f6807d7897
R=mstarzinger@chromium.org BUG= Review URL: https://codereview.chromium.org/547293004 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@24012 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1459 lines
49 KiB
C++
1459 lines
49 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/v8.h"
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
|
|
#include "src/code-factory.h"
|
|
#include "src/codegen.h"
|
|
#include "src/deoptimizer.h"
|
|
#include "src/full-codegen.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
|
|
void Builtins::Generate_Adaptor(MacroAssembler* masm,
|
|
CFunctionId id,
|
|
BuiltinExtraArguments extra_args) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : number of arguments excluding receiver
|
|
// -- edi : called function (only guaranteed when
|
|
// extra_args requires it)
|
|
// -- esi : context
|
|
// -- esp[0] : return address
|
|
// -- esp[4] : last argument
|
|
// -- ...
|
|
// -- esp[4 * argc] : first argument (argc == eax)
|
|
// -- esp[4 * (argc +1)] : receiver
|
|
// -----------------------------------
|
|
|
|
// Insert extra arguments.
|
|
int num_extra_args = 0;
|
|
if (extra_args == NEEDS_CALLED_FUNCTION) {
|
|
num_extra_args = 1;
|
|
Register scratch = ebx;
|
|
__ pop(scratch); // Save return address.
|
|
__ push(edi);
|
|
__ push(scratch); // Restore return address.
|
|
} else {
|
|
DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
|
|
}
|
|
|
|
// JumpToExternalReference expects eax to contain the number of arguments
|
|
// including the receiver and the extra arguments.
|
|
__ add(eax, Immediate(num_extra_args + 1));
|
|
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
|
|
}
|
|
|
|
|
|
static void CallRuntimePassFunction(
|
|
MacroAssembler* masm, Runtime::FunctionId function_id) {
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
// Push a copy of the function.
|
|
__ push(edi);
|
|
// Function is also the parameter to the runtime call.
|
|
__ push(edi);
|
|
|
|
__ CallRuntime(function_id, 1);
|
|
// Restore receiver.
|
|
__ pop(edi);
|
|
}
|
|
|
|
|
|
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
|
|
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ mov(eax, FieldOperand(eax, SharedFunctionInfo::kCodeOffset));
|
|
__ lea(eax, FieldOperand(eax, Code::kHeaderSize));
|
|
__ jmp(eax);
|
|
}
|
|
|
|
|
|
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
|
|
__ lea(eax, FieldOperand(eax, Code::kHeaderSize));
|
|
__ jmp(eax);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
|
|
// Checking whether the queued function is ready for install is optional,
|
|
// since we come across interrupts and stack checks elsewhere. However,
|
|
// not checking may delay installing ready functions, and always checking
|
|
// would be quite expensive. A good compromise is to first check against
|
|
// stack limit as a cue for an interrupt signal.
|
|
Label ok;
|
|
ExternalReference stack_limit =
|
|
ExternalReference::address_of_stack_limit(masm->isolate());
|
|
__ cmp(esp, Operand::StaticVariable(stack_limit));
|
|
__ j(above_equal, &ok, Label::kNear);
|
|
|
|
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
|
|
GenerateTailCallToReturnedCode(masm);
|
|
|
|
__ bind(&ok);
|
|
GenerateTailCallToSharedCode(masm);
|
|
}
|
|
|
|
|
|
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
|
|
bool is_api_function,
|
|
bool create_memento) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax: number of arguments
|
|
// -- edi: constructor function
|
|
// -- ebx: allocation site or undefined
|
|
// -----------------------------------
|
|
|
|
// Should never create mementos for api functions.
|
|
DCHECK(!is_api_function || !create_memento);
|
|
|
|
// Enter a construct frame.
|
|
{
|
|
FrameScope scope(masm, StackFrame::CONSTRUCT);
|
|
|
|
if (create_memento) {
|
|
__ AssertUndefinedOrAllocationSite(ebx);
|
|
__ push(ebx);
|
|
}
|
|
|
|
// Store a smi-tagged arguments count on the stack.
|
|
__ SmiTag(eax);
|
|
__ push(eax);
|
|
|
|
// Push the function to invoke on the stack.
|
|
__ push(edi);
|
|
|
|
// Try to allocate the object without transitioning into C code. If any of
|
|
// the preconditions is not met, the code bails out to the runtime call.
|
|
Label rt_call, allocated;
|
|
if (FLAG_inline_new) {
|
|
Label undo_allocation;
|
|
ExternalReference debug_step_in_fp =
|
|
ExternalReference::debug_step_in_fp_address(masm->isolate());
|
|
__ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
|
|
__ j(not_equal, &rt_call);
|
|
|
|
// Verified that the constructor is a JSFunction.
|
|
// Load the initial map and verify that it is in fact a map.
|
|
// edi: constructor
|
|
__ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi
|
|
__ JumpIfSmi(eax, &rt_call);
|
|
// edi: constructor
|
|
// eax: initial map (if proven valid below)
|
|
__ CmpObjectType(eax, MAP_TYPE, ebx);
|
|
__ j(not_equal, &rt_call);
|
|
|
|
// Check that the constructor is not constructing a JSFunction (see
|
|
// comments in Runtime_NewObject in runtime.cc). In which case the
|
|
// initial map's instance type would be JS_FUNCTION_TYPE.
|
|
// edi: constructor
|
|
// eax: initial map
|
|
__ CmpInstanceType(eax, JS_FUNCTION_TYPE);
|
|
__ j(equal, &rt_call);
|
|
|
|
if (!is_api_function) {
|
|
Label allocate;
|
|
// The code below relies on these assumptions.
|
|
STATIC_ASSERT(JSFunction::kNoSlackTracking == 0);
|
|
STATIC_ASSERT(Map::ConstructionCount::kShift +
|
|
Map::ConstructionCount::kSize == 32);
|
|
// Check if slack tracking is enabled.
|
|
__ mov(esi, FieldOperand(eax, Map::kBitField3Offset));
|
|
__ shr(esi, Map::ConstructionCount::kShift);
|
|
__ j(zero, &allocate); // JSFunction::kNoSlackTracking
|
|
// Decrease generous allocation count.
