v8/test/unittests/compiler/scheduler-unittest.cc
mstarzinger 3548c5c6f1 [turbofan] Make IfException projections consume effects.
This is needed in order to allow expansion of a throwing node into a
set of nodes that produce different effects for the successful and the
exceptional continuation.

R=bmeurer@chromium.org

Review URL: https://codereview.chromium.org/1179543002

Cr-Commit-Position: refs/heads/master@{#28918}
2015-06-11 04:22:11 +00:00

1170 lines
40 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/access-builder.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/opcodes.h"
#include "src/compiler/operator.h"
#include "src/compiler/schedule.h"
#include "src/compiler/scheduler.h"
#include "src/compiler/simplified-operator.h"
#include "src/compiler/verifier.h"
#include "test/unittests/compiler/compiler-test-utils.h"
#include "test/unittests/test-utils.h"
#include "testing/gmock/include/gmock/gmock.h"
using testing::AnyOf;
namespace v8 {
namespace internal {
namespace compiler {
class SchedulerTest : public TestWithIsolateAndZone {
public:
SchedulerTest()
: graph_(zone()), common_(zone()), simplified_(zone()), js_(zone()) {}
Schedule* ComputeAndVerifySchedule(size_t expected) {
if (FLAG_trace_turbo) {
OFStream os(stdout);
os << AsDOT(*graph());
}
Schedule* schedule =
Scheduler::ComputeSchedule(zone(), graph(), Scheduler::kSplitNodes);
if (FLAG_trace_turbo_scheduler) {
OFStream os(stdout);
os << *schedule << std::endl;
}
ScheduleVerifier::Run(schedule);
EXPECT_EQ(expected, GetScheduledNodeCount(schedule));
return schedule;
}
size_t GetScheduledNodeCount(const Schedule* schedule) {
size_t node_count = 0;
for (auto block : *schedule->rpo_order()) {
node_count += block->NodeCount();
if (block->control() != BasicBlock::kNone) ++node_count;
}
return node_count;
}
Graph* graph() { return &graph_; }
CommonOperatorBuilder* common() { return &common_; }
SimplifiedOperatorBuilder* simplified() { return &simplified_; }
JSOperatorBuilder* js() { return &js_; }
private:
Graph graph_;
CommonOperatorBuilder common_;
SimplifiedOperatorBuilder simplified_;
JSOperatorBuilder js_;
};
class SchedulerRPOTest : public SchedulerTest {
public:
SchedulerRPOTest() {}
// TODO(titzer): pull RPO tests out to their own file.
void CheckRPONumbers(BasicBlockVector* order, size_t expected,
bool loops_allowed) {
CHECK(expected == order->size());
for (int i = 0; i < static_cast<int>(order->size()); i++) {
CHECK(order->at(i)->rpo_number() == i);
if (!loops_allowed) {
CHECK(!order->at(i)->loop_end());
CHECK(!order->at(i)->loop_header());
}
}
}
void CheckLoop(BasicBlockVector* order, BasicBlock** blocks, int body_size) {
BasicBlock* header = blocks[0];
BasicBlock* end = header->loop_end();
CHECK(end);
CHECK_GT(end->rpo_number(), 0);
CHECK_EQ(body_size, end->rpo_number() - header->rpo_number());
for (int i = 0; i < body_size; i++) {
CHECK_GE(blocks[i]->rpo_number(), header->rpo_number());
CHECK_LT(blocks[i]->rpo_number(), end->rpo_number());
CHECK(header->LoopContains(blocks[i]));
CHECK(header->IsLoopHeader() || blocks[i]->loop_header() == header);
}
if (header->rpo_number() > 0) {
CHECK_NE(order->at(header->rpo_number() - 1)->loop_header(), header);
}
if (end->rpo_number() < static_cast<int>(order->size())) {
CHECK_NE(order->at(end->rpo_number())->loop_header(), header);
}
}
struct TestLoop {
int count;
BasicBlock** nodes;
BasicBlock* header() { return nodes[0]; }
BasicBlock* last() { return nodes[count - 1]; }
~TestLoop() { delete[] nodes; }
};
TestLoop* CreateLoop(Schedule* schedule, int count) {
TestLoop* loop = new TestLoop();
loop->count = count;
loop->nodes = new BasicBlock* [count];
for (int i = 0; i < count; i++) {
loop->nodes[i] = schedule->NewBasicBlock();
if (i > 0) {
schedule->AddSuccessorForTesting(loop->nodes[i - 1], loop->nodes[i]);
}
}
schedule->AddSuccessorForTesting(loop->nodes[count - 1], loop->nodes[0]);
return loop;
}
};
namespace {
const Operator kHeapConstant(IrOpcode::kHeapConstant, Operator::kPure,
"HeapConstant", 0, 0, 0, 1, 0, 0);
