v8/src/objects-debug.cc
jkummerow f4872f7477 Introduce {FAST,SLOW}_STRING_WRAPPER_ELEMENTS
String wrappers (new String("foo")) are special objects: their string
characters are accessed like elements, and they also have an elements
backing store. This used to require a bunch of explicit checks like:

if (obj->IsJSValue() && JSValue::cast(obj)->value()->IsString()) {
  /* Handle string characters */
}
// Handle regular elements (for string wrappers and other objects)
obj->GetElementsAccessor()->Whatever(...);

This CL introduces new ElementsKinds for string wrapper objects (one for
fast elements, one for dictionary elements), which allow folding the
special-casing into new StringWrapperElementsAccessors.

No observable change in behavior is intended.

Review URL: https://codereview.chromium.org/1612323003

Cr-Commit-Position: refs/heads/master@{#33616}
2016-01-29 18:58:04 +00:00

1340 lines
39 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/objects.h"
#include "src/bootstrapper.h"
#include "src/disasm.h"
#include "src/disassembler.h"
#include "src/macro-assembler.h"
#include "src/ostreams.h"
#include "src/regexp/jsregexp.h"
namespace v8 {
namespace internal {
#ifdef VERIFY_HEAP
void Object::ObjectVerify() {
if (IsSmi()) {
Smi::cast(this)->SmiVerify();
} else {
HeapObject::cast(this)->HeapObjectVerify();
}
CHECK(!IsConstructor() || IsCallable());
}
void Object::VerifyPointer(Object* p) {
if (p->IsHeapObject()) {
HeapObject::VerifyHeapPointer(p);
} else {
CHECK(p->IsSmi());
}
}
void Smi::SmiVerify() {
CHECK(IsSmi());
CHECK(!IsCallable());
CHECK(!IsConstructor());
}
void HeapObject::HeapObjectVerify() {
InstanceType instance_type = map()->instance_type();
if (instance_type < FIRST_NONSTRING_TYPE) {
String::cast(this)->StringVerify();
return;
}
switch (instance_type) {
case SYMBOL_TYPE:
Symbol::cast(this)->SymbolVerify();
break;
case MAP_TYPE:
Map::cast(this)->MapVerify();
break;
case HEAP_NUMBER_TYPE:
case MUTABLE_HEAP_NUMBER_TYPE:
HeapNumber::cast(this)->HeapNumberVerify();
break;
case SIMD128_VALUE_TYPE:
Simd128Value::cast(this)->Simd128ValueVerify();
break;
case FIXED_ARRAY_TYPE:
FixedArray::cast(this)->FixedArrayVerify();
break;
case FIXED_DOUBLE_ARRAY_TYPE:
FixedDoubleArray::cast(this)->FixedDoubleArrayVerify();
break;
case BYTE_ARRAY_TYPE:
ByteArray::cast(this)->ByteArrayVerify();
break;
case BYTECODE_ARRAY_TYPE:
BytecodeArray::cast(this)->BytecodeArrayVerify();
break;
case TRANSITION_ARRAY_TYPE:
TransitionArray::cast(this)->TransitionArrayVerify();
break;
case FREE_SPACE_TYPE:
FreeSpace::cast(this)->FreeSpaceVerify();
break;
#define VERIFY_TYPED_ARRAY(Type, type, TYPE, ctype, size) \
case FIXED_##TYPE##_ARRAY_TYPE: \
Fixed##Type##Array::cast(this)->FixedTypedArrayVerify(); \
break;
TYPED_ARRAYS(VERIFY_TYPED_ARRAY)
#undef VERIFY_TYPED_ARRAY
case CODE_TYPE:
Code::cast(this)->CodeVerify();
break;
case ODDBALL_TYPE:
Oddball::cast(this)->OddballVerify();
break;
case JS_OBJECT_TYPE:
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
case JS_PROMISE_TYPE:
JSObject::cast(this)->JSObjectVerify();
break;
case JS_GENERATOR_OBJECT_TYPE:
JSGeneratorObject::cast(this)->JSGeneratorObjectVerify();
break;
case JS_MODULE_TYPE:
JSModule::cast(this)->JSModuleVerify();
break;
case JS_VALUE_TYPE:
JSValue::cast(this)->JSValueVerify();
break;
case JS_DATE_TYPE:
JSDate::cast(this)->JSDateVerify();
break;
case JS_BOUND_FUNCTION_TYPE:
JSBoundFunction::cast(this)->JSBoundFunctionVerify();
break;
case JS_FUNCTION_TYPE:
JSFunction::cast(this)->JSFunctionVerify();
break;
case JS_GLOBAL_PROXY_TYPE:
JSGlobalProxy::cast(this)->JSGlobalProxyVerify();
break;
case JS_GLOBAL_OBJECT_TYPE:
JSGlobalObject::cast(this)->JSGlobalObjectVerify();
break;
case CELL_TYPE:
Cell::cast(this)->CellVerify();
break;
case PROPERTY_CELL_TYPE:
PropertyCell::cast(this)->PropertyCellVerify();
break;
case WEAK_CELL_TYPE:
WeakCell::cast(this)->WeakCellVerify();
break;
case JS_ARRAY_TYPE:
JSArray::cast(this)->JSArrayVerify();
break;
case JS_SET_TYPE:
JSSet::cast(this)->JSSetVerify();
break;
case JS_MAP_TYPE:
JSMap::cast(this)->JSMapVerify();
break;
case JS_SET_ITERATOR_TYPE:
JSSetIterator::cast(this)->JSSetIteratorVerify();
break;
case JS_MAP_ITERATOR_TYPE:
JSMapIterator::cast(this)->JSMapIteratorVerify();
break;