|
|
__ sub(FieldOperand(eax, Map::kBitField3Offset),
|
|
Immediate(1 << Map::ConstructionCount::kShift));
|
|
|
|
__ cmp(esi, JSFunction::kFinishSlackTracking);
|
|
__ j(not_equal, &allocate);
|
|
|
|
__ push(eax);
|
|
__ push(edi);
|
|
|
|
__ push(edi); // constructor
|
|
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
|
|
|
|
__ pop(edi);
|
|
__ pop(eax);
|
|
__ xor_(esi, esi); // JSFunction::kNoSlackTracking
|
|
|
|
__ bind(&allocate);
|
|
}
|
|
|
|
// Now allocate the JSObject on the heap.
|
|
// edi: constructor
|
|
// eax: initial map
|
|
__ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
|
|
__ shl(edi, kPointerSizeLog2);
|
|
if (create_memento) {
|
|
__ add(edi, Immediate(AllocationMemento::kSize));
|
|
}
|
|
|
|
__ Allocate(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
|
|
|
|
Factory* factory = masm->isolate()->factory();
|
|
|
|
// Allocated the JSObject, now initialize the fields.
|
|
// eax: initial map
|
|
// ebx: JSObject
|
|
// edi: start of next object (including memento if create_memento)
|
|
__ mov(Operand(ebx, JSObject::kMapOffset), eax);
|
|
__ mov(ecx, factory->empty_fixed_array());
|
|
__ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
|
|
__ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
|
|
// Set extra fields in the newly allocated object.
|
|
// eax: initial map
|
|
// ebx: JSObject
|
|
// edi: start of next object (including memento if create_memento)
|
|
// esi: slack tracking counter (non-API function case)
|
|
__ mov(edx, factory->undefined_value());
|
|
__ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
|
|
if (!is_api_function) {
|
|
Label no_inobject_slack_tracking;
|
|
|
|
// Check if slack tracking is enabled.
|
|
__ cmp(esi, JSFunction::kNoSlackTracking);
|
|
__ j(equal, &no_inobject_slack_tracking);
|
|
|
|
// Allocate object with a slack.
|
|
__ movzx_b(esi,
|
|
FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
|
|
__ lea(esi,
|
|
Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize));
|
|
// esi: offset of first field after pre-allocated fields
|
|
if (FLAG_debug_code) {
|
|
__ cmp(esi, edi);
|
|
__ Assert(less_equal,
|
|
kUnexpectedNumberOfPreAllocatedPropertyFields);
|
|
}
|
|
__ InitializeFieldsWithFiller(ecx, esi, edx);
|
|
__ mov(edx, factory->one_pointer_filler_map());
|
|
// Fill the remaining fields with one pointer filler map.
|
|
|
|
__ bind(&no_inobject_slack_tracking);
|
|
}
|
|
|
|
if (create_memento) {
|
|
__ lea(esi, Operand(edi, -AllocationMemento::kSize));
|
|
__ InitializeFieldsWithFiller(ecx, esi, edx);
|
|
|
|
// Fill in memento fields if necessary.
|
|
// esi: points to the allocated but uninitialized memento.
|
|
__ mov(Operand(esi, AllocationMemento::kMapOffset),
|
|
factory->allocation_memento_map());
|
|
// Get the cell or undefined.
|
|
__ mov(edx, Operand(esp, kPointerSize*2));
|
|
__ mov(Operand(esi, AllocationMemento::kAllocationSiteOffset),
|
|
edx);
|
|
} else {
|
|
__ InitializeFieldsWithFiller(ecx, edi, edx);
|
|
}
|
|
|
|
// Add the object tag to make the JSObject real, so that we can continue
|
|
// and jump into the continuation code at any time from now on. Any
|
|
// failures need to undo the allocation, so that the heap is in a
|
|
// consistent state and verifiable.
|
|
// eax: initial map
|
|
// ebx: JSObject
|
|
// edi: start of next object
|
|
__ or_(ebx, Immediate(kHeapObjectTag));
|
|
|
|
// Check if a non-empty properties array is needed.
|
|
// Allocate and initialize a FixedArray if it is.
|
|
// eax: initial map
|
|
// ebx: JSObject
|
|
// edi: start of next object
|
|
// Calculate the total number of properties described by the map.
|
|
__ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
|
|
__ movzx_b(ecx,
|
|
FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
|
|
__ add(edx, ecx);
|
|
// Calculate unused properties past the end of the in-object properties.
|
|
__ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
|
|
__ sub(edx, ecx);
|
|
// Done if no extra properties are to be allocated.
|
|
__ j(zero, &allocated);
|
|
__ Assert(positive, kPropertyAllocationCountFailed);
|
|
|
|
// Scale the number of elements by pointer size and add the header for
|
|
// FixedArrays to the start of the next object calculation from above.
|
|
// ebx: JSObject
|
|
// edi: start of next object (will be start of FixedArray)
|
|
// edx: number of elements in properties array
|
|
__ Allocate(FixedArray::kHeaderSize,
|
|
times_pointer_size,
|
|
edx,
|
|
REGISTER_VALUE_IS_INT32,
|
|
edi,
|
|
ecx,
|
|
no_reg,
|
|
&undo_allocation,
|
|
RESULT_CONTAINS_TOP);
|
|
|
|
// Initialize the FixedArray.
|
|
// ebx: JSObject
|
|
// edi: FixedArray
|
|
// edx: number of elements
|
|
// ecx: start of next object
|
|
__ mov(eax, factory->fixed_array_map());
|
|
__ mov(Operand(edi, FixedArray::kMapOffset), eax); // setup the map
|
|
__ SmiTag(edx);
|
|
__ mov(Operand(edi, FixedArray::kLengthOffset), edx); // and length
|
|
|
|
// Initialize the fields to undefined.
|
|
// ebx: JSObject
|
|
// edi: FixedArray
|
|
// ecx: start of next object
|
|
{ Label loop, entry;
|
|
__ mov(edx, factory->undefined_value());
|
|
__ lea(eax, Operand(edi, FixedArray::kHeaderSize));
|
|
__ jmp(&entry);
|
|
__ bind(&loop);
|
|
__ mov(Operand(eax, 0), edx);
|
|
__ add(eax, Immediate(kPointerSize));
|
|
__ bind(&entry);
|
|
__ cmp(eax, ecx);
|
|
__ j(below, &loop);
|
|
}
|
|
|
|
// Store the initialized FixedArray into the properties field of
|
|
// the JSObject
|
|
// ebx: JSObject
|
|
// edi: FixedArray
|
|
__ or_(edi, Immediate(kHeapObjectTag)); // add the heap tag
|
|
__ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
|
|
|
|
|
|
// Continue with JSObject being successfully allocated
|
|
// ebx: JSObject
|
|
__ jmp(&allocated);
|
|
|
|
// Undo the setting of the new top so that the heap is verifiable. For
|
|
// example, the map's unused properties potentially do not match the
|
|
// allocated objects unused properties.