const Operator kIntAdd(IrOpcode::kInt32Add, Operator::kPure, "Int32Add", 2, 0,
0, 1, 0, 0);
const Operator kMockCall(IrOpcode::kCall, Operator::kNoProperties, "MockCall",
0, 0, 1, 1, 0, 2);
const Operator kMockTailCall(IrOpcode::kTailCall, Operator::kNoProperties,
"MockTailCall", 1, 1, 1, 0, 0, 1);
} // namespace
// -----------------------------------------------------------------------------
// Special reverse-post-order block ordering.
TEST_F(SchedulerRPOTest, Degenerate1) {
Schedule schedule(zone());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 1, false);
EXPECT_EQ(schedule.start(), order->at(0));
}
TEST_F(SchedulerRPOTest, Degenerate2) {
Schedule schedule(zone());
schedule.AddGoto(schedule.start(), schedule.end());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 2, false);
EXPECT_EQ(schedule.start(), order->at(0));
EXPECT_EQ(schedule.end(), order->at(1));
}
TEST_F(SchedulerRPOTest, Line) {
for (int i = 0; i < 10; i++) {
Schedule schedule(zone());
BasicBlock* last = schedule.start();
for (int j = 0; j < i; j++) {
BasicBlock* block = schedule.NewBasicBlock();
block->set_deferred(i & 1);
schedule.AddGoto(last, block);
last = block;
}
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 1 + i, false);
for (size_t i = 0; i < schedule.BasicBlockCount(); i++) {
BasicBlock* block = schedule.GetBlockById(BasicBlock::Id::FromSize(i));
if (block->rpo_number() >= 0 && block->SuccessorCount() == 1) {
EXPECT_EQ(block->rpo_number() + 1, block->SuccessorAt(0)->rpo_number());
}
}
}
}
TEST_F(SchedulerRPOTest, SelfLoop) {
Schedule schedule(zone());
schedule.AddSuccessorForTesting(schedule.start(), schedule.start());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 1, true);
BasicBlock* loop[] = {schedule.start()};
CheckLoop(order, loop, 1);
}
TEST_F(SchedulerRPOTest, EntryLoop) {
Schedule schedule(zone());
BasicBlock* body = schedule.NewBasicBlock();
schedule.AddSuccessorForTesting(schedule.start(), body);
schedule.AddSuccessorForTesting(body, schedule.start());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 2, true);
BasicBlock* loop[] = {schedule.start(), body};
CheckLoop(order, loop, 2);
}
TEST_F(SchedulerRPOTest, EndLoop) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 2));
schedule.AddSuccessorForTesting(schedule.start(), loop1->header());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 3, true);
CheckLoop(order, loop1->nodes, loop1->count);
}
TEST_F(SchedulerRPOTest, EndLoopNested) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 2));
schedule.AddSuccessorForTesting(schedule.start(), loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), schedule.start());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 3, true);
CheckLoop(order, loop1->nodes, loop1->count);
}
TEST_F(SchedulerRPOTest, Diamond) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(A, C);
schedule.AddSuccessorForTesting(B, D);
schedule.AddSuccessorForTesting(C, D);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 4, false);
EXPECT_EQ(0, A->rpo_number());
EXPECT_THAT(B->rpo_number(), AnyOf(1, 2));
EXPECT_THAT(C->rpo_number(), AnyOf(1, 2));
EXPECT_EQ(3, D->rpo_number());
}
TEST_F(SchedulerRPOTest, Loop1) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, B);
schedule.AddSuccessorForTesting(C, D);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 4, true);
BasicBlock* loop[] = {B, C};
CheckLoop(order, loop, 2);
}
TEST_F(SchedulerRPOTest, Loop2) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, B);
schedule.AddSuccessorForTesting(B, D);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 4, true);
BasicBlock* loop[] = {B, C};
CheckLoop(order, loop, 2);
}
TEST_F(SchedulerRPOTest, LoopN) {
for (int i = 0; i < 11; i++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.NewBasicBlock();
BasicBlock* F = schedule.NewBasicBlock();
BasicBlock* G = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, D);
schedule.AddSuccessorForTesting(D, E);
schedule.AddSuccessorForTesting(E, F);
schedule.AddSuccessorForTesting(F, B);
schedule.AddSuccessorForTesting(B, G);
// Throw in extra backedges from time to time.
