|
Type* type = expected_type_;
|
|
RECURSE(VisitWithExpectation(
|
|
expr->value(), type, "assignment value expected to match surrounding"));
|
|
Type* target_type = StorageType(computed_type_);
|
|
if (intish_ != 0) {
|
|
FAIL(expr, "intish or floatish assignment");
|
|
}
|
|
if (expr->target()->IsVariableProxy()) {
|
|
RECURSE(VisitWithExpectation(expr->target(), target_type,
|
|
"assignment target expected to match value"));
|
|
} else if (expr->target()->IsProperty()) {
|
|
Property* property = expr->target()->AsProperty();
|
|
RECURSE(VisitWithExpectation(property->obj(), Type::Any(),
|
|
"bad propety object"));
|
|
if (!computed_type_->IsArray()) {
|
|
FAIL(property->obj(), "array expected");
|
|
}
|
|
VisitHeapAccess(property, true, target_type);
|
|
}
|
|
IntersectResult(expr, target_type);
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitYield(Yield* expr) {
|
|
FAIL(expr, "yield expression encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitThrow(Throw* expr) {
|
|
FAIL(expr, "throw statement encountered");
|
|
}
|
|
|
|
|
|
int AsmTyper::ElementShiftSize(Type* type) {
|
|
if (type->Is(cache_.kAsmSize8)) return 0;
|
|
if (type->Is(cache_.kAsmSize16)) return 1;
|
|
if (type->Is(cache_.kAsmSize32)) return 2;
|
|
if (type->Is(cache_.kAsmSize64)) return 3;
|
|
return -1;
|
|
}
|
|
|
|
|
|
Type* AsmTyper::StorageType(Type* type) {
|
|
if (type->Is(cache_.kAsmInt)) {
|
|
return cache_.kAsmInt;
|
|
} else {
|
|
return type;
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitHeapAccess(Property* expr, bool assigning,
|
|
Type* assignment_type) {
|
|
Type::ArrayType* array_type = computed_type_->AsArray();
|
|
// size_t size = array_size_;
|
|
Type* type = array_type->AsArray()->Element();
|
|
if (type->IsFunction()) {
|
|
if (assigning) {
|
|
FAIL(expr, "assigning to function table is illegal");
|
|
}
|
|
// TODO(bradnelson): Fix the parser and then un-comment this part
|
|
// BinaryOperation* bin = expr->key()->AsBinaryOperation();
|
|
// if (bin == NULL || bin->op() != Token::BIT_AND) {
|
|
// FAIL(expr->key(), "expected & in call");
|
|
// }
|
|
// RECURSE(VisitWithExpectation(bin->left(), cache_.kAsmSigned,
|
|
// "array index expected to be integer"));
|
|
// Literal* right = bin->right()->AsLiteral();
|
|
// if (right == NULL || right->raw_value()->ContainsDot()) {
|
|
// FAIL(right, "call mask must be integer");
|
|
// }
|
|
// RECURSE(VisitWithExpectation(bin->right(), cache_.kAsmSigned,
|
|
// "call mask expected to be integer"));
|
|
// if (static_cast<size_t>(right->raw_value()->AsNumber()) != size - 1) {
|
|
// FAIL(right, "call mask must match function table");
|
|
// }
|
|
// bin->set_bounds(Bounds(cache_.kAsmSigned));
|
|
RECURSE(VisitWithExpectation(expr->key(), cache_.kAsmSigned,
|
|
"must be integer"));
|
|
IntersectResult(expr, type);
|
|
} else {
|
|
Literal* literal = expr->key()->AsLiteral();
|
|
if (literal) {
|
|
RECURSE(VisitWithExpectation(literal, cache_.kAsmSigned,
|
|
"array index expected to be integer"));
|
|
} else {
|
|
BinaryOperation* bin = expr->key()->AsBinaryOperation();
|
|
if (bin == NULL || bin->op() != Token::SAR) {
|
|
FAIL(expr->key(), "expected >> in heap access");
|
|
}
|
|
RECURSE(VisitWithExpectation(bin->left(), cache_.kAsmSigned,
|
|
"array index expected to be integer"));
|
|
Literal* right = bin->right()->AsLiteral();
|
|
if (right == NULL || right->raw_value()->ContainsDot()) {
|
|
FAIL(right, "heap access shift must be integer");
|
|
}
|
|
RECURSE(VisitWithExpectation(bin->right(), cache_.kAsmSigned,
|
|