|
|
// ebx: JSObject (previous new top)
|
|
__ bind(&undo_allocation);
|
|
__ UndoAllocationInNewSpace(ebx);
|
|
}
|
|
|
|
// Allocate the new receiver object using the runtime call.
|
|
__ bind(&rt_call);
|
|
int offset = 0;
|
|
if (create_memento) {
|
|
// Get the cell or allocation site.
|
|
__ mov(edi, Operand(esp, kPointerSize * 2));
|
|
__ push(edi);
|
|
offset = kPointerSize;
|
|
}
|
|
|
|
// Must restore esi (context) and edi (constructor) before calling runtime.
|
|
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
|
|
__ mov(edi, Operand(esp, offset));
|
|
// edi: function (constructor)
|
|
__ push(edi);
|
|
if (create_memento) {
|
|
__ CallRuntime(Runtime::kNewObjectWithAllocationSite, 2);
|
|
} else {
|
|
__ CallRuntime(Runtime::kNewObject, 1);
|
|
}
|
|
__ mov(ebx, eax); // store result in ebx
|
|
|
|
// If we ended up using the runtime, and we want a memento, then the
|
|
// runtime call made it for us, and we shouldn't do create count
|
|
// increment.
|
|
Label count_incremented;
|
|
if (create_memento) {
|
|
__ jmp(&count_incremented);
|
|
}
|
|
|
|
// New object allocated.
|
|
// ebx: newly allocated object
|
|
__ bind(&allocated);
|
|
|
|
if (create_memento) {
|
|
__ mov(ecx, Operand(esp, kPointerSize * 2));
|
|
__ cmp(ecx, masm->isolate()->factory()->undefined_value());
|
|
__ j(equal, &count_incremented);
|
|
// ecx is an AllocationSite. We are creating a memento from it, so we
|
|
// need to increment the memento create count.
|
|
__ add(FieldOperand(ecx, AllocationSite::kPretenureCreateCountOffset),
|
|
Immediate(Smi::FromInt(1)));
|
|
__ bind(&count_incremented);
|
|
}
|
|
|
|
// Retrieve the function from the stack.
|
|
__ pop(edi);
|
|
|
|
// Retrieve smi-tagged arguments count from the stack.
|
|
__ mov(eax, Operand(esp, 0));
|
|
__ SmiUntag(eax);
|
|
|
|
// Push the allocated receiver to the stack. We need two copies
|
|
// because we may have to return the original one and the calling
|
|
// conventions dictate that the called function pops the receiver.
|
|
__ push(ebx);
|
|
__ push(ebx);
|
|
|
|
// Set up pointer to last argument.
|
|
__ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
|
|
|
|
// Copy arguments and receiver to the expression stack.
|
|
Label loop, entry;
|
|
__ mov(ecx, eax);
|
|
__ jmp(&entry);
|
|
__ bind(&loop);
|
|
__ push(Operand(ebx, ecx, times_4, 0));
|
|
__ bind(&entry);
|
|
__ dec(ecx);
|
|
__ j(greater_equal, &loop);
|
|
|
|
// Call the function.
|
|
if (is_api_function) {
|
|
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
|
|
Handle<Code> code =
|
|
masm->isolate()->builtins()->HandleApiCallConstruct();
|
|
__ call(code, RelocInfo::CODE_TARGET);
|
|
} else {
|
|
ParameterCount actual(eax);
|
|
__ InvokeFunction(edi, actual, CALL_FUNCTION,
|
|
NullCallWrapper());
|
|
}
|
|
|
|
// Store offset of return address for deoptimizer.
|
|
if (!is_api_function) {
|
|
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
|
|
}
|
|
|
|
// Restore context from the frame.
|
|
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
|
|
|
|
// If the result is an object (in the ECMA sense), we should get rid
|
|
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
|
|
// on page 74.
|
|
Label use_receiver, exit;
|
|
|
|
// If the result is a smi, it is *not* an object in the ECMA sense.
|
|
__ JumpIfSmi(eax, &use_receiver);
|
|
|
|
// If the type of the result (stored in its map) is less than
|
|
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
|
|
__ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
|
|
__ j(above_equal, &exit);
|
|
|
|
// Throw away the result of the constructor invocation and use the
|
|
// on-stack receiver as the result.
|
|
__ bind(&use_receiver);
|
|
__ mov(eax, Operand(esp, 0));
|
|
|
|
// Restore the arguments count and leave the construct frame.
|
|
__ bind(&exit);
|
|
__ mov(ebx, Operand(esp, kPointerSize)); // Get arguments count.
|
|
|
|
// Leave construct frame.
|
|
}
|
|
|
|
// Remove caller arguments from the stack and return.
|
|
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
|
|
__ pop(ecx);
|
|
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
|
|
__ push(ecx);
|
|
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
|
|
Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
|
|
Generate_JSConstructStubHelper(masm, true, false);
|
|
}
|
|
|
|
|
|
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
|
|
bool is_construct) {
|
|
ProfileEntryHookStub::MaybeCallEntryHook(masm);
|
|
|
|
// Clear the context before we push it when entering the internal frame.
|
|
__ Move(esi, Immediate(0));
|
|
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
// Load the previous frame pointer (ebx) to access C arguments
|
|
__ mov(ebx, Operand(ebp, 0));
|
|
|
|
// Get the function from the frame and setup the context.
|
|
__ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
|
|
__ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
|
|
|
|
// Push the function and the receiver onto the stack.
|
|
__ push(ecx);
|
|
__ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
|
|
|
|
// Load the number of arguments and setup pointer to the arguments.
|
|
__ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
|
|
__ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
|
|
|
|
// Copy arguments to the stack in a loop.
|
|
Label loop, entry;
|
|
__ Move(ecx, Immediate(0));
|
|
__ jmp(&entry);
|
|
__ bind(&loop);
|
|
__ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
|
|
__ push(Operand(edx, 0)); // dereference handle
|
|
__ inc(ecx);
|
|
__ bind(&entry);
|
|
__ cmp(ecx, eax);
|
|
__ j(not_equal, &loop);
|
|
|
|
// Get the function from the stack and call it.
|
|
// kPointerSize for the receiver.