if (i == 1) schedule.AddSuccessorForTesting(B, B);
if (i == 2) schedule.AddSuccessorForTesting(C, B);
if (i == 3) schedule.AddSuccessorForTesting(D, B);
if (i == 4) schedule.AddSuccessorForTesting(E, B);
if (i == 5) schedule.AddSuccessorForTesting(F, B);
// Throw in extra loop exits from time to time.
if (i == 6) schedule.AddSuccessorForTesting(B, G);
if (i == 7) schedule.AddSuccessorForTesting(C, G);
if (i == 8) schedule.AddSuccessorForTesting(D, G);
if (i == 9) schedule.AddSuccessorForTesting(E, G);
if (i == 10) schedule.AddSuccessorForTesting(F, G);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 7, true);
BasicBlock* loop[] = {B, C, D, E, F};
CheckLoop(order, loop, 5);
}
}
TEST_F(SchedulerRPOTest, LoopNest1) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.NewBasicBlock();
BasicBlock* F = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, D);
schedule.AddSuccessorForTesting(D, C);
schedule.AddSuccessorForTesting(D, E);
schedule.AddSuccessorForTesting(E, B);
schedule.AddSuccessorForTesting(E, F);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 6, true);
BasicBlock* loop1[] = {B, C, D, E};
CheckLoop(order, loop1, 4);
BasicBlock* loop2[] = {C, D};
CheckLoop(order, loop2, 2);
}
TEST_F(SchedulerRPOTest, LoopNest2) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.NewBasicBlock();
BasicBlock* F = schedule.NewBasicBlock();
BasicBlock* G = schedule.NewBasicBlock();
BasicBlock* H = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, D);
schedule.AddSuccessorForTesting(D, E);
schedule.AddSuccessorForTesting(E, F);
schedule.AddSuccessorForTesting(F, G);
schedule.AddSuccessorForTesting(G, H);
schedule.AddSuccessorForTesting(E, D);
schedule.AddSuccessorForTesting(F, C);
schedule.AddSuccessorForTesting(G, B);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 8, true);
BasicBlock* loop1[] = {B, C, D, E, F, G};
CheckLoop(order, loop1, 6);
BasicBlock* loop2[] = {C, D, E, F};
CheckLoop(order, loop2, 4);
BasicBlock* loop3[] = {D, E};
CheckLoop(order, loop3, 2);
}
TEST_F(SchedulerRPOTest, LoopFollow1) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 1));
SmartPointer<TestLoop> loop2(CreateLoop(&schedule, 1));
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->header(), loop2->header());
schedule.AddSuccessorForTesting(loop2->last(), E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
EXPECT_EQ(schedule.BasicBlockCount(), order->size());
CheckLoop(order, loop1->nodes, loop1->count);
CheckLoop(order, loop2->nodes, loop2->count);
}
TEST_F(SchedulerRPOTest, LoopFollow2) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 1));
SmartPointer<TestLoop> loop2(CreateLoop(&schedule, 1));
BasicBlock* A = schedule.start();
BasicBlock* S = schedule.NewBasicBlock();
BasicBlock* E = schedule.end();
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->header(), S);
schedule.AddSuccessorForTesting(S, loop2->header());
schedule.AddSuccessorForTesting(loop2->last(), E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
EXPECT_EQ(schedule.BasicBlockCount(), order->size());
CheckLoop(order, loop1->nodes, loop1->count);
CheckLoop(order, loop2->nodes, loop2->count);
}
TEST_F(SchedulerRPOTest, LoopFollowN) {
for (int size = 1; size < 5; size++) {
for (int exit = 0; exit < size; exit++) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
SmartPointer<TestLoop> loop2(CreateLoop(&schedule, size));
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->nodes[exit], loop2->header());
schedule.AddSuccessorForTesting(loop2->nodes[exit], E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