"array shift expected to be integer"));
|
|
int n = static_cast<int>(right->raw_value()->AsNumber());
|
|
int expected_shift = ElementShiftSize(type);
|
|
if (expected_shift < 0 || n != expected_shift) {
|
|
FAIL(right, "heap access shift must match element size");
|
|
}
|
|
bin->set_bounds(Bounds(cache_.kAsmSigned));
|
|
}
|
|
Type* result_type;
|
|
if (type->Is(cache_.kAsmIntArrayElement)) {
|
|
result_type = cache_.kAsmIntQ;
|
|
intish_ = kMaxUncombinedAdditiveSteps;
|
|
} else if (type->Is(cache_.kAsmFloat)) {
|
|
if (assigning) {
|
|
result_type = cache_.kAsmFloatDoubleQ;
|
|
} else {
|
|
result_type = cache_.kAsmFloatQ;
|
|
}
|
|
intish_ = 0;
|
|
} else if (type->Is(cache_.kAsmDouble)) {
|
|
if (assigning) {
|
|
result_type = cache_.kAsmFloatDoubleQ;
|
|
if (intish_ != 0) {
|
|
FAIL(expr, "Assignment of floatish to Float64Array");
|
|
}
|
|
} else {
|
|
result_type = cache_.kAsmDoubleQ;
|
|
}
|
|
intish_ = 0;
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
if (assigning) {
|
|
if (!assignment_type->Is(result_type)) {
|
|
FAIL(expr, "illegal type in assignment");
|
|
}
|
|
} else {
|
|
IntersectResult(expr, expected_type_);
|
|
IntersectResult(expr, result_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool AsmTyper::IsStdlibObject(Expression* expr) {
|
|
VariableProxy* proxy = expr->AsVariableProxy();
|
|
if (proxy == NULL) {
|
|
return false;
|
|
}
|
|
Variable* var = proxy->var();
|
|
VariableInfo* info = GetVariableInfo(var, false);
|
|
if (info) {
|
|
if (info->standard_member == kStdlib) return true;
|
|
}
|
|
if (var->location() != VariableLocation::PARAMETER || var->index() != 0) {
|
|
return false;
|
|
}
|
|
info = GetVariableInfo(var, true);
|
|
info->type = Type::Object();
|
|
info->standard_member = kStdlib;
|
|
return true;
|
|
}
|
|
|
|
|
|
Expression* AsmTyper::GetReceiverOfPropertyAccess(Expression* expr,
|
|
const char* name) {
|
|
Property* property = expr->AsProperty();
|
|
if (property == NULL) {
|
|
return NULL;
|
|
}
|
|
Literal* key = property->key()->AsLiteral();
|
|
if (key == NULL || !key->IsPropertyName() ||
|
|
!key->AsPropertyName()->IsUtf8EqualTo(CStrVector(name))) {
|
|
return NULL;
|
|
}
|
|
return property->obj();
|
|
}
|
|
|
|
|
|
bool AsmTyper::IsMathObject(Expression* expr) {
|
|
Expression* obj = GetReceiverOfPropertyAccess(expr, "Math");
|
|
return obj && IsStdlibObject(obj);
|
|
}
|
|
|
|
|
|
bool AsmTyper::IsSIMDObject(Expression* expr) {
|
|
Expression* obj = GetReceiverOfPropertyAccess(expr, "SIMD");
|
|
return obj && IsStdlibObject(obj);
|
|
}
|
|
|
|
|
|
bool AsmTyper::IsSIMDTypeObject(Expression* expr, const char* name) {
|
|
Expression* obj = GetReceiverOfPropertyAccess(expr, name);
|
|
return obj && IsSIMDObject(obj);
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitProperty(Property* expr) {
|
|
if (IsMathObject(expr->obj())) {
|
|
VisitLibraryAccess(&stdlib_math_types_, expr);
|
|
return;
|
|
}
|
|
#define V(NAME, Name, name, lane_count, lane_type) \
|
|
if (IsSIMDTypeObject(expr->obj(), #Name)) { \
|
|
VisitLibraryAccess(&stdlib_simd_##name##_types_, expr); \
|
|
return; \
|
|
} \
|
|
if (IsSIMDTypeObject(expr, #Name)) { \
|
|
VariableInfo* info = stdlib_simd_##name##_constructor_type_; \
|
|
SetResult(expr, info->type); \
|
|
property_info_ = info; \
|
|
return; \
|
|
}
|
|
SIMD128_TYPES(V)
|
|
#undef V
|
|
if (IsStdlibObject(expr->obj())) {
|
|
VisitLibraryAccess(&stdlib_types_, expr);
|
|
return;
|
|
}
|
|
|
|
property_info_ = NULL;
|
|
|
|
// Only recurse at this point so that we avoid needing
|
|
// stdlib.Math to have a real type.