|
|
__ mov(edi, Operand(esp, eax, times_4, kPointerSize));
|
|
|
|
// Invoke the code.
|
|
if (is_construct) {
|
|
// No type feedback cell is available
|
|
__ mov(ebx, masm->isolate()->factory()->undefined_value());
|
|
CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
|
|
__ CallStub(&stub);
|
|
} else {
|
|
ParameterCount actual(eax);
|
|
__ InvokeFunction(edi, actual, CALL_FUNCTION,
|
|
NullCallWrapper());
|
|
}
|
|
|
|
// Exit the internal frame. Notice that this also removes the empty.
|
|
// context and the function left on the stack by the code
|
|
// invocation.
|
|
}
|
|
__ ret(kPointerSize); // Remove receiver.
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
|
|
Generate_JSEntryTrampolineHelper(masm, false);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
|
|
Generate_JSEntryTrampolineHelper(masm, true);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
|
|
CallRuntimePassFunction(masm, Runtime::kCompileLazy);
|
|
GenerateTailCallToReturnedCode(masm);
|
|
}
|
|
|
|
|
|
|
|
static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
// Push a copy of the function.
|
|
__ push(edi);
|
|
// Function is also the parameter to the runtime call.
|
|
__ push(edi);
|
|
// Whether to compile in a background thread.
|
|
__ Push(masm->isolate()->factory()->ToBoolean(concurrent));
|
|
|
|
__ CallRuntime(Runtime::kCompileOptimized, 2);
|
|
// Restore receiver.
|
|
__ pop(edi);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
|
|
CallCompileOptimized(masm, false);
|
|
GenerateTailCallToReturnedCode(masm);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
|
|
CallCompileOptimized(masm, true);
|
|
GenerateTailCallToReturnedCode(masm);
|
|
}
|
|
|
|
|
|
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
|
|
// For now, we are relying on the fact that make_code_young doesn't do any
|
|
// garbage collection which allows us to save/restore the registers without
|
|
// worrying about which of them contain pointers. We also don't build an
|
|
// internal frame to make the code faster, since we shouldn't have to do stack
|
|
// crawls in MakeCodeYoung. This seems a bit fragile.
|
|
|
|
// Re-execute the code that was patched back to the young age when
|
|
// the stub returns.
|
|
__ sub(Operand(esp, 0), Immediate(5));
|
|
__ pushad();
|
|
__ mov(eax, Operand(esp, 8 * kPointerSize));
|
|
{
|
|
FrameScope scope(masm, StackFrame::MANUAL);
|
|
__ PrepareCallCFunction(2, ebx);
|
|
__ mov(Operand(esp, 1 * kPointerSize),
|
|
Immediate(ExternalReference::isolate_address(masm->isolate())));
|
|
__ mov(Operand(esp, 0), eax);
|
|
__ CallCFunction(
|
|
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
|
|
}
|
|
__ popad();
|
|
__ ret(0);
|
|
}
|
|
|
|
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
|
|
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
|
|
MacroAssembler* masm) { \
|
|
GenerateMakeCodeYoungAgainCommon(masm); \
|
|
} \
|
|
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
|
|
MacroAssembler* masm) { \
|
|
GenerateMakeCodeYoungAgainCommon(masm); \
|
|
}
|
|
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
|
|
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
|
|
|
|
|
|
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
|
|
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
|
|
// that make_code_young doesn't do any garbage collection which allows us to
|
|
// save/restore the registers without worrying about which of them contain
|
|
// pointers.
|
|
__ pushad();
|
|
__ mov(eax, Operand(esp, 8 * kPointerSize));
|
|
__ sub(eax, Immediate(Assembler::kCallInstructionLength));
|
|
{ // NOLINT
|
|
FrameScope scope(masm, StackFrame::MANUAL);
|
|
__ PrepareCallCFunction(2, ebx);
|
|
__ mov(Operand(esp, 1 * kPointerSize),
|
|
Immediate(ExternalReference::isolate_address(masm->isolate())));
|
|
__ mov(Operand(esp, 0), eax);
|
|
__ CallCFunction(
|
|
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
|
|
2);
|
|
}
|
|
__ popad();
|
|
|
|
// Perform prologue operations usually performed by the young code stub.
|
|
__ pop(eax); // Pop return address into scratch register.
|
|
__ push(ebp); // Caller's frame pointer.
|
|
__ mov(ebp, esp);
|
|
__ push(esi); // Callee's context.
|
|
__ push(edi); // Callee's JS Function.
|
|
__ push(eax); // Push return address after frame prologue.
|
|
|
|
// Jump to point after the code-age stub.
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
|
|
GenerateMakeCodeYoungAgainCommon(masm);
|
|
}
|
|
|
|
|
|
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
|
|
SaveFPRegsMode save_doubles) {
|
|
// Enter an internal frame.
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
// Preserve registers across notification, this is important for compiled
|
|
// stubs that tail call the runtime on deopts passing their parameters in
|
|
// registers.
|
|
__ pushad();
|
|
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
|
|
__ popad();
|
|
// Tear down internal frame.
|
|
}
|
|
|
|
__ pop(MemOperand(esp, 0)); // Ignore state offset
|
|
__ ret(0); // Return to IC Miss stub, continuation still on stack.
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
|
|
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
|
|
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
|
|
}
|
|
|
|
|
|
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
|
|
Deoptimizer::BailoutType type) {
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
// Pass deoptimization type to the runtime system.
|
|
__ push(Immediate(Smi::FromInt(static_cast<int>(type))));
|
|
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
|
|
|
|
// Tear down internal frame.
|
|
}
|
|
|
|
// Get the full codegen state from the stack and untag it.
|
|
__ mov(ecx, Operand(esp, 1 * kPointerSize));
|
|
__ SmiUntag(ecx);
|
|
|
|
// Switch on the state.
|
|
Label not_no_registers, not_tos_eax;
|
|
__ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
|
|
__ j(not_equal, ¬_no_registers, Label::kNear);
|
|
__ ret(1 * kPointerSize); // Remove state.
|
|
|
|
__ bind(¬_no_registers);
|
|
__ mov(eax, Operand(esp, 2 * kPointerSize));
|
|
__ cmp(ecx, FullCodeGenerator::TOS_REG);
|
|
__ j(not_equal, ¬_tos_eax, Label::kNear);
|
|
__ ret(2 * kPointerSize); // Remove state, eax.
|
|
|
|
__ bind(¬_tos_eax);
|
|
__ Abort(kNoCasesLeft);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
|
|
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
|
|
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
|
|
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
|
|
Factory* factory = masm->isolate()->factory();
|
|
|
|
// 1. Make sure we have at least one argument.