EXPECT_EQ(schedule.BasicBlockCount(), order->size());
CheckLoop(order, loop1->nodes, loop1->count);
CheckLoop(order, loop2->nodes, loop2->count);
}
}
}
TEST_F(SchedulerRPOTest, NestedLoopFollow1) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 1));
SmartPointer<TestLoop> loop2(CreateLoop(&schedule, 1));
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* E = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, loop1->header());
schedule.AddSuccessorForTesting(loop1->header(), loop2->header());
schedule.AddSuccessorForTesting(loop2->last(), C);
schedule.AddSuccessorForTesting(C, E);
schedule.AddSuccessorForTesting(C, B);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
EXPECT_EQ(schedule.BasicBlockCount(), order->size());
CheckLoop(order, loop1->nodes, loop1->count);
CheckLoop(order, loop2->nodes, loop2->count);
BasicBlock* loop3[] = {B, loop1->nodes[0], loop2->nodes[0], C};
CheckLoop(order, loop3, 4);
}
TEST_F(SchedulerRPOTest, LoopBackedges1) {
int size = 8;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), E);
schedule.AddSuccessorForTesting(loop1->nodes[i], loop1->header());
schedule.AddSuccessorForTesting(loop1->nodes[j], E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, schedule.BasicBlockCount(), true);
CheckLoop(order, loop1->nodes, loop1->count);
}
}
}
TEST_F(SchedulerRPOTest, LoopOutedges1) {
int size = 8;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.end();
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), E);
schedule.AddSuccessorForTesting(loop1->nodes[i], loop1->header());
schedule.AddSuccessorForTesting(loop1->nodes[j], D);
schedule.AddSuccessorForTesting(D, E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, schedule.BasicBlockCount(), true);
CheckLoop(order, loop1->nodes, loop1->count);
}
}
}
TEST_F(SchedulerRPOTest, LoopOutedges2) {
int size = 8;
for (int i = 0; i < size; i++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), E);
for (int j = 0; j < size; j++) {
BasicBlock* O = schedule.NewBasicBlock();
schedule.AddSuccessorForTesting(loop1->nodes[j], O);
schedule.AddSuccessorForTesting(O, E);
}
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, schedule.BasicBlockCount(), true);
CheckLoop(order, loop1->nodes, loop1->count);
}
}
TEST_F(SchedulerRPOTest, LoopOutloops1) {
int size = 8;
for (int i = 0; i < size; i++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), E);
TestLoop** loopN = new TestLoop* [size];
for (int j = 0; j < size; j++) {
loopN[j] = CreateLoop(&schedule, 2);
schedule.AddSuccessorForTesting(loop1->nodes[j], loopN[j]->header());
schedule.AddSuccessorForTesting(loopN[j]->last(), E);
}
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, schedule.BasicBlockCount(), true);
CheckLoop(order, loop1->nodes, loop1->count);
for (int j = 0; j < size; j++) {
CheckLoop(order, loopN[j]->nodes, loopN[j]->count);
delete loopN[j];
}
delete[] loopN;
}
}
TEST_F(SchedulerRPOTest, LoopMultibackedge) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.NewBasicBlock();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(B, D);
schedule.AddSuccessorForTesting(B, E);
schedule.AddSuccessorForTesting(C, B);
schedule.AddSuccessorForTesting(D, B);
schedule.AddSuccessorForTesting(E, B);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 5, true);
BasicBlock* loop1[] = {B, C, D, E};
CheckLoop(order, loop1, 4);
}
// -----------------------------------------------------------------------------
// Graph end-to-end scheduling.