|
|
RECURSE(VisitWithExpectation(expr->obj(), Type::Any(), "bad propety object"));
|
|
|
|
// For heap view or function table access.
|
|
if (computed_type_->IsArray()) {
|
|
VisitHeapAccess(expr, false, NULL);
|
|
return;
|
|
}
|
|
|
|
// stdlib.x or foreign.x
|
|
VariableProxy* proxy = expr->obj()->AsVariableProxy();
|
|
if (proxy != NULL) {
|
|
Variable* var = proxy->var();
|
|
if (var->location() == VariableLocation::PARAMETER && var->index() == 1) {
|
|
// foreign.x is ok.
|
|
SetResult(expr, expected_type_);
|
|
return;
|
|
}
|
|
}
|
|
|
|
FAIL(expr, "invalid property access");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitCall(Call* expr) {
|
|
RECURSE(VisitWithExpectation(expr->expression(), Type::Any(),
|
|
"callee expected to be any"));
|
|
StandardMember standard_member = kNone;
|
|
VariableProxy* proxy = expr->expression()->AsVariableProxy();
|
|
if (proxy) {
|
|
standard_member = VariableAsStandardMember(proxy->var());
|
|
}
|
|
if (!in_function_ && (proxy == NULL || standard_member != kMathFround)) {
|
|
FAIL(expr, "calls forbidden outside function bodies");
|
|
}
|
|
if (proxy == NULL && !expr->expression()->IsProperty()) {
|
|
FAIL(expr, "calls must be to bound variables or function tables");
|
|
}
|
|
if (computed_type_->IsFunction()) {
|
|
Type::FunctionType* fun_type = computed_type_->AsFunction();
|
|
Type* result_type = fun_type->Result();
|
|
ZoneList<Expression*>* args = expr->arguments();
|
|
if (fun_type->Arity() != args->length()) {
|
|
FAIL(expr, "call with wrong arity");
|
|
}
|
|
for (int i = 0; i < args->length(); ++i) {
|
|
Expression* arg = args->at(i);
|
|
RECURSE(VisitWithExpectation(
|
|
arg, fun_type->Parameter(i),
|
|
"call argument expected to match callee parameter"));
|
|
if (standard_member != kNone && standard_member != kMathFround &&
|
|
i == 0) {
|
|
result_type = computed_type_;
|
|
}
|
|
}
|
|
// Handle polymorphic stdlib functions specially.
|
|
if (standard_member == kMathCeil || standard_member == kMathFloor ||
|
|
standard_member == kMathSqrt) {
|
|
if (!args->at(0)->bounds().upper->Is(cache_.kAsmFloat) &&
|
|
!args->at(0)->bounds().upper->Is(cache_.kAsmDouble)) {
|
|
FAIL(expr, "illegal function argument type");
|
|
}
|
|
} else if (standard_member == kMathAbs || standard_member == kMathMin ||
|
|
standard_member == kMathMax) {
|
|
if (!args->at(0)->bounds().upper->Is(cache_.kAsmFloat) &&
|
|
!args->at(0)->bounds().upper->Is(cache_.kAsmDouble) &&
|
|
!args->at(0)->bounds().upper->Is(cache_.kAsmSigned)) {
|
|
FAIL(expr, "illegal function argument type");
|
|
}
|
|
if (args->length() > 1) {
|
|
Type* other = Type::Intersect(args->at(0)->bounds().upper,
|
|
args->at(1)->bounds().upper, zone());
|
|
if (!other->Is(cache_.kAsmFloat) && !other->Is(cache_.kAsmDouble) &&
|
|
!other->Is(cache_.kAsmSigned)) {
|
|
FAIL(expr, "function arguments types don't match");
|
|
}
|
|
}
|
|
}
|
|
intish_ = 0;
|
|
IntersectResult(expr, result_type);
|
|
} else if (computed_type_->Is(Type::Any())) {
|
|
// For foreign calls.