case JS_ITERATOR_RESULT_TYPE:
JSIteratorResult::cast(this)->JSIteratorResultVerify();
break;
case JS_WEAK_MAP_TYPE:
JSWeakMap::cast(this)->JSWeakMapVerify();
break;
case JS_WEAK_SET_TYPE:
JSWeakSet::cast(this)->JSWeakSetVerify();
break;
case JS_REGEXP_TYPE:
JSRegExp::cast(this)->JSRegExpVerify();
break;
case FILLER_TYPE:
break;
case JS_PROXY_TYPE:
JSProxy::cast(this)->JSProxyVerify();
break;
case FOREIGN_TYPE:
Foreign::cast(this)->ForeignVerify();
break;
case SHARED_FUNCTION_INFO_TYPE:
SharedFunctionInfo::cast(this)->SharedFunctionInfoVerify();
break;
case JS_MESSAGE_OBJECT_TYPE:
JSMessageObject::cast(this)->JSMessageObjectVerify();
break;
case JS_ARRAY_BUFFER_TYPE:
JSArrayBuffer::cast(this)->JSArrayBufferVerify();
break;
case JS_TYPED_ARRAY_TYPE:
JSTypedArray::cast(this)->JSTypedArrayVerify();
break;
case JS_DATA_VIEW_TYPE:
JSDataView::cast(this)->JSDataViewVerify();
break;
#define MAKE_STRUCT_CASE(NAME, Name, name) \
case NAME##_TYPE: \
Name::cast(this)->Name##Verify(); \
break;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default:
UNREACHABLE();
break;
}
}
void HeapObject::VerifyHeapPointer(Object* p) {
CHECK(p->IsHeapObject());
HeapObject* ho = HeapObject::cast(p);
CHECK(ho->GetHeap()->Contains(ho));
}
void Symbol::SymbolVerify() {
CHECK(IsSymbol());
CHECK(HasHashCode());
CHECK_GT(Hash(), 0u);
CHECK(name()->IsUndefined() || name()->IsString());
}
void HeapNumber::HeapNumberVerify() {
CHECK(IsHeapNumber() || IsMutableHeapNumber());
}
void Simd128Value::Simd128ValueVerify() { CHECK(IsSimd128Value()); }
void ByteArray::ByteArrayVerify() {
CHECK(IsByteArray());
}
void BytecodeArray::BytecodeArrayVerify() {
// TODO(oth): Walk bytecodes and immediate values to validate sanity.
CHECK(IsBytecodeArray());
CHECK(constant_pool()->IsFixedArray());
VerifyHeapPointer(constant_pool());
}
void FreeSpace::FreeSpaceVerify() {
CHECK(IsFreeSpace());
}
template <class Traits>
void FixedTypedArray<Traits>::FixedTypedArrayVerify() {
CHECK(IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
Traits::kInstanceType);
if (base_pointer() == this) {
CHECK(external_pointer() ==
ExternalReference::fixed_typed_array_base_data_offset().address());
} else {
CHECK(base_pointer() == nullptr);
}
}
bool JSObject::ElementsAreSafeToExamine() {
// If a GC was caused while constructing this object, the elements
// pointer may point to a one pointer filler map.
return reinterpret_cast<Map*>(elements()) !=
GetHeap()->one_pointer_filler_map();
}
void JSObject::JSObjectVerify() {
VerifyHeapPointer(properties());
VerifyHeapPointer(elements());
if (HasSloppyArgumentsElements()) {
CHECK(this->elements()->IsFixedArray());
CHECK_GE(this->elements()->length(), 2);
}
if (HasFastProperties()) {
int actual_unused_property_fields = map()->GetInObjectProperties() +
properties()->length() -
map()->NextFreePropertyIndex();
if (map()->unused_property_fields() != actual_unused_property_fields) {
// This could actually happen in the middle of StoreTransitionStub
// when the new extended backing store is already set into the object and
// the allocation of the MutableHeapNumber triggers GC (in this case map
// is not updated yet).
CHECK_EQ(map()->unused_property_fields(),
actual_unused_property_fields - JSObject::kFieldsAdded);
}
DescriptorArray* descriptors = map()->instance_descriptors();
for (int i = 0; i < map()->NumberOfOwnDescriptors(); i++) {
if (descriptors->GetDetails(i).type() == DATA) {
Representation r = descriptors->GetDetails(i).representation();
FieldIndex index = FieldIndex::ForDescriptor(map(), i);
if (IsUnboxedDoubleField(index)) {
DCHECK(r.IsDouble());
continue;
}
Object* value = RawFastPropertyAt(index);
if (r.IsDouble()) DCHECK(value->IsMutableHeapNumber());
if (value->IsUninitialized()) continue;
if (r.IsSmi()) DCHECK(value->IsSmi());
if (r.IsHeapObject()) DCHECK(value->IsHeapObject());
FieldType* field_type = descriptors->GetFieldType(i);
bool type_is_none = field_type->IsNone();
bool type_is_any = field_type->IsAny();
if (r.IsNone()) {
CHECK(type_is_none);
} else if (!type_is_any && !(type_is_none && r.IsHeapObject())) {
// If allocation folding is off then GC could happen during inner
// object literal creation and we will end up having and undefined
// value that does not match the field type.