TEST_F(SchedulerTest, BuildScheduleEmpty) {
graph()->SetStart(graph()->NewNode(common()->Start(0)));
graph()->SetEnd(graph()->NewNode(common()->End(1), graph()->start()));
USE(Scheduler::ComputeSchedule(zone(), graph(), Scheduler::kNoFlags));
}
TEST_F(SchedulerTest, BuildScheduleOneParameter) {
graph()->SetStart(graph()->NewNode(common()->Start(0)));
Node* p1 = graph()->NewNode(common()->Parameter(0), graph()->start());
Node* ret = graph()->NewNode(common()->Return(), p1, graph()->start(),
graph()->start());
graph()->SetEnd(graph()->NewNode(common()->End(1), ret));
USE(Scheduler::ComputeSchedule(zone(), graph(), Scheduler::kNoFlags));
}
TEST_F(SchedulerTest, BuildScheduleIfSplit) {
graph()->SetStart(graph()->NewNode(common()->Start(5)));
Node* p1 = graph()->NewNode(common()->Parameter(0), graph()->start());
Node* p2 = graph()->NewNode(common()->Parameter(1), graph()->start());
Node* p3 = graph()->NewNode(common()->Parameter(2), graph()->start());
Node* p4 = graph()->NewNode(common()->Parameter(3), graph()->start());
Node* p5 = graph()->NewNode(common()->Parameter(4), graph()->start());
Node* cmp =
graph()->NewNode(js()->LessThanOrEqual(LanguageMode::SLOPPY), p1, p2, p3,
p4, p5, graph()->start(), graph()->start());
Node* branch = graph()->NewNode(common()->Branch(), cmp, graph()->start());
Node* true_branch = graph()->NewNode(common()->IfTrue(), branch);
Node* false_branch = graph()->NewNode(common()->IfFalse(), branch);
Node* ret1 =
graph()->NewNode(common()->Return(), p4, graph()->start(), true_branch);
Node* ret2 =
graph()->NewNode(common()->Return(), p5, graph()->start(), false_branch);
graph()->SetEnd(graph()->NewNode(common()->End(2), ret1, ret2));
ComputeAndVerifySchedule(13);
}
namespace {
Node* CreateDiamond(Graph* graph, CommonOperatorBuilder* common, Node* cond) {
Node* tv = graph->NewNode(common->Int32Constant(6));
Node* fv = graph->NewNode(common->Int32Constant(7));
Node* br = graph->NewNode(common->Branch(), cond, graph->start());
Node* t = graph->NewNode(common->IfTrue(), br);
Node* f = graph->NewNode(common->IfFalse(), br);
Node* m = graph->NewNode(common->Merge(2), t, f);
Node* phi = graph->NewNode(common->Phi(kMachAnyTagged, 2), tv, fv, m);
return phi;
}
} // namespace
TARGET_TEST_F(SchedulerTest, FloatingDiamond1) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* d1 = CreateDiamond(graph(), common(), p0);
Node* ret = graph()->NewNode(common()->Return(), d1, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(13);
}
TARGET_TEST_F(SchedulerTest, FloatingDiamond2) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* p1 = graph()->NewNode(common()->Parameter(1), start);
Node* d1 = CreateDiamond(graph(), common(), p0);
Node* d2 = CreateDiamond(graph(), common(), p1);
Node* add = graph()->NewNode(&kIntAdd, d1, d2);
Node* ret = graph()->NewNode(common()->Return(), add, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(24);
}
TARGET_TEST_F(SchedulerTest, FloatingDiamond3) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* p1 = graph()->NewNode(common()->Parameter(1), start);
Node* d1 = CreateDiamond(graph(), common(), p0);
Node* d2 = CreateDiamond(graph(), common(), p1);
Node* add = graph()->NewNode(&kIntAdd, d1, d2);
Node* d3 = CreateDiamond(graph(), common(), add);
Node* ret = graph()->NewNode(common()->Return(), d3, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(33);
}
TARGET_TEST_F(SchedulerTest, NestedFloatingDiamonds) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* fv = graph()->NewNode(common()->Int32Constant(7));
Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* map = graph()->NewNode(
simplified()->LoadElement(AccessBuilder::ForFixedArrayElement()), p0, p0,
p0, start, f);