|
|
ZoneList<Expression*>* args = expr->arguments();
|
|
for (int i = 0; i < args->length(); ++i) {
|
|
Expression* arg = args->at(i);
|
|
RECURSE(VisitWithExpectation(arg, Type::Any(),
|
|
"foreign call argument expected to be any"));
|
|
}
|
|
intish_ = kMaxUncombinedAdditiveSteps;
|
|
IntersectResult(expr, Type::Number());
|
|
} else {
|
|
FAIL(expr, "invalid callee");
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitCallNew(CallNew* expr) {
|
|
if (in_function_) {
|
|
FAIL(expr, "new not allowed in module function");
|
|
}
|
|
RECURSE(VisitWithExpectation(expr->expression(), Type::Any(),
|
|
"expected stdlib function"));
|
|
if (computed_type_->IsFunction()) {
|
|
Type::FunctionType* fun_type = computed_type_->AsFunction();
|
|
ZoneList<Expression*>* args = expr->arguments();
|
|
if (fun_type->Arity() != args->length())
|
|
FAIL(expr, "call with wrong arity");
|
|
for (int i = 0; i < args->length(); ++i) {
|
|
Expression* arg = args->at(i);
|
|
RECURSE(VisitWithExpectation(
|
|
arg, fun_type->Parameter(i),
|
|
"constructor argument expected to match callee parameter"));
|
|
}
|
|
IntersectResult(expr, fun_type->Result());
|
|
return;
|
|
}
|
|
|
|
FAIL(expr, "ill-typed new operator");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitCallRuntime(CallRuntime* expr) {
|
|
// Allow runtime calls for now.
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitUnaryOperation(UnaryOperation* expr) {
|
|
switch (expr->op()) {
|
|
case Token::NOT: // Used to encode != and !==
|
|
RECURSE(VisitWithExpectation(expr->expression(), cache_.kAsmInt,
|
|
"operand expected to be integer"));
|
|
IntersectResult(expr, cache_.kAsmSigned);
|
|
return;
|
|
case Token::DELETE:
|
|
FAIL(expr, "delete operator encountered");
|
|
case Token::VOID:
|
|
FAIL(expr, "void operator encountered");
|
|
case Token::TYPEOF:
|
|
FAIL(expr, "typeof operator encountered");
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitCountOperation(CountOperation* expr) {
|
|
FAIL(expr, "increment or decrement operator encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitIntegerBitwiseOperator(BinaryOperation* expr,
|
|
Type* left_expected,
|
|
Type* right_expected,
|
|
Type* result_type, bool conversion) {
|
|
RECURSE(VisitWithExpectation(expr->left(), Type::Number(),
|
|
"left bitwise operand expected to be a number"));
|
|
int left_intish = intish_;
|
|
Type* left_type = computed_type_;
|
|
if (!left_type->Is(left_expected)) {
|
|
FAIL(expr->left(), "left bitwise operand expected to be an integer");
|
|
}
|
|
if (left_intish > kMaxUncombinedAdditiveSteps) {
|
|
FAIL(expr->left(), "too many consecutive additive ops");
|
|
}
|
|
|
|
RECURSE(
|
|
VisitWithExpectation(expr->right(), Type::Number(),
|
|
"right bitwise operand expected to be a number"));
|
|
int right_intish = intish_;
|
|
Type* right_type = computed_type_;
|
|
if (!right_type->Is(right_expected)) {
|
|
FAIL(expr->right(), "right bitwise operand expected to be an integer");
|
|
}
|
|
if (right_intish > kMaxUncombinedAdditiveSteps) {
|
|
FAIL(expr->right(), "too many consecutive additive ops");
|
|
}
|
|
|
|
intish_ = 0;
|
|
|
|
if (left_type->Is(cache_.kAsmFixnum) && right_type->Is(cache_.kAsmInt)) {
|
|
left_type = right_type;
|
|
}
|
|
if (right_type->Is(cache_.kAsmFixnum) && left_type->Is(cache_.kAsmInt)) {
|
|
right_type = left_type;
|
|
}
|
|
if (!conversion) {
|
|
if (!left_type->Is(right_type) || !right_type->Is(left_type)) {
|
|
FAIL(expr, "ill-typed bitwise operation");
|
|
}
|
|
}
|
|
IntersectResult(expr, result_type);
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) {
|
|
switch (expr->op()) {
|
|
case Token::COMMA: {
|
|
RECURSE(VisitWithExpectation(expr->left(), Type::Any(),
|
|
"left comma operand expected to be any"));
|
|
RECURSE(VisitWithExpectation(expr->right(), Type::Any(),
|
|
"right comma operand expected to be any"));
|
|
IntersectResult(expr, computed_type_);
|
|
return;
|
|
}
|
|
case Token::OR:
|
|
case Token::AND:
|
|
FAIL(expr, "illegal logical operator");
|
|
case Token::BIT_OR: {
|
|
// BIT_OR allows Any since it is used as a type coercion.