CHECK(!field_type->NowStable() || field_type->NowContains(value) ||
(!FLAG_use_allocation_folding && value->IsUndefined()));
}
}
}
}
// If a GC was caused while constructing this object, the elements
// pointer may point to a one pointer filler map.
if (ElementsAreSafeToExamine()) {
CHECK_EQ((map()->has_fast_smi_or_object_elements() ||
(elements() == GetHeap()->empty_fixed_array()) ||
HasFastStringWrapperElements()),
(elements()->map() == GetHeap()->fixed_array_map() ||
elements()->map() == GetHeap()->fixed_cow_array_map()));
CHECK(map()->has_fast_object_elements() == HasFastObjectElements());
}
}
void Map::MapVerify() {
Heap* heap = GetHeap();
CHECK(!heap->InNewSpace(this));
CHECK(FIRST_TYPE <= instance_type() && instance_type() <= LAST_TYPE);
CHECK(instance_size() == kVariableSizeSentinel ||
(kPointerSize <= instance_size() &&
instance_size() < heap->Capacity()));
CHECK(GetBackPointer()->IsUndefined() ||
!Map::cast(GetBackPointer())->is_stable());
VerifyHeapPointer(prototype());
VerifyHeapPointer(instance_descriptors());
SLOW_DCHECK(instance_descriptors()->IsSortedNoDuplicates());
SLOW_DCHECK(TransitionArray::IsSortedNoDuplicates(this));
SLOW_DCHECK(TransitionArray::IsConsistentWithBackPointers(this));
// TODO(ishell): turn it back to SLOW_DCHECK.
CHECK(!FLAG_unbox_double_fields ||
layout_descriptor()->IsConsistentWithMap(this));
}
void Map::DictionaryMapVerify() {
MapVerify();
CHECK(is_dictionary_map());
CHECK(instance_descriptors()->IsEmpty());
CHECK_EQ(0, unused_property_fields());
CHECK_EQ(Heap::GetStaticVisitorIdForMap(this), visitor_id());
}
void Map::VerifyOmittedMapChecks() {
if (!FLAG_omit_map_checks_for_leaf_maps) return;
if (!is_stable() ||
is_deprecated() ||
is_dictionary_map()) {
CHECK(dependent_code()->IsEmpty(DependentCode::kPrototypeCheckGroup));
}
}
void CodeCache::CodeCacheVerify() {
VerifyHeapPointer(default_cache());
VerifyHeapPointer(normal_type_cache());
CHECK(default_cache()->IsFixedArray());
CHECK(normal_type_cache()->IsUndefined()
|| normal_type_cache()->IsCodeCacheHashTable());
}
void PolymorphicCodeCache::PolymorphicCodeCacheVerify() {
VerifyHeapPointer(cache());
CHECK(cache()->IsUndefined() || cache()->IsPolymorphicCodeCacheHashTable());
}
void TypeFeedbackInfo::TypeFeedbackInfoVerify() {
VerifyObjectField(kStorage1Offset);
VerifyObjectField(kStorage2Offset);
VerifyObjectField(kStorage3Offset);
}
void AliasedArgumentsEntry::AliasedArgumentsEntryVerify() {
VerifySmiField(kAliasedContextSlot);
}
void FixedArray::FixedArrayVerify() {
for (int i = 0; i < length(); i++) {
Object* e = get(i);
VerifyPointer(e);
}
}
void FixedDoubleArray::FixedDoubleArrayVerify() {
for (int i = 0; i < length(); i++) {
if (!is_the_hole(i)) {
uint64_t value = get_representation(i);
uint64_t unexpected =
bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()) &
V8_UINT64_C(0x7FF8000000000000);
// Create implementation specific sNaN by inverting relevant bit.
unexpected ^= V8_UINT64_C(0x0008000000000000);
CHECK((value & V8_UINT64_C(0x7FF8000000000000)) != unexpected ||
(value & V8_UINT64_C(0x0007FFFFFFFFFFFF)) == V8_UINT64_C(0));
}
}
}
void TransitionArray::TransitionArrayVerify() {
for (int i = 0; i < length(); i++) {
Object* e = get(i);
VerifyPointer(e);
}
CHECK_LE(LengthFor(number_of_transitions()), length());
CHECK(next_link()->IsUndefined() || next_link()->IsSmi() ||
next_link()->IsTransitionArray());
}
void JSGeneratorObject::JSGeneratorObjectVerify() {
// In an expression like "new g()", there can be a point where a generator
// object is allocated but its fields are all undefined, as it hasn't yet been
// initialized by the generator. Hence these weak checks.