Node* br1 = graph()->NewNode(common()->Branch(), map, graph()->start());
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1);
Node* ttrue = graph()->NewNode(common()->Int32Constant(1));
Node* ffalse = graph()->NewNode(common()->Int32Constant(0));
Node* phi1 =
graph()->NewNode(common()->Phi(kMachAnyTagged, 2), ttrue, ffalse, m1);
Node* m = graph()->NewNode(common()->Merge(2), t, f);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), fv, phi1, m);
Node* ephi1 = graph()->NewNode(common()->EffectPhi(2), start, map, m);
Node* ret = graph()->NewNode(common()->Return(), phi, ephi1, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(23);
}
TARGET_TEST_F(SchedulerTest, NestedFloatingDiamondWithChain) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* p1 = graph()->NewNode(common()->Parameter(1), start);
Node* c = graph()->NewNode(common()->Int32Constant(7));
Node* brA1 = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* tA1 = graph()->NewNode(common()->IfTrue(), brA1);
Node* fA1 = graph()->NewNode(common()->IfFalse(), brA1);
Node* mA1 = graph()->NewNode(common()->Merge(2), tA1, fA1);
Node* phiA1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p1, mA1);
Node* brB1 = graph()->NewNode(common()->Branch(), p1, graph()->start());
Node* tB1 = graph()->NewNode(common()->IfTrue(), brB1);
Node* fB1 = graph()->NewNode(common()->IfFalse(), brB1);
Node* mB1 = graph()->NewNode(common()->Merge(2), tB1, fB1);
Node* phiB1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p1, mB1);
Node* brA2 = graph()->NewNode(common()->Branch(), phiB1, mA1);
Node* tA2 = graph()->NewNode(common()->IfTrue(), brA2);
Node* fA2 = graph()->NewNode(common()->IfFalse(), brA2);
Node* mA2 = graph()->NewNode(common()->Merge(2), tA2, fA2);
Node* phiA2 =
graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phiB1, c, mA2);
Node* brB2 = graph()->NewNode(common()->Branch(), phiA1, mB1);
Node* tB2 = graph()->NewNode(common()->IfTrue(), brB2);
Node* fB2 = graph()->NewNode(common()->IfFalse(), brB2);
Node* mB2 = graph()->NewNode(common()->Merge(2), tB2, fB2);
Node* phiB2 =
graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phiA1, c, mB2);
Node* add = graph()->NewNode(&kIntAdd, phiA2, phiB2);
Node* ret = graph()->NewNode(common()->Return(), add, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(36);
}
TARGET_TEST_F(SchedulerTest, NestedFloatingDiamondWithLoop) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* fv = graph()->NewNode(common()->Int32Constant(7));
Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* loop = graph()->NewNode(common()->Loop(2), f, start);
Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* add = graph()->NewNode(&kIntAdd, ind, fv);
Node* br1 = graph()->NewNode(common()->Branch(), add, loop);
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
loop->ReplaceInput(1, t1); // close loop.
ind->ReplaceInput(1, ind); // close induction variable.
Node* m = graph()->NewNode(common()->Merge(2), t, f1);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), fv, ind, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(20);
}
TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond1) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* c = graph()->NewNode(common()->Int32Constant(7));
Node* loop = graph()->NewNode(common()->Loop(2), start, start);
Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* add = graph()->NewNode(&kIntAdd, ind, c);
Node* br = graph()->NewNode(common()->Branch(), add, loop);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1);
Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), add, p0, m1);
loop->ReplaceInput(1, t); // close loop.
ind->ReplaceInput(1, phi1); // close induction variable.