|
|
VisitIntegerBitwiseOperator(expr, Type::Any(), cache_.kAsmInt,
|
|
cache_.kAsmSigned, true);
|
|
return;
|
|
}
|
|
case Token::BIT_XOR: {
|
|
// Handle booleans specially to handle de-sugared !
|
|
Literal* left = expr->left()->AsLiteral();
|
|
if (left && left->value()->IsBoolean()) {
|
|
if (left->ToBooleanIsTrue()) {
|
|
left->set_bounds(Bounds(cache_.kSingletonOne));
|
|
RECURSE(VisitWithExpectation(expr->right(), cache_.kAsmInt,
|
|
"not operator expects an integer"));
|
|
IntersectResult(expr, cache_.kAsmSigned);
|
|
return;
|
|
} else {
|
|
FAIL(left, "unexpected false");
|
|
}
|
|
}
|
|
// BIT_XOR allows Number since it is used as a type coercion (via ~~).
|
|
VisitIntegerBitwiseOperator(expr, Type::Number(), cache_.kAsmInt,
|
|
cache_.kAsmSigned, true);
|
|
return;
|
|
}
|
|
case Token::SHR: {
|
|
VisitIntegerBitwiseOperator(expr, cache_.kAsmInt, cache_.kAsmInt,
|
|
cache_.kAsmUnsigned, false);
|
|
return;
|
|
}
|
|
case Token::SHL:
|
|
case Token::SAR:
|
|
case Token::BIT_AND: {
|
|
VisitIntegerBitwiseOperator(expr, cache_.kAsmInt, cache_.kAsmInt,
|
|
cache_.kAsmSigned, false);
|
|
return;
|
|
}
|
|
case Token::ADD:
|
|
case Token::SUB:
|
|
case Token::MUL:
|
|
case Token::DIV:
|
|
case Token::MOD: {
|
|
RECURSE(VisitWithExpectation(
|
|
expr->left(), Type::Number(),
|
|
"left arithmetic operand expected to be number"));
|
|
Type* left_type = computed_type_;
|
|
int left_intish = intish_;
|
|
RECURSE(VisitWithExpectation(
|
|
expr->right(), Type::Number(),
|
|
"right arithmetic operand expected to be number"));
|
|
Type* right_type = computed_type_;
|
|
int right_intish = intish_;
|
|
Type* type = Type::Union(left_type, right_type, zone());
|
|
if (type->Is(cache_.kAsmInt)) {
|
|
if (expr->op() == Token::MUL) {
|
|
Literal* right = expr->right()->AsLiteral();
|
|
if (!right) {
|
|
FAIL(expr, "direct integer multiply forbidden");
|
|
}
|
|
if (!right->value()->IsNumber()) {
|
|
FAIL(expr, "multiply must be by an integer");
|
|
}
|
|
int32_t i;
|
|
if (!right->value()->ToInt32(&i)) {
|
|
FAIL(expr, "multiply must be a signed integer");
|
|
}
|
|
i = abs(i);
|
|
if (i >= 1 << 20) {
|
|
FAIL(expr, "multiply must be by value in -2^20 < n < 2^20");
|
|
}
|
|
intish_ = i;
|
|
IntersectResult(expr, cache_.kAsmInt);
|
|
return;
|
|
} else {
|
|
intish_ = left_intish + right_intish + 1;
|
|
if (expr->op() == Token::ADD || expr->op() == Token::SUB) {
|
|
if (intish_ > kMaxUncombinedAdditiveSteps) {
|
|
FAIL(expr, "too many consecutive additive ops");
|
|
}
|
|
} else {
|
|
if (intish_ > kMaxUncombinedMultiplicativeSteps) {
|
|
FAIL(expr, "too many consecutive multiplicative ops");
|
|
}
|
|
}
|
|
IntersectResult(expr, cache_.kAsmInt);
|
|
return;
|
|
}
|
|
} else if (expr->op() == Token::MUL && expr->right()->IsLiteral() &&
|
|
right_type->Is(cache_.kAsmDouble)) {
|
|
// For unary +, expressed as x * 1.0
|
|
IntersectResult(expr, cache_.kAsmDouble);
|
|
return;
|
|
} else if (type->Is(cache_.kAsmFloat) && expr->op() != Token::MOD) {
|
|
if (left_intish != 0 || right_intish != 0) {
|
|
FAIL(expr, "float operation before required fround");
|
|
}
|
|
IntersectResult(expr, cache_.kAsmFloat);
|
|
intish_ = 1;
|
|
return;
|
|
} else if (type->Is(cache_.kAsmDouble)) {
|
|
IntersectResult(expr, cache_.kAsmDouble);
|
|
return;
|
|
} else {
|
|
FAIL(expr, "ill-typed arithmetic operation");
|
|
}
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitCompareOperation(CompareOperation* expr) {