|
|
{ Label done;
|
|
__ test(eax, eax);
|
|
__ j(not_zero, &done);
|
|
__ pop(ebx);
|
|
__ push(Immediate(factory->undefined_value()));
|
|
__ push(ebx);
|
|
__ inc(eax);
|
|
__ bind(&done);
|
|
}
|
|
|
|
// 2. Get the function to call (passed as receiver) from the stack, check
|
|
// if it is a function.
|
|
Label slow, non_function;
|
|
// 1 ~ return address.
|
|
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
|
|
__ JumpIfSmi(edi, &non_function);
|
|
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
|
|
__ j(not_equal, &slow);
|
|
|
|
|
|
// 3a. Patch the first argument if necessary when calling a function.
|
|
Label shift_arguments;
|
|
__ Move(edx, Immediate(0)); // indicate regular JS_FUNCTION
|
|
{ Label convert_to_object, use_global_proxy, patch_receiver;
|
|
// Change context eagerly in case we need the global receiver.
|
|
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
|
|
|
|
// Do not transform the receiver for strict mode functions.
|
|
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
|
|
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
|
|
__ j(not_equal, &shift_arguments);
|
|
|
|
// Do not transform the receiver for natives (shared already in ebx).
|
|
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset),
|
|
1 << SharedFunctionInfo::kNativeBitWithinByte);
|
|
__ j(not_equal, &shift_arguments);
|
|
|
|
// Compute the receiver in sloppy mode.
|
|
__ mov(ebx, Operand(esp, eax, times_4, 0)); // First argument.
|
|
|
|
// Call ToObject on the receiver if it is not an object, or use the
|
|
// global object if it is null or undefined.
|
|
__ JumpIfSmi(ebx, &convert_to_object);
|
|
__ cmp(ebx, factory->null_value());
|
|
__ j(equal, &use_global_proxy);
|
|
__ cmp(ebx, factory->undefined_value());
|
|
__ j(equal, &use_global_proxy);
|
|
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
|
|
__ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
|
|
__ j(above_equal, &shift_arguments);
|
|
|
|
__ bind(&convert_to_object);
|
|
|
|
{ // In order to preserve argument count.
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ SmiTag(eax);
|
|
__ push(eax);
|
|
|
|
__ push(ebx);
|
|
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
|
__ mov(ebx, eax);
|
|
__ Move(edx, Immediate(0)); // restore
|
|
|
|
__ pop(eax);
|
|
__ SmiUntag(eax);
|
|
}
|
|
|
|
// Restore the function to edi.
|
|
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
|
|
__ jmp(&patch_receiver);
|
|
|
|
__ bind(&use_global_proxy);
|
|
__ mov(ebx,
|
|
Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalProxyOffset));
|
|
|
|
__ bind(&patch_receiver);
|
|
__ mov(Operand(esp, eax, times_4, 0), ebx);
|
|
|
|
__ jmp(&shift_arguments);
|
|
}
|
|
|
|
// 3b. Check for function proxy.
|
|
__ bind(&slow);
|
|
__ Move(edx, Immediate(1)); // indicate function proxy
|
|
__ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
|
|
__ j(equal, &shift_arguments);
|
|
__ bind(&non_function);
|
|
__ Move(edx, Immediate(2)); // indicate non-function
|
|
|
|
// 3c. Patch the first argument when calling a non-function. The
|
|
// CALL_NON_FUNCTION builtin expects the non-function callee as
|
|
// receiver, so overwrite the first argument which will ultimately
|
|
// become the receiver.
|
|
__ mov(Operand(esp, eax, times_4, 0), edi);
|
|
|
|
// 4. Shift arguments and return address one slot down on the stack
|
|
// (overwriting the original receiver). Adjust argument count to make
|
|
// the original first argument the new receiver.
|
|
__ bind(&shift_arguments);
|
|
{ Label loop;
|
|
__ mov(ecx, eax);
|
|
__ bind(&loop);
|
|
__ mov(ebx, Operand(esp, ecx, times_4, 0));
|
|
__ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
|
|
__ dec(ecx);
|
|
__ j(not_sign, &loop); // While non-negative (to copy return address).
|
|
__ pop(ebx); // Discard copy of return address.
|
|
__ dec(eax); // One fewer argument (first argument is new receiver).
|
|
}
|
|
|
|
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
|
|
// or a function proxy via CALL_FUNCTION_PROXY.
|
|
{ Label function, non_proxy;
|
|
__ test(edx, edx);
|
|
__ j(zero, &function);
|
|
__ Move(ebx, Immediate(0));
|
|
__ cmp(edx, Immediate(1));
|
|
__ j(not_equal, &non_proxy);
|
|
|
|
__ pop(edx); // return address
|
|
__ push(edi); // re-add proxy object as additional argument
|
|
__ push(edx);
|
|
__ inc(eax);
|
|
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
|
|
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
|
|
__ bind(&non_proxy);
|
|
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
|
|
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
__ bind(&function);
|
|
}
|
|
|
|
// 5b. Get the code to call from the function and check that the number of
|
|
// expected arguments matches what we're providing. If so, jump
|
|
// (tail-call) to the code in register edx without checking arguments.
|
|
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ mov(ebx,
|
|
FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
|
|
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
|
|
__ SmiUntag(ebx);
|
|
__ cmp(eax, ebx);
|
|
__ j(not_equal,
|
|
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
|
|
|
|
ParameterCount expected(0);
|
|
__ InvokeCode(edx, expected, expected, JUMP_FUNCTION, NullCallWrapper());
|
|
}
|
|
|
|
|
|
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
|
|
static const int kArgumentsOffset = 2 * kPointerSize;
|
|
static const int kReceiverOffset = 3 * kPointerSize;
|
|
static const int kFunctionOffset = 4 * kPointerSize;
|
|
{
|
|
FrameScope frame_scope(masm, StackFrame::INTERNAL);
|
|
|
|
__ push(Operand(ebp, kFunctionOffset)); // push this
|
|
__ push(Operand(ebp, kArgumentsOffset)); // push arguments
|
|
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
|
|
|
|
// Check the stack for overflow. We are not trying to catch
|
|
// interruptions (e.g. debug break and preemption) here, so the "real stack
|
|
// limit" is checked.