Node* ret = graph()->NewNode(common()->Return(), ind, start, f);
Node* end = graph()->NewNode(common()->End(2), ret, f);
graph()->SetEnd(end);
ComputeAndVerifySchedule(20);
}
TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond2) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* c = graph()->NewNode(common()->Int32Constant(7));
Node* loop = graph()->NewNode(common()->Loop(2), start, start);
Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1);
Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), c, ind, m1);
Node* add = graph()->NewNode(&kIntAdd, ind, phi1);
Node* br = graph()->NewNode(common()->Branch(), add, loop);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
loop->ReplaceInput(1, t); // close loop.
ind->ReplaceInput(1, add); // close induction variable.
Node* ret = graph()->NewNode(common()->Return(), ind, start, f);
Node* end = graph()->NewNode(common()->End(2), ret, f);
graph()->SetEnd(end);
ComputeAndVerifySchedule(20);
}
TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond3) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* c = graph()->NewNode(common()->Int32Constant(7));
Node* loop = graph()->NewNode(common()->Loop(2), start, start);
Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
Node* loop1 = graph()->NewNode(common()->Loop(2), t1, start);
Node* ind1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* add1 = graph()->NewNode(&kIntAdd, ind1, c);
Node* br2 = graph()->NewNode(common()->Branch(), add1, loop1);
Node* t2 = graph()->NewNode(common()->IfTrue(), br2);
Node* f2 = graph()->NewNode(common()->IfFalse(), br2);
loop1->ReplaceInput(1, t2); // close inner loop.
ind1->ReplaceInput(1, ind1); // close inner induction variable.
Node* m1 = graph()->NewNode(common()->Merge(2), f1, f2);
Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), c, ind1, m1);
Node* add = graph()->NewNode(&kIntAdd, ind, phi1);
Node* br = graph()->NewNode(common()->Branch(), add, loop);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
loop->ReplaceInput(1, t); // close loop.
ind->ReplaceInput(1, add); // close induction variable.
Node* ret = graph()->NewNode(common()->Return(), ind, start, f);
Node* end = graph()->NewNode(common()->End(2), ret, f);
graph()->SetEnd(end);
ComputeAndVerifySchedule(28);
}
TARGET_TEST_F(SchedulerTest, PhisPushedDownToDifferentBranches) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* p1 = graph()->NewNode(common()->Parameter(1), start);
Node* v1 = graph()->NewNode(common()->Int32Constant(1));
Node* v2 = graph()->NewNode(common()->Int32Constant(2));
Node* v3 = graph()->NewNode(common()->Int32Constant(3));
Node* v4 = graph()->NewNode(common()->Int32Constant(4));
Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* m = graph()->NewNode(common()->Merge(2), t, f);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), v1, v2, m);
Node* phi2 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), v3, v4, m);
Node* br2 = graph()->NewNode(common()->Branch(), p1, graph()->start());
Node* t2 = graph()->NewNode(common()->IfTrue(), br2);
Node* f2 = graph()->NewNode(common()->IfFalse(), br2);
Node* m2 = graph()->NewNode(common()->Merge(2), t2, f2);
Node* phi3 =
graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phi, phi2, m2);
Node* ret = graph()->NewNode(common()->Return(), phi3, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(24);
}
TARGET_TEST_F(SchedulerTest, BranchHintTrue) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* tv = graph()->NewNode(common()->Int32Constant(6));
Node* fv = graph()->NewNode(common()->Int32Constant(7));
Node* br = graph()->NewNode(common()->Branch(BranchHint::kTrue), p0, start);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* m = graph()->NewNode(common()->Merge(2), t, f);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), tv, fv, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
Schedule* schedule = ComputeAndVerifySchedule(13);
// Make sure the false block is marked as deferred.
EXPECT_FALSE(schedule->block(t)->deferred());
EXPECT_TRUE(schedule->block(f)->deferred());
}
TARGET_TEST_F(SchedulerTest, BranchHintFalse) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* tv = graph()->NewNode(common()->Int32Constant(6));
Node* fv = graph()->NewNode(common()->Int32Constant(7));
Node* br = graph()->NewNode(common()->Branch(BranchHint::kFalse), p0, start);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* m = graph()->NewNode(common()->Merge(2), t, f);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), tv, fv, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
Schedule* schedule = ComputeAndVerifySchedule(13);
// Make sure the true block is marked as deferred.