|
|
Token::Value op = expr->op();
|
|
if (op != Token::EQ && op != Token::NE && op != Token::LT &&
|
|
op != Token::LTE && op != Token::GT && op != Token::GTE) {
|
|
FAIL(expr, "illegal comparison operator");
|
|
}
|
|
|
|
RECURSE(
|
|
VisitWithExpectation(expr->left(), Type::Number(),
|
|
"left comparison operand expected to be number"));
|
|
Type* left_type = computed_type_;
|
|
if (!left_type->Is(cache_.kAsmComparable)) {
|
|
FAIL(expr->left(), "bad type on left side of comparison");
|
|
}
|
|
|
|
RECURSE(
|
|
VisitWithExpectation(expr->right(), Type::Number(),
|
|
"right comparison operand expected to be number"));
|
|
Type* right_type = computed_type_;
|
|
if (!right_type->Is(cache_.kAsmComparable)) {
|
|
FAIL(expr->right(), "bad type on right side of comparison");
|
|
}
|
|
|
|
if (!left_type->Is(right_type) && !right_type->Is(left_type)) {
|
|
FAIL(expr, "left and right side of comparison must match");
|
|
}
|
|
|
|
IntersectResult(expr, cache_.kAsmSigned);
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitThisFunction(ThisFunction* expr) {
|
|
FAIL(expr, "this function not allowed");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitDeclarations(ZoneList<Declaration*>* decls) {
|
|
for (int i = 0; i < decls->length(); ++i) {
|
|
Declaration* decl = decls->at(i);
|
|
RECURSE(Visit(decl));
|
|
}
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitImportDeclaration(ImportDeclaration* decl) {
|
|
FAIL(decl, "import declaration encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitExportDeclaration(ExportDeclaration* decl) {
|
|
FAIL(decl, "export declaration encountered");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitClassLiteral(ClassLiteral* expr) {
|
|
FAIL(expr, "class literal not allowed");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitSpread(Spread* expr) { FAIL(expr, "spread not allowed"); }
|
|
|
|
|
|
void AsmTyper::VisitSuperPropertyReference(SuperPropertyReference* expr) {
|
|
FAIL(expr, "super property reference not allowed");
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitSuperCallReference(SuperCallReference* expr) {
|
|
FAIL(expr, "call reference not allowed");
|
|
}
|
|
|
|
|
|
void AsmTyper::InitializeStdlibSIMD() {
|
|
#define V(NAME, Name, name, lane_count, lane_type) \
|
|
{ \
|
|
Type* type = Type::Function(Type::Name(isolate_, zone()), Type::Any(), \
|
|
lane_count, zone()); \
|
|
for (int i = 0; i < lane_count; ++i) { \
|
|
type->AsFunction()->InitParameter(i, Type::Number()); \
|
|
} \
|
|
stdlib_simd_##name##_constructor_type_ = new (zone()) VariableInfo(type); \
|
|
stdlib_simd_##name##_constructor_type_->is_constructor_function = true; \
|
|
}
|
|
SIMD128_TYPES(V)
|
|
#undef V
|
|
}
|
|
|
|
|
|
void AsmTyper::InitializeStdlib() {
|
|
if (allow_simd_) {
|
|
InitializeStdlibSIMD();
|
|
}
|
|
Type* number_type = Type::Number(zone());
|
|
Type* double_type = cache_.kAsmDouble;
|
|
Type* double_fn1_type = Type::Function(double_type, double_type, zone());
|
|
Type* double_fn2_type =
|
|
Type::Function(double_type, double_type, double_type, zone());
|
|
|
|
Type* fround_type = Type::Function(cache_.kAsmFloat, number_type, zone());
|
|
Type* imul_type =
|
|
Type::Function(cache_.kAsmSigned, cache_.kAsmInt, cache_.kAsmInt, zone());
|
|
// TODO(bradnelson): currently only approximating the proper intersection type
|
|
// (which we cannot currently represent).