VerifyObjectField(kFunctionOffset);
VerifyObjectField(kContextOffset);
VerifyObjectField(kReceiverOffset);
VerifyObjectField(kOperandStackOffset);
VerifyObjectField(kContinuationOffset);
}
void JSModule::JSModuleVerify() {
VerifyObjectField(kContextOffset);
VerifyObjectField(kScopeInfoOffset);
CHECK(context()->IsUndefined() ||
Context::cast(context())->IsModuleContext());
}
void JSValue::JSValueVerify() {
Object* v = value();
if (v->IsHeapObject()) {
VerifyHeapPointer(v);
}
}
void JSDate::JSDateVerify() {
if (value()->IsHeapObject()) {
VerifyHeapPointer(value());
}
CHECK(value()->IsUndefined() || value()->IsSmi() || value()->IsHeapNumber());
CHECK(year()->IsUndefined() || year()->IsSmi() || year()->IsNaN());
CHECK(month()->IsUndefined() || month()->IsSmi() || month()->IsNaN());
CHECK(day()->IsUndefined() || day()->IsSmi() || day()->IsNaN());
CHECK(weekday()->IsUndefined() || weekday()->IsSmi() || weekday()->IsNaN());
CHECK(hour()->IsUndefined() || hour()->IsSmi() || hour()->IsNaN());
CHECK(min()->IsUndefined() || min()->IsSmi() || min()->IsNaN());
CHECK(sec()->IsUndefined() || sec()->IsSmi() || sec()->IsNaN());
CHECK(cache_stamp()->IsUndefined() ||
cache_stamp()->IsSmi() ||
cache_stamp()->IsNaN());
if (month()->IsSmi()) {
int month = Smi::cast(this->month())->value();
CHECK(0 <= month && month <= 11);
}
if (day()->IsSmi()) {
int day = Smi::cast(this->day())->value();
CHECK(1 <= day && day <= 31);
}
if (hour()->IsSmi()) {
int hour = Smi::cast(this->hour())->value();
CHECK(0 <= hour && hour <= 23);
}
if (min()->IsSmi()) {
int min = Smi::cast(this->min())->value();
CHECK(0 <= min && min <= 59);
}
if (sec()->IsSmi()) {
int sec = Smi::cast(this->sec())->value();
CHECK(0 <= sec && sec <= 59);
}
if (weekday()->IsSmi()) {
int weekday = Smi::cast(this->weekday())->value();
CHECK(0 <= weekday && weekday <= 6);
}
if (cache_stamp()->IsSmi()) {
CHECK(Smi::cast(cache_stamp())->value() <=
Smi::cast(GetIsolate()->date_cache()->stamp())->value());
}
}
void JSMessageObject::JSMessageObjectVerify() {
CHECK(IsJSMessageObject());
VerifyObjectField(kStartPositionOffset);
VerifyObjectField(kEndPositionOffset);
VerifyObjectField(kArgumentsOffset);
VerifyObjectField(kScriptOffset);
VerifyObjectField(kStackFramesOffset);
}
void String::StringVerify() {
CHECK(IsString());
CHECK(length() >= 0 && length() <= Smi::kMaxValue);
if (IsInternalizedString()) {
CHECK(!GetHeap()->InNewSpace(this));
}
if (IsConsString()) {
ConsString::cast(this)->ConsStringVerify();
} else if (IsSlicedString()) {
SlicedString::cast(this)->SlicedStringVerify();
}
}
void ConsString::ConsStringVerify() {
CHECK(this->first()->IsString());
CHECK(this->second() == GetHeap()->empty_string() ||
this->second()->IsString());
CHECK(this->length() >= ConsString::kMinLength);
CHECK(this->length() == this->first()->length() + this->second()->length());
if (this->IsFlat()) {
// A flat cons can only be created by String::SlowTryFlatten.
// Afterwards, the first part may be externalized.
CHECK(this->first()->IsSeqString() || this->first()->IsExternalString());
}
}
void SlicedString::SlicedStringVerify() {
CHECK(!this->parent()->IsConsString());
CHECK(!this->parent()->IsSlicedString());
CHECK(this->length() >= SlicedString::kMinLength);
}
void JSBoundFunction::JSBoundFunctionVerify() {
CHECK(IsJSBoundFunction());
JSObjectVerify();
VerifyObjectField(kBoundThisOffset);
VerifyObjectField(kBoundTargetFunctionOffset);
VerifyObjectField(kBoundArgumentsOffset);
CHECK(bound_target_function()->IsCallable());
CHECK(IsCallable());
CHECK_EQ(IsConstructor(), bound_target_function()->IsConstructor());
}
void JSFunction::JSFunctionVerify() {
CHECK(IsJSFunction());
VerifyObjectField(kPrototypeOrInitialMapOffset);
VerifyObjectField(kNextFunctionLinkOffset);
CHECK(code()->IsCode());
CHECK(next_function_link() == NULL ||
next_function_link()->IsUndefined() ||
next_function_link()->IsJSFunction());
CHECK(map()->is_callable());
}
void SharedFunctionInfo::SharedFunctionInfoVerify() {
CHECK(IsSharedFunctionInfo());
VerifyObjectField(kNameOffset);
VerifyObjectField(kCodeOffset);
VerifyObjectField(kOptimizedCodeMapOffset);
VerifyObjectField(kFeedbackVectorOffset);
VerifyObjectField(kScopeInfoOffset);
VerifyObjectField(kInstanceClassNameOffset);
CHECK(function_data()->IsUndefined() || IsApiFunction() ||
HasBuiltinFunctionId() || HasBytecodeArray());
VerifyObjectField(kFunctionDataOffset);
VerifyObjectField(kScriptOffset);
VerifyObjectField(kDebugInfoOffset);
}
void JSGlobalProxy::JSGlobalProxyVerify() {
CHECK(IsJSGlobalProxy());
JSObjectVerify();
VerifyObjectField(JSGlobalProxy::kNativeContextOffset);
// Make sure that this object has no properties, elements.
CHECK_EQ(0, properties()->length());
CHECK_EQ(0, FixedArray::cast(elements())->length());
}
void JSGlobalObject::JSGlobalObjectVerify() {
CHECK(IsJSGlobalObject());
// Do not check the dummy global object for the builtins.
if (GlobalDictionary::cast(properties())->NumberOfElements() == 0 &&
elements()->length() == 0) {
return;
}
JSObjectVerify();
}
void Oddball::OddballVerify() {
CHECK(IsOddball());
Heap* heap = GetHeap();
VerifyHeapPointer(to_string());
Object* number = to_number();
if (number->IsHeapObject()) {
CHECK(number == heap->nan_value());
} else {
CHECK(number->IsSmi());
int value = Smi::cast(number)->value();
// Hidden oddballs have negative smis.