EXPECT_TRUE(schedule->block(t)->deferred());
EXPECT_FALSE(schedule->block(f)->deferred());
}
TARGET_TEST_F(SchedulerTest, CallException) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* c1 = graph()->NewNode(&kMockCall, start);
Node* ok1 = graph()->NewNode(common()->IfSuccess(), c1);
Node* ex1 = graph()->NewNode(
common()->IfException(IfExceptionHint::kLocallyUncaught), c1, c1);
Node* c2 = graph()->NewNode(&kMockCall, ok1);
Node* ok2 = graph()->NewNode(common()->IfSuccess(), c2);
Node* ex2 = graph()->NewNode(
common()->IfException(IfExceptionHint::kLocallyUncaught), c2, c2);
Node* hdl = graph()->NewNode(common()->Merge(2), ex1, ex2);
Node* m = graph()->NewNode(common()->Merge(2), ok2, hdl);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), c2, p0, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, m);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
Schedule* schedule = ComputeAndVerifySchedule(17);
// Make sure the exception blocks as well as the handler are deferred.
EXPECT_TRUE(schedule->block(ex1)->deferred());
EXPECT_TRUE(schedule->block(ex2)->deferred());
EXPECT_TRUE(schedule->block(hdl)->deferred());
EXPECT_FALSE(schedule->block(m)->deferred());
}
TARGET_TEST_F(SchedulerTest, TailCall) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* call = graph()->NewNode(&kMockTailCall, p0, start, start);
Node* end = graph()->NewNode(common()->End(1), call);
graph()->SetEnd(end);
ComputeAndVerifySchedule(4);
}
TARGET_TEST_F(SchedulerTest, Switch) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* sw = graph()->NewNode(common()->Switch(3), p0, start);
Node* c0 = graph()->NewNode(common()->IfValue(0), sw);
Node* v0 = graph()->NewNode(common()->Int32Constant(11));
Node* c1 = graph()->NewNode(common()->IfValue(1), sw);
Node* v1 = graph()->NewNode(common()->Int32Constant(22));
Node* d = graph()->NewNode(common()->IfDefault(), sw);
Node* vd = graph()->NewNode(common()->Int32Constant(33));
Node* m = graph()->NewNode(common()->Merge(3), c0, c1, d);
Node* phi = graph()->NewNode(common()->Phi(kMachInt32, 3), v0, v1, vd, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, m);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(16);
}
TARGET_TEST_F(SchedulerTest, FloatingSwitch) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* sw = graph()->NewNode(common()->Switch(3), p0, start);
Node* c0 = graph()->NewNode(common()->IfValue(0), sw);
Node* v0 = graph()->NewNode(common()->Int32Constant(11));
Node* c1 = graph()->NewNode(common()->IfValue(1), sw);
Node* v1 = graph()->NewNode(common()->Int32Constant(22));
Node* d = graph()->NewNode(common()->IfDefault(), sw);
Node* vd = graph()->NewNode(common()->Int32Constant(33));
Node* m = graph()->NewNode(common()->Merge(3), c0, c1, d);
Node* phi = graph()->NewNode(common()->Phi(kMachInt32, 3), v0, v1, vd, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, start);
Node* end = graph()->NewNode(common()->End(1), ret);
graph()->SetEnd(end);
ComputeAndVerifySchedule(16);
}
TARGET_TEST_F(SchedulerTest, Terminate) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* loop = graph()->NewNode(common()->Loop(2), start, start);
loop->ReplaceInput(1, loop); // self loop, NTL.
Node* effect = graph()->NewNode(common()->EffectPhi(1), start, loop);
Node* terminate = graph()->NewNode(common()->Terminate(), effect, loop);
effect->ReplaceInput(1, terminate);
Node* end = graph()->NewNode(common()->End(1), terminate);
graph()->SetEnd(end);
Schedule* schedule = ComputeAndVerifySchedule(6);
BasicBlock* block = schedule->block(loop);
EXPECT_EQ(block, schedule->block(effect));
EXPECT_GE(block->rpo_number(), 0);
}
} // namespace compiler
} // namespace internal
} // namespace v8