|
|
Type* number_fn1_type = Type::Function(number_type, number_type, zone());
|
|
Type* number_fn2_type =
|
|
Type::Function(number_type, number_type, number_type, zone());
|
|
|
|
struct Assignment {
|
|
const char* name;
|
|
StandardMember standard_member;
|
|
Type* type;
|
|
};
|
|
|
|
const Assignment math[] = {{"PI", kMathPI, double_type},
|
|
{"E", kMathE, double_type},
|
|
{"LN2", kMathLN2, double_type},
|
|
{"LN10", kMathLN10, double_type},
|
|
{"LOG2E", kMathLOG2E, double_type},
|
|
{"LOG10E", kMathLOG10E, double_type},
|
|
{"SQRT2", kMathSQRT2, double_type},
|
|
{"SQRT1_2", kMathSQRT1_2, double_type},
|
|
{"imul", kMathImul, imul_type},
|
|
{"abs", kMathAbs, number_fn1_type},
|
|
{"ceil", kMathCeil, number_fn1_type},
|
|
{"floor", kMathFloor, number_fn1_type},
|
|
{"fround", kMathFround, fround_type},
|
|
{"pow", kMathPow, double_fn2_type},
|
|
{"exp", kMathExp, double_fn1_type},
|
|
{"log", kMathLog, double_fn1_type},
|
|
{"min", kMathMin, number_fn2_type},
|
|
{"max", kMathMax, number_fn2_type},
|
|
{"sqrt", kMathSqrt, number_fn1_type},
|
|
{"cos", kMathCos, double_fn1_type},
|
|
{"sin", kMathSin, double_fn1_type},
|
|
{"tan", kMathTan, double_fn1_type},
|
|
{"acos", kMathAcos, double_fn1_type},
|
|
{"asin", kMathAsin, double_fn1_type},
|
|
{"atan", kMathAtan, double_fn1_type},
|
|
{"atan2", kMathAtan2, double_fn2_type}};
|
|
for (unsigned i = 0; i < arraysize(math); ++i) {
|
|
stdlib_math_types_[math[i].name] = new (zone()) VariableInfo(math[i].type);
|
|
stdlib_math_types_[math[i].name]->standard_member = math[i].standard_member;
|
|
}
|
|
stdlib_math_types_["fround"]->is_check_function = true;
|
|
|
|
stdlib_types_["Infinity"] = new (zone()) VariableInfo(double_type);
|
|
stdlib_types_["Infinity"]->standard_member = kInfinity;
|
|
stdlib_types_["NaN"] = new (zone()) VariableInfo(double_type);
|
|
stdlib_types_["NaN"]->standard_member = kNaN;
|
|
Type* buffer_type = Type::Any(zone());
|
|
#define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \
|
|
stdlib_types_[#TypeName "Array"] = new (zone()) VariableInfo( \
|
|
Type::Function(cache_.k##TypeName##Array, buffer_type, zone()));
|
|
TYPED_ARRAYS(TYPED_ARRAY)
|
|
#undef TYPED_ARRAY
|
|
|
|
#define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \
|
|
stdlib_heap_types_[#TypeName "Array"] = new (zone()) VariableInfo( \
|
|
Type::Function(cache_.k##TypeName##Array, buffer_type, zone()));
|
|
TYPED_ARRAYS(TYPED_ARRAY)
|
|
#undef TYPED_ARRAY
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitLibraryAccess(ObjectTypeMap* map, Property* expr) {
|
|
Literal* key = expr->key()->AsLiteral();
|
|
if (key == NULL || !key->IsPropertyName())
|
|
FAIL(expr, "invalid key used on stdlib member");
|
|
Handle<String> name = key->AsPropertyName();
|
|
VariableInfo* info = LibType(map, name);
|
|
if (info == NULL || info->type == NULL) FAIL(expr, "unknown stdlib function");
|
|
SetResult(expr, info->type);
|
|
property_info_ = info;
|
|
}
|
|
|
|
|
|
AsmTyper::VariableInfo* AsmTyper::LibType(ObjectTypeMap* map,
|
|
Handle<String> name) {
|
|