const int kLeastHiddenOddballNumber = -5;
CHECK_LE(value, 1);
CHECK(value >= kLeastHiddenOddballNumber);
}
if (map() == heap->undefined_map()) {
CHECK(this == heap->undefined_value());
} else if (map() == heap->the_hole_map()) {
CHECK(this == heap->the_hole_value());
} else if (map() == heap->null_map()) {
CHECK(this == heap->null_value());
} else if (map() == heap->boolean_map()) {
CHECK(this == heap->true_value() ||
this == heap->false_value());
} else if (map() == heap->uninitialized_map()) {
CHECK(this == heap->uninitialized_value());
} else if (map() == heap->no_interceptor_result_sentinel_map()) {
CHECK(this == heap->no_interceptor_result_sentinel());
} else if (map() == heap->arguments_marker_map()) {
CHECK(this == heap->arguments_marker());
} else if (map() == heap->termination_exception_map()) {
CHECK(this == heap->termination_exception());
} else if (map() == heap->exception_map()) {
CHECK(this == heap->exception());
} else {
UNREACHABLE();
}
}
void Cell::CellVerify() {
CHECK(IsCell());
VerifyObjectField(kValueOffset);
}
void PropertyCell::PropertyCellVerify() {
CHECK(IsPropertyCell());
VerifyObjectField(kValueOffset);
}
void WeakCell::WeakCellVerify() {
CHECK(IsWeakCell());
VerifyObjectField(kValueOffset);
VerifyObjectField(kNextOffset);
}
void Code::CodeVerify() {
CHECK(IsAligned(reinterpret_cast<intptr_t>(instruction_start()),
kCodeAlignment));
relocation_info()->ObjectVerify();
Address last_gc_pc = NULL;
Isolate* isolate = GetIsolate();
for (RelocIterator it(this); !it.done(); it.next()) {
it.rinfo()->Verify(isolate);
// Ensure that GC will not iterate twice over the same pointer.
if (RelocInfo::IsGCRelocMode(it.rinfo()->rmode())) {
CHECK(it.rinfo()->pc() != last_gc_pc);
last_gc_pc = it.rinfo()->pc();
}
}
CHECK(raw_type_feedback_info() == Smi::FromInt(0) ||
raw_type_feedback_info()->IsSmi() == IsCodeStubOrIC());
}
void Code::VerifyEmbeddedObjectsDependency() {
if (!CanContainWeakObjects()) return;
WeakCell* cell = CachedWeakCell();
DisallowHeapAllocation no_gc;
Isolate* isolate = GetIsolate();
HandleScope scope(isolate);
int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
Object* obj = it.rinfo()->target_object();
if (IsWeakObject(obj)) {
if (obj->IsMap()) {
Map* map = Map::cast(obj);
CHECK(map->dependent_code()->Contains(DependentCode::kWeakCodeGroup,
cell));
} else if (obj->IsJSObject()) {
WeakHashTable* table =
GetIsolate()->heap()->weak_object_to_code_table();
Handle<HeapObject> key_obj(HeapObject::cast(obj), isolate);
CHECK(DependentCode::cast(table->Lookup(key_obj))
->Contains(DependentCode::kWeakCodeGroup, cell));
}
}
}
}
void JSArray::JSArrayVerify() {
JSObjectVerify();
CHECK(length()->IsNumber() || length()->IsUndefined());
// If a GC was caused while constructing this array, the elements
// pointer may point to a one pointer filler map.
if (ElementsAreSafeToExamine()) {
CHECK(elements()->IsUndefined() ||
elements()->IsFixedArray() ||
elements()->IsFixedDoubleArray());
}
}
void JSSet::JSSetVerify() {
CHECK(IsJSSet());
JSObjectVerify();
VerifyHeapPointer(table());
CHECK(table()->IsOrderedHashTable() || table()->IsUndefined());
// TODO(arv): Verify OrderedHashTable too.
}
void JSMap::JSMapVerify() {
CHECK(IsJSMap());
JSObjectVerify();
VerifyHeapPointer(table());
CHECK(table()->IsOrderedHashTable() || table()->IsUndefined());
// TODO(arv): Verify OrderedHashTable too.
}
void JSSetIterator::JSSetIteratorVerify() {
CHECK(IsJSSetIterator());
JSObjectVerify();
VerifyHeapPointer(table());
CHECK(table()->IsOrderedHashTable() || table()->IsUndefined());
CHECK(index()->IsSmi() || index()->IsUndefined());
CHECK(kind()->IsSmi() || kind()->IsUndefined());
}
void JSMapIterator::JSMapIteratorVerify() {
CHECK(IsJSMapIterator());
JSObjectVerify();
VerifyHeapPointer(table());
CHECK(table()->IsOrderedHashTable() || table()->IsUndefined());
CHECK(index()->IsSmi() || index()->IsUndefined());
CHECK(kind()->IsSmi() || kind()->IsUndefined());
}
void JSIteratorResult::JSIteratorResultVerify() {
CHECK(IsJSIteratorResult());
JSObjectVerify();
VerifyPointer(done());
VerifyPointer(value());
}
void JSWeakMap::JSWeakMapVerify() {
CHECK(IsJSWeakMap());
JSObjectVerify();
VerifyHeapPointer(table());
CHECK(table()->IsHashTable() || table()->IsUndefined());
}
void JSWeakSet::JSWeakSetVerify() {
CHECK(IsJSWeakSet());
JSObjectVerify();
VerifyHeapPointer(table());
CHECK(table()->IsHashTable() || table()->IsUndefined());
}
void JSRegExp::JSRegExpVerify() {
JSObjectVerify();
CHECK(data()->IsUndefined() || data()->IsFixedArray());
switch (TypeTag()) {
case JSRegExp::ATOM: {
FixedArray* arr = FixedArray::cast(data());
CHECK(arr->get(JSRegExp::kAtomPatternIndex)->IsString());
break;
}
case JSRegExp::IRREGEXP: {
bool is_native = RegExpImpl::UsesNativeRegExp();
FixedArray* arr = FixedArray::cast(data());
Object* one_byte_data = arr->get(JSRegExp::kIrregexpLatin1CodeIndex);
// Smi : Not compiled yet (-1) or code prepared for flushing.