|
|
Label okay;
|
|
ExternalReference real_stack_limit =
|
|
ExternalReference::address_of_real_stack_limit(masm->isolate());
|
|
__ mov(edi, Operand::StaticVariable(real_stack_limit));
|
|
// Make ecx the space we have left. The stack might already be overflowed
|
|
// here which will cause ecx to become negative.
|
|
__ mov(ecx, esp);
|
|
__ sub(ecx, edi);
|
|
// Make edx the space we need for the array when it is unrolled onto the
|
|
// stack.
|
|
__ mov(edx, eax);
|
|
__ shl(edx, kPointerSizeLog2 - kSmiTagSize);
|
|
// Check if the arguments will overflow the stack.
|
|
__ cmp(ecx, edx);
|
|
__ j(greater, &okay); // Signed comparison.
|
|
|
|
// Out of stack space.
|
|
__ push(Operand(ebp, 4 * kPointerSize)); // push this
|
|
__ push(eax);
|
|
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
|
|
__ bind(&okay);
|
|
// End of stack check.
|
|
|
|
// Push current index and limit.
|
|
const int kLimitOffset =
|
|
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
|
|
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
|
|
__ push(eax); // limit
|
|
__ push(Immediate(0)); // index
|
|
|
|
// Get the receiver.
|
|
__ mov(ebx, Operand(ebp, kReceiverOffset));
|
|
|
|
// Check that the function is a JS function (otherwise it must be a proxy).
|
|
Label push_receiver, use_global_proxy;
|
|
__ mov(edi, Operand(ebp, kFunctionOffset));
|
|
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
|
|
__ j(not_equal, &push_receiver);
|
|
|
|
// Change context eagerly to get the right global object if necessary.
|
|
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
|
|
|
|
// Compute the receiver.
|
|
// Do not transform the receiver for strict mode functions.
|
|
Label call_to_object;
|
|
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
|
|
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
|
|
__ j(not_equal, &push_receiver);
|
|
|
|
Factory* factory = masm->isolate()->factory();
|
|
|
|
// Do not transform the receiver for natives (shared already in ecx).
|
|
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
|
|
1 << SharedFunctionInfo::kNativeBitWithinByte);
|
|
__ j(not_equal, &push_receiver);
|
|
|
|
// Compute the receiver in sloppy mode.
|
|
// Call ToObject on the receiver if it is not an object, or use the
|
|
// global object if it is null or undefined.
|
|
__ JumpIfSmi(ebx, &call_to_object);
|
|
__ cmp(ebx, factory->null_value());
|
|
__ j(equal, &use_global_proxy);
|
|
__ cmp(ebx, factory->undefined_value());
|
|
__ j(equal, &use_global_proxy);
|
|
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
|
|
__ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
|
|
__ j(above_equal, &push_receiver);
|
|
|
|
__ bind(&call_to_object);
|
|
__ push(ebx);
|
|
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
|
__ mov(ebx, eax);
|
|
__ jmp(&push_receiver);
|
|
|
|
__ bind(&use_global_proxy);
|
|
__ mov(ebx,
|
|
Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalProxyOffset));
|
|
|
|
// Push the receiver.
|
|
__ bind(&push_receiver);
|
|
__ push(ebx);
|
|
|
|
// Copy all arguments from the array to the stack.
|
|
Label entry, loop;
|
|
Register receiver = LoadDescriptor::ReceiverRegister();
|
|
Register key = LoadDescriptor::NameRegister();
|
|
__ mov(key, Operand(ebp, kIndexOffset));
|
|
__ jmp(&entry);
|
|
__ bind(&loop);
|
|
__ mov(receiver, Operand(ebp, kArgumentsOffset)); // load arguments
|
|
|
|
// Use inline caching to speed up access to arguments.
|
|
if (FLAG_vector_ics) {
|
|
__ mov(VectorLoadICDescriptor::SlotRegister(),
|
|
Immediate(Smi::FromInt(0)));
|
|
}
|
|
Handle<Code> ic = CodeFactory::KeyedLoadIC(masm->isolate()).code();
|
|
__ call(ic, RelocInfo::CODE_TARGET);
|
|
// It is important that we do not have a test instruction after the
|
|
// call. A test instruction after the call is used to indicate that
|
|
// we have generated an inline version of the keyed load. In this
|
|
// case, we know that we are not generating a test instruction next.
|
|
|
|
// Push the nth argument.
|
|
__ push(eax);
|
|
|
|
// Update the index on the stack and in register key.
|
|
__ mov(key, Operand(ebp, kIndexOffset));
|
|
__ add(key, Immediate(1 << kSmiTagSize));
|
|
__ mov(Operand(ebp, kIndexOffset), key);
|
|
|
|
__ bind(&entry);
|
|
__ cmp(key, Operand(ebp, kLimitOffset));
|
|
__ j(not_equal, &loop);
|
|
|
|
// Call the function.
|
|
Label call_proxy;
|
|
ParameterCount actual(eax);
|
|
__ Move(eax, key);
|
|
__ SmiUntag(eax);
|
|
__ mov(edi, Operand(ebp, kFunctionOffset));
|
|
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
|
|
__ j(not_equal, &call_proxy);
|
|
__ InvokeFunction(edi, actual, CALL_FUNCTION, NullCallWrapper());
|
|
|
|
frame_scope.GenerateLeaveFrame();
|
|
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
|
|
|
|
// Call the function proxy.
|
|
__ bind(&call_proxy);
|
|
__ push(edi); // add function proxy as last argument
|
|
__ inc(eax);
|
|
__ Move(ebx, Immediate(0));
|
|
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
|
|
__ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
RelocInfo::CODE_TARGET);
|
|
|
|
// Leave internal frame.
|
|
}
|
|
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
|
|
}
|
|
|
|
|
|
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : argc
|
|
// -- esp[0] : return address
|
|
// -- esp[4] : last argument
|
|
// -----------------------------------
|
|
Label generic_array_code;
|
|
|
|
// Get the InternalArray function.
|
|
__ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi);
|
|
|
|
if (FLAG_debug_code) {
|
|
// Initial map for the builtin InternalArray function should be a map.
|
|
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi.
|
|
__ test(ebx, Immediate(kSmiTagMask));
|
|
__ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction);
|
|
__ CmpObjectType(ebx, MAP_TYPE, ecx);
|
|
__ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction);
|
|
}
|
|
|
|
// Run the native code for the InternalArray function called as a normal
|
|
// function.