base::SmartArrayPointer<char> aname = name->ToCString();
|
|
ObjectTypeMap::iterator i = map->find(std::string(aname.get()));
|
|
if (i == map->end()) {
|
|
return NULL;
|
|
}
|
|
return i->second;
|
|
}
|
|
|
|
|
|
void AsmTyper::SetType(Variable* variable, Type* type) {
|
|
VariableInfo* info = GetVariableInfo(variable, true);
|
|
info->type = type;
|
|
}
|
|
|
|
|
|
Type* AsmTyper::GetType(Variable* variable) {
|
|
VariableInfo* info = GetVariableInfo(variable, false);
|
|
if (!info) return NULL;
|
|
return info->type;
|
|
}
|
|
|
|
|
|
AsmTyper::VariableInfo* AsmTyper::GetVariableInfo(Variable* variable,
|
|
bool setting) {
|
|
ZoneHashMap::Entry* entry;
|
|
ZoneHashMap* map;
|
|
if (in_function_) {
|
|
map = &local_variable_type_;
|
|
} else {
|
|
map = &global_variable_type_;
|
|
}
|
|
if (setting) {
|
|
entry = map->LookupOrInsert(variable, ComputePointerHash(variable),
|
|
ZoneAllocationPolicy(zone()));
|
|
} else {
|
|
entry = map->Lookup(variable, ComputePointerHash(variable));
|
|
if (!entry && in_function_) {
|
|
entry =
|
|
global_variable_type_.Lookup(variable, ComputePointerHash(variable));
|
|
if (entry && entry->value) {
|
|
}
|
|
}
|
|
}
|
|
if (!entry) return NULL;
|
|
if (!entry->value) {
|
|
if (!setting) return NULL;
|
|
entry->value = new (zone()) VariableInfo;
|
|
}
|
|
return reinterpret_cast<VariableInfo*>(entry->value);
|
|
}
|
|
|
|
|
|
void AsmTyper::SetVariableInfo(Variable* variable, const VariableInfo* info) {
|
|
VariableInfo* dest = GetVariableInfo(variable, true);
|
|
dest->type = info->type;
|
|
dest->is_check_function = info->is_check_function;
|
|
dest->is_constructor_function = info->is_constructor_function;
|
|
dest->standard_member = info->standard_member;
|
|
}
|
|
|
|
|
|
AsmTyper::StandardMember AsmTyper::VariableAsStandardMember(
|
|
Variable* variable) {
|
|
VariableInfo* info = GetVariableInfo(variable, false);
|
|
if (!info) return kNone;
|
|
return info->standard_member;
|
|
}
|
|
|
|
|
|
void AsmTyper::SetResult(Expression* expr, Type* type) {
|
|
computed_type_ = type;
|
|
expr->set_bounds(Bounds(computed_type_));
|
|
}
|
|
|
|
|
|
void AsmTyper::IntersectResult(Expression* expr, Type* type) {
|
|
computed_type_ = type;
|
|
Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone());
|
|
expr->set_bounds(Bounds(bounded_type));
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitWithExpectation(Expression* expr, Type* expected_type,
|
|
const char* msg) {
|
|
Type* save = expected_type_;
|
|
expected_type_ = expected_type;
|
|
RECURSE(Visit(expr));
|
|
Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone());
|
|
if (bounded_type->Is(Type::None(zone()))) {
|
|
#ifdef DEBUG
|
|
PrintF("Computed type: ");
|
|
computed_type_->Print();
|
|
PrintF("Expected type: ");
|
|
expected_type_->Print();
|
|
#endif
|
|
FAIL(expr, msg);
|
|
}
|
|
expected_type_ = save;
|
|
}
|
|
|
|
|
|
void AsmTyper::VisitRewritableAssignmentExpression(
|
|
RewritableAssignmentExpression* expr) {
|
|
RECURSE(Visit(expr->expression()));
|
|
}
|
|
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|