// JSObject: Compilation error.
// Code/ByteArray: Compiled code.
CHECK(
one_byte_data->IsSmi() ||
(is_native ? one_byte_data->IsCode() : one_byte_data->IsByteArray()));
Object* uc16_data = arr->get(JSRegExp::kIrregexpUC16CodeIndex);
CHECK(uc16_data->IsSmi() ||
(is_native ? uc16_data->IsCode() : uc16_data->IsByteArray()));
Object* one_byte_saved =
arr->get(JSRegExp::kIrregexpLatin1CodeSavedIndex);
CHECK(one_byte_saved->IsSmi() || one_byte_saved->IsString() ||
one_byte_saved->IsCode());
Object* uc16_saved = arr->get(JSRegExp::kIrregexpUC16CodeSavedIndex);
CHECK(uc16_saved->IsSmi() || uc16_saved->IsString() ||
uc16_saved->IsCode());
CHECK(arr->get(JSRegExp::kIrregexpCaptureCountIndex)->IsSmi());
CHECK(arr->get(JSRegExp::kIrregexpMaxRegisterCountIndex)->IsSmi());
break;
}
default:
CHECK_EQ(JSRegExp::NOT_COMPILED, TypeTag());
CHECK(data()->IsUndefined());
break;
}
}
void JSProxy::JSProxyVerify() {
CHECK(IsJSProxy());
VerifyPointer(target());
VerifyPointer(handler());
CHECK_EQ(target()->IsCallable(), map()->is_callable());
CHECK_EQ(target()->IsConstructor(), map()->is_constructor());
CHECK(hash()->IsSmi() || hash()->IsUndefined());
CHECK(map()->prototype()->IsNull());
// There should be no properties on a Proxy.
CHECK_EQ(0, map()->NumberOfOwnDescriptors());
}
void JSArrayBuffer::JSArrayBufferVerify() {
CHECK(IsJSArrayBuffer());
JSObjectVerify();
VerifyPointer(byte_length());
CHECK(byte_length()->IsSmi() || byte_length()->IsHeapNumber()
|| byte_length()->IsUndefined());
}
void JSArrayBufferView::JSArrayBufferViewVerify() {
CHECK(IsJSArrayBufferView());
JSObjectVerify();
VerifyPointer(buffer());
CHECK(buffer()->IsJSArrayBuffer() || buffer()->IsUndefined()
|| buffer() == Smi::FromInt(0));
VerifyPointer(raw_byte_offset());
CHECK(raw_byte_offset()->IsSmi() || raw_byte_offset()->IsHeapNumber() ||
raw_byte_offset()->IsUndefined());
VerifyPointer(raw_byte_length());
CHECK(raw_byte_length()->IsSmi() || raw_byte_length()->IsHeapNumber() ||
raw_byte_length()->IsUndefined());
}
void JSTypedArray::JSTypedArrayVerify() {
CHECK(IsJSTypedArray());
JSArrayBufferViewVerify();
VerifyPointer(raw_length());
CHECK(raw_length()->IsSmi() || raw_length()->IsHeapNumber() ||
raw_length()->IsUndefined());
VerifyPointer(elements());
}
void JSDataView::JSDataViewVerify() {
CHECK(IsJSDataView());
JSArrayBufferViewVerify();
}
void Foreign::ForeignVerify() {
CHECK(IsForeign());
}
void Box::BoxVerify() {
CHECK(IsBox());
value()->ObjectVerify();
}
void PrototypeInfo::PrototypeInfoVerify() {
CHECK(IsPrototypeInfo());
if (prototype_users()->IsWeakFixedArray()) {
WeakFixedArray::cast(prototype_users())->FixedArrayVerify();
} else {
CHECK(prototype_users()->IsSmi());
}
CHECK(validity_cell()->IsCell() || validity_cell()->IsSmi());
}
void SloppyBlockWithEvalContextExtension::
SloppyBlockWithEvalContextExtensionVerify() {
CHECK(IsSloppyBlockWithEvalContextExtension());
VerifyObjectField(kScopeInfoOffset);
VerifyObjectField(kExtensionOffset);
}
void AccessorInfo::AccessorInfoVerify() {
CHECK(IsAccessorInfo());
VerifyPointer(name());
VerifyPointer(expected_receiver_type());
VerifyPointer(getter());
VerifyPointer(setter());
VerifyPointer(data());
}
void AccessorPair::AccessorPairVerify() {
CHECK(IsAccessorPair());
VerifyPointer(getter());
VerifyPointer(setter());
}
void AccessCheckInfo::AccessCheckInfoVerify() {
CHECK(IsAccessCheckInfo());
VerifyPointer(named_callback());
VerifyPointer(indexed_callback());
VerifyPointer(callback());
VerifyPointer(data());
}
void InterceptorInfo::InterceptorInfoVerify() {
CHECK(IsInterceptorInfo());
VerifyPointer(getter());
VerifyPointer(setter());
VerifyPointer(query());
VerifyPointer(deleter());
VerifyPointer(enumerator());
VerifyPointer(data());
VerifySmiField(kFlagsOffset);
}
void CallHandlerInfo::CallHandlerInfoVerify() {
CHECK(IsCallHandlerInfo());
VerifyPointer(callback());
VerifyPointer(data());
}
void TemplateInfo::TemplateInfoVerify() {
VerifyPointer(tag());
VerifyPointer(property_list());
VerifyPointer(property_accessors());
}
void FunctionTemplateInfo::FunctionTemplateInfoVerify() {
CHECK(IsFunctionTemplateInfo());
TemplateInfoVerify();
VerifyPointer(serial_number());
VerifyPointer(call_code());
VerifyPointer(prototype_template());
VerifyPointer(parent_template());
VerifyPointer(named_property_handler());
VerifyPointer(indexed_property_handler());
VerifyPointer(instance_template());
VerifyPointer(signature());
VerifyPointer(access_check_info());
}
void ObjectTemplateInfo::ObjectTemplateInfoVerify() {
CHECK(IsObjectTemplateInfo());
TemplateInfoVerify();
VerifyPointer(constructor());
VerifyPointer(internal_field_count());
}
void AllocationSite::AllocationSiteVerify() {
CHECK(IsAllocationSite());
}
void AllocationMemento::AllocationMementoVerify() {
CHECK(IsAllocationMemento());
VerifyHeapPointer(allocation_site());
CHECK(!IsValid() || GetAllocationSite()->IsAllocationSite());
}
void Script::ScriptVerify() {