|
|
// tail call a stub
|
|
InternalArrayConstructorStub stub(masm->isolate());
|
|
__ TailCallStub(&stub);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : argc
|
|
// -- esp[0] : return address
|
|
// -- esp[4] : last argument
|
|
// -----------------------------------
|
|
Label generic_array_code;
|
|
|
|
// Get the Array function.
|
|
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
|
|
|
|
if (FLAG_debug_code) {
|
|
// Initial map for the builtin Array function should be a map.
|
|
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
|
|
// Will both indicate a NULL and a Smi.
|
|
__ test(ebx, Immediate(kSmiTagMask));
|
|
__ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
|
|
__ CmpObjectType(ebx, MAP_TYPE, ecx);
|
|
__ Assert(equal, kUnexpectedInitialMapForArrayFunction);
|
|
}
|
|
|
|
// Run the native code for the Array function called as a normal function.
|
|
// tail call a stub
|
|
__ mov(ebx, masm->isolate()->factory()->undefined_value());
|
|
ArrayConstructorStub stub(masm->isolate());
|
|
__ TailCallStub(&stub);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : number of arguments
|
|
// -- edi : constructor function
|
|
// -- esp[0] : return address
|
|
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
|
|
// -- esp[(argc + 1) * 4] : receiver
|
|
// -----------------------------------
|
|
Counters* counters = masm->isolate()->counters();
|
|
__ IncrementCounter(counters->string_ctor_calls(), 1);
|
|
|
|
if (FLAG_debug_code) {
|
|
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
|
|
__ cmp(edi, ecx);
|
|
__ Assert(equal, kUnexpectedStringFunction);
|
|
}
|
|
|
|
// Load the first argument into eax and get rid of the rest
|
|
// (including the receiver).
|
|
Label no_arguments;
|
|
__ test(eax, eax);
|
|
__ j(zero, &no_arguments);
|
|
__ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
|
|
__ pop(ecx);
|
|
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
|
|
__ push(ecx);
|
|
__ mov(eax, ebx);
|
|
|
|
// Lookup the argument in the number to string cache.
|
|
Label not_cached, argument_is_string;
|
|
__ LookupNumberStringCache(eax, // Input.
|
|
ebx, // Result.
|
|
ecx, // Scratch 1.
|
|
edx, // Scratch 2.
|
|
¬_cached);
|
|
__ IncrementCounter(counters->string_ctor_cached_number(), 1);
|
|
__ bind(&argument_is_string);
|
|
// ----------- S t a t e -------------
|
|
// -- ebx : argument converted to string
|
|
// -- edi : constructor function
|
|
// -- esp[0] : return address
|
|
// -----------------------------------
|
|
|
|
// Allocate a JSValue and put the tagged pointer into eax.
|
|
Label gc_required;
|
|
__ Allocate(JSValue::kSize,
|
|
eax, // Result.
|
|
ecx, // New allocation top (we ignore it).
|
|
no_reg,
|
|
&gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map.
|
|
__ LoadGlobalFunctionInitialMap(edi, ecx);
|
|
if (FLAG_debug_code) {
|
|
__ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
|
|
JSValue::kSize >> kPointerSizeLog2);
|
|
__ Assert(equal, kUnexpectedStringWrapperInstanceSize);
|
|
__ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
|
|
__ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
|
|
}
|
|
__ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
|
|
|
|
// Set properties and elements.
|
|
Factory* factory = masm->isolate()->factory();
|
|
__ Move(ecx, Immediate(factory->empty_fixed_array()));
|
|
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
|
|
__ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
|
|
|
|
// Set the value.
|
|
__ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
|
|
|
|
// Ensure the object is fully initialized.
|
|
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
|
|
|
|
// We're done. Return.
|
|
__ ret(0);
|
|
|
|
// The argument was not found in the number to string cache. Check
|
|
// if it's a string already before calling the conversion builtin.
|
|
Label convert_argument;
|
|
__ bind(¬_cached);
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
__ JumpIfSmi(eax, &convert_argument);
|
|
Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
|
|
__ j(NegateCondition(is_string), &convert_argument);
|
|
__ mov(ebx, eax);
|
|
__ IncrementCounter(counters->string_ctor_string_value(), 1);
|
|
__ jmp(&argument_is_string);
|
|
|
|
// Invoke the conversion builtin and put the result into ebx.
|
|
__ bind(&convert_argument);
|
|
__ IncrementCounter(counters->string_ctor_conversions(), 1);
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ push(edi); // Preserve the function.
|
|
__ push(eax);
|
|
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
|
|
__ pop(edi);
|
|
}
|
|
__ mov(ebx, eax);
|
|
__ jmp(&argument_is_string);
|
|
|
|
// Load the empty string into ebx, remove the receiver from the
|
|
// stack, and jump back to the case where the argument is a string.
|
|
__ bind(&no_arguments);
|
|
__ Move(ebx, Immediate(factory->empty_string()));
|
|
__ pop(ecx);
|
|
__ lea(esp, Operand(esp, kPointerSize));
|
|
__ push(ecx);
|
|
__ jmp(&argument_is_string);
|
|
|
|
// At this point the argument is already a string. Call runtime to
|
|
// create a string wrapper.
|
|
__ bind(&gc_required);
|
|
__ IncrementCounter(counters->string_ctor_gc_required(), 1);
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ push(ebx);
|
|
__ CallRuntime(Runtime::kNewStringWrapper, 1);
|
|
}
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
static void ArgumentsAdaptorStackCheck(MacroAssembler* masm,
|
|
Label* stack_overflow) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : actual number of arguments
|
|
// -- ebx : expected number of arguments
|
|
// -- edi : function (passed through to callee)
|
|
// -----------------------------------
|
|
// Check the stack for overflow. We are not trying to catch
|
|
// interruptions (e.g. debug break and preemption) here, so the "real stack
|
|
// limit" is checked.
|
|
ExternalReference real_stack_limit =
|
|
ExternalReference::address_of_real_stack_limit(masm->isolate());
|
|
__ mov(edx, Operand::StaticVariable(real_stack_limit));
|
|
// Make ecx the space we have left. The stack might already be overflowed
|
|
// here which will cause ecx to become negative.
|
|
__ mov(ecx, esp);
|
|
__ sub(ecx, edx);
|
|
// Make edx the space we need for the array when it is unrolled onto the
|
|
// stack.
|
|
__ mov(edx, ebx);
|
|
__ shl(edx, kPointerSizeLog2);
|
|
// Check if the arguments will overflow the stack.