CHECK(IsScript());
VerifyPointer(source());
VerifyPointer(name());
VerifyPointer(wrapper());
VerifyPointer(line_ends());
}
void NormalizedMapCache::NormalizedMapCacheVerify() {
FixedArray::cast(this)->FixedArrayVerify();
if (FLAG_enable_slow_asserts) {
for (int i = 0; i < length(); i++) {
Object* e = FixedArray::get(i);
if (e->IsMap()) {
Map::cast(e)->DictionaryMapVerify();
} else {
CHECK(e->IsUndefined());
}
}
}
}
void DebugInfo::DebugInfoVerify() {
CHECK(IsDebugInfo());
VerifyPointer(shared());
VerifyPointer(code());
VerifyPointer(break_points());
}
void BreakPointInfo::BreakPointInfoVerify() {
CHECK(IsBreakPointInfo());
VerifyPointer(break_point_objects());
}
#endif // VERIFY_HEAP
#ifdef DEBUG
void JSObject::IncrementSpillStatistics(SpillInformation* info) {
info->number_of_objects_++;
// Named properties
if (HasFastProperties()) {
info->number_of_objects_with_fast_properties_++;
info->number_of_fast_used_fields_ += map()->NextFreePropertyIndex();
info->number_of_fast_unused_fields_ += map()->unused_property_fields();
} else if (IsJSGlobalObject()) {
GlobalDictionary* dict = global_dictionary();
info->number_of_slow_used_properties_ += dict->NumberOfElements();
info->number_of_slow_unused_properties_ +=
dict->Capacity() - dict->NumberOfElements();
} else {
NameDictionary* dict = property_dictionary();
info->number_of_slow_used_properties_ += dict->NumberOfElements();
info->number_of_slow_unused_properties_ +=
dict->Capacity() - dict->NumberOfElements();
}
// Indexed properties
switch (GetElementsKind()) {
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS: {
info->number_of_objects_with_fast_elements_++;
int holes = 0;
FixedArray* e = FixedArray::cast(elements());
int len = e->length();
Heap* heap = GetHeap();
for (int i = 0; i < len; i++) {
if (e->get(i) == heap->the_hole_value()) holes++;
}
info->number_of_fast_used_elements_ += len - holes;
info->number_of_fast_unused_elements_ += holes;
break;
}
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
{ info->number_of_objects_with_fast_elements_++;
FixedArrayBase* e = FixedArrayBase::cast(elements());
info->number_of_fast_used_elements_ += e->length();
break;
}
case DICTIONARY_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS: {
SeededNumberDictionary* dict = element_dictionary();
info->number_of_slow_used_elements_ += dict->NumberOfElements();
info->number_of_slow_unused_elements_ +=
dict->Capacity() - dict->NumberOfElements();
break;
}
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case NO_ELEMENTS:
break;
}
}
void JSObject::SpillInformation::Clear() {
number_of_objects_ = 0;
number_of_objects_with_fast_properties_ = 0;
number_of_objects_with_fast_elements_ = 0;
number_of_fast_used_fields_ = 0;
number_of_fast_unused_fields_ = 0;
number_of_slow_used_properties_ = 0;
number_of_slow_unused_properties_ = 0;
number_of_fast_used_elements_ = 0;
number_of_fast_unused_elements_ = 0;
number_of_slow_used_elements_ = 0;
number_of_slow_unused_elements_ = 0;
}
void JSObject::SpillInformation::Print() {
PrintF("\n JSObject Spill Statistics (#%d):\n", number_of_objects_);
PrintF(" - fast properties (#%d): %d (used) %d (unused)\n",
number_of_objects_with_fast_properties_,
number_of_fast_used_fields_, number_of_fast_unused_fields_);
PrintF(" - slow properties (#%d): %d (used) %d (unused)\n",
number_of_objects_ - number_of_objects_with_fast_properties_,
number_of_slow_used_properties_, number_of_slow_unused_properties_);
PrintF(" - fast elements (#%d): %d (used) %d (unused)\n",
number_of_objects_with_fast_elements_,
number_of_fast_used_elements_, number_of_fast_unused_elements_);
PrintF(" - slow elements (#%d): %d (used) %d (unused)\n",
number_of_objects_ - number_of_objects_with_fast_elements_,
number_of_slow_used_elements_, number_of_slow_unused_elements_);
PrintF("\n");
}
bool DescriptorArray::IsSortedNoDuplicates(int valid_entries) {
if (valid_entries == -1) valid_entries = number_of_descriptors();
Name* current_key = NULL;
uint32_t current = 0;
for (int i = 0; i < number_of_descriptors(); i++) {
Name* key = GetSortedKey(i);
if (key == current_key) {
Print();
return false;
}
current_key = key;
uint32_t hash = GetSortedKey(i)->Hash();
if (hash < current) {
Print();
return false;
}
current = hash;
}
return true;
}
bool TransitionArray::IsSortedNoDuplicates(int valid_entries) {
DCHECK(valid_entries == -1);
Name* prev_key = NULL;
PropertyKind prev_kind = kData;
PropertyAttributes prev_attributes = NONE;
uint32_t prev_hash = 0;
for (int i = 0; i < number_of_transitions(); i++) {
Name* key = GetSortedKey(i);
uint32_t hash = key->Hash();
PropertyKind kind = kData;
PropertyAttributes attributes = NONE;
if (!IsSpecialTransition(key)) {
Map* target = GetTarget(i);
PropertyDetails details = GetTargetDetails(key, target);
kind = details.kind();
attributes = details.attributes();
} else {
// Duplicate entries are not allowed for non-property transitions.