|
|
__ cmp(ecx, edx);
|
|
__ j(less_equal, stack_overflow); // Signed comparison.
|
|
}
|
|
|
|
|
|
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
|
|
__ push(ebp);
|
|
__ mov(ebp, esp);
|
|
|
|
// Store the arguments adaptor context sentinel.
|
|
__ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
// Push the function on the stack.
|
|
__ push(edi);
|
|
|
|
// Preserve the number of arguments on the stack. Must preserve eax,
|
|
// ebx and ecx because these registers are used when copying the
|
|
// arguments and the receiver.
|
|
STATIC_ASSERT(kSmiTagSize == 1);
|
|
__ lea(edi, Operand(eax, eax, times_1, kSmiTag));
|
|
__ push(edi);
|
|
}
|
|
|
|
|
|
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
|
|
// Retrieve the number of arguments from the stack.
|
|
__ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
// Leave the frame.
|
|
__ leave();
|
|
|
|
// Remove caller arguments from the stack.
|
|
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
|
|
__ pop(ecx);
|
|
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
|
|
__ push(ecx);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
|
|
// ----------- S t a t e -------------
|
|
// -- eax : actual number of arguments
|
|
// -- ebx : expected number of arguments
|
|
// -- edi : function (passed through to callee)
|
|
// -----------------------------------
|
|
|
|
Label invoke, dont_adapt_arguments;
|
|
__ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
|
|
|
|
Label stack_overflow;
|
|
ArgumentsAdaptorStackCheck(masm, &stack_overflow);
|
|
|
|
Label enough, too_few;
|
|
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
|
|
__ cmp(eax, ebx);
|
|
__ j(less, &too_few);
|
|
__ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
|
|
__ j(equal, &dont_adapt_arguments);
|
|
|
|
{ // Enough parameters: Actual >= expected.
|
|
__ bind(&enough);
|
|
EnterArgumentsAdaptorFrame(masm);
|
|
|
|
// Copy receiver and all expected arguments.
|
|
const int offset = StandardFrameConstants::kCallerSPOffset;
|
|
__ lea(eax, Operand(ebp, eax, times_4, offset));
|
|
__ mov(edi, -1); // account for receiver
|
|
|
|
Label copy;
|
|
__ bind(©);
|
|
__ inc(edi);
|
|
__ push(Operand(eax, 0));
|
|
__ sub(eax, Immediate(kPointerSize));
|
|
__ cmp(edi, ebx);
|
|
__ j(less, ©);
|
|
__ jmp(&invoke);
|
|
}
|
|
|
|
{ // Too few parameters: Actual < expected.
|
|
__ bind(&too_few);
|
|
EnterArgumentsAdaptorFrame(masm);
|
|
|
|
// Copy receiver and all actual arguments.
|
|
const int offset = StandardFrameConstants::kCallerSPOffset;
|
|
__ lea(edi, Operand(ebp, eax, times_4, offset));
|
|
// ebx = expected - actual.
|
|
__ sub(ebx, eax);
|
|
// eax = -actual - 1
|
|
__ neg(eax);
|
|
__ sub(eax, Immediate(1));
|
|
|
|
Label copy;
|
|
__ bind(©);
|
|
__ inc(eax);
|
|
__ push(Operand(edi, 0));
|
|
__ sub(edi, Immediate(kPointerSize));
|
|
__ test(eax, eax);
|
|
__ j(not_zero, ©);
|
|
|
|
// Fill remaining expected arguments with undefined values.
|
|
Label fill;
|
|
__ bind(&fill);
|
|
__ inc(eax);
|
|
__ push(Immediate(masm->isolate()->factory()->undefined_value()));
|
|
__ cmp(eax, ebx);
|
|
__ j(less, &fill);
|
|
}
|
|
|
|
// Call the entry point.
|
|
__ bind(&invoke);
|
|
// Restore function pointer.
|
|
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
|
|
__ call(edx);
|
|
|
|
// Store offset of return address for deoptimizer.
|
|
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
|
|
|
|
// Leave frame and return.
|
|
LeaveArgumentsAdaptorFrame(masm);
|
|
__ ret(0);
|
|
|
|
// -------------------------------------------
|
|
// Dont adapt arguments.
|
|
// -------------------------------------------
|
|
__ bind(&dont_adapt_arguments);
|
|
__ jmp(edx);
|
|
|
|
__ bind(&stack_overflow);
|
|
{
|
|
FrameScope frame(masm, StackFrame::MANUAL);
|
|
EnterArgumentsAdaptorFrame(masm);
|
|
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
|
|
__ int3();
|
|
}
|
|
}
|
|
|
|
|
|
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
|
|
// Lookup the function in the JavaScript frame.
|
|
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
// Pass function as argument.
|
|
__ push(eax);
|
|
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
|
|
}
|
|
|
|
Label skip;
|
|
// If the code object is null, just return to the unoptimized code.
|
|
__ cmp(eax, Immediate(0));
|
|
__ j(not_equal, &skip, Label::kNear);
|
|
__ ret(0);
|
|
|
|
__ bind(&skip);
|
|
|
|
// Load deoptimization data from the code object.
|
|
__ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
|
|
|
|
// Load the OSR entrypoint offset from the deoptimization data.
|
|
__ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
|
|
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
|
|
__ SmiUntag(ebx);
|
|
|
|
// Compute the target address = code_obj + header_size + osr_offset
|
|
__ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
|
|
|
|
// Overwrite the return address on the stack.
|
|
__ mov(Operand(esp, 0), eax);
|
|
|
|
// And "return" to the OSR entry point of the function.
|
|
__ ret(0);
|
|
}
|
|
|
|
|
|
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
|
|
// We check the stack limit as indicator that recompilation might be done.
|
|
Label ok;
|
|
ExternalReference stack_limit =
|
|
ExternalReference::address_of_stack_limit(masm->isolate());
|
|
__ cmp(esp, Operand::StaticVariable(stack_limit));
|
|
__ j(above_equal, &ok, Label::kNear);
|
|
{
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
__ CallRuntime(Runtime::kStackGuard, 0);
|
|
}
|
|
__ jmp(masm->isolate()->builtins()->OnStackReplacement(),
|
|
RelocInfo::CODE_TARGET);
|
|
|
|
__ bind(&ok);
|
|
__ ret(0);
|
|
}
|
|
|
|
#undef __
|
|
}
|
|
} // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_IA32
|