CHECK_NE(prev_key, key);
}
int cmp = CompareKeys(prev_key, prev_hash, prev_kind, prev_attributes, key,
hash, kind, attributes);
if (cmp >= 0) {
Print();
return false;
}
prev_key = key;
prev_hash = hash;
prev_attributes = attributes;
prev_kind = kind;
}
return true;
}
// static
bool TransitionArray::IsSortedNoDuplicates(Map* map) {
Object* raw_transitions = map->raw_transitions();
if (IsFullTransitionArray(raw_transitions)) {
return TransitionArray::cast(raw_transitions)->IsSortedNoDuplicates();
}
// Simple and non-existent transitions are always sorted.
return true;
}
static bool CheckOneBackPointer(Map* current_map, Object* target) {
return !target->IsMap() || Map::cast(target)->GetBackPointer() == current_map;
}
// static
bool TransitionArray::IsConsistentWithBackPointers(Map* map) {
Object* transitions = map->raw_transitions();
for (int i = 0; i < TransitionArray::NumberOfTransitions(transitions); ++i) {
Map* target = TransitionArray::GetTarget(transitions, i);
if (!CheckOneBackPointer(map, target)) return false;
}
return true;
}
// Estimates if there is a path from the object to a context.
// This function is not precise, and can return false even if
// there is a path to a context.
bool CanLeak(Object* obj, Heap* heap, bool skip_weak_cell) {
if (!obj->IsHeapObject()) return false;
if (obj->IsWeakCell()) {
if (skip_weak_cell) return false;
return CanLeak(WeakCell::cast(obj)->value(), heap, skip_weak_cell);
}
if (obj->IsCell()) {
return CanLeak(Cell::cast(obj)->value(), heap, skip_weak_cell);
}
if (obj->IsPropertyCell()) {
return CanLeak(PropertyCell::cast(obj)->value(), heap, skip_weak_cell);
}
if (obj->IsContext()) return true;
if (obj->IsMap()) {
Map* map = Map::cast(obj);
for (int i = 0; i < Heap::kStrongRootListLength; i++) {
Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i);
if (map == heap->root(root_index)) return false;
}
return true;
}
return CanLeak(HeapObject::cast(obj)->map(), heap, skip_weak_cell);
}
void Code::VerifyEmbeddedObjects(VerifyMode mode) {
if (kind() == OPTIMIZED_FUNCTION) return;
Heap* heap = GetIsolate()->heap();
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::CELL);
bool skip_weak_cell = (mode == kNoContextSpecificPointers) ? false : true;
for (RelocIterator it(this, mask); !it.done(); it.next()) {
Object* target = it.rinfo()->rmode() == RelocInfo::CELL
? it.rinfo()->target_cell()
: it.rinfo()->target_object();
CHECK(!CanLeak(target, heap, skip_weak_cell));
}
}
// Verify that the debugger can redirect old code to the new code.
void Code::VerifyRecompiledCode(Code* old_code, Code* new_code) {
if (old_code->kind() != FUNCTION) return;
if (new_code->kind() != FUNCTION) return;
Isolate* isolate = old_code->GetIsolate();
// Do not verify during bootstrapping. We may replace code using %SetCode.
if (isolate->bootstrapper()->IsActive()) return;
static const int mask = RelocInfo::kCodeTargetMask;
RelocIterator old_it(old_code, mask);
RelocIterator new_it(new_code, mask);
Code* stack_check = isolate->builtins()->builtin(Builtins::kStackCheck);
while (!old_it.done()) {
RelocInfo* rinfo = old_it.rinfo();
Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
CHECK(!target->is_handler() && !target->is_inline_cache_stub());
if (target == stack_check) break;
old_it.next();
}
while (!new_it.done()) {
RelocInfo* rinfo = new_it.rinfo();
Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
CHECK(!target->is_handler() && !target->is_inline_cache_stub());
if (target == stack_check) break;
new_it.next();
}
// Either both are done because there is no stack check.
// Or we are past the prologue for both.
CHECK_EQ(new_it.done(), old_it.done());
// After the prologue, each call in the old code has a corresponding call
// in the new code.
while (!old_it.done() && !new_it.done()) {
Code* old_target =
Code::GetCodeFromTargetAddress(old_it.rinfo()->target_address());
Code* new_target =
Code::GetCodeFromTargetAddress(new_it.rinfo()->target_address());
CHECK_EQ(old_target->kind(), new_target->kind());
// Check call target for equality unless it's an IC or an interrupt check.
// In both cases they may be patched to be something else.
if (!old_target->is_handler() && !old_target->is_inline_cache_stub() &&
new_target != isolate->builtins()->builtin(Builtins::kInterruptCheck)) {
CHECK_EQ(old_target, new_target);
}
old_it.next();
new_it.next();
}
// Both are done at the same time.
CHECK_EQ(new_it.done(), old_it.done());
}
#endif // DEBUG
} // namespace internal
} // namespace v8